1
|
Bhat AA, Singh I, Farid A, Wani AW, Khanday F, Wani AK, Shah N, Hassan A, Kabrah A, Qusty NF, Babalghith AO, Alghamdi S. Repositioning antivirals against COVID-19: Synthetic pathways, mechanisms, and therapeutic insights. Microb Pathog 2025; 206:107724. [PMID: 40419200 DOI: 10.1016/j.micpath.2025.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/12/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
The pandemic of COVID-19 has ignited a global race to locate effective therapies with drug repositioning emerging as a leading strategy due to its cost-effectiveness and established safety profiles. Remdesivir, Favipiravir, Hydroxychloroquine, and Chloroquine have been the focus of rigorous clinical trials to determine their therapeutic potential against SARS-CoV-2. This article delves into the innovative synthetic strategies behind these drugs, providing a blueprint for researchers navigating the complex landscape of antiviral development. Beyond synthesis, we explore the fascinating mechanisms of action: hydroxychloroquine and chloroquine elevate lysosomal pH to impede autophagy and viral replication; favipiravir, a nucleoside analogue, induces lethal mutagenesis or RNA chain termination and remdesivir disrupts viral RNA synthesis through delayed chain termination. By merging synthetic methodologies with mechanistic insights, this article offers a comprehensive resource aimed at accelerating the development of potent COVID-19 therapies and underscores the crucial part that chemistry in addressing global health emergencies. It also underscores the vital function of chemistry in addressing global health emergencies and highlights how innovative drug design and repurposing can provide rapid responses to emerging infectious diseases. This fusion of chemistry and virology not only advances our understanding of drug action but also paves the way for the discovery of new therapeutic agents crucial in future pandemics.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agricultural Sciences, Phagwara, 144411, India
| | - Firdous Khanday
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen Iraqi, University, An Nasiriyah, Iraq
| | - Naseer Shah
- Department of Chemistry, IIT Bombay, Powai, Maharashtra, 400076, India
| | - Arif Hassan
- Division Fruit Science, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, 190025, India
| | - Ahmed Kabrah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Mutmainah, Murai Y, Fujimoto A, Kawamura R, Kitamura A, Koolath S, Usuki S, Sasaki M, Orba Y, Igarashi Y, Sawa H, Sato A, Monde K. Malabaricone C isolated from edible plants as a potential inhibitor of SARS-CoV-2 infection. Sci Rep 2025; 15:8518. [PMID: 40074774 PMCID: PMC11903690 DOI: 10.1038/s41598-024-83633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/16/2024] [Indexed: 03/14/2025] Open
Abstract
Although the SARS-CoV-2 epidemic worldwide has gradually decreased, in some areas, the situation has not yet been stamped and has become a global health emergency. It is quite possible that we could again be threatened by a new coronavirus. Therefore, new nucleotide analog drugs and vaccines or using drug repositioning for SARS-CoV-2 still has been developed, yet their safety and efficacy against COVID-19 remains underexplored. Malabaricone C is 2,6-dihydroxyphenyl acylphenol found in edible plants such as the mace spice of nutmeg derived from the seeds of Myristica fragrans. In this study, we identified malabaricone C as the first inhibitor of SARS-CoV-2 from natural food with a safe alternative for drugs. Malabaricone C and its chemical derivatives showed EC50 values of 1-1.5 μM against SARS-CoV-2 (WK-521, ancestral strain) and its variant strains in mammalian cells (HEK293T and Vero E6). In addition, we have successfully established novel evaluation system for the inhibition of SARS virus cell fusion by visualization for providing a versatile tool for study SARS-CoV-2 mediated fusion. Furthermore, our experiments suggested that malabaricone C could affect the distribution of sphingomyelin on the plasma membrane, which involves in viral infections. Thus, in light of the beneficial effect of malabaricone C on viral infection, the nontoxic malabaricone C is a suitable candidate as a drug that can be employed in the treatment and prevention of COVID-19. Moreover, it may potentially be used to treat acute infections of other enveloped viruses.
Collapse
Affiliation(s)
- Mutmainah
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Yuta Murai
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan.
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan.
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Ai Fujimoto
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Rintaro Kawamura
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Akira Kitamura
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Sajeer Koolath
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Seigo Usuki
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Michihito Sasaki
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0020, Japan
| | - Yasuko Orba
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Yasuyuki Igarashi
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Hirofumi Sawa
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Akihiko Sato
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0020, Japan.
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 3-1-1, Futaba-tyo, Toyonaka, 561-0825, Japan.
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan.
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-Ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
3
|
Nandakumar V, Selvi Ramasamy S, Adhigaman K, Arumugam D, Ramasamy S, Vivek R, Athimoolam S, Thangaraj S. Investigating the Antiproliferative Activity of Novel 4-Chloro-8-Nitro-1,2-Dihydro-3-Quinoline Acylhydrazones on Human Cervical Cancer Cell Lines. Chem Biodivers 2025; 22:e202401636. [PMID: 39543828 DOI: 10.1002/cbdv.202401636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
A new series of acyl hydrazones have been synthesized from 4-chloro-8-nitro-1,2-dihydroquinoline-3-carbaldehyde. These compounds were characterized using various spectroscopic techniques. Density functional theoretical (DFT) studies were conducted to understand the correlation between electronic parameters and biological activity. The biological activity of the compounds was theoretically examined through molecular docking and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis. The compounds demonstrated high absorption rates and were found to be non-hepatotoxic. Preliminary cytotoxicity screenings against HeLa cell lines identified compound 7 as the most potent, with an IC50 value of 18.8 μM. This compound was further selected for bioimaging studies. The results indicate that compound 7 induces apoptosis at its IC50 concentration, suggesting its potential as an anticancer agent.
Collapse
Affiliation(s)
- Vandana Nandakumar
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | | | - Kaviyarasu Adhigaman
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Deepak Arumugam
- Department of Physics, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Shankar Ramasamy
- Department of Physics, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Raju Vivek
- Department of Zoology, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | | | - Suresh Thangaraj
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| |
Collapse
|
4
|
Zhu Z, Zuo S, Zhu Z, Wang C, Du Y, Chen F. THSWD upregulates the LTF/AMPK/mTOR/Becn1 axis and promotes lysosomal autophagy in hepatocellular carcinoma cells by regulating gut flora and metabolic reprogramming. Int Immunopharmacol 2025; 148:114091. [PMID: 39826450 DOI: 10.1016/j.intimp.2025.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment. Metabolic analyses, transcriptomic analyses, and molecular experiments were performed to explore how THSWD modulates the gut microbiota against hepatocellular carcinoma progression. As confirmed by in vivo and in vitro assays, THSWD reduced tumour growth rate and promoted apoptosis in hepatocellular carcinoma cells in hepatocellular carcinoma model mice, and liver and kidney indexes were detected and confirmed the safety of THSWD. Transcriptomic analysis revealed that the targets of THSWD were significantly enriched in multiple lysosomal autophagy signalling pathways, suggesting that lysosomal autophagy is probably associated with THSWD's therapeutic effect. Based on the integrated data analysis, THSWD delays hepatocellular carcinoma progression by increasing the intestinal microbiota Duncaniella and augmenting the metabolite glabrol, and the joint analysis of metabolic and genomic data suggests that this metabolite is associated with lysosomal autophagy, and cellular experiments confirmed that the The differential metabolite glabrol induces apoptosis in hepatocellular carcinoma cells by triggering the lysosomal autophagy-mediated apoptosis signalling pathway. Supplementation with glabrol metabolites up regulates the LTF/AMPK/mTOR/Beclin1 axis and promotes hepatocellular carcinoma cells with lysosomal autophagy and induced apoptosis in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Shiqi Zuo
- Department of Pathology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Wang
- Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yangfeng Du
- Changde Hospital, Xiangya School of Medicine, Central South University, 415000 Changde, China.
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
5
|
Latarissa IR, Khairinisa MA, Iftinan GN, Meiliana A, Sormin IP, Barliana MI, Lestari K. Efficacy and Safety of Antimalarial as Repurposing Drug for COVID-19 Following Retraction of Chloroquine and Hydroxychloroquine. Clin Pharmacol 2025; 17:1-11. [PMID: 39845335 PMCID: PMC11748038 DOI: 10.2147/cpaa.s493750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Various repurposing drugs have been tested for their efficacy on coronavirus disease 2019 (COVID-19), including antimalarial drugs. During the pandemic, Chloroquine (CQ) and Hydroxychloroquine (HCQ) demonstrated good potential against COVID-19, but further studies showed both drugs had side effects that were more dangerous than the efficacy. This made World Health Organization (WHO) ban the usage for COVID-19 patients. In this context, there is a need to explore other antimalarial drugs as potential therapies for COVID-19. This study provides a descriptive synthesis of clinical trials evaluating antimalarial drugs for COVID-19 treatment conducted after the withdrawal of CQ and HCQ. The method was a literature study using the keywords "antimalarial", "COVID-19", "SARS-CoV-2", "clinical trial", and "randomized controlled trial" on the MEDLINE, Scopus, and Cochrane databases. Inclusion criteria were published clinical trials with randomized controlled trials (RCTs) on the efficacy and safety of single antimalarial drugs for COVID-19, published in English and excluding combination therapies. The results showed 3 antimalarial drugs, namely Quinine Sulfate (QS), Atovaquone (AQ), and Artemisinin-Piperaquine (AP), had gone through clinical trial to assess efficacy and safety against COVID-19 patients. Out of the 3 drugs, only AP showed significant results in the primary outcome, which was the time required to reach undetectable levels of SARS-CoV-2. Furthermore, the intervention group took 10.6 days, and the control group took 19.3 days (p=0.001). Based on this review, AP showed significant potential as a therapy in the fight against COVID-19.
