1
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. J Virol 2025; 99:e0003525. [PMID: 40202318 PMCID: PMC12090739 DOI: 10.1128/jvi.00035-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130, and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors, including PDGFRα and NRP2, has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower, and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on the formation of gH/gL/gO or binding to PDGFRa dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRa receptor binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRa-regulated cell-cell fusion, suggesting this mechanism as a therapeutic target. IMPORTANCE Development of vaccines and therapeutics targeting the fusion apparatus of human cytomegalovirus (HCMV) has been limited by the lack of an in vitro cell-cell fusion assay that faithfully models the receptor-dependent fusion characteristic of HCMV entry. The cell-cell fusion assay described here demonstrated that the binding of gH/gL/gO to its receptor, PDGFRα, serves to regulate the activity of the fusion protein gB, and this is specifically vulnerable to inhibition by neutralizing antibodies. Moreover, the measurement of fusion kinetics allows for mutational studies of the fusion mechanism, assessing the influence of genetic diversity among the viral glycoproteins and studying the mechanism of neutralizing antibodies.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, University of Cologne, Cologne, Germany
- Institute of Virology, University Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
- University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, University Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
- University Hospital Cologne, University of Cologne, Cologne, Germany
- Laboratory of Experimental Immunology, University of Cologne, Cologne, Germany
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| |
Collapse
|
2
|
Wu C, Song N, Zhao Y, Wang H, Ai Y, Wang Y, Wang Y, Yuan X, Liu T, Li N, Jaijyan DK, Li C, Zhang L, Zheng W, Yang Z, Zhu S, Liao HX. Structural basis of human cytomegalovirus neutralization by gB AD-5-specific potent antibodies. Cell Rep 2025; 44:115646. [PMID: 40382771 DOI: 10.1016/j.celrep.2025.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Human cytomegalovirus (hCMV) poses a severe threat to fetuses, newborns, and immunocompromised individuals. No approved vaccines and limited treatment options are current medical challenges. Here, we analyze the human B cell responses to glycoprotein B (gB) in three top hCMV neutralizers from a cohort of 283 individuals with latent-infected hCMV. By single-cell amplification of memory B cells, we identify a cluster of potent neutralizing monoclonal antibodies (nAbs) that competitively recognize an unknown vulnerable site on gB antigenic domain 5 (AD-5). This cluster of nAbs functionally outperforms the nAbs utilized in clinical trials. Cryoelectron microscopy (cryo-EM) unveils the structural basis of the neutralization mechanism of an antibody directly targeting the fusion subdomain on AD-5. Moreover, immunological analyses of human and mouse sera have preliminarily validated the potential superiority of AD-5-focused immune responses. Overall, our results will support the development of optimized gB-based vaccines and provide promising prophylactic and therapeutic antibody candidates against hCMV infection.
Collapse
Affiliation(s)
- Changwen Wu
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China.
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Han Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanbao Ai
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Yayu Wang
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Yueming Wang
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Xiaohui Yuan
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Tong Liu
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Nan Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Chengming Li
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weihong Zheng
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hua-Xin Liao
- Trinomab Pharmaceutical Co., Ltd., Zhuhai 519040, China.
| |
Collapse
|
3
|
Lankina A, Raposo M, Hargreaves A, Atkinson C, Griffiths P, Reeves MB. Developing a Vaccine Against Human Cytomegalovirus: Identifying and Targeting HCMV's Immunological Achilles' Heel. Vaccines (Basel) 2025; 13:435. [PMID: 40432047 PMCID: PMC12115399 DOI: 10.3390/vaccines13050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Human cytomegalovirus (HCMV) is a critical pathogen in immunocompromised populations, such as organ transplant recipients as well as congenitally infected neonates with immature immune systems. Despite decades of research and the growing financial burden associated with the management of HCMV, there is no licensed vaccine to date. In this review, we aim to outline the complexity of HCMV and the antigens it presents and the journey and challenges of developing an effective HCMV vaccine, as well as further highlight the recent analyses of the most successful vaccine candidate so far-gB/MF59.
Collapse
Affiliation(s)
- Anastasia Lankina
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Marta Raposo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Alexander Hargreaves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Claire Atkinson
- School of Applied and Health Sciences, London South Bank University, London SE1 0AA, UK;
| | - Paul Griffiths
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK; (A.L.); (M.R.); (A.H.); (P.G.)
| |
Collapse
|
4
|
Nuevalos Guaita M, Jimoh TO, Barrall EB, Atanasoff KE, Ehrlich ME, Gandy S, García-Ríos E, Perez Romero P, Duty JA, Tortorella D. Characterization of human cytomegalovirus infection dynamics in human microglia. J Gen Virol 2025; 106:002096. [PMID: 40299764 PMCID: PMC12041478 DOI: 10.1099/jgv.0.002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that establishes asymptomatic infections in immunocompetent individuals but can cause severe or even life-threatening symptoms in immunocompromised patients. HCMV can replicate in a wide variety of cells through the engagement of diverse cell factors with the viral envelope protein gH/gL/gO (trimer) or gH/gL/UL128/UL130/UL131a (pentamer), allowing for systemic spread within the human host. This study explores HCMV infection tropism and dynamics in human microglia, demonstrating the susceptibility of microglia to both clinical and laboratory HCMV strains, albeit with lower efficacy for the laboratory strain, implying that both the gH/gL-trimer and -pentamer can mediate virus entry in microglia. The importance of the gH/gL pentamer for virus entry was demonstrated by the inhibition of virus infection upon pre-incubation with a soluble neuropilin-2 (NRP-2) entry factor. Further, we demonstrated that HCMV infection can be effectively inhibited by monoclonal antibodies specific for the gH/gL complexes and HCMV hyperimmunoglobulin. Lastly, we report that microglia infection can be prevented by newly characterized chemical entry inhibitors. Altogether, these findings underscore the potential of microglia as valuable models for studying HCMV neurotropism and strategies to block virus infection in cells that can impact neurological disorders.
Collapse
Affiliation(s)
- Marcos Nuevalos Guaita
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Tajudeen O. Jimoh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma B. Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina E. Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx NY, USA
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Pilar Perez Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Grijpink LCM, van der Valk WH, van Beelen ESA, de Groot JCMJ, Locher H, Vossen ACTM. Cytomegalovirus host receptor expression in the human fetal inner ear. PLoS One 2025; 20:e0320605. [PMID: 40163451 PMCID: PMC11957294 DOI: 10.1371/journal.pone.0320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Fetal infection with human cytomegalovirus (hCMV) can cause sensorineural hearing loss and vestibular impairment, yet its pathogenesis remains unclear. This study aims to identify potential target cell types of hCMV in the human fetal inner ear. Viral particles use several envelope glycoproteins to enter target cells, including the pentameric complex, the trimeric complex and glycoprotein B. Platelet-derived growth factor receptor alpha (PDGFRA) serves as the receptor in fibroblasts, neuropilin-2 (NRP2) in epithelial, endothelial and dendritic cells as well as in leukocytes. Upon binding of these glycoproteins, glycoprotein B initiates membrane fusion which is proposed to be mediated by EGFR. When and where these proteins are expressed in the fetal inner ear during development is unknown. To address this, expression patterns of PDGFRA, NRP2 and EGFR were investigated in human fetal inner ear tissue using single-nucleus RNA sequencing data (first trimester: N = 2) and immunohistochemistry (first trimester: N = 6, second trimester: N = 5). PDGFRA gene and protein expression was detected in mesenchymal cells, NRP2 protein expression in epithelial cells and endothelial cells, and EGFR gene and protein expression in both epithelial cells and mesenchymal cells. Notably, all three receptors were present in tissue from the first and second trimesters. In conclusion, hCMV host receptors PDGFRA, NRP2 and EGFR are expressed in mesenchymal, epithelial and endothelial cells within the cochlea and vestibular organs during the first and second trimesters. These cell types may serve as targets for hCMV infection of the fetal inner ear.
