1
|
Zhu H, Li B, Huang T, Wang B, Li S, Yu K, Cai L, Ye Y, Chen S, Zhu H, Xu J, Lu Q, Ji L. Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167758. [PMID: 40048937 DOI: 10.1016/j.bbadis.2025.167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes caused by long-term hyperglycemia that leads to microvascular and neuronal damage in the retina. The molecular mechanisms of DR involve oxidative stress, inflammatory responses, neurodegenerative changes, and vascular dysfunction triggered by hyperglycemia. Oxidative stress activates multiple metabolic pathways, such as the polyol, hexosamine, and protein kinase C (PKC) pathways, resulting in the production of, which in turn promote the formation of advanced glycation end products (AGEs). These pathways exacerbate vascular endothelial damage and the release of inflammatory factors, activating inflammatory signaling pathways such as the NF-κB pathway, leading to retinal cell damage and apoptosis. Additionally, DR involves neurodegenerative changes, including the activation of glial cells, neuronal dysfunction, and cell death. Research on the multiomics molecular markers of DR has revealed complex mechanisms at the genetic, epigenetic, and transcriptional levels. Genome-wide association studies (GWASs) have identified multiple genetic loci associated with DR that are involved in metabolic and inflammatory pathways. Noncoding RNAs, such as miRNAs, circRNAs, and lncRNAs, participate in the development of DR by regulating gene expression. Proteomic, metabolomic and lipidomic analyses have revealed specific proteins, metabolites and lipid changes associated with DR, providing potential biomarkers for the early diagnosis and treatment of this disease. This review provides a comprehensive perspective for understanding the molecular network of DR and facilitates the exploration of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Bingqi Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Huang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Wang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuoyu Li
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kuai Yu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liwei Cai
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuxin Ye
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siyuan Chen
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haotian Zhu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinkang Lu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Saravanan K, Baskaran RR. Fucoxanthin supplemented combinatorial treatment accelerates diabetic wound healing in rats by targeting hypermethylation of Ang-1 promoter via DNMT-1 inhibition. Biomed Pharmacother 2025; 187:118148. [PMID: 40359689 DOI: 10.1016/j.biopha.2025.118148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
It has been widely established that DNA methyl transferase 1 has a role in the epigenetic regulation of numerous complications including diabetes and inhibition of the same is widely being seen as a potential therapeutic mechanism to treat these complications. Fucoxanthin is a carotenoid that has widely been reported to have a wealth of biological functions. Fucoxanthin is believed to be involved in a broad spectrum of pathways to produce anti-cancer, anti-obesity and antioxidant effects. In this study, fucoxanthin was encapsulated within myristic acid and BSA particles. These particles were tested for their physicochemical properties and fucoxanthin encapsulated within these particles exhibited superior thermal and storage stability. In-vitro digestion tests were carried out further confirming the ability of the encapsulation process to enhance the biological activity of fucoxanthin. The efficacy of fucoxanthin encapsulated particles were evaluated at in-vivo level using diabetic wound models in wistar rats. Fucoxanthin when delivered as an oral supplement in combination with linseed polysaccharide gel as wound dressing managed to significantly accelerate wound healing progression when compared with control and treatment groups. Fucoxanthin when delivered orally also managed to significantly inhibit DNA methyl transferase 1 leading to Angiopoietin 1 upregulation eventually resulting in accelerated wound healing.
Collapse
Affiliation(s)
- Kaarthik Saravanan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Reena Rajkumari Baskaran
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Gao Q, Wang J, Zhang H, Wang J, Jing Y, Su J. Organoid Vascularization: Strategies and Applications. Adv Healthc Mater 2025:e2500301. [PMID: 40285576 DOI: 10.1002/adhm.202500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Organoids provide 3D structures that replicate native tissues in biomedical research. The development of vascular networks within organoids enables oxygen and nutrient delivery while facilitating metabolic waste removal, which supports organoid growth and maturation. Recent studies demonstrate that vascularized organoid models offer insights into tissue interactions and promote tissue regeneration. However, the current limitations in establishing functional vascular networks affect organoid growth, viability, and clinical translation potential. This review examines the development of vascularized organoids, including the mechanisms of angiogenesis and vasculogenesis, construction strategies, and biomedical applications. The approaches are categorized into in vivo and in vitro methods, with analysis of their specific advantages and limitations. The review also discusses emerging techniques such as bioprinting and gene editing for improving vascularization and functional integration in organoid-based therapies. Current developments in organoid vascularization indicate potential applications in modeling human diseases and developing therapeutic strategies, contributing to advances in translational research.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Geng A, Yuan S, Yu QC, Zeng YA. The role of endothelial cells in pancreatic islet development, transplantation and culture. Front Cell Dev Biol 2025; 13:1558137. [PMID: 40330424 PMCID: PMC12052768 DOI: 10.3389/fcell.2025.1558137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
Abstract
Endothelial cells (ECs) play pivotal roles in the development and maintenance of tissue homeostasis. During development, vasculature actively involves in organ morphogenesis and functional maturation, through the secretion of angiocrine factors and extracellular matrix components. Islets of Langerhans, essential functional units of glucose homeostasis, are embedded in a dense endothelial capillary network. Islet vasculature not only supplies nutrients and oxygen to endocrine cells but also facilitate the rapid delivery of pancreatic hormones to target tissues, thereby ensuring precise glucose regulation. Diabetes mellitus is a major disease burden and is caused by islet dysfunction or depletion, often accompanied by vessel loss and dysregulation. Therefore, elucidating the regulatory mechanisms of ECs within islets hold profound implications for diabetes therapy. This review provides an overview of recent research advancements on the functional roles of ECs in islet biology, transplantation, and in vitro islet organoid culture.
Collapse
Affiliation(s)
- Ajun Geng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shubo Yuan
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Cissy Yu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
6
|
Banwait R, Ko H, Michalek J, Liu Q, Lathrop K, Bowhay-Carnes E, Fotopoulos G, Sarantopoulos J, Elledge R, Taverna J, Karnad A, Siziopikou KP, Kaklamani V. Pilot phase II study of the combination of lenvatinib (L) and eribulin (E) in advanced solid tumors. Int J Cancer 2025. [PMID: 40232157 DOI: 10.1002/ijc.35446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
This pilot phase II study evaluated the combination of lenvatinib, a multi-kinase inhibitor, and eribulin, a microtubule inhibitor, in patients with advanced solid tumors, including breast carcinoma, lung carcinoma, and sarcoma. Tumor angiogenesis and resistance mechanisms to anti-angiogenic therapies were primary motivations for combining these agents. The trial enrolled 29 patients, heavily pretreated with at least three prior lines of chemotherapy, and aimed to assess the efficacy and safety of the combination therapy. Overall response rate (ORR) was 24% with the highest responses observed in breast cancer (29%) and lung cancer (33%) patients. Median progression-free survival (PFS) was 7.4 months (95% CI 4.5, NA), and overall survival (OS) was 8.2 months (95% CI 6.4 to 14.9). A significant improvement in both OS and PFS was found in vimentin-negative patients, suggesting that vimentin expression may be a predictor of treatment response. The most common treatment-related adverse events (TRAEs) were oral mucositis, fatigue, neutropenia, and nausea. Grade ≥3 TRAEs included neutropenia (34.5%), febrile neutropenia (17.2%), and hypertension (13.8%), with one fatal case of sepsis reported. While the study demonstrated the potential of lenvatinib and eribulin in advanced solid tumors, particularly breast and lung cancers, it also highlighted the need for further investigation into biomarkers like vimentin to predict therapeutic outcomes. The combination therapy was manageable in terms of safety and toxicity, with a predictable safety profile. These findings suggest that lenvatinib and eribulin represent a promising treatment strategy for advanced, heavily pretreated solid tumors, warranting further exploration in larger clinical studies.
Collapse
Affiliation(s)
- Ranjit Banwait
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Heidi Ko
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Joel Michalek
- Biostatistics Division, Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas, USA
| | - Qianqian Liu
- Biostatistics Division, Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas, USA
| | - Kate Lathrop
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Elizabeth Bowhay-Carnes
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Georgios Fotopoulos
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - John Sarantopoulos
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Richard Elledge
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Josephine Taverna
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Anand Karnad
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| | - Kalliopi P Siziopikou
- Department of Medicine, Division of Pathology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Virginia Kaklamani
- Department of Medicine, Division of Hematology Oncology, UT Health San Antonio, Mays Cancer Center, San Antonio, Texas, USA
| |
Collapse
|
7
|
Nishiyama A, Shigematsu K, Koyama H, Hoshina K, Miyata T. Anatomical Courses of Collateral Circulations in Patients with Infrainguinal Chronic Lower-Extremity Arterial Occlusive Disease. Ann Vasc Surg 2025; 117:36-43. [PMID: 40216018 DOI: 10.1016/j.avsg.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND This study aimed to identify the anatomical course of collateral vessels in chronic lower-extremity arterial occlusive disease to optimize intramuscular injection sites for angiogenesis therapy. METHODS We retrospectively analyzed 35 limbs with superficial femoral artery (SFA) occlusion and 17 limbs with 3 crural artery occlusion using 1-mm slice contrast-enhanced computed tomography. Collateral vessels (≥1 mm) connecting the common femoral to popliteal arteries, and popliteal to foot arteries were identified. Donor and recipient arteries, and vessel courses were documented. RESULTS In SFA occlusion, 49 collateral vessels were identified. The deep femoral artery was the sole donor. Recipient arteries were predominantly the lateral (94%) and medial (6%) superior genicular arteries. Seventy-one percent (35 of 49) of collaterals ran within the short head of the biceps femoris. In crural artery occlusion, 17 collaterals were found. Donor arteries included the peroneal (29%), posterior tibial (24%), and combinations thereof. Recipient arteries were the anterior tibial (53%), plantar (29%), and dorsalis pedis (18%). All collaterals coursed through the soleus muscle, with 35% traversing the posterior tibial muscle. CONCLUSION Collateral vessels in chronic lower-extremity arterial occlusive disease exhibit preferential development within specific muscles. In SFA occlusion, collaterals develop predominantly within the short head of the biceps femoris, while in crural artery occlusion, collaterals develop within the soleus muscle. These findings suggest that targeted intramuscular injections, guided by anatomical knowledge of collateral pathways, may enhance angiogenesis therapy efficacy.
Collapse
Affiliation(s)
- Ayako Nishiyama
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Department of Vascular Surgery, Saiseikai Kawaguchi General Hospital, Saitama, Japan.
| | - Kunihiro Shigematsu
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Department of Vascular Surgery, International University of Health and Welfare, Mita General Hospital, Tokyo, Japan
| | - Hiroyuki Koyama
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Department of Surgery, Airi Hospital, Tokyo, Japan
| | - Katsuyuki Hoshina
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Miyata
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan; Japan Medical Safety Research Organization, Tokyo, Japan
| |
Collapse
|
8
|
Liu Y, Wei M, Li G, Zhao Y, Yan X, Wang S, Song X, Wang Z, Huang L. Isolation, structural characterization of natural chondroitin sulfate oligosaccharides and their binding study with anti-angiogenic factors. Carbohydr Polym 2025; 353:123262. [PMID: 39914977 DOI: 10.1016/j.carbpol.2025.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 05/07/2025]
Abstract
Drugs that inhibit tumor angiogenesis, promote vascular normalization and improve the tumor microenvironment. However, their application is limited by adaptive or compensatory resistance. Chondroitin sulfate (CS) regulates numerous proteins including pro-angiogenic growth factors, for whom binding affinity depends on sulfation of CS. In this study, we aimed to determine how sulfation of natural tetrasaccharides and hexasaccharides of CS affected binding to the vascular endothelial growth factor (VEGF-A) and fibroblast growth factor 2 (FGF-2). Twenty-eight CS oligosaccharide isomers were obtained by preparative HPLC, tagged with the AEAB fluorescent linker, and identified using an improved chemical derivatization strategy combined with tandem mass spectrometry. CS oligosaccharide microarrays revealed that VEGF-A and FGF-2 bound preferentially to highly sulfated CS, and the GalNAc(4S)GlcA(2S)GalNAc(6S) sequence was found to be indispensable for binding to these proteins. By integrating glycan microarrays with computational modeling, this study revealed the relationship between the structure of CS and its interactions with pro-angiogenic factors. The degree and the specific sulfation patterns on CS should be taken into account when designing anti-angiogenic drugs.
