1
|
Jamerlan AM, An SSA, Hulme JP. Microbial diversity and fitness in the gut-brain axis: influences on developmental risk for Alzheimer's disease. Gut Microbes 2025; 17:2486518. [PMID: 40207973 PMCID: PMC11988266 DOI: 10.1080/19490976.2025.2486518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
The gut-brain axis (GBA) denotes the dynamic and bidirectional communication system that connects the gastrointestinal tract and the central nervous system (CNS). This review explored this axis, focusing on the role of microbial diversity and fitness in maintaining gastrointestinal health and preventing neurodegeneration, particularly in Alzheimer's disease (AD). Gut dysbiosis, characterized by the imbalance in populations of beneficial and harmful bacteria, has been associated with increased systemic inflammation, neuroinflammation, and the progression of AD through pathogenic mechanisms involving amyloid deposition, tauopathy, and increased blood-brain barrier (BBB) permeability. Emerging evidence highlighted the therapeutic potential of probiotics, dietary interventions, and intermittent fasting in restoring microbial balance, reducing inflammation, and minimizing neurodegenerative risks. Probiotics and synbiotics are promising in helping improve cognitive function and metabolic health, while dietary patterns like the Mediterranean diet were linked to decreased neuroinflammation and enhanced gut-brain communication. Despite significant advancement, further research is needed to elucidate the specific microbial strains, metabolites, and mechanisms influencing brain health. Future studies employing longitudinal designs and advanced omics technologies are essential to developing targeted microbiome-based therapies for managing AD-related disorders.
Collapse
Affiliation(s)
- Angelo M. Jamerlan
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| | - Seong Soo A. An
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| | - John P. Hulme
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
2
|
Hicks R, Gozal D, Ahmed S, Khalyfa A. Interplay between gut microbiota and exosome dynamics in sleep apnea. Sleep Med 2025; 131:106493. [PMID: 40203611 DOI: 10.1016/j.sleep.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Sleep-disordered breathing (SDB) is characterized by recurrent reductions or interruptions in airflow during sleep, termed hypopneas and apneas, respectively. SDB impairs sleep quality and is linked to substantive health issues including cardiovascular and metabolic disorders, as well as cognitive decline. Recent evidence suggests a link between gut microbiota (GM) composition and sleep apnea. Indeed, GM, a community of microorganisms residing in the gut, has emerged as a potential player in various diseases, and several studies have identified associations between sleep apnea and GM diversity along with shifts in bacterial populations. Additionally, the concept of "leaky gut," a compromised intestinal barrier with potentially increased inflammation, has emerged as another key player in the potential bidirectional relationship between GM and sleep apnea. One of the potential effectors could be extracellular vesicles (EVs) underlying gut-brain communication pathways that are relevant to sleep regulation and function. Thus, therapeutic implications afforded by targeting the GM or exosomes for sleep apnea management have surfaced as promising areas of research. This review explores current understanding of the relationship between GM, exosomes and sleep apnea, highlighting key research dynamics and potential mechanisms. A comprehensive review of the literature was conducted, focusing on studies investigating GM composition, intestinal barrier function and gut-brain communication in relation to sleep apnea.
Collapse
Affiliation(s)
- Rebecca Hicks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Sarfraz Ahmed
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
3
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
4
|
Wu S, Hu Y, Tao Z, Yu Y, Zhu P, Li T, Jin Y, Wang Y, Qian H, Wang H, Ma Y. Comprehensive Management of Ulcerative Colitis and its Associated Intra-Extra Intestinal Complications with a Multifunctional Inulin Hydrogel Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500726. [PMID: 40263912 DOI: 10.1002/smll.202500726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Excessive accumulation of reactive oxygen species (ROS) and dysbiosis of gut microbiota are pivotal etiological factors in the pathogenesis of ulcerative colitis (UC) and its associated intestinal and extraintestinal manifestations (e.g., intestinal microthrombosis, anxiety, and depression symptoms). This investigation presents a multifunctional inulin complex (PB/NKase@Inulin gel) incorporating Prussian blue nanozymes (PB NZs) and the thrombolytic agent nattokinase (NKase) for the therapeutic management of dextran sulfate sodium (DSS)-induced UC and its associated intestinal and extraintestinal complications. Following oral administration, the PB/NKase@Inulin gel, characterized by prolonged retention of PB NZs and NKase at inflamed colonic sites, can facilitate continuously ROS scavenging, attenuate oxidative stress damage, effectively reduce pro-inflammatory cytokine levels. Importantly, PB/NKase@Inulin gel can not only robustly inhibit inflammatory microthrombosis formation but also effectively lyses thrombi due to the potent thrombolytic properties of NKase both in vitro and in vivo. Furthermore, the PB/NKase@Inulin gel is able to modulate gut microbiota homeostasis and alleviate multiple stresses responses (including anxiety and depression) in a UC mouse model via microbiota-gut-brain (MGB) axis interactions. Overall, the PB/NKase@Inulin gel offers an innovative paradigm for comprehensive therapeutic interventions in DSS-induced UC and its multifaceted complications.
