1
|
Sawalha K, Gautam N, Sivakumar K, Paydak H, Mehta JL. Metformin: Its salutary effects beyond diabetes mellitus. J Investig Med 2025:10815589251327511. [PMID: 40033492 DOI: 10.1177/10815589251327511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metformin, an oral hypoglycemic agent, is commonly used in patients with type II diabetes mellitus. Studies have shown its use is associated with a reduction in major cardiovascular events (MACE) in patients with type 2 diabetes such as hospitalization for acute myocardial infarction, stroke, transient ischemic attack, or cardiovascular death. There is also a suggestion that metformin may have effects beyond those relating to lowering of blood sugar. The goal of this review is to assess the effects of metformin in coronary artery disease (CAD), but more importantly, its effects on disease states other than CAD.
Collapse
Affiliation(s)
- Khalid Sawalha
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kalaivani Sivakumar
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hakan Paydak
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawaher L Mehta
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
2
|
Lee D, Liew MS, Fourlanos S, Choi J. Metformin use and pancreatic ductal adenocarcinoma outcomes: a narrative review. ANZ J Surg 2025; 95:313-320. [PMID: 39840695 DOI: 10.1111/ans.19405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Metformin is a diabetes medication with anti-mitotic properties. A narrative review was performed to investigate people using metformin and the risk of developing pancreatic ductal adenocarcinoma (PDAC) as well as survival outcomes in established PDAC. METHODS Relevant studies on metformin use and PDAC were retrieved from PubMed including observational studies on metformin and the risk of developing PDAC and survival outcomes in PDAC, and randomized controlled trials of metformin as a treatment in PDAC. RESULTS Of the 367 studies searched, 26 studies fulfilled the criteria for this review. Metformin was not consistently associated with a reduced risk of developing PDAC. However, metformin use, especially higher cumulative doses, in some studies was associated with longer survival in patients with established PDAC, especially in the subgroup with resectable PDAC. Metformin use was not associated with longer survival in more advanced (non-resectable metastatic) PDAC. CONCLUSION Metformin was not consistently associated with a reduced risk of developing PDAC. Metformin may be associated with overall survival benefits in patients with PDAC including the resectable PDAC subgroup but not in the metastatic PDAC subgroup. The evidence to date does not support the routine use of metformin as an adjuvant therapy for advanced PDAC.
Collapse
Affiliation(s)
- Dooyeon Lee
- Department of Surgery, Western Health, St. Albans, Victoria, Australia
| | - Mun Sem Liew
- Victorian Oncology Care, St John of God Specialist Centre, Berwick, Victoria, Australia
| | - Spiros Fourlanos
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Julian Choi
- Department of Surgery, Western Health, St. Albans, Victoria, Australia
- Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
- Clinical Institute General Surgery and Gastroenterology, Epworth Healthcare, Richmond, Victoria, Australia
| |
Collapse
|
3
|
Ahmed J, Stephen B, Khawaja MR, Yang Y, Salih I, Barrientos-Toro E, Raso MG, Karp DD, Piha-Paul SA, Sood AK, Ng CS, Johnson A, Soliman PT, Meric-Bernstam F, Lu KH, Naing A. A phase I study of temsirolimus in combination with metformin in patients with advanced or recurrent endometrial cancer. Gynecol Oncol 2025; 193:73-80. [PMID: 39787747 DOI: 10.1016/j.ygyno.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Molecular alterations in the PI3K/AKT and Ras/Raf/MEK/ERK pathways are frequently observed in patients with endometrial cancers. However, mTOR inhibitors, such as temsirolimus, have modest clinical benefits. In addition to inducing metabolic changes in cells, metformin activates AMPK, which in turn inhibits the mTOR pathway. In this phase 1 clinical trial we hypothesized that combining metformin with temsirolimus would potentiate the antitumor activity against advanced or recurrent endometrial cancer. METHODS The dose-expansion cohort used a Simon Minimax two-stage design. The objectives of the endometrial cancer expansion cohort were to evaluate the clinical tumor response, as indicated by the objective response and clinical benefit rates, as well as an ongoing safety assessment of the combination treatment. RESULTS Forty patients were enrolled in this study. The most common treatment-related adverse events (reported in 32 patients) were hypertriglyceridemia (n = 14), diarrhea (n = 13), mucositis (n = 13), anorexia (n = 12), and anemia (n = 10). The grade 3 adverse events were 2 instances each of anemia and thrombocytopenia and 1 instance each of mucositis, fatigue, weight loss, hypokalemia, hypophosphatemia, and increased aspartate aminotransferase and alanine transaminase levels. Among the 33 patients evaluable for response, objective response was seen in two (6 %; both partial responses), and 13 (39 %) patients had stable disease, including 11 for ≥4 months, representing a clinical benefit rate of 39 %. CONCLUSIONS The results of this single-center clinical trial showed that, in patients with advanced or recurrent endometrial cancer, metformin can be safely added to temsirolimus providing limited response without added safety concerns. CLINICAL TRIAL REGISTRATION NUMBER NCT01529593.
Collapse
Affiliation(s)
- Jibran Ahmed
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Muhammad R Khawaja
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yali Yang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Israa Salih
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizve Barrientos-Toro
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chaan S Ng
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amber Johnson
- Precision Oncology Decision Support, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Hatia RI, Hwang LY, Li R, Troisi C, Jalal PK, Amos CI, Gomez HF, Chun YS, Rashid A, Kaseb AO, Scheet PA, Hassan MM. Risk and Prognosis of Hepatocellular Carcinoma in Mexican Americans with Type 2 Diabetes Mellitus. J Hepatocell Carcinoma 2025; 12:93-106. [PMID: 39867264 PMCID: PMC11762437 DOI: 10.2147/jhc.s477141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) disproportionately affects Hispanic persons with higher age-specific incidence and increased mortality rates compared to non-Hispanic Whites. These high rates of incidence and mortality may be explained by the variation in risk factors. Given the high prevalence of type 2 diabetes mellitus (DM) among the Hispanic population, we aimed to assess the risk and prognosis of HCC in Mexican Americans with type 2 DM with consideration of treatment for DM. Methods A case-control study of 241 Mexican American HCC patients and 500 healthy controls in Texas was conducted. Multivariable logistic regression analysis was performed to determine the association between type 2 DM and HCC risk while adjusting for other risk factors. Also, a restricted analysis of patients with type 2 DM was conducted to determine the effects of age at onset and duration of DM on HCC risk. Interactions among DM, heavy alcohol consumption, and viral hepatitis infection were examined. Overall survival was examined, and multivariable Cox proportional hazards regression analysis was performed for HCC patients with type 2 DM. Results The adjusted odds ratio (AOR) for DM was 2.74 (P < 0.01). Compared with patients who had DM for 2-10 years, those who had it for at least 20 years had an AOR of 4.60 (P = 0.04). Metformin use was associated with a reduced risk of death in HCC cases with type 2 DM, with a hazard ratio of 0.72 (P = 0.01) as compared with non-users. Conclusion Our results demonstrate that type 2 DM was independently associated with increased risk of HCC among Mexican Americans. Metformin use was associated with improved survival among HCC patients with type 2 DM. Type 2 DM significantly increased the risk of HCC alone and in conjunction with other parameters of metabolic syndrome in the Mexican American population after adjusting for other risk factors.
Collapse
Affiliation(s)
- Rikita I Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lu-Yu Hwang
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruosha Li
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Catherine Troisi
- Department of Management, Policy & Community Health, School of Public Health, The University of Health Science Center at Houston, Houston, TX, USA
| | - Prasun K Jalal
- Department of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Henry F Gomez
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Villegas-Vazquez EY, Marín-Carrasco FP, Reyes-Hernández OD, Báez-González AS, Bustamante-Montes LP, Padilla-Benavides T, Quintas-Granados LI, Figueroa-González G. Revolutionizing ovarian cancer therapy by drug repositioning for accelerated and cost-effective treatments. Front Oncol 2025; 14:1514120. [PMID: 39876896 PMCID: PMC11772297 DOI: 10.3389/fonc.2024.1514120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Drug repositioning, the practice of identifying novel applications for existing drugs beyond their originally intended medical indications, stands as a transformative strategy revolutionizing pharmaceutical productivity. In contrast to conventional drug development approaches, this innovative method has proven to be exceptionally effective. This is particularly relevant for cancer therapy, where the demand for groundbreaking treatments continues to grow. This review focuses on drug repositioning for ovarian cancer treatment, showcasing a comprehensive exploration grounded in thorough in vitro experiments across diverse cancer cell lines, which are validated through preclinical in vivo models. These insights not only shed light on the efficacy of these drugs but also expand in potential synergies with other pharmaceutical agents, favoring the development of cost-effective treatments for cancer patients.