Collapse
Affiliation(s)
- Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Ming Wei
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China; School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224051, PR China
| | - Guo Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Yilong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Xiuzhen Yan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Shukai Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China.
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
9
|
Sadikan MZ, Lambuk L, Reshidan NH, Abdul Ghani NA, Ahmad AI, Ahmad Kamal MS, Lazaldin MAM, Ahmad Hairi H, Mohamud R, Abdul Nasir NA. Age-Related Macular Degeneration Pathophysiology and Therapeutic Potential of Tocotrienols: An Update. J Ocul Pharmacol Ther 2025; 41:150-161. [PMID: 39895321 DOI: 10.1089/jop.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Age-related macular degeneration (AMD) poses a significant threat to visual health among the elderly, necessitating urgent preventive measures as the global population ages. Extensive research has implicated oxidative stress (OS)-induced retinal damage as a primary contributor to AMD pathogenesis, prompting investigations into potential therapeutic interventions. Among the various nutrients studied for their potential in AMD risk reduction, antioxidants have shown promise, with initial findings from the Age-Related Eye Disease Study suggesting a correlation between antioxidant supplementation and decreased AMD progression. This article explores the scientific foundation supporting the therapeutic efficacy of tocotrienol-rich fraction (TRF) as a viable candidate for slowing AMD progression, based on interventional studies. AMD is characterized by OS, inflammation, dysregulated lipid metabolism, and angiogenesis, all of which TRF purportedly addresses through its potent anti-inflammatory, lipid-lowering, antiangiogenic, and antioxidant properties. The review underscores TRF's promising attributes, aiming to deepen understanding of AMD pathogenesis and advocate for TRF-based pharmacological interventions to enhance therapeutic outcomes. Given the pressing need for effective AMD treatments, TRF represents a promising avenue for intervention, offering hope for improved vision outcomes and enhanced quality of life for individuals affected by this debilitating condition.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Faculty of Medicine, Department of Pharmacology, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- Faculty of Applied Sciences, School of Biology, Universiti Teknologi MARA, Selangor, Malaysia
| | - Nurliyana Ain Abdul Ghani
- Faculty of Medicine, Department of Ophthalmology, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
| | - Azral Ismawy Ahmad
- International Medical School, Management & Science University, Selangor, Malaysia
| | | | | | - Haryati Ahmad Hairi
- Faculty of Medicine, Department of Biochemistry, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Department of Medical Education, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
- Faculty of Medicine, Centre for Neuroscience Research (NeuRon), Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
10
|
Suda Y, Ikuta K, Hayashi S, Wada K, Anjiki K, Kamenaga T, Tsubosaka M, Kuroda Y, Nakano N, Maeda T, Tsumiyama K, Matsumoto T, Kuroda R, Matsubara T. Comparison of anti-inflammatory and anti-angiogenic effects of JAK inhibitors in IL-6 and TNFα-stimulated fibroblast-like synoviocytes derived from patients with RA. Sci Rep 2025; 15:9736. [PMID: 40118969 PMCID: PMC11928453 DOI: 10.1038/s41598-025-94894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Rheumatoid arthritis (RA) involves synovial tissue proliferation, inflammation, and angiogenesis, and contributes to joint destruction. Angiogenesis is a key therapeutic target for the treatment of RA, and Janus kinase (JAK) inhibitors have emerged as a promising therapy. In this study, we compared the inhibitory effects of five JAK inhibitors, including tofacitinib (TOF), baricitinib, peficitinib, upadacitinib, and filgotinib, on interleukin (IL)-6-induced inflammation in RA synovial tissues. All five inhibitors effectively suppressed IL-6-induced inflammatory and angiogenic factors, including vascular endothelial growth factor, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3. Overall, the results suggest that while all five JAK inhibitors are effective in reducing IL-6-induced inflammatory and angiogenic factors, their efficacy may differ owing to specific molecular mechanisms and pharmacological properties.
Collapse
Affiliation(s)
- Yoshihito Suda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| | - Kemmei Ikuta
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kensuke Wada
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Kensuke Anjiki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| | - Ken Tsumiyama
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki- Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, 944-25, Japan
| |
Collapse
|
11
|
Wang Y, Chen S, Liang H, Bai J. A review of graded scaffolds made by additive manufacturing for tissue engineering: design, fabrication and properties. Biofabrication 2025; 17:022009. [PMID: 40009881 DOI: 10.1088/1758-5090/adba8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
The emergence of tissue engineering (TE) has provided new vital means for human body tissue/organ repair. TE scaffolds can provide temporary structural support for cell attachment, growth, and proliferation, until the body restores the mechanical and biological properties of the host tissues. Since native tissues are inhomogeneous and in many situations are graded structures for performing their unique functions, graded scaffolds have become increasingly attractive for regenerating particular types of tissues, which aim to offer a more accurate replication of native interactions and functions. Importantly, the advances introduced by additive manufacturing (AM) have now enabled more design freedom and are capable of tailoring both structural and compositional gradients within a single scaffold. In this context, graded TE scaffolds fabricated by AM technologies have been attracting increasing attention. In this review, we start with an introduction of common graded structures in the human body and analyse the advantages and strengths of AM-formed graded scaffolds. Various AM technologies that can be leveraged to produce graded scaffolds are then reviewed based on non-cellular 3D printing and cell-laden 3D bioprinting. The comparisons among various AM technologies for fabricating graded scaffolds are presented. Subsequently, we propose several types of gradients, structural, material, biomolecular and multi-gradients for scaffolds, and highlight the design methods, resulting mechanical properties and biological responses. Finally, current status, challenges and perspectives for AM in developing graded scaffolds are exhibited and discussed.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
12
|
Horiguchi H, Kadomatsu T, Oike Y. The Two Faces of Angiopoietin-Like Protein 2 in Cancer. Cancer Sci 2025; 116:592-599. [PMID: 39686837 PMCID: PMC11875762 DOI: 10.1111/cas.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells and various stromal cell types, such as immune cells, fibroblasts, and vascular cells. Signaling interactions between tumor and stromal cells orchestrate the tumor microenvironment's contribution to tumor progression. Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies indicate that tumor cell-derived ANGPTL2 serves as a tumor promoter. However, recent studies suggest that tumor stroma-derived ANGPTL2 shows tumor-suppressive activity by enhancing anti-tumor immune responses, supporting a dual function for ANGPTL2 in cancer pathology. Such complexity can complicate development of effective therapeutic strategies targeting ANGPTL2. In this Review, we focus on ANGPTL2 activity in the tumor microenvironment and its function in anti-cancer immunity.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
13
|
Ambati NR, Leone A, Brill D, Sisk RA. REAL-WORLD LONG-TERM OUTCOMES OF INTRAVITREAL FARICIMAB IN PREVIOUSLY TREATED CHRONIC NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2025; 45:446-453. [PMID: 39531583 PMCID: PMC11832180 DOI: 10.1097/iae.0000000000004322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
PURPOSE To study the real-world outcomes of intravitreal faricimab (IVF) in long-standing neovascular age-related macular degeneration (nAMD) over a 1-year study period. METHODS Retrospective single-center cohort study of patients with previously treated nAMD receiving IVF with at least 12 months of follow-up. Main outcome measures include injection intervals, visual acuity (VA), and optical coherence tomography features. RESULTS A total of 263 eyes from 217 patients received 6.4 ± 2.3 IVF injections over 1 year. Injection interval increased after switching to IVF (5.9 ± 1.8 vs. 7.6 ± 2.4 weeks) ( P < 0.01). There was no improvement in VA after switching to IVF at any time period ( P > 0.15). Average CST decreased after the first IVF injection and was sustained for 1 year (313.7 ± 96.0 vs. 288.2 ± 80.6 µ m) ( P < 0.01). There was a statistically significant resolution of subretinal fluid but not IRF at all time points (40.8%-50.4%; P < 0.01). Persistent fluid after the first IVF injection was resolved in 34.4% (n = 45) by 1 year. IVF was discontinued in 31 eyes (11.8%), four (1.6%) that experienced intraocular inflammation. CONCLUSION Long-standing nAMD eyes switched to IVF experienced a significant extension in injection interval, stable visual acuity, improvement in CST, and resolution of fluid on OCT in many patients over 1 year.
Collapse
Affiliation(s)
- Naveen R. Ambati
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
- Cincinnati Eye Institute, Cincinnati, Ohio
| | - Adam Leone
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
- Cincinnati Eye Institute, Cincinnati, Ohio
| | - Daniel Brill
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
- Cincinnati Eye Institute, Cincinnati, Ohio
| | - Robert A. Sisk
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio; and
- Cincinnati Eye Institute, Cincinnati, Ohio
| |
Collapse
|
14
|
Lin BR, Carletti P, Yi J, Rosenfeld PJ, Russell JF. Reassessment of arterial versus venous perfusion of diabetic retinal neovascularization using ultrawide-field fluorescein angiography. Graefes Arch Clin Exp Ophthalmol 2025; 263:361-368. [PMID: 39377805 DOI: 10.1007/s00417-024-06650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The purpose of this study was to assess whether diabetic NV is perfused by the arterial or the venous circulation. METHODS This is a retrospective, consecutive case series evaluating patients with proliferative diabetic retinopathy (PDR) imaged with ultrawide-field (UWF) fluorescein angiography (FA). Areas of neovascularization elsewhere (NVE) and neovascularization of the disc (NVD) were assessed. Perfusion was defined as arterial, arteriovenous, or venous if the area of diabetic neovascularization (NV) began to hyperfluoresce either prior, during, or after laminar venous flow, respectively. RESULTS A total of 180 eyes from 176 patients with 928 NV were identified (830 NVE, 98 NVD). Of those, 5.1% of NVE were classified as arterial and 58.2% of NVD were classified as arterial. The remaining NV were classified as arteriovenous except for a small subset (6.1%) which were indeterminate. None of the NV were classified as venous. Noteworthy examples demonstrated NV that nearly fully perfused prior to any detectable fluorescence within nearby veins as well as clear shunting of blood from a feeding artery to a draining vein. CONCLUSIONS UWF FA images suggest that some NV is perfused by retinal arteries. This may be useful in devising strategies for early detection and treatment of NV precursors. KEY MESSAGES What is known • Diabetic retinal neovascularization has long been thought to be perfused by the retinal venous circulation. • Vascular endothelial growth factor has been shown to play key roles in both angiogenesis and arteriogenesis. What is new • Ultrawide-field fluorescein angiography demonstrates that at least some diabetic neovascularization is perfused by the retinal arterial circulation. • This supports the hypothesis that diabetic neovascularization may arise from arterially-perfused intraretinal microvascular abnormalities in the capillary bed.
