1
|
Khan W, Kanwar S, Mannan MM, Kabir F, Iqbal N, Nadeem Rajab Ali M, Zia SR, Mian S, Aziz F, Muneer S, Kalam A, Hussain A, Javed I, Qazi MF, Khalid J, Nisar MI, Jehan F. Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth. RNA Biol 2025; 22:1-8. [PMID: 39804675 PMCID: PMC11730358 DOI: 10.1080/15476286.2024.2449278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the in-silico analyses. The results of this study provide insights into the role of DE ncRNAs and their impact on pregnancy-related biological pathways that could lead to PTB. Further studies are required to elucidate the precise mechanisms by which these DE ncRNAs contribute to adverse pregnancy outcomes (APOs) and their potential as diagnostic biomarkers.
Collapse
Affiliation(s)
- Waqasuddin Khan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Samiah Kanwar
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Mohammad Mohsin Mannan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Naveed Iqbal
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Mehdia Nadeem Rajab Ali
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Syeda Rehana Zia
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Sharmeen Mian
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Fatima Aziz
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Sahrish Muneer
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Adil Kalam
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Akram Hussain
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Iqra Javed
- Infectious Diseases Research Lab (IDRL), Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Farrukh Qazi
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Javairia Khalid
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Muhammad Imran Nisar
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| | - Fyezah Jehan
- Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
2
|
Zemek R, Albrecht LM, Johnston S, Leddy J, Ledoux AA, Reed N, Silverberg N, Yeates K, Lamoureux M, Anderson C, Barrowman N, Beauchamp MH, Chen K, Chintoh A, Cortel-LeBlanc A, Cortel-LeBlanc M, Corwin DJ, Cowle S, Dalton K, Dawson J, Dodd A, El Emam K, Emery C, Fox E, Fuselli P, Gagnon IJ, Giza C, Hicks S, Howell DR, Kutcher SA, Lalonde C, Mannix RC, Master CL, Mayer AR, Osmond MH, Robillard R, Schneider KJ, Tanuseputro P, Terekhov I, Webster R, Wellington CL. TRANSCENDENT (Transforming Research by Assessing Neuroinformatics across the Spectrum of Concussion by Embedding iNterdisciplinary Data-collection to Enable Novel Treatments): protocol for a prospective observational cohort study of concussion patients with embedded comparative effectiveness research within a network of learning health system concussion clinics in Canada. BMJ Open 2025; 15:e095292. [PMID: 40262965 PMCID: PMC12015710 DOI: 10.1136/bmjopen-2024-095292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
INTRODUCTION Concussion affects over 400 000 Canadians annually, with a range of causes and impacts on health-related quality of life. Research to date has disproportionately focused on athletes, military personnel and level I trauma centre patients, and may not be applicable to the broader community. The TRANSCENDENT Concussion Research Program aims to address patient- and clinician-identified research priorities, through the integration of clinical data from patients of all ages and injury mechanisms, patient-reported outcomes and objective biomarkers across factors of intersectionality. Seeking guidance from our Community Advisory Committee will ensure meaningful patient partnership and research findings that are relevant to the wider concussion community. METHODS AND ANALYSIS This prospective observational cohort study will recruit 5500 participants over 5 years from three 360 Concussion Care clinic locations across Ontario, Canada, with a subset of participants enrolling in specific objective assessments including testing of autonomic function, exercise tolerance, vision, advanced neuroimaging and fluid biomarkers. Analysis will be predicated on pre-specified research questions, and data shared with the Ontario Brain Institute's Brain-CODE database. This work will represent one of the largest concussion databases to date, and by sharing it, we will advance the field of concussion and prevent siloing within brain health research. ETHICS AND DISSEMINATION This study was approved by the Children's Hospital of Eastern Ontario Research Ethics Board and preregistered on OSF (25 June 2024); https://doi.org/10.17605/OSF.IO/HYDZC. Dissemination of findings will be multifaceted, including conference presentations, peer-reviewed publications and sharing of adapted materials (eg, videos, infographics, plain language summaries) with community groups and key knowledge users.
Collapse
Affiliation(s)
- Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisa M Albrecht
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Sharon Johnston
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, Ontario, Canada
| | - John Leddy
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nick Reed
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Noah Silverberg
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith Yeates
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Monica Lamoureux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | | | - Nicholas Barrowman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Psychology, University of Montreal, Montreal, Quebec, Canada
- Azrieli Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Kitty Chen
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Araba Chintoh
- Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Achelle Cortel-LeBlanc
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, Ontario, Canada
| | - Miguel Cortel-LeBlanc
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, Ontario, Canada
| | - Daniel J Corwin
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Kristine Dalton
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Jennifer Dawson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Andrew Dodd
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Khaled El Emam
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn Emery
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Erin Fox
- IKT/Patient Engagement, Ottawa, Ontario, Canada
| | | | - Isabelle J Gagnon
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Christopher Giza
- Pediatrics, Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, UCLA, Los Angeles, California, USA
| | - Steven Hicks
- Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - David R Howell
- University of Colorado Denver School of Medicine, Aurora, Colorado, USA
- Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Carlos Lalonde
- Homewood Health, Guelph, Ontario, Canada
- Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Rebekah C Mannix
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christina L Master
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew R Mayer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Martin H Osmond
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- Sleep Research Unit, Institute for Mental Health Research, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kathryn J Schneider
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Ivan Terekhov
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Richard Webster
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Cheryl Lea Wellington
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Sciaraffa N, Santoni D, Li Greci A, Genovese SI, Coronnello C, Arancio W. Transcripts derived from AmnSINE1 repetitive sequences are depleted in the cortex of autism spectrum disorder patients. FRONTIERS IN BIOINFORMATICS 2025; 5:1532981. [PMID: 40270680 PMCID: PMC12015672 DOI: 10.3389/fbinf.2025.1532981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Aims Autism spectrum disorder (ASD) is a brain developmental disability with a not-fully clarified etiogenesis. Current ASD research largely focuses on coding regions of the genome, but up to date much less is known about the contribution of non-coding elements to ASD risk. The non-coding genome is largely made of DNA repetitive sequences (RS). Although RS were considered slightly more than "junk DNA", today RS have a recognized role in almost every aspect of human biology, especially in developing human brain. Our aim was to test if RS transcription may play a role in ASD. Methods Global RS transcription was firstly investigated in postmortem dorsolateral prefrontal cortex of 13 ASD patients and 39 matched controls. Results were validated in independent datasets. Results AmnSINE1 was the only RS significantly downregulated in ASD specimens. The role of AmnSINE1 in ASD has been investigated at multiple levels, showing that the 1,416 genes containing AmnSINE1 are associated with nervous system development and autism susceptibility. This has been confirmed in a different experimental setting, such as in organoid models of the human cerebral cortex, harboring different ASD causative mutations. AmnSINE1 related genes are transcriptionally co-regulated and are involved not only in brain formation but can specifically be involved in ASD development. Looking for a possible direct role of AmnSINE1 non-coding transcripts in ASD, we report that AmnSINE1 transcripts may alter the miRNA regulatory landscape for genes involved in neurogenesis. Conclusion Our findings provide preliminary evidence supporting a role for AmnSINE1 in ASD development.
Collapse
Affiliation(s)
| | - Daniele Santoni
- Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council of Italy (IASI-CNR), Rome, Italy
| | - Andrea Li Greci
- Advanced Data Analysis Group, Ri. MED Foundation, Palermo, Italy
| | | | | | - Walter Arancio
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| |
Collapse
|
4
|
Jeong SJ, Lee KH, Cho JY. Comparative epigenomics to clinical trials in human breast cancer and canine mammary tumor. Anim Cells Syst (Seoul) 2025; 29:12-30. [PMID: 40115961 PMCID: PMC11924266 DOI: 10.1080/19768354.2025.2477024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Epigenetics and epigenomics are captivating fields of molecular biology, dedicated to the exploration of heritable alterations in gene expression and cellular phenotypes, which transpire devoid of any discernible modifications to the fundamental DNA sequence. This intricate regulatory apparatus encompasses multiple mechanisms, prominently featuring DNA methylation, histone modifications, and the involvement of non-coding RNA molecules in pivotal roles. To achieve a comprehensive grasp of these diverse mechanisms, it is imperative to conduct research employing animal models as proxies for human studies. Since experimental animal models like mice and rats struggle to replicate the diverse environmental conditions experienced by humans, this review focuses on comparing common epigenetic alterations in naturally occurring tumors in canine models, which share the human environment, with those in humans. Through this, we emphasize the importance of an epigenetic regulation in the comparative medical approach to a deeper understanding of cancers and further development of cancer treatments. Additionally, we elucidate epigenetic modifications pertinent to specific developmental stages, the ageing process, and the progression of various diseases.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Xu P, Xiao Y, Xiao Z, Li J. Developing a genome-wide long sequence-specific tag for sex identification in spotted knifejaw (Oplegnathus punctatus). Mol Genet Genomics 2025; 300:32. [PMID: 40106105 DOI: 10.1007/s00438-025-02240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Spotted knifejaw (Oplegnathus punctatus), an economically important species in marine aquaculture, employs a unique sex determination mechanism based on a complex sex chromosome system (X1X1X2X2/X1X2Y). Males (2n = 47) possess one fewer chromosome than females (2n = 48), and their karyotype includes an unusually large neo-Y chromosome. Additionally, a pronounced sexual dimorphism in growth rate is observed, with males exhibiting a faster growth rate than females. In this study, we conducted a comprehensive whole-genome scan, which initially revealed structural variations in the anti-inflammatory itih4 gene between male and female O. punctatus. Additionally, we designed a pair of primers to detect DNA sequence variations within the itih4a/itih4b gene. These variations are located in the intergenic region of the fusion Y chromosome in male O. punctatus, compared to the homologous X chromosome in females. In females without DNA insertions in the itih4a/itih4b intergenic region, a single band of 351 bp is amplified. By contrast, in males with DNA insertions, two bands are amplified (755 bp and 351 bp). The 755 bp band specifically indicates the presence of a DNA insertion in the itih4a/itih4b intergenic region on the Y chromosome, associated with male-specific genetic traits. Our study will facilitate the rapid identification of the genetic sex of both male and female O. punctatus individuals.