Collapse
Affiliation(s)
- Edgar Yebran Villegas-Vazquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Pável Marín-Carrasco
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrea S. Báez-González
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | | | | | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Liu P, Xiao J, Xiao J, Zhou J. Metformin and the risk of malignant tumors of digestive system: a mendelian randomization study. Diabetol Metab Syndr 2025; 17:6. [PMID: 39773528 PMCID: PMC11705776 DOI: 10.1186/s13098-024-01573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Observational studies suggest that metformin may reduce the risk of malignant tumors of the digestive system (MTDS), but these findings are often confounded by bias and unmeasured variables. Recent meta-analyses have questioned these associations, emphasizing the need for robust causal inference. METHODS Mendelian randomization (MR) was used to evaluate the causal relationship between metformin and MTDS. Genetic variants associated with metformin's molecular targets were selected from GTEx, eQTLGen, and UK Biobank and validated using genetic colocalization to ensure instrument validity. GWAS summary statistics for MTDS, encompassing up to 314,193 controls and 6,847 colorectal cancer cases, were obtained from FinnGen and EBI. The primary analysis employed the inverse-variance weighted (IVW) method, supplemented by MR-Egger, weighted median, and weighted mode analyses. Bonferroni correction was applied to adjust for multiple testing across 14 cancer types. RESULTS Genetically proxied metformin use was associated with an increased risk of colorectal cancer (OR = 2.38, 95%CI = 1.38-4.09, P = 0.0018) and related subtypes. No causal relationship was found for hepatocellular carcinoma, gastric cancer, pancreatic cancer, or other digestive system cancers. The robustness of these findings was supported by sensitivity analyses, which indicated no significant pleiotropy, and leave-one-out tests. CONCLUSION This study provides robust genetic evidence that metformin use increases the risk of colorectal cancer, challenging its role as a preventive agent for digestive cancers. These findings emphasize the need for clinicians to carefully evaluate the risks and benefits of metformin, particularly in populations at higher risk for colorectal cancer. Future research should focus on delineating the mechanisms underlying this association to optimize the use of metformin in clinical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Radiation Oncology and Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, HunanCancer Hospital, Changsha, China
| | - Junqi Xiao
- Cancer center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No.35 of Jiefang Avenue, Hengyang City, P. R. China
| | - Jinghuang Xiao
- Department of Radiation Oncology and Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, HunanCancer Hospital, Changsha, China
| | - Jumei Zhou
- Department of Radiation Oncology and Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, HunanCancer Hospital, Changsha, China.
| |
Collapse
|
7
|
Behrouzi Varjovi M, Asghari-Zakaria R, Hosseinzadeh G. Evaluation of suppressor behavior of guanidine-derived metformin and galegine as novel potential drugs for cancer treatment: an in silico study. Biotechnol Appl Biochem 2024; 71:1370-1383. [PMID: 39014863 DOI: 10.1002/bab.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
There are some natural products from plants that can prevent and treat disease. Metformin, a derivative of galegine, is the basic drug to treat diabetes. Moreover, this molecule has anticancer properties that inhibit cancer cell growth and proliferation. In this study, the main interactions of galegine and metformin with various cancer-involved proteins, including mitochondrial alpha-glycerophosphate dehydrogenase, yeast NADH dehydrogenase, and transforming growth factor-β1, were surveyed by molecular docking and molecular dynamics simulations. The results showed that each of the proteins makes complexes with the ligands via favorable non-bonded interactions, especially hydrogen bond interactions. There is greater stability for complexes containing galegine based on the root mean square deviation results. The higher structure compactness is also found in galegine receptors than in metformin receptors. Calculation of ΔGbinding, using the MM/PBSA methodology, shows that the binding energy values for metformin and galegine in interaction with each of the receptors are almost the same, and galegine has similar binding properties with metformin in interaction with the studied protein receptors. Therefore, galegine, a natural ingredient with better binding properties to cancer-involved proteins than metformin (with various side effects), can be applied as a new drug for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Behrouzi Varjovi
- Faculty of Agriculture, Department of Crop Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari-Zakaria
- Faculty of Agriculture, Department of Crop Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ghader Hosseinzadeh
- Faculty of Engineering, Department of Chemical Engineering, University of Bonab, Bonab, Iran
| |
Collapse
|
8
|
Park JS, Moon SJ, Park HS, Cho SH. Survival benefit of metformin use according to cancer diagnosis in diabetic patients with metabolic syndrome. Prev Med Rep 2024; 48:102928. [PMID: 39634282 PMCID: PMC11616528 DOI: 10.1016/j.pmedr.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Background Metabolic syndrome (MetSyn) is a disease cluster causing cardiovascular disease, cancer, and high mortality. Metformin is the most common antidiabetic agent inhibiting the tumorigenesis and insulin resistance of MetSyn. We describe the association between metformin intake and survival of patients with type 2 diabetes mellitus (T2DM) and MetSyn, according to the presence of cancer. Methods We analyzed the clinical characteristics and all-cause mortality of patients with T2DM and MetSyn using a 5-year dataset between January 1, 2009 and December 31, 2013 derived from the Korean National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS). Cox proportional hazards regression models were used to investigate metformin effects adjusted for other potential confounding variables. Results Among a total of 43,043 patients with both MetSyn and T2DM, 24,725 patients (57.4 %) received metformin regularly. Female sex, high income, regular exercise, and metformin use were good prognostic factors, whereas hypertension, current smoking, cancer, and diabetes medication (except metformin) were poor prognostic factors. After adjustment for possible confounding variables, metformin showed a significant effect on patient survival (hazard ratio [HR], 0.68; 95 % confidence interval [CI], 0.63-0.75; p < 0.001). The effect of metformin was pronounced on the group of patients with liver, lung, colorectal, or prostate cancers (HR, 0.57; CI, 0.46-0.70). Conclusions Metformin intake may be related to favorable survival among patients with T2DM and MetSyn. The efficacy might be more remarkable in those with liver, lung, colorectal, and prostate cancers. The potential benefit of metformin in patients with these risk factors should be further investigated.
Collapse
Affiliation(s)
- Ji Soo Park
- Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Moon
- Department of Statistics and Actuarial Science, Soongsil University, South Korea
| | - Hyung Seok Park
- Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hoon Cho
- Department of Statistics and Actuarial Science, Soongsil University, South Korea
| |
Collapse
|
9
|
Tsai KW, Liao JB, Tseng HW. Metformin regulates the proliferation and motility of melanoma cells by modulating the LINC00094/miR-1270 axis. Cancer Cell Int 2024; 24:384. [PMID: 39563323 PMCID: PMC11575040 DOI: 10.1186/s12935-024-03545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Melanoma is an aggressive tumor with a high mortality rate. Metformin, a commonly prescribed diabetes medication, has shown promise in cancer prevention and treatment. Long noncoding RNAs (lncRNAs) are non-protein-coding RNA molecules that play a key role in tumor development by interacting with cellular chromatins. Despite the benefits of metformin, the anticancer mechanism underlying its effect on the regulation of lncRNAs in melanoma remains unclear. METHODS We investigated the lncRNA profiles of human melanoma cells with and without metformin treatment using a next-generation sequencing approach (NGS). Utilizing public databases, we analyzed the expression levels and clinical impacts of LINC00094 and miR-1270 in melanoma. The expression levels of LINC00094 and miR-1270 were verified in human cell lines and clinical samples by real-time PCR and in situ hybridization. The biological roles of LINC00094 and miR-1270 in cell growth, proliferation, cell cycle, apoptosis, and motility were studied using in vitro assays. RESULTS We identify a novel long noncoding RNA, namely LINC00094, whose expression considerably decreased in melanoma cells after metformin treatment. In situ hybridization analysis revealed substantially higher expression of LINC00094 in cutaneous melanoma tissue compared with adjacent normal epidermis and normal control tissues (P < 0.001). In nondiabetic patients with melanoma, the overall survival of high LINC00094 expression group was shorter than the low LINC00094 expression group with borderline statistical significance (log-rank test, P = 0.057). Coexpression analysis of LINC00094 indicated its involvement in the mitochondrial respiratory pathway, with its knockdown suppressing genes associated with mitochondrial oxidative phosphorylation, glycolysis, antioxidant production, and metabolite levels. Functional analysis revealed that silencing-LINC00094 inhibited the proliferation, colony formation, invasion, and migration of melanoma cells. Cell cycle analysis following LINC00094 knockdown revealed G1 phase arrest with reduced cell cycle protein expression. Combined TargetScan and reporter assays revealed a direct link between miR-1270 and LINC00094. Ectopic miR-1270 expression inhibited melanoma cell growth and motility while inducing apoptosis. Finally, through in silico analysis, we identified two miR-1270 target genes, CD276 and centromere protein M (CENPM), which may be involved in the biological functions of LINC00094. CONCLUSIONS Overall, LINC00094 expression may regulate melanoma cell growth and motility by modulating the expression of miR-1270, and targeting genes of CD276 and CENPM indicating its therapeutic potential in melanoma treatment.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Shu Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Nursing, College of Nursing, Meiho University, Neipu, Pingtung, Taiwan.
| |
Collapse
|
10
|
Giovino C, Subasri V, Telfer F, Malkin D. New Paradigms in the Clinical Management of Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med 2024; 14:a041584. [PMID: 38692744 PMCID: PMC11529854 DOI: 10.1101/cshperspect.a041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Approximately 8.5%-16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant-a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li-Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning-based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.
Collapse
Affiliation(s)
- Camilla Giovino
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Frank Telfer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
11
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
12
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
13
|
Gomaa MM, Nabil El Achy S, Hezema NN. Could metformin modulate the outcome of chronic murine toxoplasmosis? Acta Trop 2024; 258:107339. [PMID: 39084481 DOI: 10.1016/j.actatropica.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.