Collapse
Affiliation(s)
- Benjamin R Lin
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Piero Carletti
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Jonathan Yi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Philip J Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Jonathan F Russell
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, PFP 11196-J, Iowa City, USA.
| |
Collapse
|
15
|
Li J, Wang D, Duan Q, Su N, Li X, Qiu H. The efficacy of anti-angiogenic drugs in gastric-type endocervical adenocarcinoma: A retrospective study. J Obstet Gynaecol Res 2025; 51:e16247. [PMID: 39988602 DOI: 10.1111/jog.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES Gastric-type endocervical adenocarcinoma (GEA) is a rare malignant tumor that is not associated with high-risk HPV infection, known for its high invasiveness and resistance to current treatments. This study assessed the effectiveness of anti-angiogenic regimens in real-world GEA patients. METHODS Patients with GEA were enrolled between February 2012 and March 2023, and their clinicopathological characteristics were collected from their medical records. The patients were categorized into groups based on whether they received anti-angiogenic treatments or not. Survival analysis was conducted using the Kaplan-Meier method. RESULTS A total of 43 GEA patients were enrolled in this study, with 23 cases who received anti-angiogenic drugs (nine received them as the primary treatment, 12 as first-line therapy after recurrence/metastasis, and two as second-line therapy) as the observation group. The other 20 patients who received similar treatments without the anti-angiogenic regimens serve as the control group. Compared to the control group, the addition of anti-angiogenic drugs as the primary treatment mildly extended progression-free survival (PFS) while not being statistically significant (16 months vs 11 months, p = 0.744). The negative results were also observed in 12 patients who started anti-angiogenic therapy as first-line therapy after recurrence/metastasis (8.5 months vs 9 months, p = 0.518). As for the overall survival (OS), no benefits were detected in either patients who started the anti-angiogenic therapy as primary or subsequent treatments (p = 0.499 and 0.450, respectively). CONCLUSION We firstly evaluated the efficacy of anti-angiogenic drugs in treating patients with GEA. Although with a small sample size, our preliminary results clearly proposed that the anti-angiogenic therapy failed in suppressing tumors and should not be a preferred choice for GEA. As a much rarer tumor without standard treatments, we herein warned of a pitfall for gynecologic oncologists when facing this malignancy.
Collapse
Affiliation(s)
- Jing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dian Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qing Duan
- Department of Gynecologic Oncology, Anyang Tumor Hospital, Anyang, Henan Province, China
| | - Ning Su
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Xiufang Li
- Department of Gynecologic Oncology, Anyang Tumor Hospital, Anyang, Henan Province, China
| | - Haifeng Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
16
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
17
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2025; 13:1252-1269. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Han S, Chen Q, Zhu Q, Han W. Circulating inflammatory cytokines and the risk of cerebral small vessel disease: a bidirectional Mendelian randomization analysis. J Stroke Cerebrovasc Dis 2025; 34:108163. [PMID: 39637729 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND A correlation between inflammation and cerebral small vessel disease (CSVD) has been hypothesized by earlier observational research, while this correlation has not been well established. Considering the significant clinical value of this causality determination, Mendelian randomization (MR) was implemented to investigate the causality between inflammatory cytokines and CSVD radiological lesions. METHODS Using the publicly available Genome-Wide Association Study (GWAS) datasets, a bidirectional two-sample MR analysis was employed to infer causality between 91 inflammatory cytokines and CSVD phenotypes [white matter hyperintensity (WHM), fractional anisotropy (FA), mean diffusivity (MD), cerebral microbleeds (CMBs), and lacunar stroke]. A set of methods was used for sensitivity analysis, including Cochran's Q test, MR-Egger intercept method, and MR pleiotropy residual sum and outlier (MR-PRESSO) global test. Furthermore, the strength of causality was assessed using the Bonferroni correction. RESULTS Our research discovered a mutually predictive bidirectional link between CSVD phenotypes and inflammatory cytokines. Following the application of the Bonferroni correction, fibroblast growth factor 21 (FGF-21) was significantly inversely correlated with an increased risk of CMBs (OR = 0.579, 95 % CI = 0.425-0.789, P = 0.00055). Using sensitivity analysis, heterogeneity, and horizontal pleiotropy were not detected. CONCLUSION In this investigation, we established the causality between CSVD and inflammatory cytokines, with FGF-21 in particular significantly reducing the risk of CMBs. With further validation, these findings may provide new targets for the prevention, detection, and intervention of CSVD.
Collapse
Affiliation(s)
- Shasha Han
- Department of Neurology, Jiaozhou Central Hosptital of Qingdao, Qingdao 266300, Shandong, China.
| | - Qiong Chen
- Department of Neurology, Jiaozhou Central Hosptital of Qingdao, Qingdao 266300, Shandong, China.
| | - Qiang Zhu
- Department of Emergency, Jiaozhou Central Hosptital of Qingdao, Qingdao 266300, Shandong, China.
| | - Wenxiu Han
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining 272000, Shandong, China; Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, Shandong, China.
| |
Collapse
|
19
|
Ezdakova MI, Andreeva ER. Impaired Communication through Gap Junctions Reduces the Angiogenic Potential of the Secretome in Mesenchymal Stromal Cell-Endothelial Cell Interactions In Vitro. Bull Exp Biol Med 2024:10.1007/s10517-024-06296-5. [PMID: 39579296 DOI: 10.1007/s10517-024-06296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 11/25/2024]
Abstract
Highly specialized gap junctions play an important role in the interaction between endothelial (EC) and multipotent mesenchymal stromal cells (MSC). Inhibition of gap junctions with a specific inhibitor carbenoxolone attenuates the effects of the medium conditioned by MSC-EC co-culture on proliferation and migration of cultured EC. In conditioned medium from co-culture, the levels of angiogenic mediators (VEGF-A, FGF-2, MCP-1, etc.) were decreased, which apparently determines lower angiogenic effect of the conditioned medium on the growth of the vascular network in the chorioallantois membrane of quail embryo in ovo. Suppression of communication through gap junctions in associations of MSC and EC, the structural and functional units of physiological and reparative angiogenesis, can directly reduce the level of proangiogenic mediators in the microenvironment, which, in turn, can help to control the regulation of vascular function in pathologies.
Collapse
Affiliation(s)
- M I Ezdakova
- State Research Center of the Russian Federation - Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| | - E R Andreeva
- State Research Center of the Russian Federation - Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Liu L, Hao X, Zhang J, Li S, Han S, Qian P, Zhang Y, Yu H, Kang Y, Yin Y, Zhang W, Chen J, Yu Y, Jiang H, Chai J, Yin H, Chai W. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res Ther 2024; 15:437. [PMID: 39563365 PMCID: PMC11575178 DOI: 10.1186/s13287-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Deep partial-thickness burns have a significant impact on both the physical and mental health of patients. Our previous study demonstrated human Umbilical Cord Mesenchymal stem cells (hUCMSCs) could enhance the healing of severe burns in small animal burn models, such as rats. Furthermore, our team has developed a deep partial-thickness burn model in Bama miniature pigs, which can be utilized for assessing drug efficacy in preclinical trials for wound healing. Therefore, this study further determine the optimal dosage of hUCMSCs in future clinical practice by comparing the efficacy of low-to-high doses of hUCMSCs on deep partial-thickness burn wounds in Bama miniature pigs. MATERIALS AND METHODS The male Bama miniature pigs (N = 8, weight: 23-28 kg and length: 71-75 cm) were used to establish deep partial-thickness burn models, which used a continuous pressure of 1 kg and contact times of 35 s by the invented electronic burn instrument at 100℃ to prepare 10 round burn wounds with diameter of 5 cm according to our previous report. And then, 0 × 10^7, 1 × 10^7, 2 × 10^7, 5 × 10^7 and 1 × 10^8 doses of hUCMSCs were respectively injected into burn wounds of their corresponding groups. After treatment for 7, 14 and 21 days, the burned wound tissues were obtained for histological evaluation, including HE staining for histopathological changes, immunohistochemistry for neutrophil (MPO+) infiltration and microvessel (CD31+) quantity, as well as Masson staining for collagen deposition. The levels of inflammatory factors TNF-α, IL-1β, IL-10 and angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), as well as collagen type-I/type-III of the wound tissues were quantified by ELISA. RESULTS All of doses hUCMSCs can significantly increase wound healing rate and shorten healing time of the deep partial-thickness burn pigs in a dose-dependent manner. Furthermore, all of doses hUCMSCs can significantly promote epithelialization and decreased inflammatory reaction of wound, including infiltration of inflammatory cells and levels inflammatory factors. Meanwhile, the amounts of microvessel were increased in all of doses hUCMSCs group than those in the burn group. Furthermore, the collagen structure was disordered and partially necrotized, and ratios of collagen type-I and type-III were significantly decreased in burn group (4:1 in normal skin tissue), and those of all hUCMSCs groups were significantly improved in a dose-dependent manner. In a word, 1 × 10^8 dose of hUCMSCs could regenerate the deep partial-thickness burn wounds most efficaciously compared to other dosages groups and the burn group. CONCLUSION This regenerative cell therapy study using hUCMSCs demonstrates the best efficacy toward a high dose, that is dose of 1 × 10^8 of hUCMSCs was used as a reference therapeutic dose for treating 20 cm2 deep partial-thickness burns wound in future clinical practice.
Collapse
Affiliation(s)
- Lingying Liu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
| | - Xingxia Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Jing Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Shaozeng Li
- Department of Clinical Laboratory, The Fourth Medical Center Affiliated to PLA General Hospital, Beijing, 100037, China
| | - Shaofang Han
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Peipei Qian
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yong Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
| | - Huaqing Yu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yuxin Kang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Weiouwen Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, The Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Endocrinology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Huinan Yin
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| |
Collapse
|
21
|
Rector Iv JA, McBride L, Weber CM, Grossman K, Sorets A, Ventura-Antunes L, Holtz I, Young K, Schrag M, Lippmann ES, Bellan LM. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Biofabrication 2024; 17:015023. [PMID: 39401530 PMCID: PMC11575475 DOI: 10.1088/1758-5090/ad867d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
In the body, capillary beds fulfill the metabolic needs of cells by acting as the sites of diffusive transport for vital gasses and nutrients. In artificial tissues, replicating the scale and complexity of capillaries has proved challenging, especially in a three-dimensional context. In order to better develop thick artificial tissues, it will be necessary to recreate both the form and function of capillaries. Here we demonstrate a top-down method of patterning hydrogels using sacrificial templates formed from thermoresponsive microfibers whose size and architecture approach those of natural capillaries. Within the resulting microchannels, we cultured endothelial monolayers that remain viable for over three weeks and exhibited functional barrier properties. Additionally, we cultured endothelialized microchannels within hydrogels containing fibroblasts and characterized the viability of the co-cultures to demonstrate this approach's potential when applied to cell-laden hydrogels. This method represents a step forward in the evolution of artificial tissues and a path towards producing viable capillary-scale microvasculature for engineered organs.