Collapse
Affiliation(s)
- Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ghina Nadhifah Iftinan
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Prodia Clinical Laboratory, Central Jakarta, Indonesia
| | - Ida Paulina Sormin
- Faculty of Pharmacy, University of 17 August 1945 Jakarta, Jakarta, Indonesia
- Prodia Diacro Laboratory, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
6
|
Devi TL, Devi MM, Okram M, Singh OM. Repurposed Drugs during the Outbreak of Pandemic COVID-19: A Mini-Review on Their Molecular Structures and Hit-and-Trial Results. ACS OMEGA 2024; 9:36858-36864. [PMID: 39246499 PMCID: PMC11375728 DOI: 10.1021/acsomega.4c05357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
One of the most significant threats to global public health in the 21st century is the novel coronavirus disease (COVID-19) caused by SARS-CoV-2. It rapidly turned into a global pandemic after it was identified in late 2019, and the World Health Organization announced the end of the pandemic on May 5, 2023. Current strategies for managing this disease include vaccination and repurposing antimalarial and antibiotic medications to alleviate symptoms like fever and throat pain, which are associated with acute respiratory distress syndrome (ARDS). Antiviral drugs such as chloroquine, hydroxychloroquine, azithromycin, remdesivir, and favipiravir have been repurposed for the treatment of COVID-19. They were previously recommended for treating SARS-CoV and MERS-CoV. However, the inefficacy and adverse side effects of these repurposed drugs led to a decrease in their widespread use in treating COVID-19 patients. The lack of approved drugs for combating this coronavirus and its unpredictable variants remains a significant challenge.
Collapse
Affiliation(s)
- Thangjam Linda Devi
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, India
| | | | - Monika Okram
- Department of Chemistry, Chandigarh University, Mohali, Punjab 160036, India
| | | |
Collapse
|
7
|
Rasmussen L, Sanders S, Sosa M, McKellip S, Nebane NM, Martinez-Gzegozewska Y, Reece A, Ruiz P, Manuvakhova A, Zhai L, Warren B, Curry A, Zeng Q, Bostwick JR, Vinson PN. A high-throughput response to the SARS-CoV-2 pandemic. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100160. [PMID: 38761981 DOI: 10.1016/j.slasd.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Four years after the beginning of the COVID-19 pandemic, it is important to reflect on the events that have occurred during that time and the knowledge that has been gained. The response to the pandemic was rapid and highly resourced; it was also built upon a foundation of decades of federally funded basic and applied research. Laboratories in government, pharmaceutical, academic, and non-profit institutions all played roles in advancing pre-2020 discoveries to produce clinical treatments. This perspective provides a summary of how the development of high-throughput screening methods in a biosafety level 3 (BSL-3) environment at Southern Research Institute (SR) contributed to pandemic response efforts. The challenges encountered are described, including those of a technical nature as well as those of working under the pressures of an unpredictable virus and pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ling Zhai
- Southern Research, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
8
|
Russo A, Patanè GT, Putaggio S, Lombardo GE, Ficarra S, Barreca D, Giunta E, Tellone E, Laganà G. Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism. Int J Mol Sci 2024; 25:6424. [PMID: 38928131 PMCID: PMC11203553 DOI: 10.3390/ijms25126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 μM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | | | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, 98166 Messina, Italy;
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| |
Collapse
|
9
|
O'Regan R, Harnedy F, Reynolds B, Cormican L. Ethnic disparities and COVID-19 pneumonia in Ireland: a single-centre descriptive study of hospitalised patients in a tertiary university teaching hospital. Ir J Med Sci 2024; 193:1131-1136. [PMID: 38231319 PMCID: PMC11128384 DOI: 10.1007/s11845-023-03597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
In this study, we aim to describe the demographic, clinical and imaging characteristics, treatment course and subsequent outcomes of the first 116 cases presenting to a tertiary Dublin hospital with COVID-19 infection and to compare whether ethnic minority background was a risk factor for poorer disease outcomes in this cohort. Of 116 cases analysed, 100 (86%) patients presented from the community, 6 (5%) from care homes and 10 (9%) were existing inpatients. Fifty-four (46%) patients identified as being from an ethnic minority group. One hundred fourteen (98%) patients reported two or more symptoms at time of diagnosis with 81 (70%) patients having confirmed radiological findings of COVID-19 infection. Median duration of symptoms prior to hospital presentation was 6 days (IQR 3-10 days). The median age at presentation was 52 years (IQR 43-65). Co-morbidities recorded included hypertension, hyperlipidaemia, type 2 diabetes mellitus, underlying respiratory disease, previous or current malignancy and current smoker. Twenty-six patients (22%) required ICU admission, 20 (76.9%) of these were from all other ethnic groups combined and 6 (10%) from White Irish group. Adjusting for variables of age, ethnicity and gender, all other ethnic groups combined were five times more likely to require ICU admission than White Irish group (Table 5). Patients from all other ethnic groups combined admitted to ICU were significantly younger than patients from White Irish group (OR 50.85 vs 62.83, P = 0.012). Our hospital's catchment area serves a wide-ranging and diverse population with many ethnic minority groups represented. Our data demonstrated that there was a significant overrepresentation of a younger cohort of patients from ethnic minority groups admitted to ICU with COVID-19 infection with less co-morbidities than that of the White Irish group.
Collapse
Affiliation(s)
- Rhea O'Regan
- Department of Respiratory Medicine, Connolly Hospital Blanchardstown, RCSI Hospital Group, Dublin, Ireland.
| | - Finbarr Harnedy
- Department of Respiratory Medicine, Connolly Hospital Blanchardstown, RCSI Hospital Group, Dublin, Ireland
| | - Bearach Reynolds
- Department of Respiratory Medicine, Connolly Hospital Blanchardstown, RCSI Hospital Group, Dublin, Ireland
| | - Liam Cormican
- Department of Respiratory Medicine, Connolly Hospital Blanchardstown, RCSI Hospital Group, Dublin, Ireland
| |
Collapse
|
10
|
Safar Alsofyani I, Samman BS, Alhubayshi SS, Ellahi AT, Alsaedi AB, Almansour M. Impact of COVID-19 Pandemic on Patients With Rheumatic Diseases in Medina, Saudi Arabia: An Observational Cross-Sectional Study. Cureus 2024; 16:e60128. [PMID: 38864060 PMCID: PMC11165667 DOI: 10.7759/cureus.60128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION The Coronavirus disease of 2019 (COVID-19) pandemic undoubtedly ranks among the most health-impacting pandemics throughout medical history. Although the COVID-19 global public health emergency has ended, lessons need to be learned to be more ready to face similar pandemics in the future. Few studies in Saudi Arabia discuss the impact of the COVID-19 pandemic on autoimmune rheumatic disease (AIRD) patients. Thus, this study was conducted to elaborate on the effects of the COVID-19 pandemic on AIRD patients and rheumatology practices in Saudi Arabia. Methods: This observational cross-sectional study was conducted among patients aged over 14 with AIRD using a pre-designed validated survey questionnaire. Data were collected from AIRD patients who were following up between November 2021 to April 2022 at the Rheumatology Clinic of King Fahad General Hospital in Madinah City, Saudi Arabia. This center was chosen as being the main hospital in the city following patients of AIRD. RESULTS A total of 324 patients were included in our study, with the majority (n=264, 81.5%) being females. The mean age was 44.42±14.4 years. Clinical data revealed that 115 (35.5%) of our patients experienced mild COVID-19 infection, 19 (5.9%) suffered from respiratory insufficiency, and seven (2.2%) required admission to the intensive care unit (ICU). Non-compliance to medication was recorded at 25.2%. There were 115 (35.5%) patients who had an AIRD flare that was significantly higher among those who were not adherent to the medications (p<0.001). Disease flare was also significantly seen among patients who were not on prednisone or were on low doses of prednisone (p<0.001). The majority (n=33, 97.1%) of the 34 infected patients who had an AIRD flare had their flare-up at the same time as their COVID-19 infection (p<0.001). COVID-19 vaccination rate was 87.7% (n=284). The most common reason for non-vaccination in 40 (12.3%) patients was the patients' concern about disease flare-ups by the vaccine or interference of the vaccine with their medication (n=16, 4.9%). CONCLUSION Our study showed a 35.5% (n=115) COVID-19 infection rate. The majority of our AIRD patients sustained minor infections that did not require hospitalization or ICU admission. The majority of the patients who underwent a severe COVID-19 infection course were not on prednisolone or were on low-dose prednisone. Due to COVID-19 restrictions and drug shortages, one in four patients (25.3%) stopped taking their medications and was significantly found to have a high prevalence of underlying AIRD flare. Despite the high vaccination rate, disease flare was the biggest concern for those who were not immunized. Although the COVID-19 pandemic has ended, doctors should be aware of risk factors associated with severe AIRD outcomes that should be balanced based on the infection severity, underlying disease flares, and patient-centered education about medication adherence and vaccination.