Collapse
Affiliation(s)
- Pingrui Xu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
6
|
Hu W, Yue Y, Yan R, Guan L, Li M. An ensemble deep learning framework for multi-class LncRNA subcellular localization with innovative encoding strategy. BMC Biol 2025; 23:47. [PMID: 39984880 PMCID: PMC11846348 DOI: 10.1186/s12915-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Long non-coding RNA (LncRNA) play pivotal roles in various cellular processes, and elucidating their subcellular localization can offer crucial insights into their functional significance. Accurate prediction of lncRNA subcellular localization is of paramount importance. Despite numerous computational methods developed for this purpose, existing approaches still encounter challenges stemming from the complexity of data representation and the difficulty in capturing nucleotide distribution information within sequences. RESULTS In this study, we propose a novel deep learning-based model, termed MGBLncLoc, which incorporates a unique multi-class encoding technique known as generalized encoding based on the Distribution Density of Multi-Class Nucleotide Groups (MCD-ND). This encoding approach enables more precise reflection of nucleotide distributions, distinguishing between constant and discriminative regions within sequences, thereby enhancing prediction performance. Additionally, our deep learning model integrates advanced neural network modules, including Multi-Dconv Head Transposed Attention, Gated-Dconv Feed-forward Network, Convolutional Neural Network, and Bidirectional Gated Recurrent Unit, to comprehensively exploit sequence features of lncRNA. CONCLUSIONS Comparative analysis against commonly used sequence feature encoding methods and existing prediction models validates the effectiveness of MGBLncLoc, demonstrating superior performance. This research offers novel insights and effective solutions for predicting lncRNA subcellular localization, thereby providing valuable support for related biological investigations.
Collapse
Affiliation(s)
- Wenxing Hu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Yan Yue
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Ruomei Yan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
7
|
de Oliveira JCC, Barbosa EDS, Silva NB, Silva TDC, Matos AGDM, Pinho JD. Non-coding rnas in Turner syndrome: a systematic review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 43:e2024029. [PMID: 39630788 PMCID: PMC11606598 DOI: 10.1590/1984-0462/2025/43/2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/24/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The aim of this study was to summarize the main findings of non-coding RNA (ncRNAs) in Turner syndrome (TS), correlating these biomolecules with the clinical manifestations in affected patients. DATA SOURCE Searches were conducted in the databases of the United States National Library of Medicine (PubMed), Scientific Electronic Library Online (SciELO), and ScienceDirect, covering original English articles published from 2014 to 2023. Descriptors used included "lncRNAs and Turner Syndrome," "miRNAs and Turner Syndrome," and "circRNAs and Turner Syndrome." The studies that were included addressed the role of ncRNAs in the clinical characteristics of patients with TS. Exclusion criteria comprised texts in abstracts, reports, reviews, and monographs. DATA SYNTHESIS We identified 147 studies, of which seven were included. In the analysis of microRNAs, miR-486-5p and miR-320a stood out, being associated with ovarian development; miR-126-3p and miR-126-5p were related to greater aortic stiffness. Regarding long non-coding RNAs, the downregulation of XIST indicated dysfunctions in X chromosome inactivation. Concerning circular RNAs, circPPP2R3B, circCSF2RA, and circPCTN were related to immunological functions, while circ_0090421, circ_0090392, and circ_0089945 were linked to cardiac development. CONCLUSIONS The data from these studies demonstrate that these biomolecules play crucial roles in processes related to specific characteristics observed in TS patients. Besides being suggested as potential biomarkers, they may be useful in clinical practice.
Collapse
|
8
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
9
|
Zhao J, Pu X, Wang X, Zhang L. Altered expression of long noncoding RNAs regulating neutrophilic inflammation in peripheral blood was associated with symptom severity in patients with house dust mite-induced allergic rhinitis. FRONTIERS IN ALLERGY 2024; 5:1466480. [PMID: 39525400 PMCID: PMC11543571 DOI: 10.3389/falgy.2024.1466480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been implicated in a diverse array of human immune diseases; however, a comprehensive understanding of the expression and function of lncRNAs in the peripheral blood leukocytes of individuals suffering from house dust mite (HDM)-induced allergic rhinitis (AR) remains elusive. Objective To explore the potential roles and functions of long noncoding RNAs (lncRNAs) in the pathogenesis of AR. Methods Sequencing analysis was performed on peripheral blood leukocytes collected from patients with HDM-induced AR and healthy controls (HCs) to elucidate the expression patterns of lncRNAs. Differentially expressed (DE) lncRNAs were identified and validated, and further correlation analyses were conducted to explore their associations with visual analog scale (VAS) scores and cytokine levels in the serum and nasal secretions. Additionally, bioinformatics analyses were performed to predict the potential pathways influenced by DE lncRNAs. Finally, the diagnostic potential of these lncRNAs in AR was assessed via receiver operating characteristic (ROC) curve analysis. Results Significant differences in the expression profiles of lncRNAs and mRNAs were detected between AR patients and HCs. Four lncRNAs were markedly upregulated in AR patients. AC011524.2 was positively correlated with nasal pruritus (r = 0.4492, P = 0.0411). AL133371.3 was positively correlated with runny nose (r = 0.4889, P = 0.0245). AC011524.2 was positively correlated with CXCL8 (r = 0.4504, P = 0.0035). AL133371.3 was significantly positively correlated with only IL-17 (r = 0.4028, P = 0.0100). IL-4 in the serum was positively related to IL-17 in the serum (r = 0.4163, P = 0.0002). CXCL5 in the serum was positively correlated with IFN-γ (r = 0.3336, P = 0.0354) in nasal secretions. The area under the curve (AUC) of the ROC curve resulting from the integration of the 4 lncRNAs exhibited a remarkable value of 0.940 for AR diagnosis. Conclusions Our results identified several lncRNAs associated with AR symptoms and inflammatory cytokines. Specifically, AC011524.2 and AL133371.3 exhibited strong correlations with diverse AR manifestations and serum cytokines, suggesting their pivotal role in the pathogenesis of AR, likely via neutrophil- and Th17-related pathways. However, the precise underlying mechanisms are still elusive, necessitating further exploration.
Collapse
Affiliation(s)
- Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiaoyu Pu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Diao B, Luo J, Guo Y. A comprehensive survey on deep learning-based identification and predicting the interaction mechanism of long non-coding RNAs. Brief Funct Genomics 2024; 23:314-324. [PMID: 38576205 DOI: 10.1093/bfgp/elae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) have been discovered to be extensively involved in eukaryotic epigenetic, transcriptional, and post-transcriptional regulatory processes with the advancements in sequencing technology and genomics research. Therefore, they play crucial roles in the body's normal physiology and various disease outcomes. Presently, numerous unknown lncRNA sequencing data require exploration. Establishing deep learning-based prediction models for lncRNAs provides valuable insights for researchers, substantially reducing time and costs associated with trial and error and facilitating the disease-relevant lncRNA identification for prognosis analysis and targeted drug development as the era of artificial intelligence progresses. However, most lncRNA-related researchers lack awareness of the latest advancements in deep learning models and model selection and application in functional research on lncRNAs. Thus, we elucidate the concept of deep learning models, explore several prevalent deep learning algorithms and their data preferences, conduct a comprehensive review of recent literature studies with exemplary predictive performance over the past 5 years in conjunction with diverse prediction functions, critically analyze and discuss the merits and limitations of current deep learning models and solutions, while also proposing prospects based on cutting-edge advancements in lncRNA research.
Collapse
Affiliation(s)
- Biyu Diao
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| | - Jin Luo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| | - Yu Guo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| |
Collapse
|
11
|
Coban I, Lamping JP, Hirsch AG, Wasilewski S, Shomroni O, Giesbrecht O, Salinas G, Krebber H. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024; 631:432-438. [PMID: 38898279 PMCID: PMC11236707 DOI: 10.1038/s41586-024-07576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.