Collapse
Affiliation(s)
- Maha Mohamed Gomaa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
14
|
Dwipayana IMP, Gotera W, Saraswati MR, Semadi IMS, Nugraha IBA, Suastika K, Budhiarta AAG, Amrita P, Putra WP. Correlation between Waist Circumference and IGF-1 Levels in an Elderly Population in Bali, Indonesia. J ASEAN Fed Endocr Soc 2024; 39:9-12. [PMID: 39620179 PMCID: PMC11604360 DOI: 10.15605/jafes.039.02.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 04/06/2025] Open
Abstract
Background Hyperinsulinemia due to insulin resistance is hypothesized to act as a promotor of cancer growth. In addition to the direct effects of hyperinsulinemia on cancer cells, the stimulation of tumor cell growth can also be indirectly mediated through growth factors and receptors such as insulin-like growth factor 1 (IGF-1). Increased cancer risk is also associated with increased adipose tissue, such as in abdominal obesity, due to the higher risk of insulin resistance and hyperinsulinemia. Waist circumference is a parameter that indicates an individual's level of adiposity. In addition, the risk of cancer also increases in the elderly as they age. This study aims to assess the correlation between waist circumference and IGF-1 levels in the elderly population in Bali, Indonesia. Methodology This study used a cross-sectional analytical design conducted in the Melinggih Village, Gianyar Regency. The study was conducted in September 2023. This study has been approved by the Research Ethics Commission number 2020/UN14.2.2.VII.14/LT/2023. The study population included elderly individuals residing in the Melinggih Village who were willing to participate. Data analysis encompassed descriptive analysis and the Spearman correlation test. Result A total of 88 subjects participated in the study, consisting of 57 females (64.8%) and 31 males (35.2%). A statistically significant but weak correlation coexists between waist circumference and IGF-1 levels. Conclusion A weak but statistically significant positive correlation was found between waist circumference and IGF-1 levels in the elderly. However, because of the small sample size, another study with a bigger sample size with enough power to investigate this association needs to be done to validate the results of the current study.
Collapse
Affiliation(s)
- I Made Pande Dwipayana
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Wira Gotera
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Made Ratna Saraswati
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - I Made Siswadi Semadi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Ida Bagus Aditya Nugraha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Ketut Suastika
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Anak Agung Gede Budhiarta
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Padma Amrita
- Internal Medicine Study Program, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| | - Wahyu Pratama Putra
- Internal Medicine Study Program, Faculty of Medicine, Udayana University, Prof. dr. I Goesti Ngoerah Gde Ngoerah General Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
15
|
Barciszewska AM, Belter A, Barciszewski JF, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Mechanistic Insights on Metformin and Arginine Implementation as Repurposed Drugs in Glioblastoma Treatment. Int J Mol Sci 2024; 25:9460. [PMID: 39273414 PMCID: PMC11394688 DOI: 10.3390/ijms25179460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
As the most common and aggressive primary malignant brain tumor, glioblastoma is still lacking a satisfactory curative approach. The standard management consisting of gross total resection followed by radiotherapy and chemotherapy with temozolomide only prolongs patients' life moderately. In recent years, many therapeutics have failed to give a breakthrough in GBM treatment. In the search for new treatment solutions, we became interested in the repurposing of existing medicines, which have established safety profiles. We focused on the possible implementation of well-known drugs, metformin, and arginine. Metformin is widely used in diabetes treatment, but arginine is mainly a cardiovascular protective drug. We evaluated the effects of metformin and arginine on total DNA methylation, as well as the oxidative stress evoked by treatment with those agents. In glioblastoma cell lines, a decrease in 5-methylcytosine contents was observed with increasing drug concentration. When combined with temozolomide, both guanidines parallelly increased DNA methylation and decreased 8-oxo-deoxyguanosine contents. These effects can be explained by specific interactions of the guanidine group with m5CpG dinucleotide. We showed that metformin and arginine act on the epigenetic level, influencing the foreground and potent DNA regulatory mechanisms. Therefore, they can be used separately or in combination with temozolomide, in various stages of disease, depending on desired treatment effects.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Jakub F Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | |
Collapse
|
16
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Pan C, Wei Y, Dai J, Yang L, Ding Z, Xinke Wang. Knowledge mapping of metformin use on cancers: a bibliometric analysis (2013-2023). Front Pharmacol 2024; 15:1388253. [PMID: 39193327 PMCID: PMC11347356 DOI: 10.3389/fphar.2024.1388253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
There is substantial evidence from clinical and preclinical studies suggesting an association between metformin use and a reduced risk of cancer. However, the effects of metformin use on cancers have not yet been subjected to bibliometric analysis. The goal of this study was to explore the potential effects of metformin use on cancers and to conduct a comprehensive assessment of research hotspots related to the use of metformin on cancers. The results of the literature analysis were visualized using various tools such as Adobe Illustrator CC 2018, VOSviewer, CiteSpace, and the R package "bibliometric." The average annual publications from 2013 to 2023 was 372. In terms of journals and co-cited journals, a total of 1,064 journals published 1958 papers, and Oncotarget published the highest number of papers (n = 153, 7.81%), while Cancer Research (Co-citation = 5,125) was the most frequently cited journal. A total of 25,665 authors participated in the research on metformin use on cancers. Metformin has demonstrated improved outcomes in various types of cancer, including breast cancer (BC), lung cancer (LC), colorectal cancer (CRC), prostate cancer (PC), and pancreatic cancer. This bibliometric analysis reviews the current literature on the clinical data on metformin use on cancers and describes the preclinical evidence illustrating the potential mechanisms of metformin use on various cancers directly or indirectly.
Collapse
Affiliation(s)
| | | | | | | | - Zhuoyu Ding
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Nakatani E, Ohno H, Satoh T, Funaki D, Ueki C, Matsunaga T, Nagahama T, Tonoike T, Yui H, Miyakoshi A, Tanaka Y, Igarashi A, Kumamaru H, Kuriyama N, Sugawara A. Comparing the effects of biguanides and dipeptidyl peptidase-4 inhibitors on cardio-cerebrovascular outcomes, nephropathy, retinopathy, neuropathy, and treatment costs in diabetic patients. PLoS One 2024; 19:e0308734. [PMID: 39121166 PMCID: PMC11315305 DOI: 10.1371/journal.pone.0308734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Western guidelines often recommend biguanides as the first-line treatment for diabetes. However, dipeptidyl peptidase-4 (DPP-4) inhibitors, alongside biguanides, are increasingly used as the first-line therapy for type 2 diabetes (T2DM) in Japan. However, there have been few studies comparing the effectiveness of biguanides and DPP-4 inhibitors with respect to diabetes-related complications and cardio-cerebrovascular events over the long term, as well as the costs associated. OBJECTIVE We aimed to compare the outcomes of patients with T2DM who initiate treatment with a biguanide versus a DPP-4 inhibitor and the long-term costs associated. METHODS We performed a cohort study between 2012 and 2021 using a new-user design and the Shizuoka Kokuho database. Patients were included if they were diagnosed with T2DM. The primary outcome was the incidence of cardio-cerebrovascular events or mortality from the initial month of treatment; and the secondary outcomes were the incidences of related complications (nephropathy, renal failure, retinopathy, and peripheral neuropathy) and the daily cost of the drugs used. Individuals who had experienced prior events during the preceding year were excluded, and events within 6 months of the start of the study period were censored. Propensity score matching was performed to compare between two groups. RESULTS The matched 1:5 cohort comprised 529 and 2,116 patients who were initially treated with a biguanide or a DPP-4 inhibitor, respectively. Although there were no significant differences in the incidence of cardio-cerebrovascular events or mortality and T2DM-related complications between the two groups (p = 0.139 and p = 0.595), daily biguanide administration was significantly cheaper (mean daily cost for biguanides, 61.1 JPY; for DPP-4 inhibitors, 122.7 JPY; p<0.001). CONCLUSION In patients with T2DM who initiate pharmacotherapy, there were no differences in the long-term incidences of cardio-cerebrovascular events or complications associated with biguanide or DPP-4 use, but the former was less costly.
Collapse
Affiliation(s)
- Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
- Allied Medical K.K., Tokyo, Japan
| | | | - Tatsunori Satoh
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Daito Funaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Chikara Ueki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Taku Matsunaga
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Takayoshi Nagahama
- Allied Medical K.K., Tokyo, Japan
- Institute of Humanistic Social Medicine, Tokyo, Japan
| | | | | | - Akinori Miyakoshi
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Yoshihiro Tanaka
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Ataru Igarashi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
- Graduate School of Data Sciences, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hiraku Kumamaru
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Healthcare Quality Assessment, The University of Tokyo, Tokyo, Japan
| | - Nagato Kuriyama
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Akira Sugawara
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
19
|
Chen M, Shen C, Chen Y, Chen Z, Zhou K, Chen Y, Li W, Zeng C, Qing Y, Wu D, Xu C, Tang T, Che Y, Qin X, Xu Z, Wang K, Leung K, Sau L, Deng X, Hu J, Wu Y, Chen J. Metformin synergizes with gilteritinib in treating FLT3-mutated leukemia via targeting PLK1 signaling. Cell Rep Med 2024; 5:101645. [PMID: 39019012 PMCID: PMC11293342 DOI: 10.1016/j.xcrm.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - Yi Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yuanzhong Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chengwu Zeng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
| | - Tingting Tang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yuan Che
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zhaoxu Xu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lillian Sau
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| | - Yong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
20
|
Wang T, Chai B, Chen WY, Holmes MD, Erdrich J, Hu FB, Rosner BA, Tamimi RM, Willett WC, Kang JH, Eliassen AH. Metformin and other anti-diabetic medication use and breast cancer incidence in the Nurses' Health Studies. Int J Cancer 2024; 155:211-225. [PMID: 38520039 PMCID: PMC11096056 DOI: 10.1002/ijc.34917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
We aimed to examine the association between the use of metformin and other anti-diabetic medications and breast cancer incidence within two large prospective cohort studies. We followed 185,181 women who participated in the Nurses' Health Study (NHS; 1994-2016) and the NHSII (1995-2017), with baseline corresponding to the date metformin was approved for type 2 diabetes (T2D) treatment in the US Information on T2D diagnosis, anti-diabetes medications, and other covariates was self-reported at baseline and repeatedly assessed by follow-up questionnaires every 2 years. Breast cancer cases were self-reported and confirmed by medical record review. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between medication use and breast cancer were estimated using Cox proportional hazards regression models, adjusting for breast cancer risk factors. During 3,324,881 person-years of follow-up, we ascertained 9,192 incident invasive breast cancer cases, of which 451 were among women with T2D. Compared with women without T2D (n = 169,263), neither metformin use (HR = 0.97; 95% CI = 0.81-1.15) nor other anti-diabetic medications use (HR = 1.11; 95% CI = 0.90-1.36) associated with significantly lower breast cancer incidence. Among women with T2D (n = 15,918), compared with metformin never users, metformin ever use was not significantly inversely associated with breast cancer (HR = 0.92; 95% CI = 0.74-1.15). Although we observed that past use of metformin was inversely associated with breast cancer in the T2D population (HR = 0.67; 95% CI = 0.48-0.94), current use (HR = 1.01; 95% CI = 0.80-1.27) and longer duration of metformin use were not associated with breast cancer (each 2-year interval: HR = 1.01; 95% CI = 0.95-1.07). Overall, metformin use was not associated with the risk of developing breast cancer among the overall cohort population or among women with T2D.