Collapse
Affiliation(s)
- Lucia C. M. Grijpink
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter H. van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Edward S. A. van Beelen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - John C. M. J. de Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ann C. T. M. Vossen
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Wang J, Rabiee B, Patel C, Jafri M, Hussain H, Chaudhry A, Chaudhry I, Kamoun L, Chaudhry I, Oh L, Bobat FI, Shukla D, Farooq AV. Herpesvirus Infections of the Corneal Endothelium. Microorganisms 2025; 13:778. [PMID: 40284615 PMCID: PMC12029634 DOI: 10.3390/microorganisms13040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Corneal endotheliitis is an inflammatory process, most commonly of viral etiology, that manifests clinically with features including corneal edema, keratic precipitates, and a mild anterior chamber reaction. Several studies have implicated human herpesviruses from the Herpesviridae family as primary causes of corneal endotheliitis, including cytomegalovirus (CMV), varicella zoster virus (VZV), and herpes simplex viruses 1 and 2 (HSV-1 and HSV-2). This review critically evaluates the present literature surrounding herpesvirus infections of the corneal endothelium.
Collapse
Affiliation(s)
- Jessie Wang
- Duke Eye Center, Duke University, Durham, NC 27705, USA;
| | - Behnam Rabiee
- Department of Ophthalmology, Nazareth Hospital, Trinity Health Mid-Atlantic, Philadelphia, PA 19152, USA; (B.R.); (C.P.); (A.C.); (I.C.); (L.K.); (I.C.)
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Chandani Patel
- Department of Ophthalmology, Nazareth Hospital, Trinity Health Mid-Atlantic, Philadelphia, PA 19152, USA; (B.R.); (C.P.); (A.C.); (I.C.); (L.K.); (I.C.)
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Mansab Jafri
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Hamad Hussain
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Aaila Chaudhry
- Department of Ophthalmology, Nazareth Hospital, Trinity Health Mid-Atlantic, Philadelphia, PA 19152, USA; (B.R.); (C.P.); (A.C.); (I.C.); (L.K.); (I.C.)
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Imtiaz Chaudhry
- Department of Ophthalmology, Nazareth Hospital, Trinity Health Mid-Atlantic, Philadelphia, PA 19152, USA; (B.R.); (C.P.); (A.C.); (I.C.); (L.K.); (I.C.)
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Layla Kamoun
- Department of Ophthalmology, Nazareth Hospital, Trinity Health Mid-Atlantic, Philadelphia, PA 19152, USA; (B.R.); (C.P.); (A.C.); (I.C.); (L.K.); (I.C.)
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Iftikhar Chaudhry
- Department of Ophthalmology, Nazareth Hospital, Trinity Health Mid-Atlantic, Philadelphia, PA 19152, USA; (B.R.); (C.P.); (A.C.); (I.C.); (L.K.); (I.C.)
- IC Laser Eye Care, Bensalem, PA 19020, USA; (M.J.); (H.H.)
| | - Lewis Oh
- Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Fatima I. Bobat
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago, Chicago, IL 60607, USA; (F.I.B.); (D.S.)
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago, Chicago, IL 60607, USA; (F.I.B.); (D.S.)
| | - Asim V. Farooq
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 PMCID: PMC11889360 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
8
|
Sittisak T, Guntawang T, Srivorakul S, Photichai K, Muenthaisong A, Rittipornlertrak A, Kochagul V, Khamluang N, Sthitmatee N, Chuammitri P, Thitaram C, Hsu WL, Pringproa K. Evaluation of the immunogenicity of elephant endotheliotropic herpesvirus glycoprotein B (EEHV-gB) subunit vaccines in a mouse model. Acta Trop 2025; 263:107571. [PMID: 40015422 DOI: 10.1016/j.actatropica.2025.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Elephant endotheliotropic herpesvirus (EEHV), a persistent threat, has caused significant mortality among young Asian elephants (Elephas maximus), raising serious concerns for the conservation of this endangered species. Given the urgent need for protective measures, research into EEHV vaccine development has become increasingly critical. This study evaluated the immune response in mice following immunization with an EEHV1A-glycoprotein B (gB) subunit vaccine. The vaccine incorporated gBF1 and gBF2, corresponding to segments of the gB ectodomains I and IV, respectively, along with emulsion adjuvants Montanide™ ISA 206 VG and incomplete Freund's adjuvant (IFA). The findings revealed that both gBF1 and gBF2, when paired with these adjuvants, were capable of inducing strong humoral immune responses against EEHV-gB, as demonstrated by the ability of sera from immunized mice to detect EEHV-gB ex vivo. Additionally, in terms of cellular immunity, the vaccine formulations predominantly activated CD4+ T cells, including both Th1 (IFN-γ+) and Th2 (IL-4+) cells, with no significant activation of CD8+ T cells. If also applicable in elephants, gB-based vaccines would be a significant step forward in the fight against EEHV.
Collapse
MESH Headings
- Animals
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Mice
- Viral Envelope Proteins/immunology
- Elephants/virology
- Herpesviridae Infections/prevention & control
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/immunology
- Antibodies, Viral/blood
- Female
- Herpesvirus Vaccines/immunology
- Herpesvirus Vaccines/administration & dosage
- Mice, Inbred BALB C
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Immunogenicity, Vaccine
- Immunity, Cellular
- Immunity, Humoral
- Adjuvants, Vaccine/administration & dosage
Collapse
Affiliation(s)
- Tidaratt Sittisak
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thunyamas Guntawang
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Saralee Srivorakul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kornravee Photichai
- The 5th Regional Livestock Office, Department of Livestock Development, Chiang Mai 50200, Thailand
| | - Anucha Muenthaisong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Varankpicha Kochagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Naricha Khamluang
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | | | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kidsadagon Pringproa
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
9
|
Blanco R, Muñoz JP. Molecular Insights into HR-HPV and HCMV Co-Presence in Cervical Cancer Development. Cancers (Basel) 2025; 17:582. [PMID: 40002177 PMCID: PMC11853276 DOI: 10.3390/cancers17040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Cervical cancer remains a significant health concern worldwide and the primary cause of cancerous cervical lesions is the infection with high-risk human papillomavirus (HR-HPV). However, emerging evidence suggests that HR-HPV infection alone is insufficient for cancer development, and other co-factors may contribute to cervical carcinogenesis. Human cytomegalovirus (HCMV), a common herpesvirus frequently detected in cervical cancer samples, has demonstrated oncogenic potential. OBJECTIVES This review aims to explore the molecular interactions between HR-HPV and HCMV in promoting cervical cancer progression. METHODS A comprehensive search was conducted in PubMed and Google Scholar, focusing on articles examining the role of HCMV in cervical tissues and/or cells, selected based on relevance and significance. RESULTS The reviewed literature indicates that HCMV and HR-HPV share several oncogenic mechanisms that could drive cervical cell transformation. CONCLUSIONS Both viruses may synergistically promote cervical epithelial transformation and tumor progression in multiple ways. HR-HPV may facilitate HCMV entry by increasing host cell receptors essential for viral attachment. Additionally, HR-HPV and HCMV may cooperatively disrupt cellular processes, enhancing carcinogenesis. Both viruses may also modulate the local immune environment, enabling immune evasion and lesion persistence. However, further in vitro and in vivo studies are required to validate these hypotheses.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
10
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631902. [PMID: 39829861 PMCID: PMC11741351 DOI: 10.1101/2025.01.08.631902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130 and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors including PDFGRα and NRP2 has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on formation of gH/gL/gO or binding to PDGFRα dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRα receptor-binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRα regulated cell-cell fusion, suggesting this mechanism as a therapeutic target.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
11
|
Yu H, Ren J, Deng H, Li L, Zhang Z, Cheng S, Guo Z, Huang A, Dang Y, Song K, Wu D, Yao X, Qin Y, Yang Z, Xu K, He X, Chen J. Neuropilin-1 is a novel host factor modulating the entry of hepatitis B virus. J Hepatol 2025; 82:37-50. [PMID: 38960374 DOI: 10.1016/j.jhep.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND & AIMS Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV. However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs (large hepatitis B surface proteins) and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.
