1
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
2
|
Chen Y, Wu L, Liu J, Ma L, Zhang W. Adenine nucleotide translocase: Current knowledge in post-translational modifications, regulations and pathological implications for human diseases. FASEB J 2023; 37:e22953. [PMID: 37224026 DOI: 10.1096/fj.202201855rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Adenine nucleotide translocases (ANTs) are central to mitochondrial integrity and bioenergetic metabolism. This review aims to integrate the progresses and knowledge on ANTs over the last few years, contributing to a potential implication of ANTs for various diseases. Structures, functions, modifications, regulators and pathological implications of ANTs for human diseases are intensively demonstrated here. ANTs have four isoforms (ANT1-4), responsible for exchanging ATP/ADP, possibly composing of pro-apoptotic mPTP as a major component, and mediating FA-dependent uncoupling of proton efflux. ANT can be modified by methylation, nitrosylation and nitroalkylation, acetylation, glutathionylation, phosphorylation, carbonylation and hydroxynonenal-induced modifications. Compounds, including bongkrekic acid, atractyloside calcium, carbon monoxide, minocycline, 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid, cardiolipin, free long-chain fatty acids, agaric acid, long chain acyl-coenzyme A esters, all have an ability to regulate ANT activities. ANT impairment leads to bioenergetic failure and mitochondrial dysfunction, contributing to pathogenesis of diseases, such as diabetes (deficiency), heart disease (deficiency), Parkinson's disease (reduction), Sengers Syndrome (decrease), cancer (isoform shifting), Alzheimer's Disease (coaggregation with Tau), Progressive External Opthalmoplegia (mutation), and Fascioscapulohumeral muscular dystrophy (overexpression). This review improves the understanding of the mechanism of ANT in pathogenesis of human diseases, and opens a window for novel therapeutic strategies targeted on ANT in diseases.
Collapse
Affiliation(s)
- Yingfei Chen
- Grade 2020, Capital Medical University, Beijing, China
| | - Leshuang Wu
- Grade 2019, Dalian Medical University, Dalian, China
| | - Jun Liu
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, China
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Seneviratne JA, Carter DR, Mittra R, Gifford A, Kim PY, Luo J, Mayoh C, Salib A, Rahmanto AS, Murray J, Cheng NC, Nagy Z, Wang Q, Kleynhans A, Tan O, Sutton SK, Xue C, Chung SA, Zhang Y, Sun C, Zhang L, Haber M, Norris MD, Fletcher JI, Liu T, Dilda PJ, Hogg PJ, Cheung BB, Marshall GM. Inhibition of mitochondrial translocase SLC25A5 and histone deacetylation is an effective combination therapy in neuroblastoma. Int J Cancer 2023; 152:1399-1413. [PMID: 36346110 PMCID: PMC10953412 DOI: 10.1002/ijc.34349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.
Collapse
Affiliation(s)
- Janith A. Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Daniel R. Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
- School of Biomedical EngineeringUniversity of Technology SydneyNew South WalesAustralia
| | - Rituparna Mittra
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Andrew Gifford
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
| | - Patrick Y. Kim
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Jie‐Si Luo
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Alice Salib
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Aldwin S. Rahmanto
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Jayne Murray
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Ngan C. Cheng
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Zsuzsanna Nagy
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Qian Wang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Ane Kleynhans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Owen Tan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Selina K. Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Chengyuan Xue
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Sylvia A. Chung
- Adult Cancer Program, Lowy Cancer Research CentreUNSW SydneyNew South WalesAustralia
| | - Yizhuo Zhang
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Paediatric OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongChina
| | - Chengtao Sun
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Paediatric OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongChina
| | - Li Zhang
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Paediatric OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongChina
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Murray D. Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- University of New South WalesCentre for Childhood Cancer ResearchRandwickNew South WalesAustralia
| | - Jamie I. Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
| | - Pierre J. Dilda
- Adult Cancer Program, Lowy Cancer Research CentreUNSW SydneyNew South WalesAustralia
| | - Philip J. Hogg
- Australian Cancer Research Foundation (ACRF), Centenary Cancer Research Centre, Charles Perkins CentreUniversity of SydneyNew South WalesAustralia
| | - Belamy B. Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
- Department of PaediatricsThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Glenn M. Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Women's & Children's HealthUNSW SydneyNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
| |
Collapse
|
4
|
Zhang M, Du M, Qi X, Wang Y, Li G, Xu C, Zhang X. Retro-inversion follicle-stimulating hormone peptide-modified nanoparticles for delivery of PDK2 shRNA against chemoresistant ovarian cancer by switching glycolysis to oxidative phosphorylation. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Most ovarian cancers are diagnosed at advanced stages characterized by abdominal dissemination and frequently exhibit chemoresistance. Pyruvate dehydrogenase kinase 2 (PDK2) regulates the switch between glycolysis and oxidative phosphorylation and contributes to tumor progression and chemoresistance. Here, we investigated the effects of PDK2 blockade on metabolic reprogramming and cisplatin sensitivity and evaluated the in vivo antitumor effects of PDK2 shRNA in chemoresistant ovarian cancer using retro-inverso follicle-stimulating hormone peptide-modified nanoparticle as carriers.