Collapse
Affiliation(s)
- Tengteng Wang
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
- Division of Medical Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Boyang Chai
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
| | - Wendy Y. Chen
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michelle D. Holmes
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | | | - Frank B. Hu
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Bernard A. Rosner
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Rulla M. Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Walter C. Willett
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jae H. Kang
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
| | - A. Heather Eliassen
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, MA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
21
|
Sun W, Zhang X, Li N, He Y, Ji J, Zheng D. Genetic association of glycemic traits and antihyperglycemic agent target genes with the risk of lung cancer: A Mendelian randomization study. Diabetes Metab Syndr 2024; 18:103048. [PMID: 38850595 DOI: 10.1016/j.dsx.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
AIMS To evaluate the potential causal effect of glycemic traits on lung cancer and investigate the impact of antihyperglycemic agent-target genes on lung cancer risk. METHODS Genetic variants associated with glycemic traits, antihyperglycemic agent-target genes, and lung cancer were extracted from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and the International Lung Cancer Consortium (ILCCO), respectively. Mendelian randomization (MR) analyses were performed to examine the associations of glycemic traits and antihyperglycemic agent-target genes with lung cancer. Mediation analysis was conducted to explore whether overweight operated as a mediator between antihyperglycemic agents and lung cancer outcomes. RESULTS Genetically determined glycated hemoglobin A1c levels were associated with squamous cell lung cancer (OR = 1.78; 95 % CI, 1.08-2.92; p = 0.023). The PRKAB1 gene (the target of metformin) was associated with a lower risk of developing lung adenocarcinoma (OR = 0.85; 95 % CI, 0.76-0.96; p = 0.006). Further mediation analyses did not support overweight as a mediator between PRKAB1 activation and lung adenocarcinoma. CONCLUSION Our analyses suggest an association of genetically determined abnormal glycemic traits with squamous cell lung cancer. The potential association between PRKAB1 activation and a reduced risk of developing lung adenocarcinoma appears to be independent of the anti-obesity effects of metformin, suggesting that PRKAB1 activation may have a direct protective effect on lung adenocarcinoma development.
Collapse
Affiliation(s)
- Wen Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Kekatpure V, Subramaniam N, Sunny S, Nambiar S, Sarah T, Vasudevan V, Rao A, Murali A, Kolur T, Krishnamurthy A, Kantharia R, Nair SV, Thankappan K, M N B, Kumar R, Balasubramanian S, Toprani R, Agrawala S, Battoo AJ, Bakshi J, Babu S, Shah S, Trivedi N, Selvam S, Kannan R, Kumar A, Suresh A, Pillai V, Chaturvedi P, Iyer S, Kuriakose MA. Two by Two Factorial Design using Metformin and Curcumin for Second Primary Head and Neck Cancer Prevention Trial. Asian Pac J Cancer Prev 2024; 25:1935-1943. [PMID: 38918654 PMCID: PMC11382851 DOI: 10.31557/apjcp.2024.25.6.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE The 2x2 factorial design is an effective method that allows for multiple comparisons, especially in the context of interactions between different interventions, without substantially increasing the required sample size. In view of the considerable preclinical evidence for Curcumin and Metformin in preventing the development and progression of head and neck squamous cell carcinoma (HNSCC), this study describes the protocol of the clinical trial towards applying the drug combination in prevention of second primary tumors. METHODS We have applied the trial design to a large phase IIB/III double-blind, multi-centric, placebo-controlled, randomized clinical trial to determine the safety and efficacy of Metformin and Curcumin in the prevention of second primary tumours (SPT) of the aerodigestive tract following treatment of HNSCC (n=1,500) [Clinical Registry of India, CTRI/2018/03/012274]. Patients recruited in this trial will receive Metformin (with placebo), Curcumin (with placebo), Metformin, and Curcumin or placebo alone for a period of 36 months. The primary endpoint of this trial is the development of SPT, while the secondary endpoints are toxicities associated with the agents, incidence of recurrence, and identifying potential biomarkers. In this article, we discuss the 2x2 factorial design and how it applies to the head and neck cancer chemoprevention trial. CONCLUSION 2x2 factorial design is an effective trial design for chemoprevention clinical trials where the effectiveness of multiple interventions needs to be tested parallelly.
Collapse
Affiliation(s)
- Vikram Kekatpure
- Department of Head Neck Oncology, Cytecare Cancer Hospital, Bangalore, India
| | - Narayana Subramaniam
- Department of Head and Neck Oncology, Sri Shnakara Caner Foundation, Bangalore, India
| | - Sumsum Sunny
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Sruthi Nambiar
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Tinku Sarah
- St. Johns' Research Institute, Banglore, India
| | - Vaishnav Vasudevan
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Anusha Rao
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Anupama Murali
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Trupti Kolur
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Arvind Krishnamurthy
- Department of Head and Neck and Thoracic Oncology, Cancer Institute, Adyar, Chennai, India
| | - Rajesh Kantharia
- Department of Head and Neck Oncosurgery, Kailash Cancer Hospital and Research center, Goraj, Vadodara, India
| | - Sudhir V Nair
- Department of Head and Neck Surgical Oncology, Tata Memorial Center, Navi Mumbai, Maharashtra, India
| | - Krishnakumar Thankappan
- Department of Head Neck Surgery and Oncology, Amrita Institute of Medical Science and Research Centre, Kochi, Kerala, India
| | - Baruah M N
- Head and Neck Oncology, Managing Director & Research Head, North East Cancer Hospital and Research Institute, Assam
| | - Rajeev Kumar
- Otorhinolaryngology and Head-Neck Surgery, Professor, All India Institute of Medical Sciences, Delhi, India
| | | | - Rajendra Toprani
- Department of Head and Neck Cancer, HCG Cancer Centre, Ahmedabad, India
| | - Sunil Agrawala
- Department of Surgical Oncology, Professor, IMS & SUM Hospital, Bhubaneswar, India
| | - Azar Jan Battoo
- Surgical Oncology, Associate Professor, Sher-i-Kashmir Institute of Medical Science, Srinagar, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Professor and Head, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sajith Babu
- Surgical Oncology, Associate Professor, Aster MIMS, Calicut, India
| | - Siddharth Shah
- Head and Neck Cancer Dept, Sr. Consultant Head & Neck Cancer Surgeon, Zydus Cancer Centre, Ahmedabad, India
| | - Niravkumar Trivedi
- Head & Neck, Medical Director, Shankus Hospital Pvt. Ltd., Gujarat, India
| | | | - Ravi Kannan
- Department of Oncology, Cachar Cancer Hospital and Research Center, Silchar, Assam, India
| | - Arun Kumar
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation, Narayana Health City, Bangalore, India
| | - Vijay Pillai
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Center, Navi Mumbai, Maharashtra, India
| | - Subramania Iyer
- Department of Head Neck Surgery and Oncology, Amrita Institute of Medical Science and Research Centre, Kochi, Kerala, India
- President, Head and Neck Cooperative Group, Department of Head and Neck Surgery Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Moni Abraham Kuriakose
- Department of Head and Neck Oncology, Mazumdar Medical Center, Narayana Health City, Bangalore, India
| |
Collapse
|
23
|
Kawakita E, Kanasaki K. Cancer biology in diabetes update: Focusing on antidiabetic drugs. J Diabetes Investig 2024; 15:525-540. [PMID: 38456597 PMCID: PMC11060166 DOI: 10.1111/jdi.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The association of type 2 diabetes with certain cancer risk has been of great interest for years. However, the effect of diabetic medications on cancer development is not fully understood. Prospective clinical trials have not elucidated the long-term influence of hypoglycemic drugs on cancer incidence and the safety for cancer-bearing patients with diabetes, whereas numerous preclinical studies have shown that antidiabetic drugs could have an impact on carcinogenesis processes beyond the glycemic control effect. Because there is no evidence of the safety profile of antidiabetic agents on cancer biology, careful consideration would be required when prescribing any medicines to patients with diabetes and existing tumor. In this review, we discuss the potential influence of each diabetes therapy in cancer 'initiation', 'promotion' and 'progression'.