Collapse
Affiliation(s)
| | - Basim S Samman
- Internal Medicine, Ministry of National Guard - Health Affairs, Prince Mohammed Bin Abdulaziz Hospital, Medina, SAU
| | | | - Amjad T Ellahi
- Internal Medicine, King Fahad General Hospital, Medina, SAU
| | | | | |
Collapse
|
11
|
Hu S, Zhao J, Fang S, Guo K, Qi W, Liu H. Neurotoxic effects of chloroquine and its main transformation product formed after chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168043. [PMID: 37898196 DOI: 10.1016/j.scitotenv.2023.168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Pharmaceutical transformation products (TPs) generated during wastewater treatment have become an environmental concern. However, there is limited understanding regarding the TPs produced from pharmaceuticals during wastewater treatment. In this study, chloroquine (CQ), which was extensively used for treating coronavirus disease-19 (COVID-19) infections during the pandemic, was selected for research. We identified and fractionated the main TP produced from CQ during chlorine disinfection and investigated the neurotoxic effects of CQ and its main TP on zebrafish (Danio rerio) embryos. Halogenated TP353 was observed as one of the main TPs produced from CQ during chlorine disinfection. Zebrafish embryos test revealed that TP353 caused higher neurotoxicity in zebrafish larvae, as compared to the CQ, and that was accompanied by significantly decreased expression levels of the genes related to central nervous system development (e.g., gfap, syn2a, and elavl3), inhibited activity of acetylcholinesterase (AChE), reduced GFP fluorescence intensity of motor neuron axons in transgenic larvae (hb9-GFP), and reduced total swimming distance and swimming velocity of larvae during light-dark transition stimulation. The results of this study can potentially be utilized as a theoretical reference for future evaluations of environmental risks associated with CQ and its related TPs. This work presents a methodology for assessing the environmental hazards linked to the discharge of pharmaceutical TPs after wastewater treatment.
Collapse
Affiliation(s)
- Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kehui Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Ortiz-Prado E, Izquierdo-Condoy JS, Mora C, Vasconez-Gonzalez J, Fernandez-Naranjo R. Poor regulation, desperation, and misinformation, a countrywide analysis of self-medication and prescription patterns in Ecuador during the COVID-19 pandemic. Res Social Adm Pharm 2023; 19:1579-1589. [PMID: 37659922 DOI: 10.1016/j.sapharm.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The rapid spread of the SARS-CoV-2 virus during the early phase of the pandemic led to an unprecedented global health crisis. Various factors have influenced self-medication practices among the general population and unsubstantiated prescribing practices among healthcare professionals. OBJECTIVE This study aimed to describe trends in the purchase and sale of medicines during the COVID-19 pandemic period (2020-2022) in Ecuador, by comparing them with pre-pandemic periods. METHODS In this study, a cross-sectional design was employed to conduct a comprehensive analysis of 28 pharmacological groups, categorized according to the Anatomical Therapeutic Chemical Classification (ATC). Utilizing an integrated drug consumption database, the study examined physician prescribing data, medicine usage, and spending levels in Ecuador during the COVID-19 pandemic. The analysis involved computing absolute differences in monthly resolution, calculating excessive expenditure in comparison to previous yearly averages, and using Defined Daily Dose (DDD) methodology for internationally comparable results. Furthermore, a correlation analysis was performed to investigate potential associations between prescribed and consumed medicines and the number of new cases and deaths. RESULTS In Ecuador, the average yearly expenditure among these groups prior to the pandemic (2017-2019) amounted to $150,646,206 USD, whereas during 2020 and 2021, the same groups represented a total expenditure of $228,327,210, reflecting a significant increase. The excess expenditure during this period reached 51.4%, equivalent to $77,681,004 USD. Notably, 13% of this expenditure consisted of Over the Counter (OTC) Medicines. The study also identified a remarkable surge in sales of ivermectin, which increased by 2,057%, and hydroxychloroquine, which increased by 171%, as measured by DDD. CONCLUSIONS This study highlights the substantial consumption of medicines by the population in Ecuador during the pandemic. It is concerning that many medications were sold without proven therapeutic indications, indicating that misinformation and desperation may have led to improper prescribing by physicians and patients resorting to ineffective drugs. Moreover, since the sale of these therapeutic drugs requires a prescription, poor regulation, and a lack of control within pharmacies likely contributed to such practices.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador.
| | - Juan S Izquierdo-Condoy
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Carla Mora
- Medical Department, Quifatex, Quito, 170138, Ecuador
| | - Jorge Vasconez-Gonzalez
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| | - Raúl Fernandez-Naranjo
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, 170125, Ecuador
| |
Collapse
|
13
|
Vieux N, Perrier Q, Bedouch P, Epaulard O. Much ado about nothing? Discrepancy between the available data on the antiviral effect of hydroxychloroquine in March 2020 and its inclusion in COVID-19 clinical trials and outpatient prescriptions. Public Health 2023; 225:35-44. [PMID: 37918175 DOI: 10.1016/j.puhe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Many of the 2020 COVID-19 clinical trials included an (hydroxy)chloroquine ((H)CQ) arm. We aimed to juxtapose the state of science before April 2020 regarding the benefits of (H)CQ for viral infections with the number and size of the clinical trials studying (H)CQ and the volume of (H)CQ dispensed in France. STUDY DESIGN We identified and analysed published scientific material regarding the antiviral activity of (H)CQ and publicly available data regarding clinical trials and drug dispensation in France. METHODS We conducted a review of scientific publications available before April 2020 and a systematic analysis of COVID-19 clinical trials featuring (H)CQ registered on clinicaltrials.gov. RESULTS Before April 2020, 894 scientific publications mentioning (H)CQ for viruses other than coronaviruses were available, including 35 in vitro studies (reporting an inconstant inhibition of viral replication), 11 preclinical studies (reporting no or disputable positive effects), and 32 clinical trials (reporting no or disputable positive effects). Moreover, 67 publications on (H)CQ and coronavirus infections were available, including 12 in vitro studies (reporting an inconstant inhibition of viral replication), two preclinical studies (reporting contradictory results), and no clinical trials. Meanwhile, 253 therapeutic clinical trials featuring an HCQ arm were registered in 2020, intending to enrol 246,623 patients. CONCLUSIONS The number and size of (H)CQ clinical trials for COVID-19 launched in 2020 were not supported by the literature published before April 2020.
Collapse
Affiliation(s)
- N Vieux
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Q Perrier
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetic (LBFA), INSERM U1055, Grenoble, France
| | - P Bedouch
- Pôle Pharmacie, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - O Epaulard
- Infectious Disease Department, Université Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France; Groupe de Recherche en Infectiologie Clinique, CIC-1406, INSERM-UGA-CHUGA, France.
| |
Collapse
|
14
|
Borhani SG, Levine MZ, Krumpe LH, Wilson J, Henrich CJ, O'Keefe BR, Lo DC, Sittampalam GS, Godfrey AG, Lunsford RD, Mangalampalli V, Tao D, LeClair CA, Thole AP, Frey D, Swartz J, Rao G. An approach to rapid distributed manufacturing of broad spectrum anti-viral griffithsin using cell-free systems to mitigate pandemics. N Biotechnol 2023; 76:13-22. [PMID: 37054948 PMCID: PMC10330340 DOI: 10.1016/j.nbt.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.