Methods
The expression of PDK2 was detected by immunohistochemistry, Western blot and real-time PCR. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry. Cell migration was detected by Transwell assay. Seahorse Analyzer was used to evaluate metabolic changes. The cisplatin-resistant ovarian cancer cells A2780cp were used to establish the mouse model of peritoneal metastatic ovarian cancer.
Results
A higher expression level of PDK2 was observed in chemoresistant ovarian cancer tissues and cell lines and was associated with shorter progression-free survival. PDK2 knockdown inhibited proliferation and migration and promoted apoptosis of both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. Cisplatin sensitivity was increased even in cisplatin-resistant ovarian cancer cells. Mechanistically, PDK2 knockdown resulted in an increased oxygen consumption rate and decreased extracellular acidification rate, along with reduced lactate production, increased PDHC activity and increased levels of electron transport chain complexes III and V. The metabolism switched from glycolysis to oxidative phosphorylation. Finally, to specifically and effectively deliver PDK2 shRNA in vivo, we formulated a targeted delivery system containing retro-inverso follicle-stimulating hormone peptide as a targeting moiety and polyethylene glycol–polyethylenimine copolymers as carriers. The nanoparticle complex significantly suppressed tumor growth and peritoneal metastasis of cisplatin-resistant ovarian cancer without obvious toxicities.
Conclusions
Our findings showed the link between metabolic reprogramming and chemoresistance in ovarian cancer and provided an effective targeting strategy for switching metabolic pathways in cancer therapy.
Collapse
|
5
|
Kayan S, Cinar IO. An examination of variables associated with breast cancer early detection behaviors of women. Afr Health Sci 2022; 22:133-144. [PMID: 36910411 PMCID: PMC9993324 DOI: 10.4314/ahs.v22i3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer is a worldwide common public health problem, and it is quite important to know the factors preventing the early detection behaviors to fight against it. Objective The aim of the study was to examine the effect of some sociodemographic variables associated with women's breast cancer detection behaviors and their breast cancer knowledge and fear levels. Methods The cross-sectional study was conducted with 363 women aged 40-69 who had presented to Cancer Early Diagnosis and Education Centers (CEDEC). Results The average age of women is 54.8±7.1. The mean score of breast cancer knowledge (CBCKT) was found as 10.72±2.34, and the breast cancer fear score was found as 27.6±6.5. The percentage of women who regularly breast self-examination (BSE) was 17.4%, clinical breast examination (CBE) was 13.5% and mammography was 42.7%. BSE and having a higher education correlated 6.25-fold. A 6.5-fold correlation was found between BSE and having a family history of breast cancer, and a 6.24-fold correlation between BSE and having information about breast cancer. In CBE, the related variables that affected women receiving information 4.42 times and going to CEDEC 5.3 times. It was found that employment (4.58) of women affected the mammography detection behavior mostly. While women's CBCKT score affected BSE behavior 1.16 times, fear of breast cancer was a variable that affected mammography behavior 2.1 times. It was determined that high CBCKT scores of women increased BSE behaviors 1.16 times, and high breast cancer fear scores increased mammography behavior 2.1 times. Conclusions Early detection practices of women are not sufficient in our study. An increase in the knowledge level of women and consideration of the variables determined to be effective in early detection behaviors will allow increasing detection behavior.