Collapse
Affiliation(s)
- Haibo Yu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Linfeng Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengtao Cheng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Kunling Song
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Daiqing Wu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinyan Yao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yiping Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Yang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Hoffmann S, Berger BT, Lucas LR, Schiele F, Park JE. Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen. Cells 2024; 13:2083. [PMID: 39768175 PMCID: PMC11674933 DOI: 10.3390/cells13242083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors. We developed a comprehensive recombinant protein library of extracellular domains of human transmembrane proteins and proteins found in the ER-Golgi-lysosomal systems. Using this library, we conducted a flow-cytometric screen that identified several cell surface binding events, including an interaction between carbonic anhydrase 9 (CAH9/CA9/CAIX) and CD14high cells. Further analysis revealed this interaction was indirect and mediated via platelets bound to the monocytes. CA9, best known for its diverse roles in cancer, is a promising therapeutic target. We utilized our library to develop an AlphaLISA high-throughput screening assay, identifying CLEC2 as one robust CA9 binding partner. A five-amino-acid sequence (EDLPT) in CA9, identical to a CLEC2 binding domain in Podoplanin (PDPN), was found to be essential for this interaction. Like PDPN, CA9-induced CLEC2 signaling is mediated via Syk. A Hodgkin's lymphoma cell line (HDLM-2) endogenously expressing CA9 can activate Syk-dependent CLEC2 signaling, providing enticing evidence for a novel function of CA9 in hematological cancers. In conclusion, we identified numerous interactions with monocytes and platelets and validated one, CA9, as an endogenous CLEC2 ligand. We provide a new list of other putative CA9 interaction partners and uncovered CA9-induced CLEC2 activation, providing new insights for CA9-based therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Benedict-Tilman Berger
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
| | - Liane Rosalie Lucas
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Felix Schiele
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
- Division of Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - John Edward Park
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| |
Collapse
|
13
|
Evers P, Uguccioni SM, Ahmed N, Francis ME, Kelvin AA, Pezacki JP. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses 2024; 16:1844. [PMID: 39772154 PMCID: PMC11680362 DOI: 10.3390/v16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option. In the present work, miR-24-3p was identified to inhibit SARS-CoV-2 entry, replication, and production; furthermore, this inhibition was retained against common mutations improving SARS-CoV-2 fitness. To determine the mechanism of action, bioinformatic tools were employed, identifying numerous potential effectors promoting infection targeted by miR-24-3p. Of these targets, several key host proteins for priming and facilitating SARS-CoV-2 entry were identified: furin, NRP1, NRP2, and SREBP2. With further experimental analysis, we show that miR-24-3p directly downregulates these viral entry factors to impede infection when producing virions and when infecting the target cell. Furthermore, we compare the findings with coronavirus, HCoV-229E, which relies on different factors strengthening the miR-24-3p mechanism. Taken together, the following work suggests that miR-24-3p could be an avenue to treat current coronaviruses and those likely to emerge.
Collapse
Affiliation(s)
- Parrish Evers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Spencer M. Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - John P. Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| |
Collapse
|
14
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
15
|
Aymoz-Bressot T, Canis M, Meurisse F, Wijkhuisen A, Favier B, Mousseau G, Dupressoir A, Heidmann T, Bacquin A. Cell-Int: a cell-cell interaction assay to identify native membrane protein interactions. Life Sci Alliance 2024; 7:e202402844. [PMID: 39237366 PMCID: PMC11377309 DOI: 10.26508/lsa.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.
Collapse
Affiliation(s)
- Thibaud Aymoz-Bressot
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Canis
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne Wijkhuisen
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | | | - Anne Dupressoir
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
16
|
Norris MJ, Henderson LA, Siddiquey MNA, Yin J, Yoo K, Brunel S, Saphire EO, Benedict CA, Kamil JP. A noncanonical glycoprotein H complex enhances cytomegalovirus entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.617647. [PMID: 39416215 PMCID: PMC11482907 DOI: 10.1101/2024.10.13.617647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Human cytomegalovirus (HCMV) causes severe birth defects, lifelong health complications, and $4 billion in annual costs in the United States alone. A major challenge in vaccine design is the incomplete understanding of the diverse protein complexes the virus uses to infect cells. In Herpesviridae, the gH/gL glycoprotein heterodimer is expected to be a basal element of virion cell entry machinery. For HCMV, gH/gL forms a "trimer" with gO and a "pentamer" with UL128, UL130, and UL131A, with each complex binding distinct receptors to enter varied cell types. Here, we reveal a third glycoprotein complex, abundant in HCMV virions, which significantly enhances infection of endothelial cells. In this "3-mer" complex, gH, without gL, associates with UL116 and UL141, an immunoevasin previously known to function in an intracellular role. Cryo-EM reveals the virion-surface 3-mer is structurally unique among Herpesviridae gH complexes, with gH-only scaffolding, UL141-mediated dimerization and a heavily glycosylated UL116 cap. Given that antibodies directed at gH and UL141 each can restrict HCMV replication, our work highlights this virion surface complex as a new target for vaccines and antiviral therapies.