Collapse
Affiliation(s)
- Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Sarah Wasilewski
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Giesbrecht
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
13
|
Yang T, Qi F, Guo F, Shao M, Song Y, Ren G, Linlin Z, Qin G, Zhao Y. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med 2024; 30:71. [PMID: 38797859 PMCID: PMC11128119 DOI: 10.1186/s10020-024-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Qi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Lee J, Hong I, Lee C, Kim D, Kim S, Lee Y. SNPs in microRNA seed region and impact of miR-375 in concurrent regulation of multiple lipid accumulation-related genes. Sci Rep 2024; 14:10924. [PMID: 38740866 PMCID: PMC11091151 DOI: 10.1038/s41598-024-61673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.
Collapse
Affiliation(s)
- Jiyeon Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Inpyo Hong
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Chanwoo Lee
- Nuonbio Inc., 906, A, 302 Galmachi-ro, Jungwon-gu, Seongnam-si, South Korea
| | - Daehyun Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea
| | - Sunghak Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea.
| | - Yoonseok Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
- Center for Genetic Information, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
| |
Collapse
|
15
|
Li J, Dhilipkannah P, Holden VK, Sachdeva A, Jiang F. Red Blood Cell-Derived Exosomal Oncogenic MicroRNA Promote Cancer Development and Progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.10.24307177. [PMID: 38766218 PMCID: PMC11100945 DOI: 10.1101/2024.05.10.24307177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The role of red blood cells (RBCs) in tumorigenesis is poorly understood. We previously identified RBC-microRNAs with aberrations linked to lung cancer, including miR-93-5p. Here we find that miR-93-5p levels are elevated in RBC-derived exosomes among lung cancer patients and are associated with their shorter survivals. RBC-derived miR-93-5p transfers to cancer cells primarily through the exosomal pathway. The transferred RBC-miR-93-5p can target PTEN in cancer cells, and hence increase cell proliferation, invasion, and migration. RBC-derived miR-93-5p accelerates, whereas targeting miR-93-5p diminishes tumor growth in xenograft models. These findings reveal a novel biological function of RBCs in tumorigenesis, where they facilitate cancer progression by transferring the oncomiR via exosomes, thereby offering new diagnostic and treatment strategies for lung cancer.
Collapse
|
16
|
Zhang M, Zhang F, Wang J, Liang Q, Zhou W, Liu J. Comprehensive characterization of stemness-related lncRNAs in triple-negative breast cancer identified a novel prognostic signature related to treatment outcomes, immune landscape analysis and therapeutic guidance: a silico analysis with in vivo experiments. J Transl Med 2024; 22:423. [PMID: 38704606 PMCID: PMC11070106 DOI: 10.1186/s12967-024-05237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.
Collapse
Affiliation(s)
- Min Zhang
- Xiangya Hospital, Central South University, Changsha, 41000, Hunan, People's Republic of China
| | - Fangxu Zhang
- Department of General Surgery, The Fourth People's Hospital of Jinan, Jinan, 250000, Shandong, People's Republic of China
| | - Jianfeng Wang
- Department of Gastrointestinal Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264000, Shandong, People's Republic of China
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weibing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 41000, Hunan, People's Republic of China
| | - Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
17
|
Tao S, Cao P, Jin M, Suo P, Chen Y, Li Y. Integrated analysis of long non-coding RNAs and mRNAs associated with condyloma acuminatum. J Dermatol 2024; 51:671-683. [PMID: 38421728 DOI: 10.1111/1346-8138.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Condyloma acuminatum (CA) is a prevalent sexually transmitted disease caused by low-risk human papillomavirus infection, characterized by high transmission and recurrence rates. Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene transcription and are involved in various biological processes. Although recent studies have demonstrated the involvement of lncRNAs in cervical cancer, their expression profile and function in CA remain poorly understood. In this study, we aimed to identify messenger RNA (mRNA) and lncRNA expression patterns in CA using high-throughput lncRNA sequencing. We found that 3033 differentially expressed genes (DEGs) and 1090 differentially expressed lncRNAs (DELs) were significantly altered in CA compared to healthy controls. The results from quantitative reverse transcription polymerase chain reaction and immunohistochemical staining are in accordance with the observed trends in the sequencing data. Functional enrichment analysis revealed that upregulated DEGs in CA were involved in biological processes such as virus response, immune response, cell cycle regulation, the tumor necrosis factor signaling pathway, and the P53 signaling pathway. Co-expression network analysis identified potential target genes of DELs, with enrichment in biological processes such as cell differentiation, the intrinsic apoptotic signaling pathway, and pathways such as virus infection, pathways in cancer, T helper 17 cell differentiation, the mitogen-activated protein kinase signaling pathway, and the Wnt signaling pathway. Collectively, our findings indicate significant changes in the transcriptome profile, including mRNAs and lncRNAs, in CA compared to healthy controls. Our study provides new insights into the potential functions of lncRNAs in the pathogenesis of CA and identifies potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Sizheng Tao
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ping Cao
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mei Jin
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Peiyan Suo
- Department of Plastic Surgery, Kunming Angel Women and Children's Hospital, Kunming, Yunnan, China
| | - Yuan Chen
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Ouyang D, Liang Y, Wang J, Li L, Ai N, Feng J, Lu S, Liao S, Liu X, Xie S. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. PLoS Comput Biol 2024; 20:e1011927. [PMID: 38652712 PMCID: PMC11037542 DOI: 10.1371/journal.pcbi.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usually leads to the occurrence and development of human diseases. Identifying disease-related miRNAs contributes to studying the pathogenesis of diseases at the molecular level. As traditional biological experiments are time-consuming and expensive, computational methods have been used as an effective complement to infer the potential associations between miRNAs and diseases. However, most of the existing computational methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient representation learning ability; (iii) importance learning and integration of multi-view embedding representation. To this end, we developed a HyperGraph Contrastive Learning with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLAMIR) model to discover potential miRNA-disease associations. First, hypergraph convolutional network (HGCN) was utilized to capture high-order complex relations from hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive learning to improve and enhance the embedded representation learning ability of HGCN. Moreover, we introduced view-aware attention mechanism to adaptively weight the embedded representations of different views, thereby obtaining the importance of multi-view latent representations. Next, we innovatively proposed integrated representation learning to integrate the embedded representation information of multiple views for obtaining more reasonable embedding information. Finally, the integrated representation information was fed into a neural network-based matrix completion method to perform miRNA-disease association prediction. Experimental results on the cross-validation set and independent test set indicated that HGCLAMIR can achieve better prediction performance than other baseline models. Furthermore, the results of case studies and enrichment analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential associations had biological significance.
Collapse
Affiliation(s)
- Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- Pazhou Laboratory (Huangpu), Guangzhou, China
| | - Jinfeng Wang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Le Li
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Ning Ai
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Junning Feng
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shanghui Lu
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
| |
Collapse
|
19
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
20
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
21
|
Chen Y, Mateski J, Gerace L, Wheeler J, Burl J, Prakash B, Svedin C, Amrick R, Adams BD. Non-coding RNAs and neuroinflammation: implications for neurological disorders. Exp Biol Med (Maywood) 2024; 249:10120. [PMID: 38463392 PMCID: PMC10911137 DOI: 10.3389/ebm.2024.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.
Collapse
Affiliation(s)
- Yvonne Chen
- Department of Biology, Brandeis University, Waltham, MA, United States
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| | - Julia Mateski
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biological Sciences, Gustavus Adolphus College, St. Peter, MN, United States
| | - Linda Gerace
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Missouri State University, Springfield, MO, United States
| | - Jonathan Wheeler
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Electrical and Computer Engineering Tech, New York Institute of Tech, Old Westbury, NY, United States
| | - Jan Burl
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Southern New Hampshire University, Manchester, NH, United States
| | - Bhavna Prakash
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Medicine, Tufts Medical Center, Medford, MA, United States
| | - Cherie Svedin
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biology, Utah Tech University, St. George, UT, United States
| | - Rebecca Amrick
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Villanova University, Villanova, PA, United States
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| |
Collapse
|
22
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Elkahwagy DM, Kiriacos CJ, Sobeih ME, Khorshid OMR, Mansour M. The lncRNAs Gas5, MALAT1 and SNHG8 as diagnostic biomarkers for epithelial malignant pleural mesothelioma in Egyptian patients. Sci Rep 2024; 14:4823. [PMID: 38413635 PMCID: PMC10899637 DOI: 10.1038/s41598-024-55083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Long noncoding RNAs have been shown to be involved in a myriad of physiological and pathological pathways. To date, malignant pleural mesothelioma (MPM) is considered an extremely aggressive cancer. One reason for this is the late diagnosis of the disease, which can occur within 30-40 years of asbestos exposure. There is an immense need for the development of new, sensitive, inexpensive and easy methods for the early detection of this disease other than invasive methods such as biopsy. The aim of this study was to determine the expression of circulating lncRNAs in mesothelioma patient plasma to identify potential biomarkers. Ten previously identified lncRNAs that were shown to be aberrantly expressed in mesothelioma tissues were selected as candidates for subsequent validation. The expression of the ten selected candidate lncRNAs was verified via quantitative PCR (qPCR) in human plasma samples from mesothelioma patients versus healthy controls. The expression levels of circulating GAS5, SNHG8 and MALAT1 were significantly greater in plasma samples from patients than in those from controls. The ROC analysis of both MALAT1 and SNHG8 revealed 88.89% sensitivity and 66.67% specificity. The sensitivity of these markers was greater than that of GAS5 (sensitivity 72.22% and specificity 66.67%). The regression model for GAS5 was statistically significant, while that for SNHG8 and MALAT1 was not significant due to the small sample size. The area under the curve (AUC) of the three ROC curves was acceptable and significant: 0.7519 for GAS5, 0.7352 for SNHG8 and 0.7185 for MALAT1. This finding confirmed their ability to be used as markers. The three lncRNAs were not affected by age, sex or smoking status. The three lncRNAs showed great potential as independent predictive diagnostic biomarkers. Although the prediction model for MALAT1 did not significantly differ, MALAT1 was significantly expressed in patients more than in controls (p = 0.0266), and the recorded sensitivity and specificity were greater than those of GAS5.