Collapse
Affiliation(s)
- Sultan Kayan
- Faculty of Health Science, Public Health Nursing Department, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ilgun Ozen Cinar
- Faculty of Health Science, Public Health Nursing Department, Pamukkale University, Denizli, Turkey
| |
Collapse
|
6
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Emens LA, Adams S, Cimino-Mathews A, Disis ML, Gatti-Mays ME, Ho AY, Kalinsky K, McArthur HL, Mittendorf EA, Nanda R, Page DB, Rugo HS, Rubin KM, Soliman H, Spears PA, Tolaney SM, Litton JK. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer 2021; 9:e002597. [PMID: 34389617 PMCID: PMC8365813 DOI: 10.1136/jitc-2021-002597] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has historically been a disease for which immunotherapy was largely unavailable. Recently, the use of immune checkpoint inhibitors (ICIs) in combination with chemotherapy for the treatment of advanced/metastatic triple-negative breast cancer (TNBC) has demonstrated efficacy, including longer progression-free survival and increased overall survival in subsets of patients. Based on clinical benefit in randomized trials, ICIs in combination with chemotherapy for the treatment of some patients with advanced/metastatic TNBC have been approved by the United States (US) Food and Drug Administration (FDA), expanding options for patients. Ongoing questions remain, however, about the optimal chemotherapy backbone for immunotherapy, appropriate biomarker-based selection of patients for treatment, the optimal strategy for immunotherapy treatment in earlier stage disease, and potential use in histological subtypes other than TNBC. To provide guidance to the oncology community on these and other important concerns, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). The expert panel drew upon the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for breast cancer, including diagnostic testing, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence-based and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with breast cancer.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University Langone, New York, New York, USA
| | - Ashley Cimino-Mathews
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Margaret E Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| | - David B Page
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Krista M Rubin
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Hatem Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Patricia A Spears
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Ferrarini MG, Nisimura LM, Girard RMBM, Alencar MB, Fragoso MSI, Araújo-Silva CA, Veiga ADA, Abud APR, Nardelli SC, Vommaro RC, Silber AM, France-Sagot M, Ávila AR. Dichloroacetate and Pyruvate Metabolism: Pyruvate Dehydrogenase Kinases as Targets Worth Investigating for Effective Therapy of Toxoplasmosis. mSphere 2021; 6:e01002-20. [PMID: 33408226 PMCID: PMC7845590 DOI: 10.1128/msphere.01002-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Villeurbanne, France
| | - Lindice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| | - Richard Marcel Bruno Moreira Girard
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayke Bezerra Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carlla Assis Araújo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan de Almeida Veiga
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| | | | | | - Rossiane C Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marie France-Sagot
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Villeurbanne, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| |
Collapse
|
9
|
Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21249367. [PMID: 33316932 PMCID: PMC7763818 DOI: 10.3390/ijms21249367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.
Collapse
|
10
|
Naik A, Decock J. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative Breast Tumors. Front Oncol 2020; 10:598626. [PMID: 33324565 PMCID: PMC7725706 DOI: 10.3389/fonc.2020.598626] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer associated with poor prognosis, early recurrence, and the lack of durable chemotherapy responses and specific targeted treatments. The recent FDA approval for immune checkpoint inhibition in combination with nab-paclitaxel for the treatment of metastatic TNBC created opportunity to advocate for immunotherapy in TNBC patients. However, improving the current low response rates is vital. Most cancers, including TNBC tumors, display metabolic plasticity and undergo reprogramming into highly glycolytic tumors through the Warburg effect. Consequently, accumulation of the metabolic byproduct lactate and extracellular acidification is often observed in several solid tumors, thereby exacerbating tumor cell proliferation, metastasis, and angiogenesis. In this review, we focus on the role of lactate acidosis in the microenvironment of glycolytic breast tumors as a major driver for immune evasion with a special emphasis on TNBCs. In particular, we will discuss the role of lactate regulators such as glucose transporters, lactate dehydrogenases, and lactate transporters in modulating immune functionality and checkpoint expression in numerous immune cell types. This review aims to spark discussion on interventions targeting lactate acidosis in combination with immunotherapy to provide an effective means of improving response to immune checkpoint inhibitors in TNBC, in addition to highlighting challenges that may arise from TNBC tumor heterogeneity.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
11
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
13
|
Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study. Bioelectrochemistry 2020; 131:107350. [DOI: 10.1016/j.bioelechem.2019.107350] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
|
14
|
Wang X, Yeo RX, Hogg PJ, Goldstein D, Crowe P, Dilda PJ, Yang JL. The synergistic inhibitory effect of combining therapies targeting EGFR and mitochondria in sarcomas. Oncotarget 2020; 11:46-61. [PMID: 32002123 PMCID: PMC6967775 DOI: 10.18632/oncotarget.27416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Our group previously demonstrated that sarcoma cell lines were insensitive to epidermal growth factor receptor (EGFR) inhibitor gefitinib monotherapy. PENAO, an anti-tumour metabolic compound created in our laboratory, is currently in clinical trials. Considering the positive regulation of tumour energy production by both the EGFR signalling and tumour metabolism pathways, this study aimed to investigate the effect and mechanisms of combination therapy using gefitinib and PENAO in sarcoma cell lines in vitro and in vivo. PENAO monotherapy reduced proliferation in 12 sarcoma cell lines. Combining gefitinib and PENAO resulted in synergistic inhibition in both a time- and dose-dependent manner in 3 sarcoma cell lines with less prominent monotherapy effects. Combined treatment significantly enhanced cell death and perturbed mitochondrial function. In vivo combination therapy with PENAO and gefitinib was non-toxic to mice and significantly delayed tumour growth and prolonged survival. At 20 days after treatment, tumours from the combination treated mice were significantly smaller than those from untreated and single drug treated mice. The survival curves also showed significant difference across and between groups. The combination of PENAO and gefitinib in vitro and in vivo, shows promise as a treatment pathway in this poor outcome tumour.