Collapse
Affiliation(s)
- Michael J Norris
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA
- Present address (M.N.): Department of Biochemistry, University of Toronto, Toronto, ON Canada
| | - Lauren A Henderson
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Shreveport, LA
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Shreveport, Shreveport, LA
| | - Mohammed N A Siddiquey
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Shreveport, LA
| | - Jieyun Yin
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA
| | - Kwangsun Yoo
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Simon Brunel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Chris A Benedict
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Jeremy P Kamil
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
17
|
He L, Hertel L, James CD, Morgan IM, Klingelhutz AJ, Fu TM, Kauvar LM, McVoy MA. Inhibition of human cytomegalovirus entry into mucosal epithelial cells. Antiviral Res 2024; 230:105971. [PMID: 39074588 PMCID: PMC11408113 DOI: 10.1016/j.antiviral.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Human cytomegalovirus (CMV) causes serious developmental disabilities in newborns infected in utero following oral acquisition by the mother. Thus, neutralizing antibodies in maternal saliva have potential to prevent maternal infection and, consequently, fetal transmission and disease. Based on standard cell culture models, CMV entry mediators (and hence neutralizing targets) are cell type-dependent: entry into fibroblasts requires glycoprotein B (gB) and a trimeric complex (TC) of glycoproteins H, L, and O, whereas endothelial and epithelial cell entry additionally requires a pentameric complex (PC) of glycoproteins H and L with UL128, UL130, and UL131A. However, as the mediators of mucosal cell entry and the potential impact of cellular differentiation remained unclear, the present studies utilized mutant viruses, neutralizing antibodies, and soluble TC-receptor to determine the entry mediators required for infection of mucocutaneus cell lines and primary tonsil epithelial cells. Entry into undifferentiated cells was largely PC-dependent, but PC-independent entry could be induced by differentiation. TC-independent entry was also observed and varied by cell line and differentiation. Infection of primary tonsil cells from some donors was entirely TC-independent. In contrast, an antibody to gB or disruption of virion attachment using heparin blocked entry into all cells. These findings indicate that CMV entry into the spectrum of cell types encountered in vivo is likely to be more complex than has been suggested by standard cell culture models and may be influenced by the relative abundance of virion envelope glycoprotein complexes as well as by cell type, tissue of origin, and state of differentiation.
Collapse
Affiliation(s)
- Li He
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Laura Hertel
- Department of Pediatrics, School of Medicine, University of California San Francisco, Oakland, CA, 94609, USA
| | - Claire D James
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
18
|
Ohman MS, Albright ER, Gelbmann CB, Kalejta RF. The Pentamer glycoprotein complex inhibits viral Immediate Early transcription during Human Cytomegalovirus infections. Proc Natl Acad Sci U S A 2024; 121:e2408078121. [PMID: 39292744 PMCID: PMC11441559 DOI: 10.1073/pnas.2408078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.
Collapse
Affiliation(s)
- Michael S. Ohman
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Christopher B. Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
19
|
Fierro C, Brune D, Shaw M, Schwartz H, Knightly C, Lin J, Carfi A, Natenshon A, Kalidindi S, Reuter C, Miller J, Panther L. Safety and Immunogenicity of a Messenger RNA-Based Cytomegalovirus Vaccine in Healthy Adults: Results From a Phase 1 Randomized Clinical Trial. J Infect Dis 2024; 230:e668-e678. [PMID: 38478705 PMCID: PMC11420795 DOI: 10.1093/infdis/jiae114] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND This phase 1 trial evaluated the safety, reactogenicity, and immunogenicity of mRNA-1647, a messenger RNA (mRNA)-based cytomegalovirus (CMV) vaccine, in CMV-seronegative and -seropositive adults. METHODS Participants were randomly assigned to receive 30, 90, 180, or 300 µg of mRNA-1647 or placebo on a 0-, 2-, and 6-month schedule and followed for 12 months after the last dose. RESULTS A total of 154 (80 CMV-seronegative and 74 CMV-seropositive) participants were enrolled; 118 participants were randomized to mRNA-1647 and 36 to placebo. Mean (standard deviation) age was 32.5 (8.6) and 35.1 (8.9) years in the placebo and mRNA-1647 groups, respectively, in phase B (63% and 64% female) and 42.5 (6.2) and 33.3 (8.7) years, respectively, in phase C (2% and 16% female). No deaths, related serious adverse events, or adverse events of special interest were reported. Most adverse reactions were grade ≤2 severity. Increased neutralizing antibody, binding antibody, and antigen-specific cell-mediated responses were observed across mRNA-1647 treatment groups, regardless of CMV serostatus. CONCLUSIONS This phase 1, first-in-human trial demonstrated that mRNA-1647 has an acceptable safety profile in adults and elicits humoral and cellular immune responses. Clinical Trials Registration. NCT03382405.
Collapse
Affiliation(s)
- Carlos Fierro
- Johnson County Clin-Trials, Department of Clinical Safety & Risk Management, Lenexa, Kansas
| | | | | | | | - Conor Knightly
- Moderna, Inc, Department of Clinical Development Operations, Cambridge, Massachusetts
| | - Jiang Lin
- Moderna, Inc, Department of Biostatistics, Cambridge, Massachusetts
| | - Andrea Carfi
- Moderna, Inc, Department of Research and Development, Cambridge, Massachusetts
| | - Andrew Natenshon
- Moderna, Inc, Department of Infectious Disease Development, Cambridge, Massachusetts
| | - Shiva Kalidindi
- Moderna, Inc, Department of Statistical Programming, Cambridge, Massachusetts
| | - Caroline Reuter
- Johnson County Clin-Trials, Department of Clinical Safety & Risk Management, Lenexa, Kansas
| | - Jacqueline Miller
- Moderna, Inc, Department of Infectious Diseases, Cambridge, Massachusetts
| | - Lori Panther
- Moderna, Inc, Department of Infectious Diseases, Cambridge, Massachusetts
| |
Collapse
|
20
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
22
|
Zhang S, Ma Z. trans-Interacting Plasma Membrane Proteins and Binding Partner Identification. J Proteome Res 2024; 23:3322-3331. [PMID: 38937710 PMCID: PMC11533685 DOI: 10.1021/acs.jproteome.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Plasma membrane proteins (PMPs) play critical roles in a myriad of physiological and disease conditions. A unique subset of PMPs functions through interacting with each other in trans at the interface between two contacting cells. These trans-interacting PMPs (tiPMPs) include adhesion molecules and ligands/receptors that facilitate cell-cell contact and direct communication between cells. Among the tiPMPs, a significant number have apparent extracellular binding domains but remain orphans with no known binding partners. Identification of their potential binding partners is therefore important for the understanding of processes such as organismal development and immune cell activation. While a number of methods have been developed for the identification of protein binding partners in general, very few are applicable to tiPMPs, which interact in a two-dimensional fashion with low intrinsic binding affinities. In this review, we present the significance of tiPMP interactions, the challenges of identifying binding partners for tiPMPs, and the landscape of method development. We describe current avidity-based screening approaches for identifying novel tiPMP binding partners and discuss their advantages and limitations. We conclude by highlighting the importance of developing novel methods of identifying new tiPMP interactions for deciphering the complex protein interactome and developing targeted therapeutics for diseases.