Collapse
Affiliation(s)
- Dina Mohamed Elkahwagy
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Caroline Joseph Kiriacos
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed Emam Sobeih
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Ola M Reda Khorshid
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Manar Mansour
- Pharmaceutical Biology and Microbiology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
24
|
Yan J, Qu W, Li X, Wang R, Tan J. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction. Comput Biol Chem 2024; 108:108000. [PMID: 38070456 DOI: 10.1016/j.compbiolchem.2023.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
Non-coding RNA (ncRNA) plays an important role in many fundamental biological processes, and it may be closely associated with many complex human diseases. NcRNAs exert their functions by interacting with proteins. Therefore, identifying novel ncRNA-protein interactions (NPIs) is important for understanding the mechanism of ncRNAs role. The computational approach has the advantage of low cost and high efficiency. Machine learning and deep learning have achieved great success by making full use of sequence information and structure information. Graph neural network (GNN) is a deep learning algorithm for complex network link prediction, which can extract and discover features in graph topology data. In this study, we propose a new computational model called GATLGEMF. We used a line graph transformation strategy to obtain the most valuable feature information and input this feature information into the attention network to predict NPIs. The results on four benchmark datasets show that our method achieves superior performance. We further compare GATLGEMF with the state-of-the-art existing methods to evaluate the model performance. GATLGEMF shows the best performance with the area under curve (AUC) of 92.41% and 98.93% on RPI2241 and NPInter v2.0 datasets, respectively. In addition, a case study shows that GATLGEMF has the ability to predict new interactions based on known interactions. The source code is available at https://github.com/JianjunTan-Beijing/GATLGEMF.
Collapse
Affiliation(s)
- Jing Yan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Wenyan Qu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Xiaoyi Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Ruobing Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
| |
Collapse
|
25
|
Rahbar Farzam O, Najafi S, Amini M, Rahimi Z, Dabbaghipour R, Zohdi O, Asemani Shahgoli G, Baradaran B, Akbari B. Interplay of miRNAs and lncRNAs in STAT3 signaling pathway in colorectal cancer progression. Cancer Cell Int 2024; 24:16. [PMID: 38185635 PMCID: PMC10771635 DOI: 10.1186/s12935-023-03202-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024] Open
Abstract
In recent decades, colorectal cancer (CRC) has turned into one of the most widespread malignancies, and the incidence of this malignancy is expected to increase. Despite considerable improvements in therapeutic approaches, the prognosis, and the management of CRC face many problems. Likely, the main limitation in the successful treatment of CRC is the lack of appropriate clinical therapeutic targets. As an effective target, the signal transducer and activator of transcription 3 (STAT3) are regulated by a wide range of genes and involved in cellular processes, including cell growth, migration, invasion, immunosuppression, and angiogenesis. Aberrant regulation of STAT3 signaling leads to cellular dysfunction, diseases, and malignancies, including CRC. Consequently, targeting this signaling pathway is considered one of the therapeutic strategies used in CRC treatment. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA molecules with partial or no protein-coding activity that participate in gene regulation at epigenetic, transcriptional, and post-transcriptional levels and regulate multiple signaling pathways, including STAT3 signaling (especially JAK/STAT). Therefore, these regulatory molecules are suggested to be very promising targets to present new insights into overcoming the limitations of conventional therapeutic strategies. Therefore, the current review study aimed to summarize the therapeutic and diagnostic significance of miRNAs and lncRNAs and their therapeutic and diagnostic significance related to the expression and activity of STAT3 in CRC.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Daneshgah Avenue, Kermanshah, Iran
- Medical Biology Research Center, Daneshgah Avenue, Kermanshah, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Zohdi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Li K, Qi L, Tang G, Xu H, Li Z, Fan B, Li Z, Li Y. Epigenetic Regulation in Urothelial Carcinoma. Curr Mol Med 2024; 24:85-97. [PMID: 36545729 DOI: 10.2174/1566524023666221221094432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Urothelial carcinoma (UC) is a common malignancy that remains a clinical challenge: Non-muscle-invasive urothelial carcinoma (NMIUC) has a high rate of recurrence and risk of progression, while muscle-invasive urothelial carcinoma (MIUC) has a high mortality. Although some new treatments, such as immunotherapies, have shown potential effects on some patients, most cases of advanced UC remain incurable. While treatments based on epigenetic mechanisms, whether combined with traditional platinum-based chemotherapy or emerging immunotherapy, show therapeutic advantages. With the advancement of sequencing and bioinformatics, the study of epigenomics, containing DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA, is increasingly linked with the occurrence and progression of UC. Since the epigenetics of UC is a constantly developing field of medicine, this review aims to summarize the latest research on epigenetic regulation of UC, generalize the mechanism of epigenetics in UC, and reveal the potential epigenetic therapies in the clinical setting, in order to provide some new clues on the discovery of new drugs based on the epigenetics.
Collapse
Affiliation(s)
- Ke Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhongbei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Dabi Y, Suisse S, Marie Y, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Forlani S, Bouteiller D, Touboul C, Puchar A, Bendifallah S, Daraï E. New class of RNA biomarker for endometriosis diagnosis: The potential of salivary piRNA expression. Eur J Obstet Gynecol Reprod Biol 2023; 291:88-95. [PMID: 37857147 DOI: 10.1016/j.ejogrb.2023.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES In contrast to miRNA expression, little attention has been given to piwiRNA (piRNA) expression among endometriosis patients. The aim of the present study was to explore the human piRNAome and to investigate a potential piRNA saliva-based diagnostic signature for endometriosis. METHODS Data from the prospective "ENDOmiRNA" study (ClinicalTrials.gov Identifier: NCT04728152) were used. Saliva samples from 200 patients were analyzed in order to evaluate human piRNA expression using the piRNA bank. Next Generation Sequencing (NGS), barcoding of unique molecular identifiers and both Artificial Intelligence (AI) and machine learning (ML) were used. For each piRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. RESULTS 201 piRNAs were identified, none had an AUC ≥ 0.70, and only three piRNAs (piR-004153, piR001918, piR-020401) had an AUC between ≥ 0.6 and < 0.70. Seven were differentially expressed: piR-004153, piR-001918, piR-020401, piR-012864, piR-017716, piR-020326 and piR-016904. The respective correlation and accuracy to diagnose endometriosis according to the F1-score, sensitivity, specificity, and AUC ranged from 0 to 0.862 %, 0-0.961 %, 0.085-1, and 0.425-0.618. A correlation was observed between the patients' age (≥35 years) and piR-004153 (p = 0.002) and piR-017716 (p = 0.030). Among the 201 piRNAs, four were differentially expressed in patients with and without hormonal treatment: piR-004153 (p = 0.015), piR-020401 (p = 0.001), piR-012864 (p = 0.036) and piR-017716 (p = 0.009). CONCLUSION Our results support the link between piRNAs and endometriosis physiopathology and establish its utility as a potential diagnostic biomarker using saliva samples. Per se, piRNA expression should be analyzed along with the clinical status of a patient.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France.