Collapse
Affiliation(s)
- Xiaochun Wang
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,These authors contributed equally to this work
| | - Reichelle X Yeo
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, Australia.,These authors contributed equally to this work
| | - Philip J Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Philip Crowe
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Pierre J Dilda
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jia-Lin Yang
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Tian DD, Bennett SK, Coupland LA, Forwood K, Lwin Y, Pooryousef N, Tea I, Truong TT, Neeman T, Crispin P, D’Rozario J, Blackburn AC. GSTZ1 genotypes correlate with dichloroacetate pharmacokinetics and chronic side effects in multiple myeloma patients in a pilot phase 2 clinical trial. Pharmacol Res Perspect 2019; 7:e00526. [PMID: 31624634 PMCID: PMC6783648 DOI: 10.1002/prp2.526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Dichloroacetate (DCA) is an investigational drug targeting the glycolytic hallmark of cancer by inhibiting pyruvate dehydrogenase kinases (PDK). It is metabolized by GSTZ1, which has common polymorphisms altering enzyme or promoter activity. GSTZ1 is also irreversibly inactivated by DCA. In the first clinical trial of DCA in a hematological malignancy, DiCAM (DiChloroAcetate in Myeloma), we have examined the relationship between DCA concentrations, GSTZ1 genotype, side effects, and patient response. DiCAM recruited seven myeloma patients in partial remission. DCA was administered orally for 3 months with a loading dose. Pharmacokinetics were performed on day 1 and 8. Trough and peak concentrations of DCA were measured monthly. GSTZ1 genotypes were correlated with drug concentrations, tolerability, and disease outcomes. One patient responded and two patients showed a partial response after one month of DCA treatment, which included the loading dose. The initial half-life of DCA was shorter in two patients, correlating with heterozygosity for GSTZ1*A genotype, a high enzyme activity variant. Over 3 months, one patient maintained DCA trough concentrations approximately threefold higher than other patients, which correlated with a low activity promoter genotype (-1002A, rs7160195) for GSTZ1. This patient displayed the strongest response, but also the strongest neuropathy. Overall, serum concentrations of DCA were sufficient to inhibit the constitutive target PDK2, but unlikely to inhibit targets induced in cancer. Promoter GSTZ1 polymorphisms may be important determinants of DCA concentrations and neuropathy during chronic treatment. Novel dosing regimens may be necessary to achieve effective DCA concentrations in most cancer patients while avoiding neuropathy.
Collapse
Affiliation(s)
- Dan Dan Tian
- ACRF Department of Cancer Biology and TherapeuticsThe John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | | | - Lucy A. Coupland
- ACRF Department of Cancer Biology and TherapeuticsThe John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Kathryn Forwood
- Department of HaematologyThe Canberra HospitalGarranACTAustralia
| | - Yadanar Lwin
- Department of HaematologyThe Canberra HospitalGarranACTAustralia
| | - Niloofar Pooryousef
- ACRF Department of Cancer Biology and TherapeuticsThe John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Illa Tea
- ACRF Department of Cancer Biology and TherapeuticsThe John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Thy T. Truong
- Joint Mass Spectrometry FacilityThe Australian National UniversityActonACTAustralia
| | - Teresa Neeman
- Statistical Consulting UnitThe Australian National UniversityActonACTAustralia
| | - Philip Crispin
- Department of HaematologyThe Canberra HospitalGarranACTAustralia
| | - James D’Rozario
- Department of HaematologyThe Canberra HospitalGarranACTAustralia
| | - Anneke C. Blackburn
- ACRF Department of Cancer Biology and TherapeuticsThe John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
16
|
Liu L, Cao J, Zhao J, Li X, Suo Z, Li H. PDHA1 Gene Knockout In Human Esophageal Squamous Cancer Cells Resulted In Greater Warburg Effect And Aggressive Features In Vitro And In Vivo. Onco Targets Ther 2019; 12:9899-9913. [PMID: 31819487 PMCID: PMC6874154 DOI: 10.2147/ott.s226851] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background One of the remarkable metabolic characteristics of cancer cells is that they prefer glycolysis rather than oxidative phosphorylation (OXPHOS). Pyruvate dehydrogenase E1 alpha subunit (PDHA1) is an important prerequisite for OXPHOS. Our previous studies have shown that low level of PDHA1 protein expression in esophageal squamous cell cancer (ESCC) was correlated with poor prognosis. However, the effect of PDHA1 inhibition on metabolism and biological behavior of esophageal cancer cells remains unclear. Methods And Results In this study, a KYSE450 PDHA1 knockout (KO) cell line of esophageal cancer was established by CRISPR/Cas9 technology. Then, the glycose metabolism, cell proliferation and migration abilities, chemotherapeutic tolerance and angiogenesis of the