Collapse
Affiliation(s)
- Shayan G Borhani
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Max Z Levine
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Lauren H Krumpe
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Alexander G Godfrey
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - R Dwayne Lunsford
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Venkata Mangalampalli
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Aaron P Thole
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Douglas Frey
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - James Swartz
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
15
|
Wang X, Lin J, Li Z, Wang M. In what area of biology has a "new" type of cell death been discovered? Biochim Biophys Acta Rev Cancer 2023; 1878:188955. [PMID: 37451411 DOI: 10.1016/j.bbcan.2023.188955] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cell death is a fundamental physiological process that occurs in all organisms and is crucial to each organism's evolution, ability to maintain a stable internal environment, and the development of multiple organ systems. Disulfidptosis is a new mode of cell death that is triggered when cells with high expression of solute carrier family 7 member 11 (SLC7A11) are exposed to glucose starvation to initiate the process of cell death. The disulfidptosis mechanism is a programmed cell death mode that triggers cell death through reduction-oxidation (REDOX) reactions and disulfur bond formation. In disulfidptosis, disulfur bonds play a crucial role and cause the protein in the cell to undergo conformational changes, eventually leading to cell death. This mode of cell death has unique characteristics and regulatory mechanisms in comparison with other modes of cell death. In recent years, an increasing number of studies have shown that the disulfidptosis mechanism plays a key role in the occurrence and development of a variety of diseases. For example, cancer, cardiovascular diseases, neurodegenerative diseases, and liver diseases are all closely related to cell disulfidptosis mechanisms. Therefore, it is of paramount clinical significance to conduct in-depth research regarding this mechanism. This review summarizes the research progress on the disulfidptosis mechanism, including its discovery history, regulatory mechanism, related proteins, and signaling pathways. Potential applications of the disulfidptosis mechanism in disease therapy and future research directions are also discussed. This mechanism represents another subversive discovery after ferroptosis, and provides both a fresh perspective and an innovative strategy for the treatment of cancer, as well as inspiration for the treatment of other diseases.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Junyi Lin
- Department of Cardiovascular Medicine, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
16
|
Kaur H, Kaushik S, Singh G, Kumar A, Singh S, Chatterjee T, Ali S, Gautam K, Parewa M, Verma NK, Bhatnagar S, Singh SP, Shekhar V, Khurana A. Homeopathy as an Adjuvant to Standard Care in Moderate and Severe Cases of COVID-19: A Single-Blind, Randomized, Placebo-Controlled Study. HOMEOPATHY 2023; 112:184-197. [PMID: 36442593 DOI: 10.1055/s-0042-1755365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to evaluate whether individualized homeopathic medicines have a greater adjunctive effect than adjunctive placebos in the treatment of moderate and severe cases of coronavirus disease 2019 (COVID-19). METHODS The study was a randomized, single-blind, prospective, placebo-controlled clinical trial set in the clinical context of standard care. INTERVENTION Patients of either sex, admitted in a tertiary care hospital, suffering from moderate or severe COVID-19 and above 18 years of age were included. In total, 150 patients were recruited and then randomly divided into two groups to receive either individualized homeopathic medicines or placebos, in addition to the standard treatment of COVID-19. OUTCOME MEASURES The primary outcome was time taken to achieve RT-PCR-confirmed virus clearance for COVID-19. Secondary outcomes were changes in the Clinical Ordinal Outcomes Scale (COOS) of the World Health Organization, the patient-reported MYMOP2 scale, and several biochemical parameters. Parametric data were analyzed using unpaired t-test. Non-parametric data were analyzed using the Wilcoxon signed rank test. Categorical data were analyzed using Chi-square test. RESULTS In total, 72 participants of the add-on homeopathy (AoH) group showed conversion of RT-PCR status to negative, in an average time of 7.53 ± 4.76 days (mean ± SD), as compared with 11.65 ± 9.54 days in the add-on placebo (AoP) group (p = 0.001). The mean COOS score decreased from 4.26 ± 0.44 to 3.64 ± 1.50 and from 4.3 ± 0.46 to 4.07 ± 1.8 in the AoH and AoP groups respectively (p = 0.130). The mortality rate for the AoH group was 9.7% compared with 17.3% in the AoP group. The MYMOP2 scores between the two groups differed significantly (p = 0.001), in favor of AoH. Inter-group differences in the pre- and post- mean values of C-reactive protein, fibrinogen, total leukocyte count, platelet count and alkaline phosphatase were each found to be statistically significant (p <0.05), favoring AoH; six other biochemical parameters showed no statistically significant differences. CONCLUSION The study suggests homeopathy may be an effective adjunct to standard care for treating moderate and severe COVID-19 patients. More rigorous, including double-blinded, studies should be performed to confirm or refute these initial findings.
Collapse
Affiliation(s)
- Harleen Kaur
- Central Council for Research in Homoeopathy, New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Gurpreet Singh
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Arvind Kumar
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Shweta Singh
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Tania Chatterjee
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Syed Ali
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Khushbu Gautam
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | - Maneet Parewa
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| | | | - Sushma Bhatnagar
- Department of Onco-Anaesthesia and Palliative Medicine, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital and National Cancer Institute, All India Institute of Medical Sciences, Ministry of Health and Family Welfare, New Delhi, India
| | - Suraj Pal Singh
- Department of Onco-Anaesthesia and Palliative Medicine, All India Institute of Medical Sciences, Ministry of Health and Family Welfare, New Delhi, India
| | - Varun Shekhar
- Department of Onco-Anaesthesia and Palliative Medicine, All India Institute of Medical Sciences, Ministry of Health and Family Welfare, New Delhi, India
| | - Anil Khurana
- Central Council for Research in Homoeopathy, Ministry of AYUSH, Govt. of India, New Delhi, India
| |
Collapse
|
17
|
Anesi GL, Degnan K, Dutcher L, Saw S, Maguire C, Binkley A, Patel S, Athans V, Barton TD, Binkley S, Candeloro CL, Herman DJ, Kasbekar N, Kennedy L, Millstein JH, Meyer NJ, Talati NJ, Patel H, Pegues DA, Sayre PJ, Tebas P, Terico AT, Murphy KM, O’Donnell JA, White M, Hamilton KW. The Penn Medicine COVID-19 Therapeutics Committee-Reflections on a Model for Rapid Evidence Review and Dynamic Practice Recommendations During a Public Health Emergency. Open Forum Infect Dis 2023; 10:ofad428. [PMID: 37663091 PMCID: PMC10468749 DOI: 10.1093/ofid/ofad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The Penn Medicine COVID-19 Therapeutics Committee-an interspecialty, clinician-pharmacist, and specialist-front line primary care collaboration-has served as a forum for rapid evidence review and the production of dynamic practice recommendations during the 3-year coronavirus disease 2019 public health emergency. We describe the process by which the committee went about its work and how it navigated specific challenging scenarios. Our target audiences are clinicians, hospital leaders, public health officials, and researchers invested in preparedness for inevitable future threats. Our objectives are to discuss the logistics and challenges of forming an effective committee, undertaking a rapid evidence review process, aligning evidence-based guidelines with operational realities, and iteratively revising recommendations in response to changing pandemic data. We specifically discuss the arc of evidence for corticosteroids; the noble beginnings and dangerous misinformation end of hydroxychloroquine and ivermectin; monoclonal antibodies and emerging viral variants; and patient screening and safety processes for tocilizumab, baricitinib, and nirmatrelvir-ritonavir.
Collapse
Affiliation(s)
- George L Anesi
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathleen Degnan
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren Dutcher
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen Saw
- Department of Pharmacy, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Christina Maguire
- Department of Pharmacy, Penn Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Amanda Binkley
- Department of Pharmacy, Penn Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Sonal Patel
- Department of Pharmacy, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Vasilios Athans
- Department of Pharmacy, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Todd D Barton
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shawn Binkley
- Department of Pharmacy, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Christina L Candeloro
- Department of Pharmacy, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - David J Herman
- Division of Infectious Diseases, Penn Medicine Princeton Medical Center, University of Pennsylvania Health System, Princeton, New Jersey, USA
| | - Nishaminy Kasbekar
- Department of Pharmacy, Penn Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Leigh Kennedy
- Division of Infectious Diseases, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Jeffrey H Millstein
- Regional Physician Practices of Penn Medicine, Woodbury Heights, New Jersey, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naasha J Talati
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hinal Patel
- Department of Pharmacy, Penn Medicine Princeton Medical Center, University of Pennsylvania Health System, Princeton, New Jersey, USA
| | - David A Pegues
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrick J Sayre
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adrienne T Terico
- Department of Pharmacy, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Kathleen M Murphy
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Judith A O’Donnell
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Melissa White
- Department of Pharmacy, Penn Medicine Lancaster General Health, University of Pennsylvania Health System, Lancaster, Pennsylvania, USA
| | - Keith W Hamilton
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
19
|
Neves FS. Does Widespread Use of Hydroxychloroquine Reduce the Transmissibility of SARS-CoV-2 / COVID-19? An Ecological Correlational Study. Infect Disord Drug Targets 2023; 23:IDDT-EPUB-131973. [PMID: 37218196 PMCID: PMC10682993 DOI: 10.2174/1871526523666230522114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND At the beginning of the coronavirus disease (COVID-19) pandemic, hydroxychloroquine (HCQ) was widely used as a possible antiviral agent. Current knowledge indicates that HCQ has little or no effect on individual clinical outcomes of COVID-19, but populational effects on disease transmissibility are still unknown. OBJECTIVE This study investigates the hypothesis that massive HCQ consumption by a population may contribute to reducing the transmissibility of SARS-CoV-2 and COVID-19 spread by reducing the viral load of infected individuals. METHODS Public database of seven states from Brazil in 2020 were assessed, before the start of COVID-19 vaccination. The daily values of the COVID-19 effective reproduction number (Rt) were obtained. Associations between Rt values and the proposed predictor variables (prevalence of COVID-19 as a marker of collective immunity; social isolation indices; consumption of HCQ) were tested using multiple linear regression analysis. RESULTS In all seven states, consumption of HCQ was a significant negative predictor of Rt (β ranged from -0.295 to -0.502, p = 0.001). Furthermore, the mean derivative of Rt during the declining period of the COVID-19 incidence (the mean rate of variation) was also significantly negatively related to the mean HCQ consumption in that period (R2 = 0.895; β = -0.783; p = 0.011), meaning that the higher the HCQ consumption, the faster the decline of COVID-19 Rt. It suggests a dose-response phenomenon and a causal relationship in this association. CONCLUSION The results of this study are compatible with the hypothesis that HCQ has small but significant in vivo antiviral effects that are able to reduce SARS-CoV-2 transmissibility at the populational level.