| | | | - Yannick Marie
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France
| | - Léa Delbos
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Mathieu Poilblanc
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Philippe Descamps
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Francois Golfier
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| |
Collapse
|
29
|
Arjmand F, Shojaei S, Khalili M, Dinmohammadi H, Poopak B, Mohammadi-Yeganeh S, Mortazavi Y. Integrating rapamycin with novel PI3K/Akt/mTOR inhibitor microRNAs on NOTCH1-driven T-cell acute lymphoblastic leukemia (T-ALL). BIOIMPACTS : BI 2023; 14:28870. [PMID: 39104620 PMCID: PMC11298021 DOI: 10.34172/bi.2023.28870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 08/07/2024]
Abstract
Introduction The PI3K/AKT/mTOR signaling pathway plays a significant role in the development of T-cell acute lymphoblastic leukemia (T-ALL). Rapamycin is a potential therapeutic strategy for hematological malignancies due to its ability to suppress mTOR activity. Additionally, microRNAs (miRNAs) have emerged as key regulators in T-ALL pathophysiology and treatment. This study aimed to investigate the combined effects of rapamycin and miRNAs in inhibiting the PI3K/AKT/mTOR pathway in T-ALL cells. Methods Bioinformatic algorithms were used to find miRNAs that inhibit the PI3K/AKT/mTOR pathway. Twenty-five bone marrow samples were collected from T-ALL patients, alongside five control bone marrow samples from non-leukemia patients. The Jurkat cell line was chosen as a representative model for T-ALL. Gene and miRNA expression levels were assessed using quantitative real-time PCR (qRT-PCR). Two miRNAs exhibiting down-regulation in both clinical samples and Jurkat cells were transfected to the Jurkat cell line to investigate their impact on target gene expression. Furthermore, in order to evaluate the potential of combination therapy involving miRNAs and rapamycin, apoptosis and cell cycle assays were carried out. Results Six miRNAs (miR-3143, miR-3182, miR-99a/100, miR-155, miR-576-5p, and miR-501- 3p) were predicted as inhibitors of PI3K/AKT/mTOR pathway. The expression analysis of both clinical samples and the Jurkat cell line revealed a simultaneous downregulation of miR-3143 and miR-3182. Transfection investigation demonstrated that the exogenous overexpression of miR-3143 and miR-3182 can effectively inhibit PI3K/AKT/mTOR signaling in the Jurkat cell line. Moreover, when used as a dual inhibitor along with rapamycin, miR-3143 and miR-3182 significantly increased apoptosis and caused cell cycle arrest in the Jurkat cell line. Conclusion These preliminary results highlight the potential for improving T-ALL treatment through multi-targeted therapeutic strategies involving rapamycin and miR-3143/miR-3182.
Collapse
Affiliation(s)
- Fateme Arjmand
- Department of Medical Genetics and Molecular medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Shojaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Khalili
- Department of Medical Genetics and Molecular medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Dinmohammadi
- Department of Medical Genetics and Molecular medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behzad Poopak
- DCLS PhD. Associate Professor of Hematology Owner & Lab. Director Payvand Clinical & Specialty Laboratory, CEO Amir Payvand Research & Development Co
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mortazavi
- Cancer Gene Therapy Research center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
30
|
Alinejad T, Modarressi S, Sadri Z, Hao Z, Chen CS. Diagnostic applications and therapeutic option of Cascade CRISPR/Cas in the modulation of miRNA in diverse cancers: promises and obstacles. J Cancer Res Clin Oncol 2023; 149:9557-9575. [PMID: 37222810 PMCID: PMC10423114 DOI: 10.1007/s00432-023-04747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology is a molecular tool specific to sequences for engineering genomes. Among diverse clusters of Cas proteins, the class 2/type II CRISPR/Cas9 system, despite several challenges, such as off-target effects, editing efficiency, and efficient delivery, has shown great promise for driver gene mutation discovery, high-throughput gene screening, epigenetic modulation, nucleic acid detection, disease modeling, and more importantly for therapeutic purposes. CRISPR-based clinical and experimental methods have applications across a wide range of areas, especially for cancer research and, possibly, anticancer therapy. On the other hand, given the influential role of microRNAs (miRNAs) in the regulations of cellular division, carcinogenicity, tumorigenesis, migration/invasion, and angiogenesis in diverse normal and pathogenic cellular processes, in different stages of cancer, miRNAs are either oncogenes or tumor suppressors, according to what type of cancer they are involved in. Hence, these noncoding RNA molecules are conceivable biomarkers for diagnosis and therapeutic targets. Moreover, they are suggested to be adequate predictors for cancer prediction. Conclusive evidence proves that CRISPR/Cas system can be applied to target small non-coding RNAs. However, the majority of studies have highlighted the application of the CRISPR/Cas system for targeting protein-coding regions. In this review, we specifically discuss diverse applications of CRISPR-based tools for probing miRNA gene function and miRNA-based therapeutic involvement in different types of cancers.
Collapse
Affiliation(s)
- Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Shabnam Modarressi
- Department of Food Microbiology, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C. Copenhagen, Denmark
| | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX USA
| | - Zuo Hao
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| | - Cheng Shui Chen
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325015 Zhejiang People’s Republic of China
| |
Collapse
|
31
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Dunkel H, Wehrmann H, Jensen LR, Kuss AW, Simm S. MncR: Late Integration Machine Learning Model for Classification of ncRNA Classes Using Sequence and Structural Encoding. Int J Mol Sci 2023; 24:8884. [PMID: 37240230 PMCID: PMC10218863 DOI: 10.3390/ijms24108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-coding RNA (ncRNA) classes take over important housekeeping and regulatory functions and are quite heterogeneous in terms of length, sequence conservation and secondary structure. High-throughput sequencing reveals that the expressed novel ncRNAs and their classification are important to understand cell regulation and identify potential diagnostic and therapeutic biomarkers. To improve the classification of ncRNAs, we investigated different approaches of utilizing primary sequences and secondary structures as well as the late integration of both using machine learning models, including different neural network architectures. As input, we used the newest version of RNAcentral, focusing on six ncRNA classes, including lncRNA, rRNA, tRNA, miRNA, snRNA and snoRNA. The late integration of graph-encoded structural features and primary sequences in our MncR classifier achieved an overall accuracy of >97%, which could not be increased by more fine-grained subclassification. In comparison to the actual best-performing tool ncRDense, we had a minimal increase of 0.5% in all four overlapping ncRNA classes on a similar test set of sequences. In summary, MncR is not only more accurate than current ncRNA prediction tools but also allows the prediction of long ncRNA classes (lncRNAs, certain rRNAs) up to 12.000 nts and is trained on a more diverse ncRNA dataset retrieved from RNAcentral.
Collapse
Affiliation(s)
- Heiko Dunkel
- Institute of Bioinformatics, University Medicine Greifswald, Walther-Rathenau Str. 48, 17489 Greifswald, Germany
| | - Henning Wehrmann
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt am Main, Germany
| | - Lars R. Jensen
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Andreas W. Kuss
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Walther-Rathenau Str. 48, 17489 Greifswald, Germany
| |
Collapse
|
34
|
Stentenbach M, Ermer JA, Rudler DL, Perks KL, Raven SA, Lee RG, McCubbin T, Marcellin E, Siira SJ, Rackham O, Filipovska A. Multi-omic profiling reveals an RNA processing rheostat that predisposes to prostate cancer. EMBO Mol Med 2023:e17463. [PMID: 37093546 DOI: 10.15252/emmm.202317463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy and the third leading cause of cancer deaths. GWAS have identified variants associated with prostate cancer susceptibility; however, mechanistic and functional validation of these mutations is lacking. We used CRISPR-Cas9 genome editing to introduce a missense variant identified in the ELAC2 gene, which encodes a dually localised nuclear and mitochondrial RNA processing enzyme, into the mouse Elac2 gene as well as to generate a prostate-specific knockout of Elac2. These mutations caused enlargement and inflammation of the prostate and nodule formation. The Elac2 variant or knockout mice on the background of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model show that Elac2 mutation with a secondary genetic insult exacerbated the onset and progression of prostate cancer. Multiomic profiling revealed defects in energy metabolism that activated proinflammatory and tumorigenic pathways as a consequence of impaired noncoding RNA processing and reduced protein synthesis. Our physiologically relevant models show that the ELAC2 variant is a predisposing factor for prostate cancer and identify changes that underlie the pathogenesis of this cancer.