PDHA1 KO cells were investigated in vitro and in vivo. In the PDHA1 KO cells, the glycolysis and the consumption of glucose and glutamine were significantly enhanced, while the OXPHOS was significantly suppressed, implying Warburg effect in the PDHA1 KO cells. Furthermore, it was also proved in vitro experiments that the PDHA1 KO cell obtained proliferation advantage, as well as significantly greater chemotherapy tolerance and migration ability. Xenograft experiments discovered not only larger tumors but also increased angiogenesis in the PDHA1 KO cell group. Conclusion Inhibition of PDHA1 gene expression in human ESCC leads to metabolic reprogramming of Warburg effect and increased malignancies. Targeting ESCC metabolic reprogramming may become a potential therapeutic target.
Collapse
Affiliation(s)
- Lan Liu
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xiangyu Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| | - Huixiang Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
17
|
Verma A, Lam YM, Leung YC, Hu X, Chen X, Cheung E, Tam KY. Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. J Pharm Pharmacol 2018; 71:306-315. [DOI: 10.1111/jphp.13033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/29/2018] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
Drug combination in cancer therapy aims to achieve synergistic therapeutic effect, reduced drug dosage, reduced drug toxicity and minimizes or delays the induction of drug resistance. In the present study, we investigated the anticancer effects of the combination of two metabolic modulators, dichloroacetate (DCA) and bacillus caldovelox arginase (BCA) (or pegyated human arginase (HA)).
Methods
The combination treatments were evaluated in MCF-7 and MDA-MB 231 cells as well as in MDA-MB 231 breast cancer xenograft model.
Key findings
Dichloroacetate and BCA combination exhibited anti-proliferative effects on MCF-7 cells, which were found to be synergistic. Analysis of the gene expression upon drug treatments revealed that the synergistic anti-proliferative effect on MCF-7 cells was possibly in part due to the activation of the p53 pathway. A similar synergistic anti-proliferative effect was observed in the combined use of DCA and HA on MCF-7 and MDA-MB231 cells, which was due to induction of cell cycle arrest at G2/M phase. Moreover, the combination enhanced anti-tumour activity in a MDA-MB 231 xenograft mouse model.
Conclusions
Our results suggested that dichloroacetate and arginase combination exhibited enhanced anti-cancer effects in preclinical breast cancer models which may offer an additional treatment option for breast cancer.
Collapse
Affiliation(s)
- Angela Verma
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yau-Min Lam
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Xiaohui Hu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Edwin Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kin Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
18
|
Noy JM, Lu H, Hogg PJ, Yang JL, Stenzel M. Direct Polymerization of the Arsenic Drug PENAO to Obtain Nanoparticles with High Thiol-Reactivity and Anti-Cancer Efficiency. Bioconjug Chem 2018; 29:546-558. [DOI: 10.1021/acs.bioconjchem.8b00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Philip J. Hogg
- The
Centenary Institute and National Health and Medical Research Council
Clinical Trials Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
19
|
Tsoli M, Liu J, Franshaw L, Shen H, Cheng C, Jung M, Joshi S, Ehteda A, Khan A, Montero-Carcabosso A, Dilda PJ, Hogg P, Ziegler DS. Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma. Oncotarget 2018; 9:7541-7556. [PMID: 29484131 PMCID: PMC5800923 DOI: 10.18632/oncotarget.24045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted.
Collapse
Affiliation(s)
- Maria Tsoli
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Liu
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Laura Franshaw
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Han Shen
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia Cheng
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - MoonSun Jung
- Experimental Therapeutics Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Swapna Joshi
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Anahid Ehteda
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Aaminah Khan
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Angel Montero-Carcabosso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Philip Hogg
- ACRF Centenary Cancer Research Program, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - David S Ziegler
- Targeted Therapies Research Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney's Children Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
20
|
Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, Yuan Y, Liu J, Li H, Zhang M, Ji Z, Fan D, Wen J, Goscinski MA, Yuan L, Hao B, Nesland JM, Suo Z. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget 2017; 8:13344-13356. [PMID: 28076853 PMCID: PMC5355102 DOI: 10.18632/oncotarget.14527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers.