Collapse
Affiliation(s)
- John A Rector Iv
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Lucas McBride
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Callie M Weber
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Kira Grossman
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Alexander Sorets
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Lissa Ventura-Antunes
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Isabella Holtz
- Department of Cognitive Studies, Vanderbilt University, Nashville, TN, United States of America
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States of America
| | - Katherine Young
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Matthew Schrag
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
22
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
23
|
Singh NK, Singh P, Varshney P, Singh A, Bhushan B. Multimodal action of phosphodiesterase 5 inhibitors against neurodegenerative disorders: An update review. J Biochem Mol Toxicol 2024; 38:e70021. [PMID: 39425458 DOI: 10.1002/jbt.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Phosphodiesterase type 5 (PDE5) is an enzyme primarily found in the smooth muscle of the corpus cavernosum and also highly expressed in the substantia nigra, cerebellum, caudate, hippocampal regions and cerebellar purkinje cells, responsible for selectively breaking down cyclic guanosine monophosphate (cGMP) into 5'-GMP and regulate intracellular cGMP levels. As a second messenger, cyclic GMP enhances signals at postsynaptic receptors and triggers downstream effector molecules, leading to changes in gene expression and neuronal responses. Additionally, cGMP signaling transduction cascade, present in the brain, is also essential for learning and memory processes. Mechanistically, PDE5 inhibitors share structural similarities with cGMP, competitively binding to PDE5 and inhibiting cGMP hydrolysis. This action enhances the effects of nitric oxide, resulting in anti-inflammatory and neuroprotective effects. Neurodegenerative disorders entail the progressive loss of neuron structure, culminating in neuronal cell death, with currently available drugs providing only limited symptomatic relief, rendering neurodegeneration considered incurable. PDE5 inhibitors have recently emerged as a potential therapeutic approach for neurodegeneration, neuroinflammation, and diseases involving cognitive impairment. This review elucidates the principal roles of 3',5'-cyclic adenosine monophosphate (cAMP) and cGMP signaling pathways in neuronal functions, believed to play pivotal roles in the pathogenesis of various neurodegenerative disorders. It provides an updated assessment of PDE5 inhibitors as disease-modifying agents for conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral ischemia, Huntington's disease, and neuroinflammation. The paper aims to review the current understanding of PDE5 inhibitors, which concurrently regulate both cAMP and cGMP signaling pathways, positing that they may exert complementary and synergistic effects in modifying neurodegeneration, thus presenting a novel direction in therapeutic discovery. Moreover, the review provides critical about biological functions, therapeutic potentials, limitations, challenges, and emerging applications of selective PDE5 inhibitors. This comprehensive overview aims to guide future academic and industrial endeavors in this field.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Pranjul Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Prachi Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| |
Collapse
|
24
|
Anjiki K, Hayashi S, Ikuta K, Suda Y, Kamenaga T, Tsubosaka M, Kuroda Y, Nkano N, Maeda T, Tsumiyama K, Matsumoto T, Kuroda R, Matsubara T. JAK inhibitors inhibit angiogenesis by reducing VEGF production from rheumatoid arthritis-derived fibroblast-like synoviocytes. Clin Rheumatol 2024; 43:3525-3536. [PMID: 39302595 DOI: 10.1007/s10067-024-07142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION/OBJECTIVES JAK/STAT signaling inhibition exerts therapeutic effects on angiogenesis in rheumatoid arthritis (RA). However, whether the inhibitory effect differs among JAK inhibitors because of differing selectivity is unknown. Therefore, we compared the inhibitory effects of tofacitinib, baricitinib, peficitinib, upadacitinib, and filgotinib on angiogenesis. METHOD RA-derived fibroblast-like synoviocytes (RA-FLS) were seeded on type I collagen gel, and human umbilical vein endothelial cells (HUVECs) were directly added. The control and aforementioned JAK inhibitors were added to the medium, followed by stimulation with interleukin (IL)-6 and soluble IL-6 receptor (sIL-6R). Each JAK inhibitor's concentration was determined based on estimated blood concentrations. The vascular endothelial growth factor (VEGF) concentration was evaluated with an enzyme-linked immunosorbent assay using the medium from the first exchange. A migration assay was performed, and HUVEC migration was evaluated using CD31 fluorescence immunostaining. RESULTS Hematoxylin-eosin staining showed that compared with the non-JAKi treatment group, the JAKi treatment group markedly degenerated in the sub-lining and deep lining, with decreased lymphocyte infiltration and neovascularization [Rooney's score subscale, non-JAKi vs JAKi (median, 6.5 vs 2.5, p = 0.005)]. In vitro, IL-6 and sIL-6R administration increased VEGF production from RA-FLS and promoted neovascularization in HUVECs, and JAK-inhibitor administration, which decreased VEGF production from RA-FLS and suppressed HUVEC migration, inhibited neovascularization in RA-FLS and HUVEC co-cultures. CONCLUSIONS The JAK inhibitors suppressed IL-6-induced angiogenesis via decreased VEGF production and HUVEC migration in RA-FLS and HUVEC co-cultures. No significant differences were observed among the JAK inhibitors, whose anti-angiogenic effect may be an important mechanism for RA treatment. Key Points • JAK inhibitors inhibit angiogenesis in RA by reducing VEGF production from RA-derived fibroblast-like synoviocytes. • Our study provides new insights into RA treatment by elucidating the anti-angiogenic effect of JAK inhibitors.
Collapse
Affiliation(s)
- Kensuke Anjiki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kenmei Ikuta
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyui Kamenaga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nkano
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Ken Tsumiyama
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsukasa Matsubara
- Department of Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25, Fujita, Katō, Hyogo, Japan
| |
Collapse
|
25
|
Chaudhari PJ, Nemade AR, Shirkhedkar AA. Recent updates on potential of VEGFR-2 small-molecule inhibitors as anticancer agents. RSC Adv 2024; 14:33384-33417. [PMID: 39439843 PMCID: PMC11495155 DOI: 10.1039/d4ra05244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
The vascular endothelial growth factor receptor (VEGFR) system is the key component for controlling angiogenesis in cancer cells. Blocking vascular endothelial growth factor receptor 2 (VEGFR2) signalling is one of the most promising approaches to hindering angiogenesis and the subsequent growth of cancer cells. The USFDA-approved small-molecule drugs targeting VEGFR-2 are developing drug resistance over the course of chemotherapy, and cardiac-related side effects are consistently being reported; hence, there is an urgent need for more safe and effective anticancer molecules. The present review focuses on the structure and physiology of VEGFR-2 and its involvement in the progression of cancer cells. The recent updates from the last five years through papers and patents on structure-activity relationships, pharmacophoric attributes, molecular docking interactions, antiangiogenic assays, cancer cell line studies, and the potencies (IC50) of VEGFR-2 inhibitors are discussed herein. The common structural framework requirements, such as the Asp-Phe-Gly (DFG) motif of VEGFR-2 interacting with the HBD-HBA region in the ligand molecules, the central aryl ring occupying the linker region, and a variety of bio-isosteres, can enhance activity against VEGFR-2. At one end, the heteroaryl moiety is essential for interaction within the ATP-binding site of VEGFR-2, while the terminal hydrophobic tail occupies the allosteric binding site. Three to five bond spacers between the heteroaryl and HBD-HBA regions provided a better result towards VEGFR-2 inhibition, mirroring the behaviors of standard drugs. The in-depth analysis of recent updates on VEGFR-2 inhibitors presented in this paper will help prospective synthetic and medicinal chemists to discover new lead molecules for the treatment of various cancers.
Collapse
Affiliation(s)
- Prashant Jagannath Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Aditya Ramchandra Nemade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka 560054 India
| | - Atul Arun Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
| |
Collapse
|
26
|
Guo GX, Qiu YH, Liu Y, Yu LL, Zhang X, Tsim KWK, Qin QW, Hu WH. Fucoxanthin Attenuates Angiogenesis by Blocking the VEGFR2-Mediated Signaling Pathway through Binding the Vascular Endothelial Growth Factor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21610-21623. [PMID: 39292861 DOI: 10.1021/acs.jafc.4c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Fucoxanthin, a dietary carotenoid, is predominantly found in edible brown algae and is commonly consumed worldwide. Fucoxanthin has been shown to possess beneficial health activities such as antidiabetic, anti-inflammatory, antimutagenic, and antiobesity; however, the effects of fucoxanthin on VEGF-mediated angiogenesis and its possible binding with VEGF are unknown. Here, different lines of evidence supported the suppressive roles of fucoxanthin in VEGF-mediated angiogenesis. In human umbilical vein endothelial cells, fucoxanthin remarkedly suppressed VEGF-mediated cell proliferative, migration, and invasive abilities, as well as tube formation, without cytotoxicity. In addition, fucoxanthin inhibited the subintestinal vessel formation of zebrafish in vivo. In signaling cascades, fucoxanthin was proposed to interact with VEGF, thus attenuating VEGF's functions in activating the VEGF receptor and its related downstream signaling, i.e., phosphorylations of MEK and Erk. Fucoxanthin also significantly blocked VEGF-triggered ROS formation. Furthermore, the outcomes of applying fucoxanthin in cancer cells were identified, which included (i) inhibiting VEGF-mediated cell proliferation and migration and (ii) inhibiting NF-κB translocation via limiting MMP2 expression. These lines of investigations supported the antiangiogenic roles of fucoxanthin, as well as reviewing its signaling mechanisms, in blocking the VEGF-triggered responses. The results would benefit the potential development of fucoxanthin for the prevention and treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Guo-Xia Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Huan Qiu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
| | - Yang Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Le-Le Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Karl Wah-Keung Tsim
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Hui Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Shekatkar M, Kheur S, Deshpande S, Sakhare S, Sanap A, Kheur M, Bhonde R. Critical appraisal of the chorioallantoic membrane model for studying angiogenesis in preclinical research. Mol Biol Rep 2024; 51:1026. [PMID: 39340708 DOI: 10.1007/s11033-024-09956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
28
|
Karagianni F, Piperi C, Valero-Diaz S, Amato C, Vaque JP, Casar B, Papadavid E. Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma. Cancers (Basel) 2024; 16:3176. [PMID: 39335148 PMCID: PMC11430229 DOI: 10.3390/cancers16183176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Angiogenesis plays a pivotal role in the growth and metastasis of tumors, including the development and progression of cutaneous lymphomas. The chick embryo CAM model has been utilized in various studies to assess the growth rate, angiogenic potential, and metastatic capability of different tumor types and malignant cell lines. However, the precise mechanisms of angiogenesis in CTCL and the influence of Ruxolitinib or Resminostat on angiogenesis in hematological malignancies and solid tumors are not well understood. Recent in vitro and in vivo data have demonstrated the synergistic inhibition of tumorigenesis and metastasis in experimental models of CTCL when using the combination of Resminostat (HDACi) with Ruxolitinib (JAKi). The present work aims to elucidate the effects of this combination on the tumor microenvironment's vascular components. We investigated the effects of Ruxolitinib (JAKi) in combination with Resminostat (HDACi) treatment in transendothelial migration of CTCL cells (106 MyLa and SeAx) by using a transwell-based transendothelial migration assay and tumor angiogenesis in vivo. We used the CTCL chick embryo CAM model with xenografted tumors derived from implanted MyLa and SeAx cells and administered topically 15 μM ruxolitinib and 5 μM Resminostat every two days during a 5-day period. JAKi and HDACi inhibited CTCL cell transendothelial migration by 75% and 82% (p < 0.05) in both CTCL engrafted cells (MyLa and SeAx, respectively) compared to the untreated group. Moreover, the combination of ruxolitinib with resminostat blocked angiogenesis by significantly reducing the number of blood vessel formation by 49% and 34% in both MyLa and SeAx, respectively (p < 0.05), indicating that the proposed combination exerted significant anti-angiogenic effects in the CAM CTCL model. Overall, these data provide valuable insights into potential therapeutic strategies targeting angiogenesis in CTCL, paving the way for more effective treatment approaches in the future.
Collapse
Affiliation(s)
- Fani Karagianni
- National Center of Rare Diseases-Cutaneous Lymphoma, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (F.K.); (C.P.)
| | - Christina Piperi
- National Center of Rare Diseases-Cutaneous Lymphoma, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (F.K.); (C.P.)
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sara Valero-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain; (S.V.-D.); (C.A.)
| | - Camilla Amato
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain; (S.V.-D.); (C.A.)
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Jose Pedro Vaque
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, 20122 Milan, Italy;
- Molecular Biology Department, Universidad de Cantabria-Instituto de Investigación Marqués de Valdecilla, IDIVAL, 39011 Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain; (S.V.-D.); (C.A.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Evangelia Papadavid
- National Center of Rare Diseases-Cutaneous Lymphoma, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (F.K.); (C.P.)
| |
Collapse
|
29
|
Kocak FZ, Yar M, Rehman IU. In vitro degradation, swelling, and bioactivity performances of in situ forming injectable chitosan-matrixed hydrogels for bone regeneration and drug delivery. Biotechnol Bioeng 2024; 121:2767-2779. [PMID: 38837342 DOI: 10.1002/bit.28755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/25/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.