Collapse
Affiliation(s)
- Fabricio Souza Neves
- Department of Internal Medicine, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
20
|
Ghorab MM, M Soliman A, El-Sayyad GS, Abdel-Kader MS, El-Batal AI. Synthesis, Antimicrobial, and Antibiofilm Activities of Some Novel 7-Methoxyquinoline Derivatives Bearing Sulfonamide Moiety against Urinary Tract Infection-Causing Pathogenic Microbes. Int J Mol Sci 2023; 24:ijms24108933. [PMID: 37240275 DOI: 10.3390/ijms24108933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Drug Chemistry Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Aiten M Soliman
- Drug Chemistry Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
21
|
Hu S, Fang S, Zhao J, Wang G, Qi W, Zhang G, Huang C, Qu J, Liu H. Toxicity Evaluation and Effect-Based Identification of Chlorine Disinfection Products of the Anti-COVID-19 Drug Chloroquine Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7913-7923. [PMID: 37188658 DOI: 10.1021/acs.est.2c08260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Antiviral transformation products (TPs) generated during wastewater treatment are an environmental concern, as their discharge, in considerable amounts, into natural waters during a pandemic can pose possible risks to the aquatic environment. Identification of the hazardous TPs generated from antivirals during wastewater treatment is important. Herein, chloroquine phosphate (CQP), which was widely used during the coronavirus disease-19 (COVID-19) pandemic, was selected for research. We investigated the TPs generated from CQP during water chlorination. Zebrafish (Danio rerio) embryos were used to assess the developmental toxicity of CQP after water chlorination, and hazardous TPs were estimated using effect-directed analysis (EDA). Principal component analysis revealed that the developmental toxicity induced by chlorinated samples could be relevant to the formation of some halogenated TPs. Fractionation of the hazardous chlorinated sample, along with the bioassay and chemical analysis, identified halogenated TP387 as the main hazardous TP contributing to the developmental toxicity induced by chlorinated samples. TP387 could also be formed in real wastewater during chlorination in environmentally relevant conditions. This study provides a scientific basis for the further assessment of environmental risks of CQP after water chlorination and describes a method for identifying unknown hazardous TPs generated from pharmaceuticals during wastewater treatment.
Collapse
Affiliation(s)
- Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guowei Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
23
|
Lahyaoui M, El-Idrissi H, Saffaj T, Ihssane B, Saffaj N, Mamouni R, Kandri Rodi Y. QSAR modeling, molecular docking and Molecular Dynamic Simulation of phosphorus-substituted quinoline derivatives as topoisomerase I inhibitors. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
24
|
Mohamed EAR, Abdel-Rahman IM, Zaki MEA, Al-Khdhairawi A, Abdelhamid MM, Alqaisi AM, Rahim LBA, Abu-Hussein B, El-Sheikh AAK, Abdelwahab SF, Hassan HA. In silico prediction of potential inhibitors for SARS-CoV-2 Omicron variant using molecular docking and dynamics simulation-based drug repurposing. J Mol Model 2023; 29:70. [PMID: 36808314 PMCID: PMC9939377 DOI: 10.1007/s00894-023-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/16/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND In November 2021, variant B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified by the World Health Organization (WHO) and designated Omicron. Omicron is characterized by a high number of mutations, thirty-two in total, making it more transmissible than the original virus. More than half of those mutations were found in the receptor-binding domain (RBD) that directly interacts with human angiotensin-converting enzyme 2 (ACE2). This study aimed to discover potent drugs against Omicron, which were previously repurposed for coronavirus disease 2019 (COVID-19). All repurposed anti-COVID-19 drugs were compiled from previous studies and tested against the RBD of SARS-CoV-2 Omicron. METHODS As a preliminary step, a molecular docking study was performed to investigate the potency of seventy-one compounds from four classes of inhibitors. The molecular characteristics of the best-performing five compounds were predicted by estimating the drug-likeness and drug score. Molecular dynamics simulations (MD) over 100 ns were performed to inspect the relative stability of the best compound within the Omicron receptor-binding site. RESULTS The current findings point out the crucial roles of Q493R, G496S, Q498R, N501Y, and Y505H in the RBD region of SARS-CoV-2 Omicron. Raltegravir, hesperidin, pyronaridine, and difloxacin achieved the highest drug scores compared with the other compounds in the four classes, with values of 81%, 57%, 18%, and 71%, respectively. The calculated results showed that raltegravir and hesperidin had high binding affinities and stabilities to Omicron with ΔGbinding of - 75.7304 ± 0.98324 and - 42.693536 ± 0.979056 kJ/mol, respectively. Further clinical studies should be performed for the two best compounds from this study.
Collapse
Affiliation(s)
- Eslam A. R. Mohamed
- Department of Chemistry, Faculty of Science, Minia University, Minia, 61511 Egypt
| | - Islam M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, 61519 Minia Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ahmad Al-Khdhairawi
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Mahmoud M. Abdelhamid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Asyut, 71524 Egypt
| | - Ahmad M. Alqaisi
- Chemistry Department, University of Jordan, Amman, 11942 Jordan
- Present Address: School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287 USA
| | - Lyana binti Abd Rahim
- Department of Medicine, Hospital Tuanku Ampuan Najihah, Kuala Pilah, Negeri Sembilan Malaysia
| | - Bilal Abu-Hussein
- Albayader Specialty Hospital, Amman, Jordan
- Present Address: Department of General Surgery, Cumberland Infirmary Hospital, Carlisle, England
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. 13 Box 84428, Riyadh, 11671 Saudi Arabia
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif, 21944 Saudi Arabia
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, 82524 Egypt
| |
Collapse
|
25
|
Liu CM, Lin FJ, Chen YC, Lin YK, Lu YY, Chan CS, Higa S, Chen SA, Chen YJ. Modulation of post-pacing action potential duration and contractile responses on ventricular arrhythmogenesis in chloroquine-induced long QT syndrome. Eur J Pharmacol 2023; 941:175493. [PMID: 36621600 DOI: 10.1016/j.ejphar.2023.175493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Excitation-contraction (E-C) coupling, the interaction of action potential duration (APD) and contractility, plays an essential role in arrhythmogenesis. We aimed to investigate the arrhythmogenic role of E-C coupling in the right ventricular outflow tract (RVOT) in the chloroquine-induced long QT syndrome. METHODS Conventional microelectrodes were used to record electrical and mechanical activity simultaneously under electrical pacing (cycle lengths from 1000-100 ms) in rabbit RVOT tissue preparations before and after chloroquine with and without azithromycin. KB-R7943 (a Na+-Ca2+ exchanger [NCX] inhibitor), ranolazine (a late sodium current inhibitor), or MgSO4 were used to assess their pharmacological responses in the chloroquine-induced long QT syndrome. RESULTS Sequential infusion of chloroquine and chloroquine plus azithromycin triggered ventricular tachycardia (VT) (33.7%) after rapid pacing compared to baseline (6.7%, p = 0.004). There were greater post-pacing increases of the first occurrence of contractility (ΔContractility) in the VT group (VT vs. non-VT: 521.2 ± 50.5% vs. 306.5 ± 26.8%, p < 0.001). There was no difference in the first occurrence of action potential at 90% repolarization (ΔAPD90) (VT vs. non-VT: 49.7 ± 7.4 ms vs. 51.8 ± 13.1 ms, p = 0.914). Pacing-induced VT could be suppressed to baseline levels by KB-R7943 or MgSO4. Ranolazine did not suppress pacing-induced VT in chloroquine-treated RVOT. ΔContractility was reduced by KB-R7943 and MgSO4, but not by ranolazine. CONCLUSION ΔContractility (but not ΔAPD) played a crucial role in the genesis of pacing-induced VT in the long QT tissue model, which can be modulated by NCX (but not late sodium current) inhibition or MgSO4.