Collapse
Affiliation(s)
- Shenyu Zhang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Hospital, Wilmington, DE 19803, USA
| |
Collapse
|
23
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Cimato G, Zhou X, Brune W, Frascaroli G. Human cytomegalovirus glycoprotein variants governing viral tropism and syncytium formation in epithelial cells and macrophages. J Virol 2024; 98:e0029324. [PMID: 38837351 PMCID: PMC11265420 DOI: 10.1128/jvi.00293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Human cytomegalovirus (HCMV) displays a broad cell tropism, and the infection of biologically relevant cells such as epithelial, endothelial, and hematopoietic cells supports viral transmission, systemic spread, and pathogenesis in the human host. HCMV strains differ in their ability to infect and replicate in these cell types, but the genetic basis of these differences has remained incompletely understood. In this study, we investigated HCMV strain VR1814, which is highly infectious for epithelial cells and macrophages and induces cell-cell fusion in both cell types. A VR1814-derived bacterial artificial chromosome (BAC) clone, FIX-BAC, was generated many years ago but has fallen out of favor because of its modest infectivity. By sequence comparison and genetic engineering of FIX, we demonstrate that the high infectivity of VR1814 and its ability to induce syncytium formation in epithelial cells and macrophages depends on VR1814-specific variants of the envelope glycoproteins gB, UL128, and UL130. We also show that UL130-neutralizing antibodies inhibit syncytium formation, and a FIX-specific mutation in UL130 is responsible for its low infectivity by reducing the amount of the pentameric glycoprotein complex in viral particles. Moreover, we found that a VR1814-specific mutation in US28 further increases viral infectivity in macrophages, possibly by promoting lytic rather than latent infection of these cells. Our findings show that variants of gB and the pentameric complex are major determinants of infectivity and syncytium formation in epithelial cells and macrophages. Furthermore, the VR1814-adjusted FIX strains can serve as valuable tools to study HCMV infection of myeloid cells.IMPORTANCEHuman cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading cause of congenital infections. HCMV infects various cell types, including epithelial cells and macrophages, and some strains induce the fusion of neighboring cells, leading to the formation of large multinucleated cells called syncytia. This process may limit the exposure of the virus to host immune factors and affect pathogenicity. However, the reason why some HCMV strains exhibit a broader cell tropism and why some induce cell fusion more than others is not well understood. We compared two closely related HCMV strains and provided evidence that small differences in viral envelope glycoproteins can massively increase or decrease the virus infectivity and its ability to induce syncytium formation. The results of the study suggest that natural strain variations may influence HCMV infection and pathogenesis in humans.
Collapse
Affiliation(s)
| | - Xuan Zhou
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | |
Collapse
|
25
|
Atanasoff KE, Parsons AJ, Ophir SI, Lurain N, Kraus T, Moran T, Duty JA, Tortorella D. A broadly neutralizing human monoclonal antibody generated from transgenic mice immunized with HCMV particles limits virus infection and proliferation. J Virol 2024; 98:e0021324. [PMID: 38832789 PMCID: PMC11264687 DOI: 10.1128/jvi.00213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that poses severe disease risk for immunocompromised patients who experience primary infection or reactivation. Development and optimization of safe and effective anti-HCMV therapeutics is of urgent necessity for the prevention and treatment of HCMV-associated diseases in diverse populations. The use of neutralizing monoclonal antibodies (mAbs) to limit HCMV infection poses a promising therapeutic strategy, as anti-HCMV mAbs largely inhibit infection by targeting virion glycoprotein complexes. In contrast, the small-molecule compounds currently approved for patients (e.g., ganciclovir, letermovir, and maribavir) target later stages of the HCMV life cycle. Here, we present a broadly neutralizing human mAb, designated 1C10, elicited from a VelocImmune mouse immunized with infectious HCMV particles. Clone 1C10 neutralizes infection after virion binding to cells by targeting gH/gL envelope complexes and potently reduces infection of diverse HCMV strains in fibroblast, trophoblast, and epithelial cells. Antibody competition assays found that 1C10 recognizes a region of gH associated with broad neutralization and binds to soluble pentamer in the low nanomolar range. Importantly, 1C10 treatment significantly reduced virus proliferation in both fibroblast and epithelial cells. Further, the combination treatment of mAb 1C10 with ganciclovir reduced HCMV infection and proliferation in a synergistic manner. This work characterizes a neutralizing human mAb for potential use as a HCMV treatment, as well as a possible therapeutic strategy utilizing combination-based treatments targeting disparate steps of the viral life cycle. Collectively, the findings support an antibody-based therapy to effectively treat patients at risk for HCMV-associated diseases. IMPORTANCE Human cytomegalovirus is a herpesvirus that infects a large proportion of the population and can cause significant disease in diverse patient populations whose immune systems are suppressed or compromised. The development and optimization of safe anti-HCMV therapeutics, especially those that have viral targets and inhibition mechanisms different from current HCMV treatments, are of urgent necessity to better public health. Human monoclonal antibodies (mAbs) that prevent HCMV entry of cells were identified by immunizing transgenic mice and screened for broad and effective neutralization capability. Here, we describe one such mAb, which was found to target gH/gL envelope complexes and effectively limit HCMV infection and dissemination. Further, administration of the antibody in combination with the antiviral drug ganciclovir inhibited HCMV in a synergistic manner, highlighting this approach and the use of anti-HCMV mAbs more broadly, as a potential therapeutic strategy for the treatment of diverse patient populations.
Collapse
Affiliation(s)
- Kristina E. Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nell Lurain
- Department of Immunology-Microbiology, Rush University, Chicago, Illinois, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Lujan E, Zhang I, Garon AC, Liu F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses 2024; 16:1171. [PMID: 39066333 PMCID: PMC11281448 DOI: 10.3390/v16071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The complement system is an evolutionarily ancient component of innate immunity that serves as an important first line of defense against pathogens, including viruses. In response to infection, the complement system can be activated by three distinct yet converging pathways (classical, lectin, and alternative) capable of engaging multiple antiviral host responses to confront acute, chronic, and recurrent viral infections. Complement can exert profound antiviral effects via multiple mechanisms including the induction of inflammation and chemotaxis to sites of infection, neutralization/opsonization of viruses and virally infected cells, and it can even shape adaptive immune responses. With millions of years of co-evolution and the ability to establish life-long infections, herpesviruses have evolved unique mechanisms to counter complement-mediated antiviral defenses, thus enabling their survival and replication within humans. This review aims to comprehensively summarize how human herpesviruses engage with the complement system and highlight our understanding of the role of complement in human cytomegalovirus (HCMV) infection, immunity, and viral replication. Herein we describe the novel and unorthodox roles of complement proteins beyond their roles in innate immunity and discuss gaps in knowledge and future directions of complement and HCMV research.
Collapse
Affiliation(s)
- Eduardo Lujan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Andrea Canto Garon
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024; 16:1110. [PMID: 39066272 PMCID: PMC11281654 DOI: 10.3390/v16071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a significant clinical concern in newborns, immunocompromised patients with acquired immunodeficiency syndrome (AIDS), and patients undergoing immunosuppressive therapy or chemotherapy. CMV infection affects many organs, such as the lungs, digestive organs, the central nerve system, and eyes. In addition, CMV infection sometimes occurs in immunocompetent individuals. CMV ocular diseases includes retinitis, corneal endotheliitis, and iridocyclitis. CMV retinitis often develops in infected newborns and immunocompromised patients. CMV corneal endotheliitis and iridocyclitis sometimes develop in immunocompetent individuals. Systemic infections and CMV ocular diseases often require systemic treatment in addition to topical treatment.
Collapse
Affiliation(s)
| | - Noriyasu Hashida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Shang P, Dos Santos Natividade R, Taylor GM, Ray A, Welsh OL, Fiske KL, Sutherland DM, Alsteens D, Dermody TS. NRP1 is a receptor for mammalian orthoreovirus engaged by distinct capsid subunits. Cell Host Microbe 2024; 32:980-995.e9. [PMID: 38729153 PMCID: PMC11176008 DOI: 10.1016/j.chom.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kay L Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium; WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Gallagher T. Neuropilin invites reoviruses into neurons. Cell Host Microbe 2024; 32:945-946. [PMID: 38870904 DOI: 10.1016/j.chom.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
In this issue of Cell Host & Microbe, Shang et al. identify murine neuropilin 1 as a host factor that binds reovirus particles, directing cell entry and contributing to viral dissemination and neurovirulence. This study highlights the reovirus model system to investigate host receptors and their significance in viral pathogenesis.