Collapse
Affiliation(s)
- Emi Kawakita
- Department of Internal Medicine 1, Faculty of MedicineShimane UniversityIzumoJapan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of MedicineShimane UniversityIzumoJapan
- The Center for Integrated Kidney Research and Advance, Faculty of MedicineShimane UniversityIzumoJapan
| |
Collapse
|
24
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
25
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
26
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Jabir MS, Negm WA, Batiha GES. Metformin role in Parkinson's disease: a double-sword effect. Mol Cell Biochem 2024; 479:975-991. [PMID: 37266747 DOI: 10.1007/s11010-023-04771-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease developed due to the degeneration of dopaminergic neurons in the substantia nigra. There is no single effective treatment in the management of PD. Therefore, repurposing effective and approved drugs like metformin could be an effective strategy for managing PD. However, the mechanistic role of metformin in PD neuropathology was not fully elucidated. Metformin is an insulin-sensitizing agent used as a first-line therapy in the management of type 2 diabetes mellitus (T2DM) and has the ability to reduce insulin resistance (IR). Metformin may have a beneficial effect on PD neuropathology. The neuroprotective effect of metformin is mainly mediated by activating adenosine monophosphate protein kinase (AMPK), which reduces mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation. As well, metformin mitigates brain IR a hallmark of PD and other neurodegenerative diseases. However, metformin may harm PD neuropathology by inducing hyperhomocysteinemia and deficiency of folate and B12. Therefore, this review aimed to find the potential role of metformin regarding its protective and detrimental effects on the pathogenesis of PD. The mechanistic role of metformin in PD neuropathology was not fully elucidated. Most studies regarding metformin and its effectiveness in PD neuropathology were observed in preclinical studies, which are not fully translated into clinical settings. In addition, metformin effect on PD neuropathology was previously clarified in T2DM, potentially linked to an increasing PD risk. These limitations hinder the conclusion concerning the therapeutic efficacy of metformin and its beneficial and detrimental role in PD. Therefore, as metformin does not cause hypoglycemia and is a safe drug, it should be evaluated in non-diabetic patients concerning PD risk.
Collapse
Affiliation(s)
- Mohamed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Majid S Jabir
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
27
|
Corleto KA, Strandmo JL, Giles ED. Metformin and Breast Cancer: Current Findings and Future Perspectives from Preclinical and Clinical Studies. Pharmaceuticals (Basel) 2024; 17:396. [PMID: 38543182 PMCID: PMC10974219 DOI: 10.3390/ph17030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Over the last several decades, a growing body of research has investigated the potential to repurpose the anti-diabetic drug metformin for breast cancer prevention and/or treatment. Observational studies in the early 2000s demonstrated that patients with diabetes taking metformin had decreased cancer risk, providing the first evidence supporting the potential role of metformin as an anti-cancer agent. Despite substantial efforts, two decades later, the exact mechanisms and clinical efficacy of metformin for breast cancer remain ambiguous. Here, we have summarized key findings from studies examining the effect of metformin on breast cancer across the translational spectrum including in vitro, in vivo, and human studies. Importantly, we discuss critical factors that may help explain the significant heterogeneity in study outcomes, highlighting how metformin dose, underlying metabolic health, menopausal status, tumor subtype, membrane transporter expression, diet, and other factors may play a role in modulating metformin's anti-cancer effects. We hope that these insights will help with interpreting data from completed studies, improve the design of future studies, and aid in the identification of patient subsets with breast cancer or at high risk for the disease who are most likely to benefit from metformin treatment.
Collapse
Affiliation(s)
- Karen A. Corleto
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenna L. Strandmo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
| | - Erin D. Giles
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Mertens RT, Kim JH, Ofori S, Olelewe C, Kamitsuka PJ, Kwakye GF, Awuah SG. A gold-based inhibitor of oxidative phosphorylation is effective against triple negative breast cancer. Biomed Pharmacother 2024; 170:116010. [PMID: 38128183 PMCID: PMC11254167 DOI: 10.1016/j.biopha.2023.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with metabolic heterogeneity and poor prognosis with limited treatment options. New treatment paradigms for TNBC remains an unmet need. Thus, therapeutics that target metabolism are particularly attractive approaches. We previously designed organometallic Au(III) compounds capable of modulating mitochondrial respiration by ligand tuning with high anticancer potency in vitro and in vivo. Here, we show that an efficacious Au(III) dithiocarbamate (AuDTC) compound induce mitochondrial dysfunction and oxidative damage in cancer cells. Efficacy of AuDTC in TNBC mouse models harboring mitochondrial oxidative phosphorylation (OXPHOS) dependence and metabolic heterogeneity establishes its therapeutic potential following systemic delivery. This provides evidence that AuDTC is an effective modulator of mitochondrial respiration worthy of clinical development in the context of TNBC. ONE SENTENCE SUMMARY: Metabolic-targeting of triple-negative breast cancer by gold anticancer agent may provide efficacious therapy.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States
| | - Jong Hyun Kim
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States; Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States; University of Kentucky Markey Cancer Center, USA
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States; Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States; University of Kentucky Markey Cancer Center, USA
| | - Paul J Kamitsuka
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States
| | - Gunnar F Kwakye
- Department of Neuroscience, Oberlin College, Oberlin, OH 44074, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky; Lexington, KY 40506, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States; University of Kentucky Markey Cancer Center, USA.
| |
Collapse
|
29
|
Stanisławiak-Rudowicz J, Karbownik A, Szkutnik-Fiedler D, Otto F, Grabowski T, Wolc A, Grześkowiak E, Szałek E. Bidirectional pharmacokinetic drug interactions between olaparib and metformin. Cancer Chemother Pharmacol 2024; 93:79-88. [PMID: 37815561 PMCID: PMC10796410 DOI: 10.1007/s00280-023-04591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/10/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Olaparib is a PARP (poly-ADP-ribose polymerase) inhibitor used for maintenance therapy in BRCA-mutated cancers. Metformin is a first-choice drug used in the treatment of type 2 diabetes. Both drugs are commonly co-administered to oncologic patients with add-on type 2 diabetes mellitus. Olaparib is metabolized by the CYP3A4 enzyme, which may be inhibited by metformin through the Pregnane X Receptor. In vitro studies have shown that olaparib inhibits the following metformin transporters: OCT1, MATE1, and MATE2K. The aim of the study was to assess the influence of 'the perpetrator drug' on the pharmacokinetic (PK) parameters of 'the victim drug' after a single dose. To evaluate the effect, the AUC0→∞ (area under the curve) ratio was determined (the ratio between AUC0→∞ in the presence of the perpetrator and AUC0→∞ without the presence of the perpetrator). METHODS Male Wistar rats were assigned to three groups (eight animals in each group), which were orally administered: metformin and olaparib (IMET+OLA), vehiculum with metformin (IIMET), and vehiculum with olaparib (IIIOLA). Blood samples were collected after 24 h. HPLC was applied to measure the concentrations of olaparib and metformin. The PK parameters were calculated in a non-compartmental model. RESULTS Metformin did not affect the olaparib PK parameters. The AUC0→∞ IMET+OLA/IIIOLA ratio was 0.99. Olaparib significantly increased the metformin Cmax (by 177.8%), AUC0→t (by 159.8%), and AUC0→∞ (by 74.1%). The AUC0→∞ IMET+OLA/IIMET ratio was 1.74. CONCLUSIONS A single dose of metformin did not affect the PK parameters of olaparib, nor did it inhibit the olaparib metabolism, but olaparib significantly changed the metformin pharmacokinetics, which may be of clinical importance.
Collapse
Affiliation(s)
- Joanna Stanisławiak-Rudowicz
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
- Poznań University Clinical Hospital, Szamarzewskiego 84/86, 60-569, Poznań, Poland.
| | - Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Filip Otto
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Tomasz Grabowski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Wolc
- Department of Animal Science, Iowa State University, 239E Kildee Hall, Ames, IA, 50011, USA
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
30
|
Bartolucci G, Pallecchi M, Braconi L, Dei S, Teodori E, Lapolla A, Sartore G, Traldi P. Mass Spectrometry Study about In Vitro and In Vivo Reaction between Metformin and Glucose: A Preliminary Investigation on Alternative Biological Behavior. Int J Mol Sci 2023; 25:180. [PMID: 38203351 PMCID: PMC10779030 DOI: 10.3390/ijms25010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Metformin is the most prescribed glucose-lowering drug worldwide; globally, over 100 million patients are prescribed this drug annually. Some different action mechanisms have been proposed for this drug, but, surprisingly, no metabolite of metformin has ever been described. It was considered interesting to investigate the possible reaction of metformin with glucose following the Maillard reaction pattern. The reaction was first performed in in vitro conditions, showing the formation of two adducts that originated by the condensation of the two molecular species with the losses of one or two water molecules. Their structures were investigated by liquid chromatography coupled with mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS) and accurate mass measurements (HRMS). The species originated via the reaction of glucose and metformin and were called metformose and dehydrometformose, and some structural hypotheses were conducted. It is worth to emphasize that they were detected in urine samples from a diabetic patient treated with metformin and consequently they must be considered metabolites of the drug, which has never been identified before now. The glucose-related substructure of these compounds could reflect an improved transfer across cell membranes and, consequently, new hypotheses could be made about the biological targets of metformin.
Collapse
Affiliation(s)
- Gianluca Bartolucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università di Firenze, 50100 Firenze, Italy; (M.P.); (L.B.); (S.D.); (E.T.)
| | - Marco Pallecchi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università di Firenze, 50100 Firenze, Italy; (M.P.); (L.B.); (S.D.); (E.T.)
| | - Laura Braconi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università di Firenze, 50100 Firenze, Italy; (M.P.); (L.B.); (S.D.); (E.T.)
| | - Silvia Dei
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università di Firenze, 50100 Firenze, Italy; (M.P.); (L.B.); (S.D.); (E.T.)
| | - Elisabetta Teodori
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università di Firenze, 50100 Firenze, Italy; (M.P.); (L.B.); (S.D.); (E.T.)
| | - Annunziata Lapolla
- Dipartimento di Medicina, Università di Padova, 35100 Padova, Italy; (A.L.); (G.S.)
| | - Giovanni Sartore
- Dipartimento di Medicina, Università di Padova, 35100 Padova, Italy; (A.L.); (G.S.)