Collapse
Affiliation(s)
- Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fong-Jhih Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Chao-Shun Chan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; National Chung Hsing University, Taichung, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Saravana Mani K, Rajamanikandan S, Prabha B. Discovery, synthesis and in silico approach of pyrrolo [3,4- c]pyrroles as SARS-CoV-2 m pro inhibitors. J Biomol Struct Dyn 2023; 41:13454-13465. [PMID: 36744520 DOI: 10.1080/07391102.2023.2174599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
A new coronavirus has been identified as the contributing agent of the severe acute respiratory syndrome (SARS). The main viral protease (Mpro), which controls the activities of the coronavirus replication complex, which is an essential target for the treatment of coronavirus disease. With the primary objective of targeting this receptor, we designed a new series of pyrrolo [3,2-c] pyrroles, synthesized and characterized using various analytical techniques including FT-IR, UV-Vis and NMR spectroscopic studies. The biological descriptors of the synthesized compounds were investigated using DFT calculation. The mode of binding and reactivity of the target compounds with SARS-CoV-2 main protease (Mpro) were studied using molecular docking and molecular dynamics (MD) simulation. Molecular docking of the compounds (4a and 5a) showed a promising binding affinity towards Mpro protein with the binding energy of -7.8 kcal/mol and -7.0 kcal/mol, respectively. The results of MD simulation and prime MM-GBSA calculation were consistent with molecular docking. The absorption, distribution, metabolism and excretion (ADME) properties of the compounds are in the acceptable range, as they are orally active and obey Lipinski's rule of five without violation. In addition, in silico toxicity prediction using the Pro-Tox II revealed the non-toxic nature of the compounds. Hence the obtained results suggest that these compounds could be a possible anti-viral candidate and highlight this series of compounds for further drug design and development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kailasam Saravana Mani
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Prabha
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
27
|
Low-dimensional compounds containing bioactive ligands. Part XXI: Crystal structures, cytotoxic, antimicrobial activities and BSA binding of zinc complexes with 5-chloro-7-nitro-8-hydroxyquinoline. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Sharma M, Mahto JK, Dhaka P, Neetu N, Tomar S, Kumar P. MD simulation and MM/PBSA identifies phytochemicals as bifunctional inhibitors of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12048-12061. [PMID: 34448684 DOI: 10.1080/07391102.2021.1969285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The global spread of SARS-CoV-2 has resulted in millions of fatalities worldwide, making it crucial to identify potent antiviral therapeutics to combat this virus. We employed structure-assisted virtual screening to identify phytochemicals that can target the two proteases which are essential for SARS-CoV-2 replication and transcription, the main protease and papain-like protease. Using virtual screening and molecular dynamics, we discovered new phytochemicals with inhibitory activity against the two proteases. Isoginkgetin, kaempferol-3-robinobioside, methyl amentoflavone, bianthraquinone, podocarpusflavone A, and albanin F were shown to have the best affinity and inhibitory potential among the compounds, and can be explored clinically for use as inhibitors of novel coronavirus SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
29
|
Prasanth DSNBK, Murahari M, Chandramohan V, Guntupalli C, Atmakuri LR. Computational study for identifying promising therapeutic agents of hydroxychloroquine analogues against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:11822-11836. [PMID: 34396938 DOI: 10.1080/07391102.2021.1965027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydroxychloroquine (HCQ) and its derivatives have recently gained tremendous attention as a probable medicinal agent in the COVID-19 outbreak caused by SARS-CoV-2. An efficient agent to act directly in inhibiting the SARS-CoV-2 replication is yet to be achieved. Thus, the goal is to investigate the dynamic nature of HCQ derivatives against SARS-CoV-2 main protease and spike proteins. Molecular docking studies were also performed to understand their binding affinity in silico methods using the vital protein domains and enzymes involved in replicating and multiplying SARS-CoV-2, which were the main protease and spike protein. Molecular Dynamic simulations integrated with MM-PBSA calculations have identified In silico potential inhibitors ZINC05135012 and ZINC59378113 against the main protease with -185.171 ± 16.388, -130.759 ± 15.741 kJ/mol respectively, ZINC16638693 and ZINC59378113 against spike protein -141.425 ± 22.447, -129.149 ± 11.449 kJ/mol. Identified Hit molecules had demonstrated Drug Likeliness features, PASS values and ADMET predictions with no violations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D S N B K Prasanth
- Pharmacognosy Research Division, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Chakravarthi Guntupalli
- Pharmacognosy Research Division, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Lakshmana Rao Atmakuri
- Department of Pharmaceutical Analysis, V. V. Institute of Pharmaceutical Sciences, Gudlavalleru, India
| |
Collapse
|
30
|
Borhani SG, Levine MZ, Krumpe LH, Wilson J, Henrich CJ, O’Keefe BR, Lo D, Sittampalam GS, Godfrey AG, Lunsford RD, Mangalampalli V, Tao D, LeClair CA, Thole A, Frey D, Swartz J, Rao G. An approach to rapid distributed manufacturing of broad spectrum anti-viral griffithsin using cell-free systems to mitigate pandemics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.19.521044. [PMID: 36597541 PMCID: PMC9810220 DOI: 10.1101/2022.12.19.521044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced with consistent purity and potency in less than 24 hours. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo . The proposed production process is efficient and can be readily scaled up and deployed anywhere in the world where a viral pathogen might emerge. The current emergence of viral variants has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.
Collapse
|
31
|
Irani AH, Steyn-Ross DA, Steyn-Ross ML, Voss L, Sleigh J. The molecular dynamics of possible inhibitors for SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10023-10032. [PMID: 34229582 DOI: 10.1080/07391102.2021.1942215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The novel coronavirus SARS-CoV-2, responsible for the present COVID-19 global pandemic, is known to bind to the angiotensin converting enzyme-2 (ACE2) receptor in human cells. A possible treatment of COVID-19 could involve blocking ACE2 and/or disabling the spike protein on the virus. Here, molecular dynamics simulations were performed to test the binding affinities of nine candidate compounds. Of these, three drugs showed significant therapeutic potential that warrant further investigation: SN35563, a ketamine ester analogue, was found to bind strongly to the ACE2 receptor but weakly within the spike receptor-binding domain (RBD); in contrast, arbidol and hydroxychloroquine bound preferentially with the spike RBD rather than ACE2. A fourth drug, remdesivir, bound approximately equally to both the ACE2 and viral spike RBD, thus potentially increasing risk of viral infection by bringing the spike protein into closer proximity to the ACE2 receptor. We suggest more experimental investigations to test that SN35563-in combination with arbidol or hydroxychloroquine-might act synergistically to block viral cell entry by providing therapeutic blockade of the host ACE2 simultaneous with reduction of viral spike receptor-binding; and that this combination therapy would allow the use of smaller doses of each drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amir H Irani
- Department of Anaesthesia and Pain Medicine, Waikato District Health Board, Hamilton, New Zealand.,School of Engineering, University of Waikato, Hamilton, New Zealand
| | - D A Steyn-Ross
- School of Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Logan Voss
- Department of Anaesthesiology, Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesia and Pain Medicine, Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
32
|
Bajrai LH, El-Kafrawy SA, Hassan AM, Tolah AM, Alnahas RS, Sohrab SS, Rehan M, Azhar EI. In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea. Sci Rep 2022; 12:21723. [PMID: 36522420 PMCID: PMC9754313 DOI: 10.1038/s41598-022-26157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypericum perforatum and Echinacea are reported to have antiviral activities against several viral infections. In this study, H. perforatum (St. John's Wort) and Echinacea were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) through its infectious cycle from 0 to 48 h post infection. The hypericin of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were tested for their anti-viral activities to measure the inhibition of viral load using quantitative real-time polymerase chain reaction (qRT-PCR) on cell culture assay. Interestingly, the H. perforatum-Echinacea mixture (1:1 ratio) of H. perforatum and Echinacea was tested as well on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H. perforatum-Echinacea mixture, and Echinacea on SARS-CoV-2 infectious cycle. Additionally, molecular simulation analysis of the compounds with essential proteins (Mpro and RdRp) of the SARS-CoV-2 revealed the most potent bioactive compounds such as Echinacin, Echinacoside, Cyanin, Cyanidin 3-(6''-alonylglucoside, Quercetin-3-O-glucuronide, Proanthocyanidins, Rutin, Kaempferol-3-O-rutinoside, and Quercetin-3-O-xyloside. Thus, based on the outcome of this study, it is demanding the setup of clinical trial with specific therapeutic protocol.
Collapse
Affiliation(s)
- Leena Hussein Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif Ali El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Mohamed Hassan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabig, Saudi Arabia
| | - Rabie Saleh Alnahas
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
Sobreira da Silva MJ, Serpa Osorio-de-Castro CG, Paes RD, Negrete CL, Eugênio E, Moraes EL, Livinalli A. Potential interactions between antineoplastic agents and medicines used to treat Covid-19. J Oncol Pharm Pract 2022; 28:1737-1748. [PMID: 34637360 PMCID: PMC9619075 DOI: 10.1177/10781552211040494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cancer patients with Covid-19 are exposed to treatment combinations that can potentially result in interactions that adversely affect patient outcomes. This study aimed to identify potential drug-drug interactions between antineoplastic agents and medicines used to treat Covid-19. METHODS We conducted a search for potential interactions between 201 antineoplastic agents and 26 medicines used to treat Covid-19 on the Lexicomp® and Micromedex® databases. The following data were extracted: interaction severity ("major" and "contraindicated") and interaction effects (pharmacokinetic and pharmacodynamic). We also sought to identify the therapeutic indication of the antineoplastic drugs involved in the potential drug-drug interactions. RESULTS A total of 388 "major" or "contraindicated" drug-drug interactions were detected. Eight drugs or combinations (baricitinib, lopinavir/ritonavir, atazanavir, darunavir, azithromycin, chloroquine, hydroxychloroquine, and sirolimus) accounted for 91.5% of these interactions. The class of antineoplastic agents with the greatest potential for interaction was tyrosine kinase inhibitors (accounting for 46.4% of all interactions). The findings show that atazanavir, baricitinib, and lopinavir/ritonavir can affect the treatment of all common types of cancer. The most common pharmacokinetic effect of the potential drug-drug interactions was increased plasma concentration of the antineoplastic medicine (39.4%). CONCLUSIONS Covid-19 is a recent disease and pharmacological interventions are undergoing constant modification. This study identified a considerable number of potential drug-drug interactions. In view of the vulnerability of patients with cancer, it is vital that health professionals carefully assess the risks and benefits of drug combinations.
Collapse
Affiliation(s)
- Mario Jorge Sobreira da Silva
- National Cancer Institute of
Brazil, Brazil,Mario Jorge Sobreira da Silva, Rua Marquês
de Pombal, 125, 3° andar – Centro, Rio de Janeiro, RJ 20230-240, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
35
|
Li X, Wang W, Yan S, Zhao W, Xiong H, Bao C, Chen J, Yue Y, Su Y, Zhang C. Drug-induced liver injury in COVID-19 treatment: Incidence, mechanisms and clinical management. Front Pharmacol 2022; 13:1019487. [PMID: 36518661 PMCID: PMC9742434 DOI: 10.3389/fphar.2022.1019487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 07/21/2023] Open
Abstract
The COVID-19 outbreak triggered a serious and potentially lethal pandemic, resulting in massive health and economic losses worldwide. The most common clinical manifestations of COVID-19 patients are pneumonia and acute respiratory distress syndrome, with a variety of complications. Multiple organ failure and damage, ultimately leading to patient death, are possible as a result of medication combinations, and this is exemplified by DILI. We hope to summarize DILI caused by the antiviral drugs favipiravir, remdesivir, lopinavir/ritonavir, and hydroxychloroquine in COVID-19 patients in this review. The incidence of liver injury in the treatment of COVID-19 patients was searched on PubMed to investigate DILI cases. The cumulative prevalence of acute liver injury was 23.7% (16.1%-33.1%). We discuss the frequency of these events, potential mechanisms, and new insights into surveillance strategies. Furthermore, we also describe medication recommendations aimed at preserving DILI caused by treatment in COVID-19 patients.