Collapse
Affiliation(s)
- Maike Stentenbach
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Kara L Perks
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Samuel A Raven
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
35
|
Aprile M, Costa V, Cimmino A, Calin GA. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int J Cancer 2023; 152:822-834. [PMID: 36082440 DOI: 10.1002/ijc.34282] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The view of long noncoding RNAs as nonfunctional "garbage" has been definitely outdated by the large body of evidence indicating this class of ncRNAs as "golden junk", especially in precision oncology. Indeed, in light of their oncogenic role and the higher expression in multiple cancer types compared with paired adjacent tissues, the clinical interest for lncRNAs as diagnostic and/or prognostic biomarkers has been rapidly increasing. The emergence of large-scale sequencing technologies, their subsequent diffusion even in small research and clinical centers, the technological advances for the detection of low-copy lncRNAs in body fluids, coupled to the huge reduction of operating costs, have nowadays made possible to rapidly and comprehensively profile them in multiple tumors and large cohorts. In this review, we first summarize some relevant data about the oncogenic role of well-studied lncRNAs having a clinical relevance. Then, we focus on the description of their potential use as diagnostic/prognostic biomarkers, including an updated overview about licensed patents or clinical trials on lncRNAs in oncology.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - George Adrian Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Bueno-Urquiza LJ, Martínez-Barajas MG, Villegas-Mercado CE, García-Bernal JR, Pereira-Suárez AL, Aguilar-Medina M, Bermúdez M. The Two Faces of Immune-Related lncRNAs in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:cells12050727. [PMID: 36899863 PMCID: PMC10000590 DOI: 10.3390/cells12050727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 03/02/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a group of cancers originating from the mucosal epithelium in the oral cavity, larynx, oropharynx, nasopharynx, and hypopharynx. Molecular factors can be key in the diagnosis, prognosis, and treatment of HNSCC patients. Long non-coding RNAs (lncRNAs) are molecular regulators composed of 200 to 100,000 nucleotides that act on the modulation of genes that activate signaling pathways associated with oncogenic processes such as proliferation, migration, invasion, and metastasis in tumor cells. However, up until now, few studies have discussed the participation of lncRNAs in modeling the tumor microenvironment (TME) to generate a protumor or antitumor environment. Nevertheless, some immune-related lncRNAs have clinical relevance, since AL139158.2, AL031985.3, AC104794.2, AC099343.3, AL357519.1, SBDSP1, AS1AC108010.1, and TM4SF19-AS1 have been associated with overall survival (OS). MANCR is also related to poor OS and disease-specific survival. MiR31HG, TM4SF19-AS1, and LINC01123 are associated with poor prognosis. Meanwhile, LINC02195 and TRG-AS1 overexpression is associated with favorable prognosis. Moreover, ANRIL lncRNA induces resistance to cisplatin by inhibiting apoptosis. A superior understanding of the molecular mechanisms of lncRNAs that modify the characteristics of TME could contribute to increasing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Lesly J. Bueno-Urquiza
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | - Marcela G. Martínez-Barajas
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | | | - Jonathan R. García-Bernal
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | - Ana L. Pereira-Suárez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Sinaloa 80030, Mexico
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico
- Correspondence: ; Tel.: +52-(614)-439-1834
| |
Collapse
|
37
|
Song Y, Jiang J, Bai Q, Liu S, Zhang Y, Xu C, Piao H, Li L, Yan G. Gene expression profiles and bioinformatics analysis in lung samples from ovalbumin-induced asthmatic mice. BMC Pulm Med 2023; 23:50. [PMID: 36726128 PMCID: PMC9893693 DOI: 10.1186/s12890-023-02306-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Asthma is characterized by chronic inflammation and airway remodeling. However, limited study is conducted on the gene expression profiles of ovalbumin (OVA) induced asthma in mice. Here, we explored the gene expression profiles in lung tissues from mice with OVA-induced asthma using microarray and bioinformatics analysis. METHODS For establishment of OVA-induced asthma model, mice first received intraperitoneal sensitization with OVA on day 0, 7 and 14, followed by atomizing inhalation of OVA 3 times a week for 8 weeks. The lung tissues were collected and subjected to microarray analysis, bioinformatics analysis and expression validation. RESULTS Microarray data of lung tissues suggested that 3754 lncRNAs and 2976 mRNAs were differentially expressed in lung tissues between control and asthmatic mice, including 1647 up-regulated and 2106 down-regulated lncRNAs, and 1201 up-regulated and 1766 down-regulated mRNAs. GO analysis displayed that the up-regulated genes were enriched in inflammatory response, leukocyte migration involved in inflammatory response, and Notch signaling pathway. KEGG pathway analysis indicated that the enriched pathway terms of the up-regulated gene included Toll-like receptor signaling pathway and Th17 cell differentiation signaling pathway. Additionally, based on the previously published literatures on asthma and inflammation, we screened out down-regulated genes, such as Smg7, Sumo2, and Stat5a, and up-regulated genes, such as Myl9, Fos and Tlr4. According to the mRNA-lncRNA co-expression network, we selected lncRNAs associated with above genes, including the down-regulated lncRNAs of NONMMUT032848, NONMMUT008873, NONMMUT009478, and NONMMUT006807, and the up-regulated lncRNAs of NONMMUT052633, NONMMUT05340 and NONMMUT042325. The expression changes of the above genes were validated in lung tissues by real-time quantitaive PCR and Western blot. CONCLUSIONS Overall, we performed gene microarray on lung samples from OVA-induced asthmatic mice and summarized core mRNAs and their related lncRNAs. This study may provide evidence for further research on the therapeutic targets of asthma.
Collapse
Affiliation(s)
- Yilan Song
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002 Jilin Province People’s Republic of China ,grid.459480.40000 0004 1758 0638Postdoctoral Programme, Research Center, Affiliated Hospital of Yanbian University, Yanji, 133000 People’s Republic of China
| | - Jingzhi Jiang
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002 Jilin Province People’s Republic of China
| | - Qiaoyun Bai
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002 Jilin Province People’s Republic of China
| | - Siqi Liu
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Otorhinolaryngology, Affiliated Hospital of Yanbian University, Yanji, 133000 People’s Republic of China
| | - Yalin Zhang
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Otorhinolaryngology, Affiliated Hospital of Yanbian University, Yanji, 133000 People’s Republic of China
| | - Chang Xu
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002 Jilin Province People’s Republic of China
| | - Hongmei Piao
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000 People’s Republic of China
| | - Liangchang Li
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002 Jilin Province People’s Republic of China
| | - Guanghai Yan
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133002 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002 Jilin Province People’s Republic of China
| |
Collapse
|
38
|
Recent advances in predicting lncRNA-disease associations based on computational methods. Drug Discov Today 2023; 28:103432. [PMID: 36370992 DOI: 10.1016/j.drudis.2022.103432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mutations in and dysregulation of long non-coding RNAs (lncRNAs) are closely associated with the development of various human complex diseases, but only a few lncRNAs have been experimentally confirmed to be associated with human diseases. Predicting new potential lncRNA-disease associations (LDAs) will help us to understand the pathogenesis of human diseases and to detect disease markers, as well as in disease diagnosis, prevention and treatment. Computational methods can effectively narrow down the screening scope of biological experiments, thereby reducing the duration and cost of such experiments. In this review, we outline recent advances in computational methods for predicting LDAs, focusing on LDA databases, lncRNA/disease similarity calculations, and advanced computational models. In addition, we analyze the limitations of various computational models and discuss future challenges and directions for development.
Collapse
|
39
|
Huang D, Taha MS, Nocera AL, Workman AD, Amiji MM, Bleier BS. Cold exposure impairs extracellular vesicle swarm-mediated nasal antiviral immunity. J Allergy Clin Immunol 2023; 151:509-525.e8. [PMID: 36494212 DOI: 10.1016/j.jaci.2022.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human upper respiratory tract is the first site of contact for inhaled respiratory viruses and elaborates an array of innate immune responses. Seasonal variation in respiratory viral infections and the importance of ambient temperature in modulating immune responses to infections have been well recognized; however, the underlying biological mechanisms remain understudied. OBJECTIVE We investigated the role of nasal epithelium-derived extracellular vesicles (EVs) in innate Toll-like receptor 3 (TLR3)-dependent antiviral immunity. METHODS We evaluated the secretion and composition of nasal epithelial EVs after TLR3 stimulation in human autologous cells and fresh human nasal mucosal surgical specimens. We also explored the antiviral activity and mechanisms of TLR3-stimulated EVs against respiratory viruses as well as the effect of cool ambient temperature on TLR3-dependent antiviral immunity. RESULTS We found that polyinosinic:polycytidylic acid, aka poly(I:C), exposure induced a swarm-like increase in the secretion of nasal epithelial EVs via the TLR3 signaling. EVs participated in TLR3-dependent antiviral immunity, protecting the host from viral infections through both EV-mediated functional delivery of miR-17 and direct virion neutralization after binding to virus ligands via surface receptors, including LDLR and ICAM-1. These potent antiviral immune defense functions mediated by TLR3-stimulated EVs were impaired by cold exposure via a decrease in total EV secretion as well as diminished microRNA packaging and antiviral binding affinity of individual EV. CONCLUSION TLR3-dependent nasal epithelial EVs exhibit multiple innate antiviral mechanisms to suppress respiratory viral infections. Furthermore, our study provides a direct quantitative mechanistic explanation for seasonal variation in upper respiratory tract infection prevalence.
Collapse
Affiliation(s)
- Di Huang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Maie S Taha
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Alan D Workman
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass.
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
| |
Collapse
|
40
|
Nayak R, Chattopadhyay T, Gupta P, Mallick B. Integrative analysis of small non-coding RNAs predicts a piRNA/miRNA-CCND1/BRAF/HRH1/ATXN3 regulatory circuit that drives oncogenesis in glioblastoma. Mol Omics 2023; 19:252-261. [PMID: 36688618 DOI: 10.1039/d2mo00245k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The high-grade astrocytoma, glioblastoma multiforme (GBM), is the most common primary tumour of the brain, known for being aggressive and developing drug resistance. The non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), have critical functions in tumorigenesis and cancer drug resistance. Hence, we profiled miRNAs, piRNAs, and genes in U-87 MG GBM cells by next-generation sequencing and performed target prediction, pathway enrichment, protein-protein interaction, co-expression studies, and qRT-PCR validations to predict their possible roles in the malignancy. The study identified 335 miRNAs, 665 piRNAs, and 4286 genes differentially expressed (DE) in GBM. Among them 128 DE genes (DEGs) were targeted by both miRNAs and piRNAs, while 1817 and 192 were targeted solely by miRNAs or piRNAs, respectively. Interestingly, all the DEG targets enriched in cancer processes were overexpressed in GBM. Among these, BRAF was solely targeted by two piRNAs and this was found to be co-expressed with 19 sole targets of 5 miRNAs, including CCND1, and both were found to regulate cell proliferation in cancer. We conjectured that upregulated HRH1 and ATXN3 were targeted by both piRNAs and miRNAs, and along with BRAF and CCND1 might induce cell proliferation in GBM through G-protein-coupled receptor or Akt signalling pathways due to downregulation of the respective targeting small RNAs. These targets were also linked to the progression and overall survival of GBM patients, suggesting that they could be used as biomarkers. Overall, this study has identified a few novel ncRNA targets, which might aid in a better understanding of GBM pathogenesis.