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, 35100 Padova, Italy
| |
Collapse
|
31
|
Xiong F, Wang J, Nierenberg JL, Van Blarigan EL, Kenfield SA, Chan JM, Schmajuk G, Huang CY, Graff RE. Diabetes mellitus and risk of breast cancer: a large-scale, prospective, population-based study. Br J Cancer 2023; 129:648-655. [PMID: 37402868 PMCID: PMC10421865 DOI: 10.1038/s41416-023-02345-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The objective of this study was to evaluate associations of diabetes overall, type 1 diabetes (T1D), and type 2 diabetes (T2D) with breast cancer (BCa) risk. METHODS We included 250,312 women aged 40-69 years between 2006 and 2010 from the UK Biobank cohort. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were calculated for associations of diabetes and its two major types with the time from enrollment to incident BCa. RESULTS We identified 8182 BCa cases during a median follow-up of 11.1 years. We found no overall association between diabetes and BCa risk (aHR = 1.02, 95% CI = 0.92-1.14). When accounting for diabetes subtype, women with T1D had a higher risk of BCa than women without diabetes (aHR = 1.52, 95% CI = 1.03-2.23). T2D was not associated with BCa risk overall (aHR = 1.00, 95% CI = 0.90-1.12). However, there was a significantly increased risk of BCa in the short time window after T2D diagnosis. CONCLUSIONS Though we did not find an association between diabetes and BCa risk overall, an increased risk of BCa was observed shortly after T2D diagnosis. In addition, our data suggest that women with T1D may have an increased risk of BCa.
Collapse
Affiliation(s)
- Fanxiu Xiong
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Jingxuan Wang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Erin L Van Blarigan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Stacey A Kenfield
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - June M Chan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Gabriela Schmajuk
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Milman S, Barzilai N. Discovering Biological Mechanisms of Exceptional Human Health Span and Life Span. Cold Spring Harb Perspect Med 2023; 13:a041204. [PMID: 37137499 PMCID: PMC10513160 DOI: 10.1101/cshperspect.a041204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Humans age at different rates and families with exceptional longevity provide an opportunity to understand why some people age slower than others. Unique features exhibited by centenarians include a family history of extended life span, compression of morbidity with resultant extension of health span, and longevity-associated biomarker profiles. These biomarkers, including low-circulating insulin-like growth factor 1 (IGF-1) and elevated high-density lipoprotein (HDL) cholesterol levels, are associated with functional genotypes that are enriched in centenarians, suggesting that they may be causative for longevity. While not all genetic discoveries from centenarians have been validated, in part due to exceptional life span being a rare phenotype in the general population, the APOE2 and FOXO3a genotypes have been confirmed in a number of populations with exceptional longevity. However, life span is now recognized as a complex trait and genetic research methods to study longevity are rapidly extending beyond classical Mendelian genetics to polygenic inheritance methodologies. Moreover, newer approaches are suggesting that pathways that have been recognized for decades to control life span in animals may also regulate life span in humans. These discoveries led to strategic development of therapeutics that may delay aging and prolong health span.
Collapse
Affiliation(s)
- Sofiya Milman
- Institute for Aging Research, Department of Medicine, Divisions of Endocrinology and Geriatrics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Divisions of Endocrinology and Geriatrics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
33
|
Lovin BD, Wilkinson AJ, Qing Y, Hernandez M, Nader ME, Raza S, DeMonte F, Gidley PW. The Effect of Metformin on Vestibular Schwannoma Growth: A Systematic Review and Meta-analysis. Laryngoscope 2023; 133:2066-2072. [PMID: 36744870 PMCID: PMC10404300 DOI: 10.1002/lary.30601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To systematically review and evaluate metformin's potential impact on vestibular schwannoma (VS) growth. DATA SOURCES PubMed, Cochrane Library, and Embase. REVIEW METHODS A retrospective cohort study was performed on sporadic VS patients undergoing initial observation who had at least two magnetic resonance imaging studies. Patients were stratified by metformin use during the observation period. Primary endpoint was VS growth, defined as at least a 2 mm increase in diameter. Survival free of tumor growth was evaluated between groups. Systematic review and meta-analysis were performed to produce a pooled odds ratio [OR]. Study heterogeneity was assessed and post-hoc power analysis was performed. RESULTS A total of 123 patients were included, of which 17% were taking metformin. Median patient age was 56.6 years (range, 25.1-84.5). There were no statistically significant differences between the groups. Survival analysis did not demonstrate a statistically significant difference in time to VS growth between groups (hazard ratio = 0.61, 95% confidence interval [CI] = 0.29-1.29). Furthermore, logistic regression analysis did not demonstrate a statistically significant difference between groups in the odds of VS growth (OR = 0.46, 95% CI = 0.17-1.27). Systematic review identified 3 studies. Meta-analysis suggested that metformin reduces the odds of developing VS growth (pooled OR = 0.45, 95% CI = 0.29-0.71). Studies demonstrated low between-study heterogeneity. Power analysis demonstrated a sample size of 220 patients with equal randomization would be required to prospectively identify a true difference with 80% power. CONCLUSIONS Metformin use may reduce the odds of VS growth. A randomized trial would be ideal to identify an unbiased estimate of metformin's effect on VS growth. Laryngoscope, 133:2066-2072, 2023.
Collapse
Affiliation(s)
- Benjamin D Lovin
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alex J Wilkinson
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Yun Qing
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mike Hernandez
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marc-Elie Nader
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shaan Raza
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul W Gidley
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
34
|
Cigrovski Berkovic M, Giovanardi F, Mrzljak A, Lai Q. Prognostic role of metformin in diabetes mellitus type 2 patients with hepatocellular carcinoma: A systematic review and meta-analysis. World J Diabetes 2023; 14:1289-1300. [PMID: 37664473 PMCID: PMC10473950 DOI: 10.4239/wjd.v14.i8.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the commonest malignancies associated with significant cancer-related death. The identification of chemo-preventive agents following HCC treatments with the potential to lower the risk of HCC adverse course is intriguing. Metformin, a first-line agent used in the treatment of type 2 diabetes mellitus (T2DM), has been associated with inhibition of HCC growth. AIM To determine whether metformin can prevent adverse events (i.e., death, tumor progression, and recurrence) after any HCC treatment in T2DM patients. METHODS A systematic review of the published literature was undertaken focused on the role of metformin on outcomes in patients with T2DM and HCC receiving any tumor therapy. A search of the PubMed and Cochrane Central Register of Con-trolled Trials Databases was conducted. RESULTS A total of 13 studies (n = 14886 patients) were included in this review. With regard to the risk of death, a decreased risk was reported in cases receiving metformin, although this decrease was not statistically significant [odds ratio (OR) = 0.89, P = 0.42]. When only patients treated with curative strategies were considered, a more marked correlation between metformin and favorable cases was reported (OR = 0.70, P = 0.068). When analyzing palliative treatment, there was no statistical significance in terms of the correlation between metformin and favorable cases (OR = 0.74, P = 0.66). As for the risks of progressive disease and recurrence, no obvious correlation between metformin use and reduced risk was reported. When sub-analyses were performed for patients from different regions, the results for patients from Eastern countries showed a tendency for decreased risk of death in T2DM cases receiving metformin (OR = 0.69, P = 0.17), but the same was not seen in patients from Western countries (OR = 1.19, P = 0.31). CONCLUSION Metformin failed to show a marked impact in preventing adverse effects after HCC treatment. A trend was reported in T2DM cases receiving curative therapies in relation to the risk of death, especially in patients from Eastern regions. Great heterogeneity was reported among the different studies. Further large studies are required to definitively clarify the real impact of metformin as a chemopreventive agent for HCC.
Collapse
Affiliation(s)
- Maja Cigrovski Berkovic
- Department of Kinesiological Anthropology and Methodology, Faculty of Kinesiology, University of Zagreb, Zagreb 10000, Croatia
| | - Francesco Giovanardi
- General Surgery and Organ Transplantation Unit, Department of Surgery, Sapienza University of Rome, Rome 00018, Italy
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb 10000, Croatia
- Department of Medicine, School of Medicine, Zagreb 10000, Croatia
| | - Quirino Lai
- General Surgery and Organ Transplantation Unit, Department of Surgery, Sapienza University of Rome, Rome 00018, Italy
| |
Collapse
|
35
|
Rossmann C, Ranz C, Kager G, Ledinski G, Koestenberger M, Wonisch W, Wagner T, Schwaminger SP, Di Geronimo B, Hrzenjak A, Hallstöm S, Reibnegger G, Cvirn G, Paar M. Metformin Impedes Oxidation of LDL In Vitro. Pharmaceutics 2023; 15:2111. [PMID: 37631325 PMCID: PMC10459002 DOI: 10.3390/pharmaceutics15082111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the alamarBlue viability test. Quantum chemical calculations were performed to determine free energies of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the development of atherosclerosis and associated CVD. This is due to its capability to impede LDL oxidation, most likely by scavenging hydroxyl radicals.
Collapse
Affiliation(s)
- Christine Rossmann
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Cornelia Ranz
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Gerd Kager
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Gerhard Ledinski
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Martin Koestenberger
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, 8010 Graz, Austria;
| | - Willibald Wonisch
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Thomas Wagner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Sebastian P. Schwaminger
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Bruno Di Geronimo
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Seth Hallstöm
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
- Division of Biomedical Research and Translational Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Gilbert Reibnegger
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| |
Collapse
|
36
|
de Andrade Mesquita L, Wayerbacher LF, Schwartsmann G, Gerchman F. Obesity, diabetes, and cancer: epidemiology, pathophysiology, and potential interventions. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000647. [PMID: 37364149 PMCID: PMC10660996 DOI: 10.20945/2359-3997000000647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
The proportion of deaths attributable to cancer is rising, and malignant neoplasms have become the leading cause of death in high-income countries. Obesity and diabetes are now recognized as risk factors for several types of malignancies, especially endometrial, colorectal, and postmenopausal breast cancers. Mechanisms implicated include disturbances in lipid-derived hormone secretion, sex steroids biosynthesis, hyperinsulinemia, and chronic inflammation. Intentional weight loss is associated with a mitigation of risk for obesity-related cancers, a phenomenon observed specially with bariatric surgery. The impact of pharmacological interventions for obesity and diabetes is not uniform: while metformin seems to protect against cancer, other agents such as lorcaserin may increase the risk of malignancies. However, these interpretations must be carefully considered, since most data stem from bias-prone observational studies, and high-quality randomized controlled trials with appropriate sample size and duration are needed to achieve definite conclusions. In this review, we outline epidemiological and pathophysiological aspects of the relationship between obesity, diabetes, and malignancies. We also highlight pieces of evidence regarding treatment effects on cancer incidence in these populations.