Collapse
Affiliation(s)
- Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Wanting Wang
- Department of Colorectal Surgery, Tianjin Institute of Coloproctology, The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suying Yan
- Department of Colorectal Surgery, Tianjin Institute of Coloproctology, The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weipeng Zhao
- Department of Breast Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Hui Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Cuiping Bao
- Departments of Radiology, Tianjin Union Medical Center, Tianjin, China
| | - Jinqian Chen
- Departments of Pharmacy, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Yuan Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yanjun Su
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Institute of Coloproctology, The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| |
Collapse
|
36
|
Shaaban H. The ecological impact of liquid chromatographic methods reported for bioanalysis of COVID-19 drug, hydroxychloroquine: Insights on greenness assessment. Microchem J 2022; 184:108145. [PMCID: PMC9643294 DOI: 10.1016/j.microc.2022.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Hydroxychloroquine is a drug that has been widely used during the early stages of COVID-19 pandemic. Different liquid chromatographic methods have been reported for the analysis of hydroxychloroquine in various biological matrices such as human plasma, serum, whole blood, oral fluid, rat plasma and tissues . In this comparative study, the most popular tools used for assessing the greenness profile: National Environmental Methods Index (NEMI), Eco-Scale Assessment (ESA), Green Analytical Procedure Index (GAPI) and Analytical Greenness metric (AGREE) were utilized to evaluate the ecological impact of eighteen liquid chromatographic methods developed for the bioanalysis of COVID-19 drug; hydroxychloroquine. NEMI is the simplest tool for evaluating the greenness profile of developed methods, but it is the least informative approach as all the reported methods had the same NEMI pictograms. On the other hand, GAPI is a dependable tool providing a complete picture about the method greenness starting from sampling until the final determination. ESA and AGREE tools are digitally presented and more easily applied. Therefore, their utilization for greenness assessment is highly recommended. Selection of the highest eco-friendly analytical procedure is of a paramount importance for protecting human health and the environment. Considering the greenness of the analytical procedures is highly recommended before proceeding to routine use in order to minimize the chemical hazards to the environment. The most eco-friendly analytical procedures for the analysis of hydroxychloroquine in biological samples according to ESA, GAPI and AGREE tools will be highlighted and discussed.
Collapse
Affiliation(s)
- Heba Shaaban
- Corresponding author at: Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Eastern Province, Dammam, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
37
|
Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Int J Mol Sci 2022; 23:13564. [PMID: 36362351 PMCID: PMC9655040 DOI: 10.3390/ijms232113564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer's disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19's current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people's natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
38
|
Rahman MM, Islam MR, Akash S, Mim SA, Rahaman MS, Emran TB, Akkol EK, Sharma R, Alhumaydhi FA, Sweilam SH, Hossain ME, Ray TK, Sultana S, Ahmed M, Sobarzo-Sánchez E, Wilairatana P. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Front Cell Infect Microbiol 2022; 12:929430. [PMID: 36072227 PMCID: PMC9441699 DOI: 10.3389/fcimb.2022.929430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/07/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Mukherjee MD, Kumar A, Solanki PR, Verma D, Yadav AK, Chaudhary N, Kumar P. Recent Advances in Understanding SARS-CoV-2 Infection and Updates on
Potential Diagnostic and Therapeutics for COVID-19. CORONAVIRUSES 2022; 3. [DOI: 10.2174/2666796703666220302143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 09/25/2023]
Abstract
Abstract:
A more focused approach is needed to understand the SARS-CoV-2 virulence, structure, and
genomics to devise more effective diagnostic and treatment interventions as this virus can evade the immune
attack and causes life-threatening complications such as cytokine storm. The spread of the virus is
still amplifying and causing thousands of new cases worldwide. It is essential to review current diagnostics
and treatment approaches to pave the way to correct or modify our current practices to make more
effective interventions against COVID-19. COVID-19 vaccine development has moved at a breakneck
pace since the outbreak began, utilizing practically all possible platforms or tactics to ensure the success
of vaccines. A total of 42 vaccine candidates have already entered clinical trials, including promising
results from numerous vaccine candidates in phase 1 or phase 2 trials. Further, many existing drugs are
being explored on broad-spectrum antiviral medications for their use in clinical recovery against COVID-
19. The present review attempts to re-examine the SARS-CoV-2 structure, its viral life cycle, clinical
symptoms and pathogenesis, mode of transmission, diagnostics, and treatment strategies that may be useful
for resorting to more effective approaches for controlling COVID-19. Various antiviral drugs and
vaccination strategies with their strengths and weaknesses are also discussed in the paper to augment our
understanding of COVID-19 management.
Collapse
Affiliation(s)
- Maumita D. Mukherjee
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh-201313, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi-110067, India
| | - Pratima R. Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India
| | - Damini Verma
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh-201313, India
| | - Amit K. Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India
| | - Navneet Chaudhary
- Department of Biotechnology,
Delhi Technological University, Delhi-110042, India
| | - Pramod Kumar
- Sri Aurobindo College, Delhi University, New Delhi-110017,
India
| |
Collapse
|
40
|
Kabi AK, Pal M, Gujjarappa R, Malakar CC, Roy M. Overview of Hydroxychloroquine and Remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Heterocycl Chem 2022; 60:JHET4541. [PMID: 35942205 PMCID: PMC9349740 DOI: 10.1002/jhet.4541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the ongoing pandemic named COVID-19 which causes a serious emergency on public health hazards of international concern. In the face of a critical medical emergency, repositioning of drugs is one of the most authentic options to design an adequate treatment for infected patients immediately. In this strategy, Remdesivir (Veklury), Hydroxychloroquine appears to be the drug of choice and garnered unprecedented attention as potential therapeutic agents against the pandemic realized worldwide due to SARS-CoV-2 infection. These are the breathtaking instances of possible repositioning of drugs, whose pharmacokinetics and optimal dosage are familiar. In this review, we provide an overview of these medications, their synthesis, and the possible mechanism of action against SARS-CoV-2.
Collapse
Affiliation(s)
- Arup K. Kabi
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Maynak Pal
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Raghuram Gujjarappa
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Chandi C. Malakar
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| | - Mithun Roy
- Department of ChemistryNational Institute of Technology ManipurImphalManipurIndia
| |
Collapse
|
41
|
Ojbag J, Ilmakchi M. On Physical Analysis of Some Topological Indices for Hydroxychloroquine and Chloroquine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J. Ojbag
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - M. Ilmakchi
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
42
|
Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022; 14:1507. [PMID: 35891487 PMCID: PMC9319816 DOI: 10.3390/v14071507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.
Collapse
Affiliation(s)
- Eloïne Bestion
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Philippe Halfon
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Soraya Mezouar
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Jean-Louis Mège
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
| |
Collapse
|
43
|
Ultrasonic Synthesis and Preliminary Evaluation of Anticoronaviral Activity of 6,7-Dimethoxy-4-(4-(4-methoxyphenyl)piperazin-1-yl)-1-methylquinolin-1-ium Iodide. MOLBANK 2022. [DOI: 10.3390/m1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quinoline scaffold is one of the most intensively utilized pharmacophores in drug design because of the variety of activities demonstrated by different quinoline-based therapeutics or drug-candidates. Herein, we describe an environmentally tolerant two-step procedure as a convenient synthetic approach to novel chloroquine and hydroxychloroquine analogues. The structures of the newly synthesized compounds are estimated by 1H NMR, 13C NMR, LC-MS spectrometry and IR spectroscopy.
Collapse
|
44
|
Nath M, Debnath P. Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation. J Biomol Struct Dyn 2022:1-20. [PMID: 35773779 DOI: 10.1080/07391102.2022.2093793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is a big challenge and burning issue to the scientific community and doctors worldwide. Globally, COVID-19 has created a health disaster and adversely affects the economic growth. Although some vaccines have already emerged, no therapeutic medication has yet been approved by FDA for the treatment of COVID-19 patients. Traditionally, we have been using different medicinal plants like neem, tulsi, tea, and many spices like garlic, ginger, turmeric, black seed, onion, etc. for the treatment of flu-like diseases. In this paper, we are highlighting the recent research progress in the identification of natural products from the Indian medicinal plants and spices that have potential inhibition properties against SARS-CoV-2. This study will provide an initiative to stimulate further research by providing useful guidance to the medicinal chemists for designing new protease inhibitors effective against SARS-CoV-2 in future.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Botany, Tripura University, Suryamaninagar, Tripura, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
45
|
Katre SG, Asnani AJ, Pratyush K, Sakharkar NG, Bhope AG, Sawarkar KT, Nimbekar VS. Review on development of potential inhibitors of SARS-CoV-2 main protease (M Pro). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:36. [PMID: 35756354 PMCID: PMC9209839 DOI: 10.1186/s43094-022-00423-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The etiological agent for the coronavirus illness outbreak in 2019-2020 is a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19), whereas coronavirus disease pandemic of 2019 (COVID-19) has compelled the implementation of novel therapeutic options. Main body of the abstract There are currently no targeted therapeutic medicines for this condition, and effective treatment options are quite restricted; however, new therapeutic candidates targeting the viral replication cycle are being investigated. The primary protease of the severe acute respiratory syndrome coronavirus 2 virus is a major target for therapeutic development (MPro). Severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus (MERS-CoV) all seem to have a structurally conserved substrate-binding domain that can be used to develop novel protease inhibitors. Short conclusion With the recent publication of the X-ray crystal structure of the severe acute respiratory syndrome coronavirus 2 Mm, virtual and in vitro screening investigations to find MPro inhibitors are fast progressing. The focus of this review is on recent advancements in the quest for small-molecule inhibitors of the severe acute respiratory syndrome coronavirus 2 main protease.