Collapse
Affiliation(s)
- Rojalin Nayak
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Pooja Gupta
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
41
|
Roohinejad Z, Bahramian S, Shamsabadi FT, Sahebi R, Amini A, Sabour D, Shafiee M. Upregulation of the c-MYC oncogene and adjacent long noncoding RNAs PVT1 and CCAT1 in esophageal squamous cell carcinoma. BMC Cancer 2023; 23:34. [PMID: 36624401 PMCID: PMC9830801 DOI: 10.1186/s12885-022-10464-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND All cell types express long non-coding RNAs (lncRNAs), which have the potential to play a role in carcinogenesis by altering the levels of their expression. Squamous cell carcinoma of the esophagus (ESCC) is a deadly disease with a poor prognosis and a high frequency of lymphatic metastases. Understanding the functional role and signaling pathways of two neighboring lncRNAs, CCAT1 and PVT1, in this oncogene's pathogenesis may help us determine ESCC. Furthermore, it is still unclear whether these lncRNAs are linked to the clinicopathological characteristics of patients with ESCC. METHODS For this study, we used biopsy from the Imam Khomeini Cancer Institute's tumor bank in Tehran, Iran to obtain 40 ESCC tumor samples and their normal margin counterparts. The expression levels of the CCAT1, PVT1, and c-MYC genes were assessed using quantitative Real-Time RT-PCR. Additionally, demographic data and clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node, and metastasis, were taken into consideration. Graphpad prism version 8 was used for bioinformatics analyses. RESULTS Comparing ESCC tissues to non-tumor tissues, we found significant upregulation of PVT1, CCAT1, and c-MYC. Patients with ESCC who had increased PVT1 expression also had higher rates of advanced stage and lymph node metastasis, whereas increased CCAT1 expression was only linked to advanced stage and wasn't associated with lymph node metastasis. In predicting ESCC, CCAT1 (p < 0.05) was found to be an important factor. Overall survival was reduced by c-MYC and PVT1 overexpression (p < 0.001), according to Kaplan-Meier analysis. PVT1, CCAT1, and c-MYC were found to interact with 23 miRNAs with high and medium score classes, as shown in a bioinformatics study. We summarized the experimentally proven interactions between c-MYC, PVT1, and CCAT1 and other miRNAs, lncRNAs, and proteins. CONCLUSION This is the first report that CCAT1, PVT1 and c-MYC have been found to be up-regulated simultaneously in ESCC. It is possible that these genes may be involved in ESCC as a result of these findings. Therefore, as consequence, more research is needed to determine whether or not these lncRNAs play an oncogenic role in ESCC development and progression, as well as the regulatory mechanisms that control them.
Collapse
Affiliation(s)
- Zahra Roohinejad
- Genetic Department, University of Medical Sciences, Ganjafrooz Street, Babol, Mazandaran, Iran
| | - Shabbou Bahramian
- grid.411747.00000 0004 0418 0096Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Tash Shamsabadi
- grid.411747.00000 0004 0418 0096Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Reza Sahebi
- grid.411583.a0000 0001 2198 6209Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Amini
- grid.411747.00000 0004 0418 0096Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Davood Sabour
- Genetic Department, University of Medical Sciences, Ganjafrooz Street, Babol, Mazandaran, Iran
| | - Mohammad Shafiee
- grid.411747.00000 0004 0418 0096Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
42
|
Zhang Y, Yuan X, Xu J, Gu H. CircRBM33 induces endothelial dysfunction by targeting the miR-6838-5p/PDCD4 axis affecting blood-brain barrier in mice with cerebral ischemia-reperfusion injury. Clin Hemorheol Microcirc 2023; 85:355-370. [PMID: 37927249 DOI: 10.3233/ch-231776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND circRNAs (circRNAs) are involved in the process of cerebral ischemia-reperfusion injury (CI/RI). Our study aims to explore circRBM33 in the endothelial function of the blood-brain barrier (BBB). METHODS The mouse middle cerebral artery occlusion model (MCAO) was established and restored to perfusion, and OGD/R-induced endothelial cells were used to simulate CI/RI. circRBM33, miR-6838-5p and PDCD4, as well as Occludin, ZO-1 and Claudin-5 TJs were evaluated by quantitative PCR and Western blot. The ring structure of circRBM33 was verified by RNAse R and actinomycin D experiments. MTT and LDH Cytotoxicity assay determined viability and toxicity, and flow cytometry determined apoptosis rate. Inflammatory cytokines and the number of microglia in brain tissue were measured by ELISA and IHC. The interaction between genes was verified by RIP and dual luciferase reporter assay. RESULTS circRBM33 was a circrRNA present in the cytoplasm and up-regulated in the brain tissue of MCAO mice and OGD/R-induced endothelial cells. Silenced circRBM33 promoted Occludin, ZO-1, and Claudin-5 expression and cell proliferation, and inhibited cytotoxicity, inflammatory response, and apoptosis. Functionally, circRBM33-absorbed miR-6838-5p was involved in regulating PDCD4, leading to endothelial cell dysfunction, and thus affecting the function of the BBB. CONCLUSIONS circRBM33 by mediating miR-6838-5p/PDCD4 axis induces endothelial dysfunction, thereby affecting the BBB in mice with CI/RI.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| | - Xiaodong Yuan
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| | - Jie Xu
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| | - Huafen Gu
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| |
Collapse
|
43
|
Ganesan H, Nandy SK, Banerjee A, Pathak S, Zhang H, Sun XF. RNA-Interference-Mediated miR-122-Based Gene Regulation in Colon Cancer, a Structural In Silico Analysis. Int J Mol Sci 2022; 23:ijms232315257. [PMID: 36499586 PMCID: PMC9739210 DOI: 10.3390/ijms232315257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The role of microRNA 122 (miR-122) in colorectal cancer (CRC) has not been widely investigated. In the current study, we aimed to identify the prominent gene and protein interactors of miR122 in CRC. Based on their binding affinity, these targets were chosen as candidate genes for the creation of miR122-mRNA duplexes. Following this, we examined the miRNA-mediated silencing mechanism using the gene-silencing complex protein Argonaute (AGO). Public databases, STRING, and GeneMANIA were utilized to identify major proteins and genes interacting with miR-122. DAVID, PANTHER, UniProt, FunRich, miRwalk, and KEGG were used for functional annotation, pathway enrichment, binding affinity analysis, and expression of genes in different stages of cancer. Three-dimensional duplexes of hub genes and miR-122 were created using the RNA composer, followed by molecular interaction analysis using molecular docking with the AGO protein. We analyzed, classified, and scrutinized 93 miR-122 interactors using various bioinformatic approaches. A total of 14 hub genes were categorized as major interactors of miR-122. The study confirmed the role of various experimentally documented miR-122 interactors such as MTDH (Q86UE4), AKT1 (P31749), PTPN1 (P18031), MYC (P01106), GSK3B (P49841), RHOA (P61586), and PIK3CG (P48736) and put forth several novel interactors, with AKT3 (Q9Y243), NCOR2 (Q9Y618), PIK3R2 (O00459), SMAD4 (P61586), and TGFBR1 (P36897). Double-stranded RNA duplexes of the strongest interactors were found to exhibit higher binding affinity with AGO. In conclusions, the study has explored the role of miR-122 in CRC and has identified a closely related group of genes influencing the prognosis of CRC in multiple ways. Further, these genes prove to be targets of gene silencing through RNA interference and might serve as effective therapeutic targets in understanding and treating CRC.
Collapse
Affiliation(s)
- Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Suman K. Nandy
- BioNEST Bioincubator Facility, North-Eastern Hill University, Tura Campus, Chasingre, Tura 793022, Meghalaya, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai 603103, Tamil Nadu, India
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Correspondence: (S.P.); (X.-F.S.)
| | - Hong Zhang
- School of Medical Sciences, Faculty of Medicine and Health, Orebro University, 702 81 Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Correspondence: (S.P.); (X.-F.S.)
| |
Collapse
|
44
|
Koido M, Hon CC, Koyama S, Kawaji H, Murakawa Y, Ishigaki K, Ito K, Sese J, Parrish NF, Kamatani Y, Carninci P, Terao C. Prediction of the cell-type-specific transcription of non-coding RNAs from genome sequences via machine learning. Nat Biomed Eng 2022:10.1038/s41551-022-00961-8. [PMID: 36411359 DOI: 10.1038/s41551-022-00961-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
Gene transcription is regulated through complex mechanisms involving non-coding RNAs (ncRNAs). As the transcription of ncRNAs, especially of enhancer RNAs, is often low and cell type specific, how the levels of RNA transcription depend on genotype remains largely unexplored. Here we report the development and utility of a machine-learning model (MENTR) that reliably links genome sequence and ncRNA expression at the cell type level. Effects on ncRNA transcription predicted by the model were concordant with estimates from published studies in a cell-type-dependent manner, regardless of allele frequency and genetic linkage. Among 41,223 variants from genome-wide association studies, the model identified 7,775 enhancer RNAs and 3,548 long ncRNAs causally associated with complex traits across 348 major human primary cells and tissues, such as rare variants plausibly altering the transcription of enhancer RNAs to influence the risks of Crohn's disease and asthma. The model may aid the discovery of causal variants and the generation of testable hypotheses for biological mechanisms driving complex traits.