Collapse
Affiliation(s)
- Fatma Zehra Kocak
- Engineering-Architecture Faculty, Metallurgy and Materials Engineering, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
- Engineering Department, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ihtesham U Rehman
- School of Medicine and Dentistry, University of Central Lancashire, Lancashire, UK
| |
Collapse
|
30
|
Zhang J, Su J, Zhou Y, Lu J. Evaluating the efficacy and safety of trebananib in treating ovarian cancer and non-ovarian cancer patients: a meta-analysis and systematic review. Expert Rev Anticancer Ther 2024; 24:881-891. [PMID: 38970210 DOI: 10.1080/14737140.2024.2377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Due to its anti-angiogenic properties, trebananib is frequently employed in the treatment of cancer patients, particularly those with ovarian cancer. We conducted a meta-analysis to assess the efficacy and safety profile of trebananib in combination with other drugs for treating both ovarian and non-ovarian cancer patients. METHODS Our search encompassed PubMed, Medline, Cochrane, and Embase databases, with a focus on evaluating study quality. Data extraction was conducted from randomized controlled trials (RCTs), and RevMan 5.3 facilitated result analysis. RESULTS Combining trebananib with other drugs extended progression-free survival (PFS) [HR 0.81, (95%CI: 0.65, 0.99), p = 0.04] and overall survival (OS) [HR 0.88, (95%CI: 0.79, 1.00), p = 0.04] in ovarian cancer patients. Ovarian cancer patients exhibited a higher objective response rate (ORR) with trebananib compared to non-ovarian cancer cohorts. Moreover, the incorporation of trebananib into the standard treatment regimen for malignant tumors did not significantly elevate drug-related adverse events [RR 1.05, (95% CI: 1.00, 1.11), p = 0.05]. CONCLUSION Trebananib plus other drugs can improve the PFS, OS and ORR in patients with cancer, especially ovarian cancer. Our recommendation is to use trebananib plus other drugs to treat advanced cancer, and to continuously monitor and manage drug-related adverse events. REGISTRATION PROSPERO (No. CRD42023466988).
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, China
| | - Yeyue Zhou
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
31
|
Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers (Basel) 2024; 16:3021. [PMID: 39272879 PMCID: PMC11393907 DOI: 10.3390/cancers16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent central nervous system tumour (CNS). Patients with GBM have a dismal prognosis of 15 months, despite an intensive treatment schedule consisting of surgery, chemoradiation and concurrent chemotherapy. In the last decades, many trials have been performed investigating small molecule inhibitors, which target specific genes involved in tumorigenesis. So far, these trials have been unsuccessful, and standard of care for GBM patients has remained the same since 2005. This review gives an overview of trials investigating small molecule inhibitors on their own, combined with chemotherapy or other small molecule inhibitors. We discuss possible resistance mechanisms in GBM, focussing on intra- and intertumoral heterogeneity, bypass mechanisms and the influence of the tumour microenvironment. Moreover, we emphasise how combining inhibitors can help overcome these resistance mechanisms. We also address strategies for improving trial outcomes through modifications to their design. In summary, this review aims to elucidate different resistance mechanisms against small molecule inhibitors, highlighting their significance in the search for novel therapeutic combinations to improve the overall survival of GBM patients.
Collapse
Affiliation(s)
- Linde Hoosemans
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
32
|
Zhang M, Ma Z, Suguro R, Zhu M, Chen EX, Dong X, Chen M, Cheng L, Su B, Zhu Y. Assessment of Clinical Analgesic Levels and Serum Biomarkers in Patients with Rheumatoid Arthritis: A Randomized Controlled Trial Comparing the Efficacy of Diclofenac and Methotrexate Combined Therapy with Extracorporeal Shockwave Therapy. Pain Res Manag 2024; 2024:6687987. [PMID: 39205668 PMCID: PMC11357820 DOI: 10.1155/2024/6687987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 09/04/2024]
Abstract
Background Rheumatoid arthritis (RA) is one of the most common forms of arthritis. Extracorporeal shockwave therapy (ESWT) has been identified as a viable alternative therapeutic approach in light of the present protracted clinical course of pharmacological treatment, and changes in levels of marker proteins in the blood samples of RA patients can be utilized to assess treatment outcomes. Methods A randomized controlled trial was conducted involving forty patients diagnosed with rheumatoid arthritis (RA) who were assigned randomly to two groups. The first group received a combination of diclofenac and methotrexate (MTX) consisting of 25 mg of diclofenac administered thrice daily and 15 mg of MTX administered once weekly. Individual follow-up assessments were carried out after 7 and 14 days. Meanwhile, patients in the second group underwent two sessions of Extracorporeal Shockwave Therapy (ESWT), with a 7-day interval between sessions. Evaluations were conducted on day 7 and day 14. Patients who displayed pain control and stability were advised to continue the treatment, whereas those who had inflammation and discomfort were administered specific medications, and their progress was closely monitored until day 28. Blood samples were collected from both groups prior to treatment, after the first treatment, and after the second treatment. Four marker proteins (NRP-1, CELF-6, COX-2, and RGS-1) and two inflammatory cytokines (IL-6 and IL-17) were measured using western blot and RT-PCR techniques. A statistical analysis was conducted on the levels of specific proteins and inflammatory factors before and after treatment to evaluate its impact. Result Both groups exhibited statistically significant differences in the serum level of target biomarkers before and after the intervention. However, the ESWT group demonstrated a more noticeable effect, while the diclofenac + MTX group exhibited a delayed anti-inflammatory effect compared to ESWT. Conclusion Both treatments significantly improved joint function, relieved pain, and reduced inflammation in patients. However, ESWT demonstrated a more prominent clinical analgesic effect compared to the combination treatment of diclofenac and MTX. Furthermore, ESWT produced a more immediate and noteworthy anti-inflammatory impact by regulating NRP-1 expression, a trophic factor receptor that facilitates vascular endothelial cell migration and tissue repair through angiogenesis, and regulating RGS-1 to limit inflammatory signal transmission and immune cell activation.
Collapse
Affiliation(s)
- Mei Zhang
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese MedicineMacau University of Science and Technology, Av. Wai Long, Macau 999078, China
| | - Zhongyuan Ma
- Department of Cardiothoracic SurgeryZhuhai People's HospitalZhuhai Hospital Affiliation with Jinan University, Zhuhai, Guangdong 519000, China
| | - Rinkiko Suguro
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese MedicineMacau University of Science and Technology, Av. Wai Long, Macau 999078, China
| | - Menglin Zhu
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese MedicineMacau University of Science and Technology, Av. Wai Long, Macau 999078, China
| | - Esther Xinyi Chen
- Faculty of MedicineMacau University of Science and Technology, Av. Wai Long, Macau 999078, China
| | - Xin Dong
- Macau Institute of Systems EngineeringMacau University of Science and Technology, Taipa, Macau 999078, China
| | - Meixiu Chen
- Semiahmoo Secondary School, 1785 148 St, Surrey, BC, Canada
| | - Linling Cheng
- Faculty of MedicineMacau University of Science and Technology, Av. Wai Long, Macau 999078, China
| | - Bolun Su
- Faculty of Chinese MedicineMacau University of Science and Technology, Macau, China
| | - Yizhun Zhu
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese MedicineMacau University of Science and Technology, Av. Wai Long, Macau 999078, China
| |
Collapse
|
33
|
Yang LJ, Sui SX, Zheng QH, Wang M. circUQCRC2 promotes asthma progression in children by activating the VEGFA/NF-κB pathway by targeting miR-381-3p. Kaohsiung J Med Sci 2024; 40:699-709. [PMID: 39031804 DOI: 10.1002/kjm2.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024] Open
Abstract
This study targeted to explore circUQCRC2's role and mechanism in childhood asthma. A mouse model of ovalbumin-induced asthma was established to evaluate the effects of circUQCRC2 on childhood asthma in terms of oxidative stress, inflammation, and collagen deposition. The effects of circUQCRC2 on platelet-derived growth factor-BB (PDGF-BB)-induced smooth muscle cells (SMCs) were evaluated, the downstream mRNA of miRNA and its associated pathways were predicted and validated, and their effects on asthmatic mice were evaluated. circUQCRC2 levels were upregulated in bronchoalveolar lavage fluid of asthmatic mice and PDGF-BB-treated SMCs. Depleting circUQCRC2 alleviated tissue damage in asthmatic mice, improved inflammatory levels and oxidative stress in asthmatic mice and PDGF-BB-treated SMC, inhibited malignant proliferation and migration of SMCs, and improved airway remodeling. Mechanistically, circUQCRC2 regulated VEGFA expression through miR-381-3p and activated the NF-κB cascade. circUQCRC2 knockdown inactivated the NF-κB cascade by modulating the miR-381-3p/VEGFA axis. Promoting circUQCRC2 stimulates asthma development by activating the miR-381-3p/VEGFA/NF-κB cascade. Therefore, knocking down circUQCRC2 or overexpressing miR-381-3p offers a new approach to treating childhood asthma.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Shu-Xiang Sui
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Qing-Hua Zheng
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Min Wang
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| |
Collapse
|
34
|
Karaca Ç, Akdoğan M, Demirel HH, Ünal C. The Effects of Systemic Coenzyme Q10 Treatment on Corneal Histology in Streptozocin-Induced Diabetic Rats. Ocul Immunol Inflamm 2024; 32:905-911. [PMID: 36332150 DOI: 10.1080/09273948.2022.2140298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study investigate the histopathological changes and VEGF, IL-1β, and IL-6 immunoreactivities in cornea treated with Coenzyme Q10 (CoQ10) in a Streptozocin (STZ) induced diabetic rat model. METHODS A total of 20 male Wistar Albino rats including a group of STZ diabetic rats, diabetic rats treated with CoQ10, rats were given CoQ10 without being diabetic and a Control group were included the study. The groups were followed up for 2 months. Eye tissues were stained with Hematoxylin-Eosin (HE), Periodic Acid-Schiff (PAS), and immunohistochemical staining (IHC). FINDINGS The mean corneal thickness was found to be lower in the group with DM (126,62 ± 18,1) compared to the other groups. However, this decrease was found to be significant only in comparison with the control group (181,75 ± 13,87) (p = 0.000). In diabetic corneas, PAS positivity was observed in in Descemet's membrane (p = 0.021). Staining with VEGF, IL-1β, IL-6antibodies was found to be lower in the DM+CoQ10 group compared to the group with DM (p < 0.001, p < 0.001, p < 0.001). RESULTS We observed that diabetes increases inflammation and tendency to angiogenesis in the corneal tissue, and CoQ10 treatment reduces the corneal thickness, inflammation, and tendency to angiogenesis caused by diabetes.
Collapse
Affiliation(s)
- Çiğdem Karaca
- Department of Histology Embryology, Gaziantep Islam, Science and Technology University Faculty of Medicine, Gaziantep, Türkiye
| | - Müberra Akdoğan
- Department of Ophthalmology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Türkiye
| | - Hasan Hüseyin Demirel
- Faculty of Veterinary Medicine Bayat Vocational School, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Canan Ünal
- Medical Histology Emryology, Kayseri City Training and Research Hospital, Kayseri, Türkiye
| |
Collapse
|
35
|
Firatligil FB, Yildirir BF, Yalcin-Ozuysal O. A new insight into the pathway behind spontaneous recurrent pregnancy loss: decreased CYR61 gene expression. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231673. [PMID: 39045957 PMCID: PMC11288261 DOI: 10.1590/1806-9282.20231673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Investigating the potential role of CYR61 in recurrent pregnancy loss is critical for developing diagnostic approaches and treatments for recurrent pregnancy loss. METHODS In this prospective case-control study, we have investigated the expression patterns of CYR61 in blood samples from participants with recurrent pregnancy loss in their medical history and control group (n=20 vs n=10). Peripheral blood mononuclear cells from study and control groups were isolated and the expression patterns of the CYR61 gene were determined by real-time semi-quantitative reverse transcriptase PCR. RESULTS A significant decrease in CYR61 gene expression was demonstrated in patients with two or more clinically recognized miscarriages compared with patients without miscarriages or with a history of miscarriage (p<0.01), which may make the CYR61 gene a potential candidate for predicting the risk of recurrent pregnancy loss. DISCUSSION This study provides a basis for a detailed investigation of candidate biomarkers and molecular players involved in the development of recurrent pregnancy loss and for the development of potential treatment approaches to prevent recurrent pregnancy loss.