Collapse
Affiliation(s)
- Leonardo de Andrade Mesquita
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil, Porto Alegre, RS, Brasil
| | - Laura Fink Wayerbacher
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Gilberto Schwartsmann
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil, Porto Alegre, RS, Brasil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Fernando Gerchman
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil, Porto Alegre, RS, Brasil,
| |
Collapse
|
37
|
Zhang LY, Yin YH, Wang XJ. Advances in the mechanism of action of metformin in pituitary tumors. World J Meta-Anal 2023; 11:144-150. [DOI: 10.13105/wjma.v11.i5.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/16/2023] Open
|
38
|
Kozłowska M, Śliwińska A. The Link between Diabetes, Pancreatic Tumors, and miRNAs-New Players for Diagnosis and Therapy? Int J Mol Sci 2023; 24:10252. [PMID: 37373398 DOI: 10.3390/ijms241210252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite significant progress in medicine, pancreatic cancer is one of the most tardily diagnosed cancer and is consequently associated with a poor prognosis and a low survival rate. The asymptomatic clinical picture and the lack of relevant diagnostic markers for the early stages of pancreatic cancer are believed to be the major constraints behind an accurate diagnosis of this disease. Furthermore, underlying mechanisms of pancreatic cancer development are still poorly recognized. It is well accepted that diabetes increases the risk of pancreatic cancer development, however the precise mechanisms are weakly investigated. Recent studies are focused on microRNAs as a causative factor of pancreatic cancer. This review aims to provide an overview of the current knowledge of pancreatic cancer and diabetes-associated microRNAs, and their potential in diagnosis and therapy. miR-96, miR-124, miR-21, and miR-10a were identified as promising biomarkers for early pancreatic cancer prediction. miR-26a, miR-101, and miR-200b carry therapeutic potential, as they not only regulate significant biological pathways, including the TGF-β and PI3K/AKT, but their re-expression contributes to the improvement of the prognosis by reducing invasiveness or chemoresistance. In diabetes, there are also changes in the expression of microRNAs, such as in miR-145, miR-29c, and miR-143. These microRNAs are involved, among others, in insulin signaling, including IRS-1 and AKT (miR-145), glucose homeostasis (hsa-miR-21), and glucose reuptake and gluconeogenesis (miR-29c). Although, changes in the expression of the same microRNAs are observed in both pancreatic cancer and diabetes, they exert different molecular effects. For example, miR-181a is upregulated in both pancreatic cancer and diabetes mellitus, but in diabetes it contributes to insulin resistance, whereas in pancreatic cancer it promotes tumor cell migration, respectively. To conclude, dysregulated microRNAs in diabetes affect crucial cellular processes that are involved in pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Małgorzata Kozłowska
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
39
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
40
|
Bekezhankyzy Z, Nurzhan S, Berdigaliyev N, Sergazy S, Maulenkul T, Aljofan M. The antiproliferative potential and mechanism of action of metformin in MCF-7 cells. Future Sci OA 2023; 9:FSO859. [PMID: 37180606 PMCID: PMC10167719 DOI: 10.2144/fsoa-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/03/2023] [Indexed: 05/16/2023] Open
Abstract
Aim The current study aimed to investigate the potential antiproliferative activity of metformin, the effective concentration range, and the mechanism of action. Materials & methods Human breast cancer cells, MCF-7 were treated with a serial dilution of metformin (10-150 μM) for 24 and 48 h. Potential antiproliferative activity of metformin and its ability in inducing cellular apoptosis and autophagy were also investigated. Results Metformin inhibited MCF-7 proliferation in a concentration and time dependent manner, with 80 μM as the most effective concentration. Compared with nontreated cells, metformin induced significant levels of autophagy and apoptosis, which were confirmed by the reduction of mTOR and BCL-2 protein expression. Conclusion The study confirms the antiproliferative activity of metformin, which may likely occur through AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhibek Bekezhankyzy
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
| | - Sholpan Nurzhan
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
| | - Nurken Berdigaliyev
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tilektes Maulenkul
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, 161211, Turkistan, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
41
|
Lange C, Brüggemann J, Thüner T, Jauckus J, Strowitzki T, Germeyer A. Changes in the expression of cancer- and metastasis-related genes and proteins after metformin treatment under different metabolic conditions in endometrial cancer cells. Heliyon 2023; 9:e16678. [PMID: 37313172 PMCID: PMC10258389 DOI: 10.1016/j.heliyon.2023.e16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Research question Hyperinsulinemia and elevated estrogen levels are known risk factors for endometrial cancer (EC) development and are associated with obesity, type 2 diabetes mellitus (T2DM), insulin resistance, among others. Metformin, an insulin-sensitizing drug, displays anti-tumor effects in cancer patients, including EC, but the mechanism of action is still not completely understood. In the present study, the effects of metformin on gene and protein expression were investigated in pre- and postmenopausal EC in vitro models in order to identify candidates that are potentially involved in the drug's anti-cancer mechanism. Design After treating the cells with metformin (0.1 and 1.0 mmol/L), changes in the expression of >160 cancer- and metastasis-related gene transcripts were evaluated with RNA arrays. A total of 19 genes and 7 proteins were selected for a follow-up expression analysis, including further treatment conditions, in order to evaluate the influence of hyperinsulinemia and hyperglycemia on metformin-induced effects. Results Changes in the expression of BCL2L11, CDH1, CDKN1A, COL1A1, PTEN, MMP9 and TIMP2 were analyzed on gene and protein level. The consequences resulting from the detected expression changes as well as the influence of varying environmental influences are discussed in detail. With the presented data, we contribute to a better understanding of the direct anti-cancer activity of metformin as well as its underlying mechanism of action in EC cells. Conclusions Although further research will be necessary to confirm the data, the influence of different environmental settings on metformin-induced effects could be highlighted with the presented data. Additionally, gene and protein regulation were not similar in the pre- and postmenopausal in vitro models.
Collapse
|
42
|
Sun L, Yao HJ, Li JC, Zhao BQ, Wang YA, Zhang YG. Activated Carbon nanoparticles Loaded with Metformin for Effective Against Hepatocellular Cancer Stem Cells. Int J Nanomedicine 2023; 18:2891-2910. [PMID: 37283712 PMCID: PMC10239765 DOI: 10.2147/ijn.s382519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/16/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Hepatocellular cancer stem cells (CSCs) play crucial roles in hepatocellular cancer initiation, development, relapse, and metastasis. Therefore, eradication of this cell population is a primary objective in hepatocellular cancer therapy. We prepared a nanodrug delivery system with activated carbon nanoparticles (ACNP) as carriers and metformin (MET) as drug (ACNP-MET), which was able to selectively eliminate hepatocellular CSCs and thereby increase the effects of MET on hepatocellular cancers. Methods ACNP were prepared by ball milling and deposition in distilled water. Suspension of ACNP and MET was mixed and the best ratio of ACNP and MET was determined based on the isothermal adsorption formula. Hepatocellular CSCs were identified as CD133+ cells and cultured in serum-free medium. We investigated the effects of ACNP-MET on hepatocellular CSCs, including the inhibitory effects, the targeting efficiency, self-renewal capacity, and the sphere-forming capacity of hepatocellular CSCs. Next, we evaluated the therapeutic efficacy of ACNP-MET by using in vivo relapsed tumor models of hepatocellular CSCs. Results The ACNP have a similar size, a regular spherical shape and a smooth surface. The optimal ratio for adsorption was MET: ACNP=1:4. ACNP-MET could target and inhibit the proliferation of CD133+ population and decrease mammosphere formation and renewal of CD133+ population in vitro and in vivo. Conclusion These results not only suggest that nanodrug delivery system increased the effects of MET, but also shed light on the mechanisms of the therapeutic effects of MET and ACNP-MET on hepatocellular cancers. ACNP, as a good nano-carrier, could strengthen the effect of MET by carrying drugs to the micro-environment of hepatocellular CSCs.