Collapse
Affiliation(s)
- Soumya Gulab Katre
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Alpana Jagdish Asnani
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Kumar Pratyush
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | | | - Ashwini Gajanan Bhope
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Kanchan Tekram Sawarkar
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Vaibhav Santosh Nimbekar
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| |
Collapse
|
46
|
Kansal N, Garg P, Singh O. Temperature-Based Topological Indices and QSPR Analysis of COVID-19 Drugs. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2086271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neha Kansal
- Department of Mathematics, University of Rajasthan, Jaipur, Rajasthan, India
| | - Pravin Garg
- Department of Mathematics, University of Rajasthan, Jaipur, Rajasthan, India
| | - Omendra Singh
- Department of Mathematics, University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
47
|
Alqarni AM, Bajahzer M, Asseri M, Alahmari AS, Alkhaldi S, Bantun F, Alhamoud AH. Awareness, Knowledge, and Perceptions of COVID-19 Precautions Among Employees of Al-Imam Abdulrahman Al Faisal Hospital in Riyadh, KSA. Cureus 2022; 14:e25918. [PMID: 35855225 PMCID: PMC9286024 DOI: 10.7759/cureus.25918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Background The global pandemic of coronavirus disease-19 (COVID-19) was announced by the World Health Organization (WHO) in early 2020. The consequences of the pandemic were vast, where healthcare systems, education, and the economy of many countries were greatly affected. As such, extraordinary precautions and measures were implemented to the public as well as to the healthcare systems in order to counter the spread of the disease. However, the success of these measures depends largely on the individual's adherence to them as well as their awareness about COVID-19. Indeed, healthcare workers and their non-medical co-workers play a crucial role in that, as they are considered the front line in fighting the infection. Objectives To assess the knowledge, awareness and perceptions of the healthcare workers (HCWs) regarding COVID-19 in Al-Imam Abdulrahman Al Faisal Hospital in Riyadh, Saudi Arabia. Methods Using a cross-sectional study design, a previously validated questionnaire was used as an online survey to assess the knowledge, awareness and perceptions (KAP) of HCWs regarding COVID-19. The targeted population of this study was all the healthcare workers in Al-Imam Abdulrahman Al Faisal Hospital, including their non-medical co-workers. Results The study included 274 respondents consisting of 53.65% males and 46.45% females with an average age between 30-39 years. The majority of the respondents were paramedics with a percentage of 30.66%. The governmental references were the main source of information regarding COVID-19 for 69% of the respondents. Questions with accurate responses that exceeded 90% were about the COVID-19 complications, transmission, and measures to reduce its transmission. In this study, overall knowledge was significantly associated with the gender of the participants (P=0.01). Conclusion There was a good level of knowledge and perception in health care professionals and co-workers regarding SARS-CoV-2.
Collapse
|
48
|
Baildya N, Ghosh NN, Chattopadhyay AP, Mandal V, Majumdar S, Ansary D, Sarkar MM. Inhibitory effect of compounds extracted from Monochoria hastata (L.) Solms on SARS-CoV-2 main protease: An insight from molecular docking and MD-simulation studies. J Mol Struct 2022; 1257:132644. [PMID: 35185220 PMCID: PMC8846558 DOI: 10.1016/j.molstruc.2022.132644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Using molecular docking and other studies, 20 compounds extracted from Monochoria hastata (L.) Solms were screened, and their inhibitory efficiency examined against main protease (3CLpro) of SARS CoV-2. All the compounds were found to binding with 3CLpro through van der Waals and electrostatic forces of attractions. Among them, Azelaic dihydrazide (ADZ) was found to have the highest docking score. 3CLpro-ADZ complex was studied by MD simulation. ADZ was found to disrupt the structure of 3CLpro after 2 ns. RMSD and RMSF analysis along with sequence and binding energy analysis suggest that ADZ can be a potential drug against SARS CoV-2.
Collapse
Affiliation(s)
- Nabajyoti Baildya
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda 732103, India
| | | | - Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, Mokdumpur, Malda 732103, India
| | - Sourav Majumdar
- Department of Chemistry, Kandi Raj College, Kandi, Murshidabad, 742137, India
| | - Delwar Ansary
- Department of Chemistry, Dumkal College, Murshidabad, Domkal 742406, India
| | - Md Muttakin Sarkar
- Department of Chemistry, Dumkal College, Murshidabad, Domkal 742406, India
| |
Collapse
|
49
|
Tekale S, Gore V, Kendrekar P, Thore S, Kótai L, Pawar R. COVID-19 Global Pandemic Fight by Drugs: A Mini-Review on Hope and Hype. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210629103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Coronavirus disease 2019 (Covid-19), a serious disease caused by the Severe Acute Respiratory
Syndrome-Corona Virus-2 (SARS-CoV-2), was firstly identified in the city of Wuhan of
China in December 2019, which then spread and became a global issue due to its high transmission
rate. To date, the outbreak of COVID-19 has resulted in infection to 230,868,745 people and the death
of 4,732,669 patients. It has paralyzed the economy of all the countries worldwide. Considering the
possible mutations of SARS-CoV-2, the current medical emergency requires a longer time for drug
design and vaccine development. Drug repurposing is a promising option for potent therapeutics
against the pandemic. The present review encompasses various drugs or appropriate combinations of
already FDA-approved antimalarial, antiviral, anticancer, anti-inflammatory, and antibiotic therapeutic
candidates for use in the clinical trials as a ray of hope against COVID-19. It is expected to deliver
better clinical and laboratory outcomes of drugs as a prevention strategy for the eradication of the disease.
Collapse
Affiliation(s)
- Sunil Tekale
- Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India
| | - Vishnu Gore
- Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India
| | - Pravin Kendrekar
- Unit for Drug Discovery Research (UDDR), Department of Health and Environmental Sciences, Central University of Technology, Free State (CUT) Private Bag X20539, Bloemfontein, 9300, South Africa
| | - Shivaji Thore
- Department of Chemistry, Deogiri College, Aurangabad-431005, Maharashtra, India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra Pawar
- Department of Chemistry, Shiv Chhatrapati College, Cidco, Aurangabad-431005, Maharashtra, India
| |
Collapse
|
50
|
Favilli A, Mattei Gentili M, Raspa F, Giardina I, Parazzini F, Vitagliano A, Borisova AV, Gerli S. Effectiveness and safety of available treatments for COVID-19 during pregnancy: a critical review. J Matern Fetal Neonatal Med 2022; 35:2174-2187. [PMID: 32508168 PMCID: PMC7284138 DOI: 10.1080/14767058.2020.1774875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND COVID-19 is a pandemic disease caused by the SARS-CoV-2 and it spread globally in the last few months. The complete lack of specific treatment forced clinicians to use old drugs, chosen for their efficacy against similar viruses or their in vitro activity. Trials on patients are ongoing but the majority of information comes from small case series and single center reports. We aimed to provide a literature review on the putative effectiveness and safety of available treatments for COVID-19 in pregnant women. METHODS We reviewed all the available literature concerning the drugs that have been used in the treatment of COVID-19 during pregnancy and whose safe assumption during pregnancy had been demonstrated by clinical studies (i.e. including studies on other infectious diseases). Drugs contra-indicated during pregnancy or with unknown adverse effects were not included in our review. RESULTS AND CONCLUSIONS Clinical trials are not often conducted among pregnant patients for safety reasons and this means that drugs that may be effective in general population cannot be used for pregnant women due to the lack of knowledge of side effects in this category of people .The choice to use a specific drug for COVID-19 in pregnancy should take into account benefits and possible adverse events in each single case. In the current situation of uncertainty and poor knowledge about the management of COVID-19 during pregnancy, this present overview may provide useful information for physicians with practical implications.
Collapse
Affiliation(s)
| | - Marta Mattei Gentili
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| | - Francesca Raspa
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| | - Irene Giardina
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| | - Fabio Parazzini
- Fondazione IRCCS Cà Granda, Dipartimento
Materno-Infantile, Ospedale Maggiore Policlinico, Università degli Studi di Milano,
Dipartimento di Scienze Cliniche e di Comunità, Universita' di Milano,
Milan, Italy
| | - Amerigo Vitagliano
- Department of Women’s and Children’s Health,
University of Padua, Padova, Italy
| | - Anna V. Borisova
- Department of Obstetrics and Gynecology with
the Course of Perinatology, Peoples Friendship University of Russia (RUDN
University), Moscow, Russian Federation
| | - Sandro Gerli
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| |
Collapse
|