Collapse
Affiliation(s)
- Fahri Burcin Firatligil
- nkara Etlik City Hospital, Department of Obstetrics and Gynecology, Division of Perinatology – Ankara, Turkey
| | - Burcu Firatligil Yildirir
- Tampere University, Faculty of Engineering and Natural Sciences – Tampere, Finland
- Izmir Institute of Technology, Department of Molecular Biology and Genetics – Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Izmir Institute of Technology, Department of Molecular Biology and Genetics – Izmir, Turkey
| |
Collapse
|
36
|
Pastura P, McDaniel CG, Alharbi S, Fox D, Coleman B, Malik P, Adams DM, Le Cras TD. NRAS Q61R mutation drives elevated angiopoietin-2 expression in human endothelial cells and a genetic mouse model. Pediatr Blood Cancer 2024; 71:e31032. [PMID: 38711167 PMCID: PMC11116044 DOI: 10.1002/pbc.31032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.
Collapse
Affiliation(s)
- Patricia Pastura
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - C. Griffin McDaniel
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sara Alharbi
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Dermot Fox
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bethany Coleman
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute,
Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Denise M. Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Timothy D. Le Cras
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Priyadharshini KI, Balakrishnan S, Saranyan R, Nirmal M, Murugesan A, Yoithappra Bhunath TPR. Evaluation of VEGF, BDNF, TRKB expression in oral epithelial dysplasia, oral verrucous carcinoma and oral squamous cell carcinoma and their role as prognostic indicator. J Cancer Res Ther 2024; 20:1376-1383. [PMID: 39412903 DOI: 10.4103/jcrt.jcrt_2406_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 10/18/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a serious health disease that can lead to a reduced quality of life or even death. It ranks sixth in terms of cancer expansion. It is one of India's primary causes of natural death. In OSCC such potentially malignant Disorders (PMDs) are precancerous lesions with such a high risk of progression. Tumor angiogenesis is a one of the basic biomarkers that may influence the proliferation of a precancerous lesion into the cancerous lesion. Tropomyosin receptor kinase B (TrkB), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) also play important roles in carcinogenesis by promoting angiogenesis. The construction of new vessels of blood from existing vasculature is referred as angiogenesis. AIM OF THE STUDY To get deep insights of immunohistochemistry expression of VEGF, BDNF, and TRKB in oral epithelial dysplasia (OED), verrucous carcinoma (VC), and OSCC. MATERIAL AND METHODS The study included 100 formalin-fixed paraffin-embedded tissue blocks from 20 cases of OED, 20 cases of VC, and 60 cases of OSCC [20 cases of well-differentiated oral squamous cell carcinoma (WD-OSCC), 20 cases of moderately differentiated oral squamous cell carcinoma (MD-OSCC), and 20 cases of poorly differentiated oral squamous cell carcinoma (PD-OSCC). The staining intensity and distribution of VEGF, BNDF, and TrkB were examined and statistically analyzed using analysis of variance (ANOVA), post hoc Bonferroni test, independent t-test, Pearson's Chi-square test, and Pearson's correlation coefficient test. RESULTS The immunoexpression of VEGF, BDNF, and TrkB was found to be elevated in the order of OEDs, VC, and OSCC. The percentage of positive was highest in PD-OSCC, followed by MD-OSCC and WD-OSCC. CONCLUSION Based on our findings, angiogenesis plays a significant role in tumor growth and metastasis. A substantial relationship was discovered between VEGF, BDNF, TrkB expression, and increases in vascularity throughout the transition from OEDs to VCs and OSCCs.
Collapse
MESH Headings
- Humans
- Vascular Endothelial Growth Factor A/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Mouth Neoplasms/pathology
- Mouth Neoplasms/metabolism
- Prognosis
- Male
- Carcinoma, Verrucous/pathology
- Carcinoma, Verrucous/metabolism
- Carcinoma, Verrucous/diagnosis
- Receptor, trkB/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/diagnosis
- Female
- Middle Aged
- Adult
- Aged
- Precancerous Conditions/pathology
- Precancerous Conditions/metabolism
- Membrane Glycoproteins/metabolism
- Immunohistochemistry
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Mouth Mucosa/pathology
- Mouth Mucosa/metabolism
Collapse
Affiliation(s)
- Kumaresan Indra Priyadharshini
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission's Sankarachariyar Dental College and Hospitals, VMRF (DU) Salem, Tamil Nadu, India
| | - Sekar Balakrishnan
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission's Sankarachariyar Dental College and Hospitals, VMRF (DU) Salem, Tamil Nadu, India
| | - Ravi Saranyan
- Department of Periodontics, Vinayaka Mission's Sankarachariyar Dental College and Hospitals, VMRF (DU) Salem, Tamil Nadu, India
| | - Madhavan Nirmal
- Department of Oral Pathology and Microbiology, Rajamuthiah Dental College, Annamalai University, Annamalinagar, Chidambaram-2, Tamil Nadu, India
| | - Ambika Murugesan
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission's Sankarachariyar Dental College and Hospitals, VMRF (DU) Salem, Tamil Nadu, India
| | | |
Collapse
|
38
|
Tian Y, Wang W, Hu Y, Chen F, Liu Z, Li L, Tang J. The Size Differences of Breast Cancer and Benign Tumors Measured by Two-Dimensional Ultrasound and Contrast-Enhanced Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1245-1250. [PMID: 38477076 DOI: 10.1002/jum.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVES Ultrasound (US) imaging has been observed to underestimate tumor size in clinical practice. This study aims to compare the size measurements of breast cancer and benign tumors using two-dimensional ultrasound (2DUS) and contrast-enhanced ultrasound (CEUS). METHODS The study included 42 clinically confirmed breast cancer and 47 benign breast tumors. Two experienced physicians independently measured the maximal longitudinal and transverse diameters of the masses in 2DUS and CEUS. All analyses were performed in R (4.2.2) and GraphPad Prism 6. RESULTS The maximal longitudinal and transverse diameters of breast cancer measured by CEUS were 26.61 ± 0.21% and 26.24 ± 0.19% larger compared with 2DUS, and benign breast tumors had an 11.74 ± 0.21% and 11.06 ± 0.14% increase in size compared with 2DUS. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) for the difference between 2DUS and CEUS was 0.870 for longitudinal diameters (95% CI: 0.795-0.945, sensitivity 0.842, specificity 0.783, threshold value 0.215), and 0.863 for transverse diameters (95% CI: 0.785-0.942, sensitivity 0.667, specificity 0.936, threshold value 0.203). CONCLUSIONS The size measurements of both breast cancer and benign tumors were larger in CEUS compared with 2DUS, with CEUS measurements of breast cancer being more pronounced than those of benign breast tumors. These findings suggest that CEUS may provide a more precise assessment of tumor size, which is crucial for determining optimal treatment strategies and improving patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Yang Tian
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhen Wang
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanbin Hu
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Chen
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liangzi Li
- Department of General Surgery, Southern Theater General Hospital, Guangzhou, China
| | - Jiawei Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
- Department of Ultrasound, The 74th Group Military Hospital, Guangzhou, China
| |
Collapse
|
39
|
Oropeza-de Lara SA, Garza-Veloz I, Berthaud-González B, Tirado-Navarro TG, Gurrola-Carlos R, Bonilla-Rocha B, Delgado-Enciso I, Martinez-Fierro ML. Comparative Assessment of miR-185-5p and miR-191-5p Expression: From Normal Endometrium to High-Grade Endometrial Cancer. Cells 2024; 13:1099. [PMID: 38994952 PMCID: PMC11240595 DOI: 10.3390/cells13131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a significant cause of cancer-related deaths in women. MicroRNAs (miRs) play a role in cancer development, acting as oncogenes or tumor suppressors. This study evaluated the diagnostic potential of hsa-miR-185-5p and hsa-miR-191-5p in EC and their correlation with clinical and histopathological features. A cross-sectional study analyzed formalin-fixed, paraffin-embedded tissue samples from 59 patients: 18 with EC, 21 with endometrial hyperplasia (EH), 17 with normal endometrium (NE), and 3 with endometrial polyps (EPs). Quantitative reverse transcription-polymerase chain reaction and TaqMan probes were used for miR expression analysis. The Shapiro-Wilk test was used to analyze the normal distribution of the data. Subsequently, parametric or non-parametric tests were used to evaluate the associations between the expression levels of each miR and clinical parameters. Both miRs were underexpressed in some precursor and malignant lesions compared to certain NE subtypes and benign lesions. Specifically, hsa-miR-185-5p showed underexpression in grade 3 EC compared to some NE and EH subtypes (FC: -57.9 to -8.5, p < 0.05), and hsa-miR-191-5p was underexpressed in EH and EC compared to secretory endometrium and EPs (FC: -4.2 to -32.8, p < 0.05). SETD1B, TJP1, and MSI1 were common predicted target genes. In conclusion, hsa-miR-185-5p and hsa-miR-191-5p are underexpressed in EC tissues, correlating with histopathological grades, highlighting their potential as diagnostic biomarkers and their role as tumor suppressors in EC.
Collapse
Affiliation(s)
- Sergio Antonio Oropeza-de Lara
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autonoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6 Ejido la Escondida, Zacatecas 98160, Mexico; (S.A.O.-d.L.); (T.G.T.-N.); (R.G.-C.); (B.B.-R.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autonoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6 Ejido la Escondida, Zacatecas 98160, Mexico; (S.A.O.-d.L.); (T.G.T.-N.); (R.G.-C.); (B.B.-R.)
| | - Bertha Berthaud-González
- Hospital General “Luz González Cosío”, Circuito el Orito, Cd. Administrativa, Zacatecas 98160, Mexico;
| | - Tania Guillermina Tirado-Navarro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autonoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6 Ejido la Escondida, Zacatecas 98160, Mexico; (S.A.O.-d.L.); (T.G.T.-N.); (R.G.-C.); (B.B.-R.)
| | - Reinaldo Gurrola-Carlos
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autonoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6 Ejido la Escondida, Zacatecas 98160, Mexico; (S.A.O.-d.L.); (T.G.T.-N.); (R.G.-C.); (B.B.-R.)
| | - Bernardo Bonilla-Rocha
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autonoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6 Ejido la Escondida, Zacatecas 98160, Mexico; (S.A.O.-d.L.); (T.G.T.-N.); (R.G.-C.); (B.B.-R.)