Collapse
Affiliation(s)
- Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Data Sciences, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koto-ku, Tokyo, Japan.,Humanome Lab Inc., Tokyo, Japan
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Single Cell Technologies, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Human Technopole, Milan, Italy
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan. .,The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
45
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
46
|
Gao Z, Jijiwa M, Nasu M, Borgard H, Gong T, Xu J, Chen S, Fu Y, Chen Y, Hu X, Huang G, Deng Y. Comprehensive landscape of tRNA-derived fragments in lung cancer. Mol Ther Oncolytics 2022; 26:207-225. [PMID: 35892120 PMCID: PMC9307607 DOI: 10.1016/j.omto.2022.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022] Open
Abstract
Transfer RNA (tRNA)-derived fragment (tRDF) is a novel small non-coding RNA that presents in different types of cancer. The comprehensive understanding of tRDFs in non-small cell lung cancer remains largely unknown. In this study, 1,550 patient samples of non-small cell lung cancer (NSCLC) were included, and 52 tRDFs with four subtypes were identified. Six tRDFs were picked as diagnostic signatures based on the tRDFs expression patterns, and area under the curve (AUC) in independent validations is up to 0.90. Two signatures were validated successfully in plasma samples, and six signatures confirmed the consistency of distinguished expression in NSCLC cell lines. Ten tRDFs along with independent risk scores can be used to predict survival outcomes by stages; 5a_tRF-Ile-AAT/GAT can be a prognosis biomarker for early stage. Association analysis of tRDFs-signatures-correlated mRNAs and microRNA (miRNA) were targeted to the cell cycle and oocyte meiosis signaling pathways. Five tRDFs were assessed to associate with PD-L1 immune checkpoint and correlated with the genes that target in PD-L1 checkpoint signaling pathway. Our study is the first to provide a comprehensive analysis of tRDFs in lung cancer, including four subtypes of tRDFs, investigating the diagnostic and prognostic values, and demonstrated their biological function and transcriptional role as well as potential immune therapeutic value.
Collapse
Affiliation(s)
- Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Masaki Nasu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jinwen Xu
- School of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
47
|
Prediction of Functional Genes in Primary Varicose Great Saphenous Veins Using the lncRNA-miRNA-mRNA Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4722483. [PMID: 36118829 PMCID: PMC9477642 DOI: 10.1155/2022/4722483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) have been widely suggested to bind with the microRNA (miRNA) sites and play roles of competing endogenous RNAs (ceRNAs), which can thus affect and regulate target gene and mRNA expression. Such lncRNA-related ceRNAs are identified to exert vital parts in vascular disease. Nonetheless, it remains unknown about how the lncRNA-miRNA-mRNA network functions in the varicose great saphenous veins. Methods This study acquired the lncRNA and mRNA expression patterns from the GEO database and identifies the differentially expressed mRNAs and lncRNAs by adopting the R software “limma” package. Then, miRcode, miRDB, miRTarbase, and TargetScan were used to establish the miRNA-mRNA pairs and lncRNA-miRNA pairs. In addition, the lncRNA-miRNA-mRNA ceRNA network was constructed by using Cytoscape. Protein-protein interaction, Gene Ontology functional annotations, and Kyoto Encyclopedia of Genes and Genomes enrichment were carried out to examine the candidate hub genes, the functions of genes, and the corresponding pathways. Results In line with the preset theory, we constructed ceRNA network comprising 12 lncRNAs, 38 miRNAs, and 149 mRNAs. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the PI3K/Akt signaling pathway played a vital part in the development of varicose great saphenous veins. AC114730, AC002127, and AC073342 were significant biomarkers. At the same time, we predicted the potential miRNA, which may exert a significant influence on the varicose great saphenous veins, namely, miR-17-5p, miR-129-5p, miR-1297, miR-20b-5p, and miR-33a-3p. Conclusion By performing ceRNA network analysis, our study detects new lncRNAs, miRNAs, and mRNAs, which can be applied as underlying biomarkers of varicose great saphenous veins and as therapeutic targets for the treatment of varicose great saphenous veins.
Collapse
|
48
|
Shen C, Chen Y, Xiao F, Yang T, Wang X, Chen S, Tang J, Liao Z. BAT-Net: An enhanced RNA Secondary Structure prediction via bidirectional GRU-based network with attention mechanism. Comput Biol Chem 2022; 101:107765. [DOI: 10.1016/j.compbiolchem.2022.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
|
49
|
Yao D, Zhang T, Zhan X, Zhang S, Zhan X, Zhang C. Geometric complement heterogeneous information and random forest for predicting lncRNA-disease associations. Front Genet 2022; 13:995532. [PMID: 36092871 PMCID: PMC9448985 DOI: 10.3389/fgene.2022.995532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
More and more evidences have showed that the unnatural expression of long non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore, accurate identification of disease-related lncRNAs can help to understand lncRNA expression at the molecular level and to explore more effective treatments for diseases. Plenty of lncRNA-disease association prediction models have been raised but it is still a challenge to recognize unknown lncRNA-disease associations. In this work, we have proposed a computational model for predicting lncRNA-disease associations based on geometric complement heterogeneous information and random forest. Firstly, geometric complement heterogeneous information was used to integrate lncRNA-miRNA interactions and miRNA-disease associations verified by experiments. Secondly, lncRNA and disease features consisted of their respective similarity coefficients were fused into input feature space. Thirdly, an autoencoder was adopted to project raw high-dimensional features into low-dimension space to learn representation for lncRNAs and diseases. Finally, the low-dimensional lncRNA and disease features were fused into input feature space to train a random forest classifier for lncRNA-disease association prediction. Under five-fold cross-validation, the AUC (area under the receiver operating characteristic curve) is 0.9897 and the AUPR (area under the precision-recall curve) is 0.7040, indicating that the performance of our model is better than several state-of-the-art lncRNA-disease association prediction models. In addition, case studies on colon and stomach cancer indicate that our model has a good ability to predict disease-related lncRNAs.
Collapse
Affiliation(s)
- Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- *Correspondence: Dengju Yao,
| | - Tao Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaojuan Zhan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, China
| | - Shuli Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaorong Zhan
- Department of Endocrinology and Metabolism, Hospital of South University of Science and Technology, Shenzhen, China
| | - Chao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
50
|
Outcomes of Genetic Testing-Based Cardiac Rehabilitation Program in Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention. Cardiol Res Pract 2022; 2022:9742071. [PMID: 36032316 PMCID: PMC9402363 DOI: 10.1155/2022/9742071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective There can be extreme variability between individual responses to exercise training, and the identification of genetic variants associated with individual variabilities in exercise-related traits could guide individualized exercise programs. We aimed to screen the exercise-related gene sensitivity of patients with acute myocardial infarction after PCI by establishing the gene spectrum of aerobic exercise and cardiopulmonary function sensitivity, test the effect of individualized precision exercise therapy, and provide evidence for the establishment of a precision medicine program for clinical research. Methods Aerobic exercise- and cardiopulmonary function-related genes and single-nucleotide polymorphisms (SNPs) were obtained by data mining utilizing a major publicly available biomedical repository, the NCBI PubMed database. Biological samples from all participants underwent DNA testing. We performed SNP detection using Samtools. A total of 122 patients who underwent PCI were enrolled in the study. We screened the first 24 cases with a high mutation frequency for aerobic exercise- and cardiopulmonary function-related genes and the last 24 cases with a low mutation frequency and separated them into two groups for the exercise intervention experiment. Results In both the low mutation frequency group and the high mutation frequency group, after 8 weeks of exercise intervention, 6 MWT distance, 6 MWT%, VO2/kg at peak, and VO2/kg at AT were significantly improved, and the effect in the high mutation frequency group was significantly higher than that in the low mutation frequency group (6 MWT distance: 468 vs. 439, P=0.003; 6 MWT%: 85 vs. 77, P=0.002, VO2/kg at peak: 14.7 vs. 13.3, P=0.002; VO2/kg at AT: 11.9 vs. 13.3, P=0.003). Conclusions There is extreme variability between individual responses to exercise training. The identification of genetic variants associated with individual variabilities in exercise-related traits could guide individualized exercise programs. We found that the subjects with a high mutation frequency in aerobic exercise and cardiopulmonary function-related genes achieved more cardiorespiratory fitness benefits in the aerobic exercise rehabilitation program and provided evidence for the establishment of a precision medicine program for clinical research.
Collapse
|