Collapse
Affiliation(s)
- Yali Zhong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yasai Ji
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoran Li
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Yuan
- Department of Pathology, Capital Medical University, Beijing, China
| | - Jian Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou
| | - Jianguo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Hao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Khan A, Andrews D, Shainhouse J, Blackburn AC. Long-term stabilization of metastatic melanoma with sodium dichloroacetate. World J Clin Oncol 2017; 8:371-377. [PMID: 28848705 PMCID: PMC5554882 DOI: 10.5306/wjco.v8.i4.371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Sodium dichloroacetate (DCA) has been studied as a metabolic cancer therapy since 2007, based on a publication from Bonnet et al demonstrating that DCA can induce apoptosis (programmed cell death) in human breast, lung and brain cancer cells. Classically, the response of cancer to a medical therapy in human research is measured by Response Evaluation Criterial for Solid Tumours definitions, which define “response” by the degree of tumour reduction, or tumour disappearance on imaging, however disease stabilization is also a beneficial clinical outcome. It has been shown that DCA can function as a cytostatic agent in vitro and in vivo, without causing apoptosis. A case of a 32-year-old male is presented in which DCA therapy, with no concurrent conventional therapy, resulted in regression and stabilization of recurrent metastatic melanoma for over 4 years’ duration, with trivial side effects. This case demonstrates that DCA can be used to reduce disease volume and maintain long-term stability in patients with advanced melanoma.
Collapse
|
22
|
Khan A, Andrews D, Blackburn AC. Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy. World J Clin Cases 2016; 4:336-343. [PMID: 27803917 PMCID: PMC5067498 DOI: 10.12998/wjcc.v4.i10.336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Oral dichloroacetate sodium (DCA) has been investigated as a novel metabolic therapy for various cancers since 2007, based on data from Bonnet et al that DCA can trigger apoptosis of human lung, breast and brain cancer cells. Response to therapy in human studies is measured by standard RECIST definitions, which define “response” by the degree of tumour reduction, or tumour disappearance on imaging. However, Blackburn et al have demonstrated that DCA can also act as a cytostatic agent in vitro and in vivo, without causing apoptosis (programmed cell death). A case is presented in which oral DCA therapy resulted in tumour stabilization of stage 4 colon cancer in a 57 years old female for a period of nearly 4 years, with no serious toxicity. Since the natural history of stage 4 colon cancer consists of steady progression leading to disability and death, this case highlights a novel use of DCA as a cytostatic agent with a potential to maintain long-term stability of advanced-stage cancer.
Collapse
|
23
|
Galgamuwa R, Hardy K, Dahlstrom JE, Blackburn AC, Wium E, Rooke M, Cappello JY, Tummala P, Patel HR, Chuah A, Tian L, McMorrow L, Board PG, Theodoratos A. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties. J Am Soc Nephrol 2016; 27:3331-3344. [PMID: 26961349 DOI: 10.1681/asn.2015070827] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin.
Collapse
Affiliation(s)
| | - Kristine Hardy
- Faculty of Education, Science, Technology and Mathematics, University of Canberra, Australian Capital Territory, Australia
| | - Jane E Dahlstrom
- ACT Pathology and ANU Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | | | - Elize Wium
- Departments of Cancer Biology and Therapeutics and
| | | | | | | | | | - Aaron Chuah
- Genome Discovery Unit, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Luyang Tian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; and
| | - Linda McMorrow
- Archaeogeochemistry and Marine Biogeochemistry Groups, Research School of Earth Sciences, Australian National University, Australian Capital Territory, Australia
| | | | | |
Collapse
|
24
|
Gang H, Dhingra R, Lin J, Hai Y, Aviv Y, Margulets V, Hamedani M, Thanasupawat T, Leygue E, Klonisch T, Davie JR, Kirshenbaum LA. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival. J Cell Biol 2015; 210:1101-15. [PMID: 26416963 PMCID: PMC4586742 DOI: 10.1083/jcb.201504047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia.