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Av. Universidad No. 333, Las Viboras, Colima 28040, Mexico;
- Department of Research, Colima Cancerology State Institute, IMSS-Bienestar Colima, Colima 28085, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autonoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6 Ejido la Escondida, Zacatecas 98160, Mexico; (S.A.O.-d.L.); (T.G.T.-N.); (R.G.-C.); (B.B.-R.)
| |
Collapse
|
40
|
Wong TY, Haskova Z, Asik K, Baumal CR, Csaky KG, Eter N, Ives JA, Jaffe GJ, Korobelnik JF, Lin H, Murata T, Ruamviboonsuk P, Schlottmann PG, Seres AI, Silverman D, Sun X, Tang Y, Wells JA, Yoon YH, Wykoff CC. Faricimab Treat-and-Extend for Diabetic Macular Edema: Two-Year Results from the Randomized Phase 3 YOSEMITE and RHINE Trials. Ophthalmology 2024; 131:708-723. [PMID: 38158159 DOI: 10.1016/j.ophtha.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE To evaluate the 2-year efficacy, durability, and safety of dual angiopoietin-2 and vascular endothelial growth factor (VEGF) A pathway inhibition with intravitreal faricimab according to a personalized treat-and-extend (T&E)-based regimen with up to every-16-week dosing in the YOSEMITE and RHINE (ClinicalTrials.gov identifiers, NCT03622580 and NCT03622593, respectively) phase 3 trials of diabetic macular edema (DME). DESIGN Randomized, double-masked, noninferiority phase 3 trials. PARTICIPANTS Adults with visual acuity loss (best-corrected visual acuity [BCVA] of 25-73 letters) due to center-involving DME. METHODS Patients were randomized 1:1:1 to faricimab 6.0 mg every 8 weeks, faricimab 6.0 mg T&E (previously referred to as personalized treatment interval), or aflibercept 2.0 mg every 8 weeks. The T&E up to every-16-week dosing regimen was based on central subfield thickness (CST) and BCVA change. MAIN OUTCOME MEASURES Included changes from baseline in BCVA and CST, number of injections, durability, absence of fluid, and safety through week 100. RESULTS In YOSEMITE and RHINE (n = 940 and 951, respectively), noninferior year 1 visual acuity gains were maintained through year 2; mean BCVA change from baseline at 2 years (weeks 92, 96, and 100 average) with faricimab every 8 weeks (YOSEMITE and RHINE, +10.7 letters and +10.9 letters, respectively) or T&E (+10.7 letters and +10.1 letters, respectively) were comparable with aflibercept every 8 weeks (+11.4 letters and +9.4 letters, respectively). The median number of study drug injections was lower with faricimab T&E (YOSEMITE and RHINE, 10 and 11 injections, respectively) versus faricimab every 8 weeks (15 injections) and aflibercept every 8 weeks (14 injections) across both trials during the entire study. In the faricimab T&E arms, durability was improved further during year 2, with > 60% of patients receiving every-16-week dosing and approximately 80% receiving every-12-week or longer dosing at week 96. Almost 80% of patients who achieved every-16-week dosing at week 52 maintained every-16-week dosing without an interval reduction through week 96. Mean CST reductions were greater (YOSEMITE/RHINE weeks 92/96/100 average: faricimab every 8 weeks -216.0/-202.6 µm, faricimab T&E -204.5/-197.1 µm, aflibercept every 8 weeks -196.3/-185.6 µm), and more patients achieved absence of DME (CST < 325 μm; YOSEMITE/RHINE weeks 92-100: faricimab every 8 weeks 87%-92%/88%-93%, faricimab T&E 78%-86%/85%-88%, aflibercept every 8 weeks 77%-81%/80%-84%) and absence of intraretinal fluid (YOSEMITE/RHINE weeks 92-100: faricimab every 8 weeks 59%-63%/56%-62%, faricimab T&E 43%-48%/45%-52%, aflibercept every 8 weeks 33%-38%/39%-45%) with faricimab every 8 weeks or T&E versus aflibercept every 8 weeks through year 2. Overall, faricimab was well tolerated, with a safety profile comparable with that of aflibercept. CONCLUSIONS Clinically meaningful visual acuity gains from baseline, anatomic improvements, and extended durability with intravitreal faricimab up to every 16 weeks were maintained through year 2. Faricimab given as a personalized T&E-based dosing regimen supports the role of dual angiopoietin-2 and VEGF-A inhibition to promote vascular stability and to provide durable efficacy for patients with DME. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Tien Y Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China, and Singapore National Eye Centre, Singapore, Republic of Singapore.
| | | | - Kemal Asik
- Genentech, Inc., South San Francisco, California
| | | | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, Texas
| | - Nicole Eter
- Department of Ophthalmology, University of Münster, Münster, Germany
| | - Jane A Ives
- Roche Products Ltd., Welwyn Garden City, United Kingdom
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Jean-François Korobelnik
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Service d'Ophtalmologie, Université de Bordeaux, INSERM, BPH, UMR1219, Bordeaux, France
| | - Hugh Lin
- Genentech, Inc., South San Francisco, California
| | | | - Paisan Ruamviboonsuk
- Department of Ophthalmology, College of Medicine, Rangsit University, Rajavithi Hospital, Bangkok, Thailand
| | | | | | | | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yannan Tang
- Genentech, Inc., South San Francisco, California
| | - John A Wells
- Palmetto Retina Center, Retina Consultants of America, Columbia, South Carolina
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
41
|
Kataoka T, Ito H, Mori T, Hotta Y, Sanagawa A, Maeda Y, Furukawa-Hibi Y, Kimura K. Testosterone improved erectile function by upregulating transcriptional expression of growth factors in late androgen replacement therapy model rats. Int J Impot Res 2024; 36:437-442. [PMID: 36310186 DOI: 10.1038/s41443-022-00627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
We previously showed that castration of rats reduced erectile function over time; when testosterone replacement therapy was started 4 weeks after castration, erectile function improved. In this study, we examined the mechanism of improvement in erectile function following testosterone replacement therapy in rats. Thirty 12-week-old rats were divided into castrated (Cast), castrated with subcutaneous administration of testosterone (Cast + T), and sham (Sham) groups. Erectile function and mRNA and protein expression were evaluated in the rats by using standard methods. To assess erectile function, we measured the intracavernosal pressure, mean arterial pressure, mRNA expression of endothelial growth factors, and protein expression of endothelial nitric oxide synthase (eNOS). The intracavernosal pressure/mean arterial pressure ratio was significantly lower in the Cast group, and testosterone administration significantly improved (P = 0.017). Compared to the Cast group, the Cast+T group exhibited significantly increased mRNA expressions of vascular endothelial growth factor A (VEGF-A), intercellular adhesion molecule 1 (ICAM-1), transforming growth factor-β (TGF-β), nerve growth factor (NGF), α-smooth muscle actin (α-SMA), caveolae associated protein 1 (Cavin-1), Cavin-2, Cavin-3, sirtuin 1 (Sirt-1), sphingosine-1-phosphate 1 (S1P1), S1P2, and S1P3 and eNOS protein expression. Testosterone replacement therapy improved erectile function in castrated rats by increasing growth factors and eNOS protein.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
- Department of Pharmacology, Kataoka's lab, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
| | - Hiroto Ito
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Taiki Mori
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yoko Furukawa-Hibi
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
42
|
Qi Y, Wang X, Bai Z, Xu Y, Lu T, Zhu H, Zhang S, Wu Z, Liu Z, He Z, Jia W. Enhancement of the function of mesenchymal stem cells by using a GMP-grade three-dimensional hypoxic large-scale production system. Heliyon 2024; 10:e30968. [PMID: 38826705 PMCID: PMC11141262 DOI: 10.1016/j.heliyon.2024.e30968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Efficiently increasing the production of clinical-grade mesenchymal stem cells (MSCs) is crucial for clinical applications. Challenges with the current planar culture methods include scalability issues, labour intensity, concerns related to cell senescence, and heterogeneous responses. This study aimed to establish a large-scale production system for MSC generation. In addition, a comparative analysis of the biological differences between MSCs cultured under various conditions was conducted. Methods and materials We developed a GMP-grade three-dimensional hypoxic large-scale production (TDHLSP) system for MSCs using self-fabricated glass microcarriers and a multifunctional bioreactor. Different parameters, including cell viability, cell diameter, immunophenotype, morphology, karyotype, and tumourigenicity were assessed in MSCs cultured using different methods. Single-cell RNA sequencing (scRNA-seq) revealed pathways and genes associated with the enhanced functionality of MSCs cultured in three dimensions under hypoxic conditions (3D_Hypo MSCs). Moreover, CD142 knockdown in 3D_Hypo MSCs confirmed its in vitro functions. Results Inoculating 2 × 108 MSCs into a 2.6 L bioreactor in the TDHLSP system resulted in a final scale of 4.6 × 109 3D_Hypo MSCs by day 10. The 3D_Hypo MSCs retained characteristics of the 2D MSCs, demonstrating their genomic stability and non-tumourigenicity. Interestingly, the subpopulations of 3D_Hypo MSCs exhibited a more uniform distribution and a closer relationship than those of 2D MSCs. The heterogeneity of MSCs was strongly correlated with 'cell cycle' and 'stroma/mesenchyme', with 3D_Hypo MSCs expressing higher levels of activated stroma genes. Compared to 2D MSCs, 3D_Hypo MSCs demonstrated enhanced capabilities in blood vessel formation, TGF-β1 secretion, and inhibition of BV2 proliferation, with maintenance of Senescence-Associated β-Galactosidase (SA-β-gal) negativity. However, the enhanced functions of 3D_Hypo MSCs decreased upon the downregulation of CD142 expression. Conclusion The TDHLSP system led to a high overall production of MSCs and promoted uniform distribution of MSC clusters. This cultivation method also enhanced key cellular properties, such as angiogenesis, immunosuppression, and anti-aging. These functionally improved and uniform MSC subpopulations provide a solid basis for the clinical application of stem cell therapies.
Collapse
Affiliation(s)
- Yiyao Qi
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhihui Bai
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Ying Xu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Tingting Lu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Hanyu Zhu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Shoumei Zhang
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhihong Wu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhiying He
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| |
Collapse
|
43
|
Koutrouli A, Machla F, Arapostathis K, Kokoti M, Bakopoulou A. "Biological responses of two calcium-silicate-based cements on a tissue-engineered 3D organotypic deciduous pulp analogue". Dent Mater 2024; 40:e14-e25. [PMID: 38431482 DOI: 10.1016/j.dental.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES The biological responses of MTA and Biodentine™ has been assessed on a three-dimensional, tissue-engineered organotypic deciduous pulp analogue. METHODS Human endothelial (HUVEC) and dental mesenchymal stem cells (SHED) at a ratio of 3:1, were incorporated into a collagen I/fibrin hydrogel; succeeding Biodentine™ and MTA cylindrical specimens were placed in direct contact with the pulp analogue 48 h later. Cell viability/proliferation and morphology were evaluated through live/dead staining, MTT assay and Scanning Electron Microscopy (SEM), and expression of angiogenic, odontogenic markers through real time PCR. RESULTS Viable cells dominated at day 3 after treatment presenting typical morphology, firmly attached within the hydrogel structures, as shown by live/dead staining and SEM images. MTT assay at day 1 presented a significant increase of cell proliferation in Biodentine™ group. Real-time PCR showed significant upregulation of odontogenic markers DSPP, BMP-2 (day 3,6), RUNX2, ALP (day 3) in contact with Biodentine™ compared to MTA and the control, whereas MTA promoted significant upregulation of DSPP, BMP-2, RUNX2, Osterix (day 3) and ALP (day 6) compared to the control. MSX1 presented downregulation in both experimental groups. Expression of angiogenic markers VEGFa and ANGPT-1 at day 3 was significantly upregulated in contact with Biodentine™ and MTA respectively, while the receptors VEGFR1, VEGFR2 and Tie-2, as well as PECAM-1 were downregulated. SIGNIFICANCE Both calcium silicate-based materials are biocompatible and exert positive angiogenic and odontogenic effects, although Biodentine™ during the first days of culture, seems to induce higher cell proliferation and provoke a more profound odontogenic and angiogenic response from SHED.