Collapse
Affiliation(s)
- Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
30
|
Su L, Chen Y, Fu M, Wang H, Tong Y, Lin Z, Chen H, Lin H, Chen Y, Zhu B, Ma S, Xiao Y, Huang J, Zhao Z, Li F, Ye R, Shi H, Wang Z, Zeng J, Wen Z, Luo M, Xia H, Zhang R. CD14 facilitates perinatal human cytomegalovirus infection in biliary epithelial cells via CD55. JHEP Rep 2024; 6:101018. [PMID: 38601478 PMCID: PMC11002872 DOI: 10.1016/j.jhepr.2024.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/12/2024] Open
Abstract
Background & Aims A high human cytomegalovirus (HCMV) infection rate accompanied by an increased level of bile duct damage is observed in the perinatal period. The possible mechanism was investigated. Methods A total of 1,120 HCMV-positive and 9,297 HCMV-negative children were recruited, and depending on age, their liver biochemistry profile was compared. Fetal and infant biliary epithelial cells (F-BECs and I-BECs, respectively) were infected with HCMV, and the differences in cells were revealed by proteomic analysis. Protein-protein interactions were examined by coimmunoprecipitation and mass spectrometry analyses. A murine cytomegalovirus (MCMV) infection model was established to assess treatment effects. Results Perinatal HCMV infection significantly increased the level of bile duct damage. Neonatal BALB/c mice inoculated with MCMV showed obvious inflammation in the portal area with an abnormal bile duct structure. Proteomics analysis showed higher CD14 expression in F-BECs than in I-BECs. CD14 siRNA administration hindered HCMV infection, and CD14-knockout mice showed lower MCMV-induced bile duct damage. HCMV infection upregulated CD55 and poly ADP-ribose polymerase-1 (PARP-1) expression in F-BECs. Coimmunoprecipitation and mass spectrometry analyses revealed formation of the CD14-CD55 complex. siRNA-mediated inhibition of CD55 expression reduced sCD14-promoted HCMV replication in F-BECs. In MCMV-infected mice, anti-mouse CD14 antibody and PARP-1 inhibitor treatment diminished cell death, ameliorated bile duct damage, and reduced mortality. Conclusions CD14 facilitates perinatal HCMV infection in BECs via CD55, and PARP-1-mediated cell death was detected in perinatal cytomegalovirus-infected BECs. These results provide new insight into the treatment of perinatal HCMV infection with bile duct damage. Impact and implications Perinatal human cytomegalovirus (HCMV) infection is associated with bile duct damage, but the underlying mechanism is still unknown. We discovered that CD14 expression is increased in biliary epithelial cells during perinatal HCMV infection and facilitates viral entry through CD55. We also detected PARP-1-mediated cell death in perinatal HCMV-infected biliary epithelial cells. We showed that blocking CD14 or inhibiting PARP-1 reduced bile duct damage and mortality in a mouse model of murine cytomegalovirus infection. Our findings provide a new insight into therapeutic strategies for perinatal HCMV infection.
Collapse
Affiliation(s)
- Liang Su
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Ming Fu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hezhen Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanlu Tong
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zefeng Lin
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongjiao Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiting Lin
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sige Ma
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yiyi Xiao
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junyu Huang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziyang Zhao
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fenjie Li
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rongchen Ye
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongguang Shi
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jixiao Zeng
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhe Wen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Minhua Luo
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Huimin Xia
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruizhong Zhang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Wu K, Hou YJ, Makrinos D, Liu R, Zhu A, Koch M, Yu WH, Paila YD, Chandramouli S, Panther L, Henry C, DiPiazza A, Carfi A. Characterization of humoral and cellular immunologic responses to an mRNA-based human cytomegalovirus vaccine from a phase 1 trial of healthy adults. J Virol 2024; 98:e0160323. [PMID: 38526054 PMCID: PMC11019844 DOI: 10.1128/jvi.01603-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/26/2024] Open
Abstract
mRNA-1647 is an investigational mRNA-based vaccine against cytomegalovirus (CMV) that contains sequences encoding the CMV proteins glycoprotein B and pentamer. Humoral and cellular immune responses were evaluated in blood samples collected from healthy CMV-seropositive and CMV-seronegative adults who participated in a phase 1 trial of a three-dose series of mRNA-1647 (NCT03382405). Neutralizing antibody (nAb) titers against fibroblast and epithelial cell infection in sera from CMV-seronegative mRNA-1647 recipients were higher than those in sera from control CMV-seropositive samples and remained elevated up to 12 months after dose 3. nAb responses elicited by mRNA-1647 were comparable across 14 human CMV (HCMV) strains. Frequencies of antigen-specific memory B cells increased in CMV-seropositive and CMV-seronegative participants after each mRNA-1647 dose and remained elevated for up to 6 months after dose 3. mRNA-1647 elicited robust increases in frequencies and polyfunctionality of CD4+ T helper type 1 and effector CD8+ T cells in samples from CMV-seronegative and CMV-seropositive participants after stimulation with HCMV-specific peptides. The administration of three doses of mRNA-1647 to healthy adults elicited high nAb titers with wide-breadth, long-lasting memory B cells, and strong polyfunctional T-cell responses. These findings support further clinical development of the mRNA-1647 vaccine against CMV.IMPORTANCECytomegalovirus (CMV), a common virus that can infect people of all ages, may lead to serious health problems in unborn babies and those with a weakened immune system. Currently, there is no approved vaccine available to prevent CMV infection; however, the investigational messenger RNA (mRNA)-based CMV vaccine, mRNA-1647, is undergoing evaluation in clinical trials. The current analysis examined samples from a phase 1 trial of mRNA-1647 in healthy adults to better understand how the immune system reacts to vaccination. Three doses of mRNA-1647 produced a long-lasting immune response, thus supporting further investigation of the vaccine in the prevention of CMV infection.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT03382405).
Collapse
Affiliation(s)
- Kai Wu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Yixuan Jacob Hou
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Dan Makrinos
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Runxia Liu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Alex Zhu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Matthew Koch
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Wen-Han Yu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Yamuna D. Paila
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | | | - Lori Panther
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Carole Henry
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Anthony DiPiazza
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Andrea Carfi
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
33
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
34
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
35
|
Zhang M, Wang X, Li J, Peng F, Liu Z, Chen ZS. Ligands and receptors in human cytomegalovirus entry: Current therapies and new directions. Drug Discov Today 2024; 29:103833. [PMID: 37992888 DOI: 10.1016/j.drudis.2023.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
The demand for human cytomegalovirus (HCMV) vaccines was first raised by a committee convened during the 1990s. A comprehensive investigation into the mechanism of viral infection supports the prioritization of developing drugs or vaccines that specifically target receptors and ligands involved in the infection process. As primary targets for neutralizing antibodies to combat HCMV, viral ligands (trimer, pentamer, and glycoprotein B) have crucial roles and exhibit substantial antiviral potential, which could be exploited for breakthroughs in antiviral research.