Collapse
Affiliation(s)
- Hongying Gang
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Rimpy Dhingra
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Junjun Lin
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Yan Hai
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Yaron Aviv
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Victoria Margulets
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Mohammad Hamedani
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Thatchawan Thanasupawat
- Department of Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Thomas Klonisch
- Department of Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - James R Davie
- Manitoba Institute for Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| | - Lorrie A Kirshenbaum
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6 Department of Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6
| |
Collapse
|
25
|
Integration of Mitochondrial Targeting for Molecular Cancer Therapeutics. Int J Cell Biol 2015; 2015:283145. [PMID: 26713093 PMCID: PMC4680051 DOI: 10.1155/2015/283145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial metabolism greatly influences cancer cell survival, invasion, metastasis, and resistance to many anticancer drugs. Furthermore, molecular-targeted therapies (e.g., oncogenic kinase inhibitors) create a dependence of surviving cells on mitochondrial metabolism. For these reasons, inhibition of mitochondrial metabolism represents promising therapeutic pathways in cancer. This review provides an overview of mitochondrial metabolism in cancer and discusses the limitations of mitochondrial inhibition for cancer treatment. Finally, we present preclinical evidence that mitochondrial inhibition could be associated with oncogenic “drivers” inhibitors, which may lead to innovative drug combinations for improving the efficacy of molecular-targeted therapy.
Collapse
|
26
|
Ju R, Guo L, Li J, Zhu L, Yu X, Chen C, Chen W, Ye C, Zhang D. Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition. Cancer Lett 2015; 370:232-41. [PMID: 26522259 DOI: 10.1016/j.canlet.2015.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022]
Abstract
Targeting cancer cell metabolism is a promising strategy against cancer. Here, we confirmed that the anti-cancer drug carboxyamidotriazole (CAI) inhibited mitochondrial respiration in cancer cells for the first time and found a way to enhance its anti-cancer activity by further disturbing the energy metabolism. CAI promoted glucose uptake and lactate production when incubated with cancer cells. The oxidative phosphorylation (OXPHOS) in cancer cells was inhibited by CAI, and the decrease in the activity of the respiratory chain complex I could be one explanation. The anti-cancer effect of CAI was greatly potentiated when being combined with 2-deoxyglucose (2-DG). The cancer cells treated with the combination of CAI and 2-DG were arrested in G2/M phase. The apoptosis and necrosis rates were also increased. In a mouse xenograft model, this combination was well tolerated and retarded the tumor growth. The impairment of cancer cell survival was associated with significant cellular ATP decrease, suggesting that the combination of CAI and 2-DG could be one of the strategies to cause dual inhibition of energy pathways, which might be an effective therapeutic approach for a broad spectrum of tumors.
Collapse
Affiliation(s)
- Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoli Yu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China.
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical Collage, 5 Dong Dan San Tiao, Beijing 100005, China.
| |
Collapse
|
27
|
Sun W, Xie Z, Liu Y, Zhao D, Wu Z, Zhang D, Lv H, Tang S, Jin N, Jiang H, Tan M, Ding J, Luo C, Li J, Huang M, Geng M. JX06 Selectively Inhibits Pyruvate Dehydrogenase Kinase PDK1 by a Covalent Cysteine Modification. Cancer Res 2015; 75:4923-36. [PMID: 26483203 DOI: 10.1158/0008-5472.can-15-1023] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Pyruvate dehydrogenase kinase PDK1 is a metabolic enzyme responsible for switching glucose metabolism from mitochondrial oxidation to aerobic glycolysis in cancer cells, a general hallmark of malignancy termed the Warburg effect. Herein we report the identification of JX06 as a selective covalent inhibitor of PDK1 in cells. JX06 forms a disulfide bond with the thiol group of a conserved cysteine residue (C240) based on recognition of a hydrophobic pocket adjacent to the ATP pocket of the PDK1 enzyme. Our investigations of JX06 mechanism suggested that covalent modification at C240 induced conformational changes at Arginine 286 through Van der Waals forces, thereby hindering access of ATP to its binding pocket and in turn impairing PDK1 enzymatic activity. Notably, cells with a higher dependency on glycolysis were more sensitive to PDK1 inhibition, reflecting a metabolic shift that promoted cellular oxidative stress and apoptosis. Our findings offer new mechanistic insights including how to therapeutically target PDK1 by covalently modifying the C240 residue.
Collapse
Affiliation(s)
- Wenyi Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yifu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Zhao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhixiang Wu
- The Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dadong Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Lv
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nan Jin
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Minjia Tan
- The Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
28
|
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6:148-61. [PMID: 26322173 PMCID: PMC4549759 DOI: 10.4331/wjbc.v6.i3.148] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/26/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.