Collapse
Affiliation(s)
- A Koutrouli
- Department of Paediatric Dentistry, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - F Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - K Arapostathis
- Department of Paediatric Dentistry, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - M Kokoti
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - A Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
44
|
Alsharif ST, Gardouh AM, Mandour MF, Alaqais ZM, Alharbi LK, Almarwani MJ, Mokhtar HI, Hisham FA, Abdellah MM, Mohamed GM, Shorog EM, Almaeen AH, Atteia HH, Zaitone SA. Antitumor activity and targeting p53-PUMA mRNA expression by 5-flurouracil PLGA-lipid polymeric nanoparticles in mouse mammary carcinomas: comparison to free 5-flurouracil. Toxicol Mech Methods 2024; 34:385-397. [PMID: 38083807 DOI: 10.1080/15376516.2023.2294083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Polymeric poly (lactic-co-glycolic acid) (PLGA)-lipid hybrid nanoparticles (PNPs)-based therapy are powerful carriers for various therapeutic agents. This study was conducted to evaluate the chemotherapeutic potential of free 5-flurouracil (5FU) and synthetized 5FU-PNPs and impact on p53-dependent apoptosis in mammary carcinomas (MCs) grown in mice. Breast cancer cells were injected in Swiss albino female mice and 2 bilateral masses of MC were confirmed after one week. Mice were distributed to five experimental groups; Group 1: MC control group. Groups 2 and 3: MC + free 5FU [5 or 10 mg per kg] groups. Groups 4 and 5: synthetized MC+ 5FU-PNPs [5 or 10 mg per kg] groups. Medications were administered orally, twice weekly for 3 weeks. Then, tumors were dissected, and sections were stained with hematoxylin-eosin (HE) while the other MC was used for measuring of cell death and inflammatory markers. Treatment with 5FU-PNPs suppressed the MC masses and pathologic scores based on HE-staining. Similarly, greater proapoptotic activity was recorded in 5FU-PNPs groups compared to free 5FU groups as shown by significant upregulation in tumoral p53 immunostaining. The current results encourage the utility of PNPs for improving the antitumor effect of 5FU. The chemotherapeutic potential was mediated through enhancement of tumoral p53-mediated p53 up-regulated modulator of apoptosis (PUMA) genes. Additional studies are warranted for testing the antitumor activity of this preparation in other mouse models of breast cancer.
Collapse
Affiliation(s)
- Sara T Alsharif
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Mohamed F Mandour
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Zood M Alaqais
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Lama K Alharbi
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha J Almarwani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Hatem I Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Fatma Azzahraa Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Mahmoud Abdellah
- Department of Pathology, Faculty of Medicine, Galala University, Suez, Egypt
- Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ghena M Mohamed
- Nutrition and Food Science Department, College of Home Economics, Tabuk University, Tabuk, Saudi Arabia
| | - Eman M Shorog
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
45
|
Fischer S, Lichtenthaeler C, Stepanenko A, Heyl F, Maticzka D, Kemmerer K, Klostermann M, Backofen R, Zarnack K, Weigand JE. Heterogenous nuclear ribonucleoprotein D-like controls endothelial cell functions. Biol Chem 2024; 405:229-239. [PMID: 37942876 DOI: 10.1515/hsz-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
HnRNPs are ubiquitously expressed RNA-binding proteins, tightly controlling posttranscriptional gene regulation. Consequently, hnRNP networks are essential for cellular homeostasis and their dysregulation is associated with cancer and other diseases. However, the physiological function of hnRNPs in non-cancerous cell systems are poorly understood. We analyzed the importance of HNRNPDL in endothelial cell functions. Knockdown of HNRNPDL led to impaired proliferation, migration and sprouting of spheroids. Transcriptome analysis identified cyclin D1 (CCND1) and tropomyosin 4 (TPM4) as targets of HNRNPDL, reflecting the phenotypic changes after knockdown. Our findings underline the importance of HNRNPDL for the homeostasis of physiological processes in endothelial cells.
Collapse
Affiliation(s)
- Sandra Fischer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Chiara Lichtenthaeler
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Anastasiya Stepanenko
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Florian Heyl
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Daniel Maticzka
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Katrin Kemmerer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Rolf Backofen
- Department of Bioinformatics, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Julia E Weigand
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| |
Collapse
|
46
|
Alizadeh S, Mahboobi L, Nasiri M, Khosrowpour Z, Khosravimelal S, Asgari F, Gholipour-Malekabadi M, Taghi Razavi-Toosi SM, Singh Chauhan NP, Ghobadi F, Nasiri H, Gholipourmalekabadi M. Decellularized Placental Sponge Seeded with Human Mesenchymal Stem Cells Improves Deep Skin Wound Healing in the Animal Model. ACS APPLIED BIO MATERIALS 2024; 7:2140-2152. [PMID: 38470456 DOI: 10.1021/acsabm.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Skin injuries lead to a large burden of morbidity. Although numerous clinical and scientific strategies have been investigated to repair injured skin, optimal regeneration therapy still poses a considerable obstacle. To address this challenge, decellularized extracellular matrix-based scaffolds recellularized with stem cells offer significant advancements in skin regeneration and wound healing. Herein, a decellularized human placental sponge (DPS) was fabricated using the decellularization and freeze-drying technique and then recellularized with human adipose-derived mesenchymal cells (MSCs). The biological and biomechanical properties and skin full-thickness wound healing capacity of the stem cells-DPS constructs were investigated in vitro and in vivo. The DPS exhibited a uniform 3D microstructure with an interconnected pore network, 89.21% porosity, a low degradation rate, and good mechanical properties. The DPS and MSCs-DPS constructs were implanted in skin full-thickness wound models in mice. An accelerated wound healing was observed in the wounds implanted with the MSCs-DPS construct when compared to DPS and control (wounds with no treatment) during 7 and 21 days postimplantation follow-up. In the MSCs-DPS group, the wound was completely re-epithelialized, the epidermis layer was properly organized, and the dermis and epidermis' bilayer structures were restored after 7 days. Our findings suggest that DPS is an excellent carrier for MSC culture and delivery to skin wounds and now promises to proceed with clinical evaluations.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Leila Mahboobi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Modara Nasiri
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran 19585, Iran
- Research Company Located in Islamic Azad University Science and Technology Park, Araz Fidar Azma, Tehran, 1477893855, Iran
| | - Zahra Khosrowpour
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Fatemeh Asgari
- Avicenna Infertility Clinic, Avicenna Research Institute, ACECR, Tehran 1985743413, Iran
| | | | - Seyyed Mohammad Taghi Razavi-Toosi
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| | - Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Hajar Nasiri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
47
|
Wang Y, Wu H, Xiao A, Zhu J, Qiu J, Yang K, Liu Q, Hao S, Hui L, Zhou X, Hou Q, Su H, Meng Z, Chang L. Combined Amniotic Membrane and Self-Powered Electrical Stimulator Bioelectronic Dress Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15809-15818. [PMID: 38515315 DOI: 10.1021/acsami.3c18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Human amniotic membranes (hAMs) are widely used as wound management biomaterials, especially as grafts for corneal reconstruction due to the structure of the extracellular matrix and excellent biological properties. However, their fragile nature and rapid degradation rate hinder widespread clinical use. In this work, we engineered a novel self-powered electronic dress (E-dress), combining the beneficial properties of an amniotic membrane and a flexible electrical electrode to enhance wound healing. The E-dress displayed a sustained discharge capacity, leading to increased epidermal growth factor (EGF) release from amniotic mesenchymal interstitial stem cells. Live/dead staining, CCK-8, and scratch-wound-closure assays were performed in vitro. Compared with amniotic membrane treatment alone, the E-dress promoted cell proliferation and migration of mouse fibroblast cells and lower cytotoxicity. In a mouse full-skin defect model, the E-dress achieved significantly accelerated wound closure. Histological analysis revealed that E-dress treatment promoted epithelialization and neovascularization in mouse skin. The E-dress exhibited a desirable flexibility that aligned with tissue organization and displayed maximum bioactivity within a short period to overcome rapid degradation, implying great potential for clinical applications.
Collapse
Affiliation(s)
- Yupei Wang
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jing Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jie Qiu
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qing Liu
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Shengju Hao
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Ling Hui
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Xin Zhou
- Department of Integrative Medical Biology, Umeå University, Umeå 90337, Sweden
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Haixiang Su
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Zhaoyan Meng
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
48
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
49
|
Jouybar M, de Winde CM, Wolf K, Friedl P, Mebius RE, den Toonder JMJ. Cancer-on-chip models for metastasis: importance of the tumor microenvironment. Trends Biotechnol 2024; 42:431-448. [PMID: 37914546 DOI: 10.1016/j.tibtech.2023.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Cancer-on-chip (CoC) models, based on microfluidic chips harboring chambers for 3D tumor-cell culture, enable us to create a controlled tumor microenvironment (TME). CoC models are therefore increasingly used to systematically study effects of the TME on the various steps in cancer metastasis. Moreover, CoC models have great potential for developing novel cancer therapies and for predicting patient-specific response to cancer treatments. We review recent developments in CoC models, focusing on three main TME components: (i) the anisotropic extracellular matrix (ECM) architectures, (ii) the vasculature, and (iii) the immune system. We aim to provide guidance to biologists to choose the best CoC approach for addressing questions about the role of the TME in metastasis, and to inspire engineers to develop novel CoC technologies.
Collapse
Affiliation(s)
- Mohammad Jouybar
- Microsystems, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands
| | - Katarina Wolf
- Department of Medical BioSciences, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Medical BioSciences, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, Utrecht, The Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory diseases, Amsterdam, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven, The Netherlands.
| |
Collapse
|
50
|
Ding N, Fu X, Gui Q, Wu M, Niu Z, Du A, Liu J, Wu H, Wang Y, Yue X, Zhu L. Biomimetic Structure Hydrogel Loaded with Long-Term Storage Platelet-Rich Plasma in Diabetic Wound Repair. Adv Healthc Mater 2024; 13:e2303192. [PMID: 38011625 DOI: 10.1002/adhm.202303192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Exploring the preparation of multifunctional hydrogels from a bionic perspective is an appealing strategy. Here, a multifunctional hydrogel dressing inspired by the characteristics of porous extracellular matrix produced during Acomys wound healing is prepared. These dressings are printed by digital light processing printing of hydrogels composed of gelatin methacrylate, hyaluronic acid methacrylate, and pretreated platelet-rich plasma (PRP) to shape out triply periodic minimal surface structures, which are freeze-dried for long-term storage. These dressings mimic the porous extracellular matrix of Acomys, while the freeze-drying technique effectively extends the storage duration of PRP viability. Through in vivo and in vitro experiments, the biomimetic dressings developed in this study modulate cell behavior and facilitate wound healing. Consequently, this research offers a novel approach for the advancement of regenerative wound dressings.
Collapse
Affiliation(s)
- Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 415 Fengyang Road, Shanghai, 200003, China
- Department of Burns and Plastic Surgery, The 74th Group Army Hospital of the PLA Army, 468 Xingang Zhong Road, Guangzhou, 510315, China
| | - Xinxin Fu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200082, China
| | - Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 415 Fengyang Road, Shanghai, 200003, China
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Minjuan Wu
- Department of Histology and Embryology, Basic Medicine College, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Zhongpu Niu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200082, China
| | - Antong Du
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 415 Fengyang Road, Shanghai, 200003, China
| | - Jinyue Liu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 415 Fengyang Road, Shanghai, 200003, China
| | - Haimei Wu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200082, China
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
- Department of stem cell engneering, Shanghai Institute of Stem Cell Research and Clinical Translation, 551 Pudong Nan Road, Shanghai, 200120, China
- Department of stem cell engneering, Shanghai Key Laboratory of Cell Engineering, 800 Xiangyin Road, Shanghai, 200433, China
| | - Xuezheng Yue
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200082, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|