Collapse
Affiliation(s)
- Min Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiaochen Wang
- Department of Medical Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, China
| | - Jianshe Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| |
Collapse
|
36
|
Gerna G, Lilleri D, Fornara C, d'Angelo P, Baldanti F. Relationship of human cytomegalovirus-infected endothelial cells and circulating leukocytes in the pathogenesis of disseminated human cytomegalovirus infection: A narrative review. Rev Med Virol 2024; 34:e2496. [PMID: 38282408 DOI: 10.1002/rmv.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/12/2023] [Accepted: 11/26/2023] [Indexed: 01/30/2024]
Abstract
Among the leucocyte subpopulations circulating in peripheral blood of immune-compromised patients with disseminated Human cytomegalovirus (HCMV) infection, polymorphonuclear leuckocytes (PMNL) and M/M may carry infectious virus. While only in PMNL early HCMV replicative events do occur, monocytes are susceptible to complete virus replication when they enter human organs, where as macrophages become a site of active complete virus replication. In vivo leucocytes and endothelial cells interact continuously, as suggested by several in vitro experimental findings showing the bidirectional HCMV transmission from leucocytes to and from endothelial cells with the critical aid of adhesion molecules. Recently, the neutralising antibody response in sera from subjects with primary HCMV infection was reported to be much higher and earlier than in human embryonic lung fibroblasts (HELF) cells when measured in endothelial cells and epithelial cells, where virus entry is mediated mostly by the pentamer complex gH/gL/pUL128/pUL130/pUL131, whereas it was much lower and delayed when determined in HELF, where virus entry is mediated mostly by the trimer complex gH/gL/gO. Thus, these results suggested that products of UL128L were the molecules primary responsible for the differential neutralising antibody response. This conclusion was confirmed by a series of polyclonal and monoclonal antibodies directed to the components of pUL128L. Very recently, based on two sets of experiments including inhibition and immunoblotting assays, the pentamer complex/trimer complex ratio has been finally identified as the main factor of the neutralising antibody response. This ratio may change with the virus suspension producer and target cell system as well as number of cell culture passages.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fornara
- Laboratory Medicine Service, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Piera d'Angelo
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
37
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
38
|
Zehner M, Alt M, Ashurov A, Goldsmith JA, Spies R, Weiler N, Lerma J, Gieselmann L, Stöhr D, Gruell H, Schultz EP, Kreer C, Schlachter L, Janicki H, Laib Sampaio K, Stegmann C, Nemetchek MD, Dähling S, Ullrich L, Dittmer U, Witzke O, Koch M, Ryckman BJ, Lotfi R, McLellan JS, Krawczyk A, Sinzger C, Klein F. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity 2023; 56:2602-2620.e10. [PMID: 37967532 DOI: 10.1016/j.immuni.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.
Collapse
Affiliation(s)
- Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Artem Ashurov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Spies
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Weiler
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Justin Lerma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Linda Schlachter
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michelle D Nemetchek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Leon Ullrich
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Ramin Lotfi
- Institute for Transfusion Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
39
|
Kyrrestad I, Larsen AK, Sánchez Romano J, Simón-Santamaría J, Li R, Sørensen KK. Infection of liver sinusoidal endothelial cells with Muromegalovirus muridbeta1 involves binding to neuropilin-1 and is dynamin-dependent. Front Cell Infect Microbiol 2023; 13:1249894. [PMID: 38029264 PMCID: PMC10665495 DOI: 10.3389/fcimb.2023.1249894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) are scavenger cells with a remarkably high capacity for clearance of several blood-borne macromolecules and nanoparticles, including some viruses. Endocytosis in LSEC is mainly via the clathrin-coated pit mediated route, which is dynamin-dependent. LSEC can also be a site of infection and latency of betaherpesvirus, but mode of virus entry into these cells has not yet been described. In this study we have investigated the role of dynamin in the early stage of muromegalovirus muridbeta1 (MuHV-1, murid betaherpesvirus 1, murine cytomegalovirus) infection in mouse LSECs. LSEC cultures were freshly prepared from C57Bl/6JRj mouse liver. We first examined dose- and time-dependent effects of two dynamin-inhibitors, dynasore and MitMAB, on cell viability, morphology, and endocytosis of model ligands via different LSEC scavenger receptors to establish a protocol for dynamin-inhibition studies in these primary cells. LSECs were challenged with MuHV-1 (MOI 0.2) ± dynamin inhibitors for 1h, then without inhibitors and virus for 11h, and nuclear expression of MuHV-1 immediate early antigen (IE1) measured by immune fluorescence. MuHV-1 efficiently infected LSECs in vitro. Infection was significantly and independently inhibited by dynasore and MitMAB, which block dynamin function via different mechanisms, suggesting that initial steps of MuHV-1 infection is dynamin-dependent in LSECs. Infection was also reduced in the presence of monensin which inhibits acidification of endosomes. Furthermore, competitive binding studies with a neuropilin-1 antibody blocked LSEC infection. This suggests that MuHV-1 infection in mouse LSECs involves virus binding to neuropilin-1 and occurs via endocytosis.
Collapse
Affiliation(s)
- Ingelin Kyrrestad
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
40
|
O'Brien BS, Mokry RL, Schumacher ML, Rosas-Rogers S, Terhune SS, Ebert AD. Neutralizing antibodies with neurotropic factor treatment maintain neurodevelopmental gene expression upon exposure to human cytomegalovirus. J Virol 2023; 97:e0069623. [PMID: 37796129 PMCID: PMC10653813 DOI: 10.1128/jvi.00696-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.
Collapse
Affiliation(s)
- Benjamin S. O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Peng R, Deng M. Mapping the protein-protein interactome in the tumor immune microenvironment. Antib Ther 2023; 6:311-321. [PMID: 38098892 PMCID: PMC10720949 DOI: 10.1093/abt/tbad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
The cell-to-cell communication primarily occurs through cell-surface and secreted proteins, which form a sophisticated network that coordinates systemic immune function. Uncovering these protein-protein interactions (PPIs) is indispensable for understanding the molecular mechanism and elucidating immune system aberrances under diseases. Traditional biological studies typically focus on a limited number of PPI pairs due to the relative low throughput of commonly used techniques. Encouragingly, classical methods have advanced, and many new systems tailored for large-scale protein-protein screening have been developed and successfully utilized. These high-throughput PPI investigation techniques have already made considerable achievements in mapping the immune cell interactome, enriching PPI databases and analysis tools, and discovering therapeutic targets for cancer and other diseases, which will definitely bring unprecedented insight into this field.
Collapse
Affiliation(s)
- Rui Peng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, PR China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, PR China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, PR China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, PR China
- Peking University Cancer Hospital and Institute, Peking University, Beijing 100142, PR China
| |
Collapse
|
42
|
Parsons AJ, Stein KR, Atanasoff KE, Ophir SI, Casado JP, Tortorella D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J Gen Virol 2023; 104:001892. [PMID: 37668349 PMCID: PMC10484303 DOI: 10.1099/jgv.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.