Collapse
|
29
|
Alterations in the mitochondrial responses to PENAO as a mechanism of resistance in ovarian cancer cells. Gynecol Oncol 2015; 138:363-71. [PMID: 26080289 DOI: 10.1016/j.ygyno.2015.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to test PENAO, a promising new organoarsenical that is in phase 1 testing in patients with solid tumours, on a range of ovarian cancer cell lines with different histotypes, and to understand the molecular basis of drug resistance exhibited by the endometrioid ovarian cancer cell line, SKOV-3. METHODS Proliferation arrest and cell death induced by PENAO in serous (OVCAR-3), endometrioid (SKOV-3, TOV112D), clear cell (TOV21G) and mucinous (EFO27) ovarian cancer cells in culture, and anti-tumour efficacy in a murine model of SKOV-3 and OVCAR-3 tumours, were measured. Cells were analysed for cell cycle arrest, cell death mechanisms, reactive oxygen species production, mitochondrial depolarisation, oxygen consumption and acid production. RESULTS PENAO demonstrated promising anti-proliferative activity on the most common (serous, endometrioid) as well as on rare (clear cell, mucinous) subtypes of ovarian cancer cell lines. No cross-resistance with platinum-based drugs was evident. Endometrioid SKOV-3 cells were, however, shown to be resistant to PENAO in vitro and in a xenograft mouse model. This resistance was due to an ability to cope with PENAO-induced oxidative stress, notably through heme oxygenase-1 induction, and a shift in metabolism towards glycolysis. The adaptive glycolytic shift in SKOV-3 was targeted using a mTORC1 inhibitor in combination with PENAO. This strategy was successful with the two drugs acting synergistically to inhibit cell proliferation and to induce cell death via apoptosis and autophagy. CONCLUSION Mitochondria/mTOR dual-targeting therapy may constitute a new approach for the treatment of recurrent/resistant forms of epithelial ovarian cancer.
Collapse
|
30
|
Shen H, Decollogne S, Dilda PJ, Hau E, Chung SA, Luk PP, Hogg PJ, McDonald KL. Dual-targeting of aberrant glucose metabolism in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:14. [PMID: 25652202 PMCID: PMC4324653 DOI: 10.1186/s13046-015-0130-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 01/02/2023]
Abstract
Background Glioblastoma (GBM) is the most common and malignant primary brain tumor. In contrast to some other tumor types, aberrant glucose metabolism is an important component of GBM growth and chemoresistance. Recent studies of human orthotopic GBM in mice and in situ demonstrated GBM cells rely on both glycolysis and mitochondrial oxidation for glucose catabolism. These observations suggest that the homeostasis of energy metabolism of GBM cells might be further disturbed by dual-inhibition of glucose metabolism. The present study aimed to evaluate the efficacy and the mechanisms of dual-targeting therapy in GBM cells. Methods Representative GBM cells (immortalized GBM cell lines and patient-derived GBM cells) and non-cancerous cells were treated with 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid (PENAO), an in-house designed novel arsenic-based mitochondrial toxin, in combination with dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor. The efficacy of this combinatorial therapy was evaluated by MTS assay, clonogenic surviving assay and apoptotic assays. The underlying mechanisms of this dual-targeting treatment were unraveled by using mitochondrial membrane potential measurements, cytosol/mitochondrial ROS detection, western blotting, extracellular flux assay and mass spectrometry. Results As monotherapies, both PENAO and DCA induced proliferation arrest in a panel of GBM cell lines and primary isolates. PENAO inhibited oxygen consumption, induced oxidative stress and depolarized mitochondrial membrane potential, which in turn activated mitochondria-mediated apoptosis. By combining DCA with PENAO, the two drugs worked synergistically to inhibit cell proliferation (but had no significant effect on non-cancerous cells), impair the clonogenicity, and induce mitochondria-mediated apoptosis. An oxidative stress of mitochondrial origin takes a prominent place in the mechanism by which the combination of PENAO and DCA induces cell death. Additionally, PENAO-induced oxidative damage was enhanced by DCA through glycolytic inhibition which in turn diminished acid production induced by PENAO. Moreover, DCA treatment also led to an alteration in the multidrug resistance (MDR) phenotype of GBM cells, thereby leading to an increased cytosolic accumulation of PENAO. Conclusions The findings of this study shed a new light with respect to the dual-targeting of glucose metabolism in GBM cells and the innovative combination of PENAO and DCA shows promise in expanding GBM therapies.
Collapse
Affiliation(s)
- Han Shen
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.
| | - Stephanie Decollogne
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Pierre J Dilda
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Eric Hau
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia. .,Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
| | - Sylvia A Chung
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.
| | - Peter P Luk
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Philip J Hogg
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Kerrie L McDonald
- Cure Brain Cancer Neuro-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|