Collapse
Affiliation(s)
- Lan Sun
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Hong-Juan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, People’s Republic of China
| | - Jing-Cao Li
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Bao-Quan Zhao
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yong-An Wang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Ying-Ge Zhang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
43
|
Stevenson-Hoare J, Leonenko G, Escott-Price V. Comparison of long-term effects of metformin on longevity between people with type 2 diabetes and matched non-diabetic controls. BMC Public Health 2023; 23:804. [PMID: 37131166 PMCID: PMC10155360 DOI: 10.1186/s12889-023-15764-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Metformin, a medication for type 2 diabetes, has been linked to many non-diabetes health benefits including increasing healthy lifespan. Previous work has only examined the benefits of metformin over periods of less than ten years, which may not be long enough to capture the true effect of this medication on longevity. METHODS We searched medical records for Wales, UK, using the Secure Anonymised Information Linkage dataset for type 2 diabetes patients treated with metformin (N = 129,140) and sulphonylurea (N = 68,563). Non-diabetic controls were matched on sex, age, smoking, and history of cancer and cardiovascular disease. Survival analysis was performed to examine survival time after first treatment, using a range of simulated study periods. FINDINGS Using the full twenty-year period, we found that type 2 diabetes patients treated with metformin had shorter survival time than matched controls, as did sulphonylurea patients. Metformin patients had better survival than sulphonylurea patients, controlling for age. Within the first three years, metformin therapy showed a benefit over matched controls, but this reversed after five years of treatment. INTERPRETATION While metformin does appear to confer benefits to longevity in the short term, these initial benefits are outweighed by the effects of type 2 diabetes when patients are observed over a period of up to twenty years. Longer study periods are therefore recommended for studying longevity and healthy lifespan. EVIDENCE BEFORE THIS STUDY Work examining the non-diabetes outcomes of metformin therapy has suggested that there metformin has a beneficial effect on longevity and healthy lifespan. Both clinical trials and observational studies broadly support this hypothesis, but tend to be limited in the length of time over which they can study patients or participants. ADDED VALUE OF THIS STUDY By using medical records we are able to study individuals with Type 2 diabetes over a period of two decades. We are also able to account for the effects of cancer, cardiovascular disease, hypertension, deprivation, and smoking on longevity and survival time following treatment. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE We confirm that there is an initial benefit to longevity of metformin therapy, but this benefit does not outweigh the negative effect on longevity of diabetes. Therefore, we suggest that longer study periods are required for inference to be made about longevity in future research.
Collapse
Affiliation(s)
- Joshua Stevenson-Hoare
- MRC Centre for Neuropsychiatric Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Ganna Leonenko
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
44
|
Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int J Mol Sci 2023; 24:7597. [PMID: 37108756 PMCID: PMC10140862 DOI: 10.3390/ijms24087597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
45
|
Matsubayashi S, Ito S, Araya J, Kuwano K. Drugs against metabolic diseases as potential senotherapeutics for aging-related respiratory diseases. Front Endocrinol (Lausanne) 2023; 14:1079626. [PMID: 37077349 PMCID: PMC10106576 DOI: 10.3389/fendo.2023.1079626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Recent advances in aging research have provided novel insights for the development of senotherapy, which utilizes cellular senescence as a therapeutic target. Cellular senescence is involved in the pathogenesis of various chronic diseases, including metabolic and respiratory diseases. Senotherapy is a potential therapeutic strategy for aging-related pathologies. Senotherapy can be classified into senolytics (induce cell death in senescent cells) and senomorphics (ameliorate the adverse effects of senescent cells represented by the senescence-associated secretory phenotype). Although the precise mechanism has not been elucidated, various drugs against metabolic diseases may function as senotherapeutics, which has piqued the interest of the scientific community. Cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), which are aging-related respiratory diseases. Large-scale observational studies have reported that several drugs, such as metformin and statins, may ameliorate the progression of COPD and IPF. Recent studies have reported that drugs against metabolic diseases may exert a pharmacological effect on aging-related respiratory diseases that can be different from their original effect on metabolic diseases. However, high non-physiological concentrations are needed to determine the efficacy of these drugs under experimental conditions. Inhalation therapy may increase the local concentration of drugs in the lungs without exerting systemic adverse effects. Thus, the clinical application of drugs against metabolic diseases, especially through an inhalation treatment modality, can be a novel therapeutic approach for aging-related respiratory diseases. This review summarizes and discusses accumulating evidence on the mechanisms of aging, as well as on cellular senescence and senotherapeutics, including drugs against metabolic diseases. We propose a developmental strategy for a senotherapeutic approach for aging-related respiratory diseases with a special focus on COPD and IPF.
Collapse
|
46
|
Metformin, a biological and synthetic overview. Bioorg Med Chem Lett 2023; 86:129241. [PMID: 36933671 DOI: 10.1016/j.bmcl.2023.129241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Metformin is the most widely known anti-hyperglycemic, officially acquired by the USA government in 1995 and in 2001 it became the most prescribed treatment for type II diabetes. But how did it become the must-use drug for this disease in such a short period of time? it all started with traditional medicine, by using a plant known as "goat's rue" for the reduction of blood glucose levels. Its use arose in 1918 and evolved to the metformin synthesis in laboratories a couple of years later, using very rudimentary methods which involved melting and strong heating. Thus, a first synthetic route that allowed the preparation of the initial metformin derivates was established. Some of these resulted toxics, and others outperformed the metformin, reducing the blood glucose levels in such efficient way. Nevertheless, the risk and documented cases of lactic acidosis increased with metformin derivatives like buformin and phenformin. Recently, metformin has been widely studied, and it has been associated and tested in the treatment of type II diabetes, cancer, polycystic ovarian syndrome, cell differentiation to oligodendrocytes, reduction of oxidative stress in cells, weight reduction, as anti-inflammatory and even in the recent COVID-19 disease. Herein we briefly review and analyze the history, synthesis, and biological applications of metformin and its derivates.
Collapse
|
47
|
Su K, Luo J, Van Meervelt L. Crystal structure and Hirshfeld surface analysis of N-{ N-[amino-(di-methyl-amino)-meth-yl]carbamimido-yl}-3-bromo-benzene-sulfonamide. Acta Crystallogr E Crystallogr Commun 2023; 79:367-372. [PMID: 37057028 PMCID: PMC10088321 DOI: 10.1107/s2056989023002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
The title compound, C10H14BrN5O2S, is the bromo-benzene-sulfonamide derivative of the type 2 diabetes drug metformin. The asymmetric unit contains two mol-ecules with almost identical conformations but a different orientation of the bromo-phenyl moiety. Both mol-ecules exhibit intra-molecular N-H⋯N and N-H⋯O hydrogen bonds. The mol-ecular packing features chain formation in the a-axis direction by alternating N-H⋯N and N-H⋯O inter-actions. In addition, ring motifs consisting of four mol-ecules and π-π inter-actions between the phenyl rings contribute to the three-dimensional architecture. A Hirshfeld surface analysis shows that the largest contributions to surface contacts arise from contacts in which H atoms are involved.
Collapse
Affiliation(s)
- Kexin Su
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| | - Jiangshui Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
48
|
Shami JJP, Yan VKC, Wei Y, Alwafi H, Blais JE, Wan E, Wong CKH, Cheung KS, Leung WK, Wong MCS, Wong ICK, Chan EW. Low-dose aspirin does not lower the risk of colorectal cancer in patients with type 2 diabetes taking metformin. J Intern Med 2023; 293:371-383. [PMID: 36382924 DOI: 10.1111/joim.13590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Low-dose aspirin and metformin have been individually associated with a reduced risk of cancer. Whether their concurrent use in adults with type 2 diabetes mellitus (T2DM) is associated with a reduced risk of colorectal cancer (CRC) is unclear. OBJECTIVE Among individuals with T2DM taking metformin, we sought to evaluate the association between low-dose aspirin versus no aspirin and the risk of CRC. METHODS A multiple-database new-user cohort study of patients with T2DM taking metformin was conducted between 2007 and 2010 (Clinical Data Analysis and Reporting System [CDARS], Hong Kong) and 2007-2016 (The Health Improvement Network [THIN], UK). The primary outcome was incident CRC. Patients were followed from index date of prescription until the earliest occurrence of an outcome of interest, an incident diagnosis of any cancer, death, or until 31 December 2019. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CI). Estimates were pooled using an inverse variance random effects model, and heterogeneity was assessed using I2 . RESULTS After one-to-one propensity-score matching, 57,534 patients were included (CDARS = 16,276; THIN = 41,258). The median (IQR) follow-up was 9.3 (6.5-10.7) years in CDARS and 3.2 (1.1-5.8) years in THIN. The concurrent use of low-dose aspirin and metformin was not associated with a lower risk of CRC compared to metformin only (HR = 0.89, 95% CI 0.75-1.05, I2 = 0%). CONCLUSION Low-dose aspirin was not associated with a lower risk of CRC in patients with T2DM taking metformin. Our study does not support the routine use of low-dose aspirin in this population.
Collapse
Affiliation(s)
- Jessica J P Shami
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vincent K C Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yue Wei
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hassan Alwafi
- Faculty of Medicine, Umm Alqura University, Mecca, Saudi Arabia
| | - Joseph E Blais
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong
| | - Carlos K H Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong
| | - Ka Shing Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong.,Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wai K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Martin C S Wong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ian C K Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong.,Research Department of Practice and Policy, UCL School of Pharmacy, London, UK
| | - Esther W Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong
| |
Collapse
|
49
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Beena TB, Jesil MA, Harikumar KB. Cross-talk between AMP-activated protein kinase and the sonic hedgehog pathway in the high-fat diet triggered colorectal cancer. Arch Biochem Biophys 2023; 735:109500. [PMID: 36608915 DOI: 10.1016/j.abb.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The major cause of colorectal cancer (CRC) related mortality is due to its metastasis. Signaling pathways play a definite role in the development and progression of CRC. Recent studies demonstrate that the regulation of the sonic hedgehog (Shh) pathway is beneficial in the CRC treatment strategy. Also, 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a well-known regulator of metabolism and inflammation, making it a suitable treatment option for CRC. Consumption of a high-fat diet (HFD) is a significant cause of CRC genesis. Also, the lipids play an indispensable role in aberrant activation of the Shh pathway. This review explains in detail the interconnection between HFD consumption, Shh pathway activation, and the progression of CRC. According to recent studies and literature, AMPK is a potential regulator that can control the complexities of CRC and reduce lipid levels and may directly inhibit shh signalling. The review also suggests the possible risk elements of AMPK activation in CRC due to its context-dependent role. Also, the activation of AMPK in HFD-induced CRC may modulate cancer progression by regulating the Shh pathway and metabolism.
Collapse
Affiliation(s)
- T B Beena
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Mathew A Jesil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India.
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| |
Collapse
|