Collapse
Affiliation(s)
- Andrea J. Parsons
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathryn R. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina E. Atanasoff
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailene Paredes Casado
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
43
|
Bošnjak B, Henze E, Lueder Y, Do KTH, Rezalotfi A, Čuvalo B, Ritter C, Schimrock A, Willenzon S, Georgiev H, Fritz L, Galla M, Wagner K, Messerle M, Förster R. MCK2-mediated MCMV infection of macrophages and virus dissemination to the salivary gland depends on MHC class I molecules. Cell Rep 2023; 42:112597. [PMID: 37289588 DOI: 10.1016/j.celrep.2023.112597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/β-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Elisa Henze
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Berislav Čuvalo
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Christiane Ritter
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefanie Willenzon
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Lea Fritz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany; German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany.
| |
Collapse
|
44
|
Wang HY, Taher H, Kreklywich CN, Schmidt KA, Scheef EA, Barfield R, Otero CE, Valencia SM, Crooks CM, Mirza A, Woods K, Burgt NV, Kowalik TF, Barry PA, Hansen SG, Tarantal AF, Chan C, Streblow DN, Picker LJ, Kaur A, Früh K, Permar SR, Malouli D. The pentameric complex is not required for vertical transmission of cytomegalovirus in seronegative pregnant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545169. [PMID: 37398229 PMCID: PMC10312687 DOI: 10.1101/2023.06.15.545169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neonatal neurological impairment but essential virological determinants of transplacental CMV transmission remain unclear. The pentameric complex (PC), composed of five subunits, glycoproteins H (gH), gL, UL128, UL130, and UL131A, is essential for efficient entry into non-fibroblast cells in vitro . Based on this role in cell tropism, the PC is considered a possible target for CMV vaccines and immunotherapies to prevent cCMV. To determine the role of the PC in transplacental CMV transmission in a non-human primate model of cCMV, we constructed a PC-deficient rhesus CMV (RhCMV) by deleting the homologues of the HCMV PC subunits UL128 and UL130 and compared congenital transmission to PC-intact RhCMV in CD4+ T cell-depleted or immunocompetent RhCMV-seronegative, pregnant rhesus macaques (RM). Surprisingly, we found that the transplacental transmission rate was similar for PC-intact and PC-deleted RhCMV based on viral genomic DNA detection in amniotic fluid. Moreover, PC-deleted and PC-intact RhCMV acute infection led to similar peak maternal plasma viremia. However, there was less viral shedding in maternal urine and saliva and less viral dissemination in fetal tissues in the PC-deleted group. As expected, dams inoculated with PC-deleted RhCMV demonstrated lower plasma IgG binding to PC-intact RhCMV virions and soluble PC, as well as reduced neutralization of PC-dependent entry of the PC-intact RhCMV isolate UCD52 into epithelial cells. In contrast, binding to gH expressed on the cell surface and neutralization of entry into fibroblasts by the PC-intact RhCMV was higher for dams infected with PC-deleted RhCMV compared to those infected with PC-intact RhCMV. Our data demonstrates that the PC is dispensable for transplacental CMV infection in our non-human primate model. One Sentence Summary Congenital CMV transmission frequency in seronegative rhesus macaques is not affected by the deletion of the viral pentameric complex.
Collapse
|
45
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
46
|
MA F, FA C, AJ N, AA S, IA PF, LJ C, PA G. Contribution of carbohydrate-related metabolism in Herpesvirus infections. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100192. [PMID: 37273578 PMCID: PMC10238445 DOI: 10.1016/j.crmicr.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Human herpesviruses are enveloped viruses with double-stranded linear DNA genomes highly prevalent in the human population. These viruses are subdivided into three subfamilies, namely alphaherpesvirinae (herpes simplex virus type 1, HSV-1; herpes simplex virus type 2, HSV-2; and varicella-zoster virus, VZV), betaherpesvirinae (human cytomegalovirus, HCMV; human herpesvirus 6, HHV-6; and human herpesvirus 7, HHV-7) and gammaherpesvirinae (Epstein-Barr virus, EBV; and Kaposi's sarcoma-associated herpesvirus, KSHV). Besides encoding numerous molecular determinants to evade the host antiviral responses, these viruses also modulate cellular metabolic processes to promote their replication. Here, we review and discuss existing studies describing an interplay between carbohydrate metabolism and the replication cycle of herpesviruses, altogether highlighting potentially new molecular targets based on these interactions that could be used to block herpesvirus infections.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Cancino FA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Navarro AJ
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Soto AA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Pastén-Ferrada IA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Carreño LJ
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| |
Collapse
|
47
|
Dong XD, Li Y, Li Y, Sun C, Liu SX, Duan H, Cui R, Zhong Q, Mou YG, Wen L, Yang B, Zeng MS, Luo MH, Zhang H. EphA2 is a functional entry receptor for HCMV infection of glioblastoma cells. PLoS Pathog 2023; 19:e1011304. [PMID: 37146061 DOI: 10.1371/journal.ppat.1011304] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.
Collapse
Affiliation(s)
- Xiao-Dong Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Li
- MOE Key Laboratory of Tropical Disease Control, Shenzhen Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang-Xin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Run Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Gao Mou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Le Wen
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center; Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | - Bo Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Tropical Disease Control, Shenzhen Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
48
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
49
|
Bancaro N, Calì B, Troiani M, Elia AR, Arzola RA, Attanasio G, Lai P, Crespo M, Gurel B, Pereira R, Guo C, Mosole S, Brina D, D'Ambrosio M, Pasquini E, Spataro C, Zagato E, Rinaldi A, Pedotti M, Di Lascio S, Meani F, Montopoli M, Ferrari M, Gallina A, Varani L, Pereira Mestre R, Bolis M, Gillessen Sommer S, de Bono J, Calcinotto A, Alimonti A. Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell 2023; 41:602-619.e11. [PMID: 36868226 DOI: 10.1016/j.ccell.2023.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
Tumor cells promote the recruitment of immunosuppressive neutrophils, a subset of myeloid cells driving immune suppression, tumor proliferation, and treatment resistance. Physiologically, neutrophils are known to have a short half-life. Here, we report the identification of a subset of neutrophils that have upregulated expression of cellular senescence markers and persist in the tumor microenvironment. Senescent-like neutrophils express the triggering receptor expressed on myeloid cells 2 (TREM2) and are more immunosuppressive and tumor-promoting than canonical immunosuppressive neutrophils. Genetic and pharmacological elimination of senescent-like neutrophils decreases tumor progression in different mouse models of prostate cancer. Mechanistically, we have found that apolipoprotein E (APOE) secreted by prostate tumor cells binds TREM2 on neutrophils, promoting their senescence. APOE and TREM2 expression increases in prostate cancers and correlates with poor prognosis. Collectively, these results reveal an alternative mechanism of tumor immune evasion and support the development of immune senolytics targeting senescent-like neutrophils for cancer therapy.
Collapse
Affiliation(s)
- Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Angela Rita Elia
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Mateus Crespo
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Bora Gurel
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Rita Pereira
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Guo
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Clarissa Spataro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Elena Zagato
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Mattia Pedotti
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute for Research in Biomedicine (IRB), 6500 Bellinzona, Switzerland
| | - Simona Di Lascio
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Francesco Meani
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Matteo Ferrari
- Department of Urology, Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano - Civico USI - Università della Svizzera Italiana, Lugano, Switzerland
| | - Andrea Gallina
- Department of Urology, Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano - Civico USI - Università della Svizzera Italiana, Lugano, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine (IRB), 6500 Bellinzona, Switzerland
| | - Ricardo Pereira Mestre
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Computational Oncology Unit, Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Via Mario Negri 2, 20156 Milano, Italy
| | - Silke Gillessen Sommer
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Johann de Bono
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland; Institute of Oncology of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, Padova, Italy; Department of Medicine, University of Padova, Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
50
|
Zhong L, Zhang W, Krummenacher C, Chen Y, Zheng Q, Zhao Q, Zeng MS, Xia N, Zeng YX, Xu M, Zhang X. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol 2023:S0966-842X(23)00077-X. [DOI: 10.1016/j.tim.2023.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
|