Collapse
Affiliation(s)
- Silong Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yaoyu Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenchao Tao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, 230031, China
| | - Yi Yu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Pengfei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Tao Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yu Jin
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
5
|
Duru IC, Lecomte A, Laine P, Shishido TK, Suppula J, Paulin L, Scheperjans F, Pereira PAB, Auvinen P. Comparison of phage and plasmid populations in the gut microbiota between Parkinson's disease patients and controls. Sci Rep 2025; 15:13723. [PMID: 40258842 PMCID: PMC12012184 DOI: 10.1038/s41598-025-96924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
The aging population worldwide is on the rise, leading to a higher number of Parkinson's disease (PD) cases each year. PD is presently the second most prevalent neurodegenerative disease, affecting an estimated 7-10 million individuals globally. This research aimed to identify mobile genetic elements in human fecal samples using a shotgun metagenomics approach. We identified over 44,000 plasmid contigs and compared plasmid populations between PD patients (n = 68) and controls (n = 68). Significant associations emerged between groups (control vs PD) based on plasmid alpha and beta diversity. Moreover, the gene populations present on plasmids displayed marked differences in alpha and beta diversity between PD patients and controls. We identified a considerable number of phage contigs that were differentially abundant in the two groups. We also developed a predictive machine learning model based on phage abundance data, achieving a mean Area Under the Curve (AUC) of 0.74 with a standard deviation of 0.105 and a mean F1 score of 0.68 with a standard deviation of 0.14 across cross-validation folds, indicating moderate discriminatory power. Additionally, when tested on external data, the model yielded an AUC of 0.74 and an F1 score of 0.8, further demonstrating the predictive potential of phage populations in Parkinson's disease. Further, we improved the continuity and identification of the protein coding regions of the phage contigs by implementing alternative genetic codes.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Alexandre Lecomte
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Joni Suppula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Pedro A B Pereira
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland.
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Luo X, Yang W, Kang Y, Ma S, Fan Y, Du J, Luo H, Wang X, Deng F. Research progress of the intestinal axis in autologous arteriovenous fistula stenosis in maintenance hemodialysis patients. J Vasc Access 2025:11297298251332047. [PMID: 40251786 DOI: 10.1177/11297298251332047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025] Open
Abstract
The number of the patients treated with maintenance hemodialysis (HD) is increasing due to the increasing incidence of end stage renal disease (ESRD). Autologous arteriovenous fistula (AVF) is the preferable modality for long-term vascular access during HD. AVF stenosis is the main cause of AVF dysfunction in HD patients, but its mechanism has not been fully elucidated. Patients with ESRD often have various related complications due to intestinal microbiota disorders and their metabolites, and the intestinal axis reveals various metabolic disorders in patients with chronic kidney disease. This paper analyzes the correlation between intestinal axis abnormalities and AVF stenosis in patients with CKD through three axes: "gut-liver axis," "gut-brain axis," and "gut-spleen axis," to provide clinical significance for elucidating the mechanism of AVF stenosis and for the prevention and treatment of AVF stenosis.
Collapse
Affiliation(s)
- Xuyang Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Provincial People's Hospital Xinjin Hospital, Chengdu Xinjin District People's Hospital, Chengdu, China
| | - Wei Yang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuwei Kang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shijie Ma
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Fan
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiaojiao Du
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital Xinjin Hospital, Chengdu Xinjin District People's Hospital, Chengdu, China
| |
Collapse
|
7
|
Sabit H, Abouelnour S, Hassen BM, Magdy S, Yasser A, Wadan AHS, Abdel-Ghany S, Radwan F, Alqosaibi AI, Hafiz H, Awlya OFA, Arneth B. Anticancer Potential of Prebiotics: Targeting Estrogen Receptors and PI3K/AKT/mTOR in Breast Cancer. Biomedicines 2025; 13:990. [PMID: 40299687 PMCID: PMC12025111 DOI: 10.3390/biomedicines13040990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptors (ERs) play a critical role in breast cancer (BC) development and progression, with ERα being oncogenic and ERβ exhibiting tumor-suppressive properties. The interaction between ER signaling and other molecular pathways, such as PI3K/AKT/mTOR, influences tumor growth and endocrine resistance. Emerging research highlights the role of prebiotics in modulating gut microbiota, which may influence estrogen metabolism, immune function, and therapeutic responses in BC. This review explores the impact of prebiotics on estrogen receptor modulation, gut microbiota composition, immune regulation, and metabolic pathways in breast cancer. The potential of prebiotics as adjunctive therapies to enhance treatment efficacy and mitigate chemotherapy-related side effects is discussed. A comprehensive analysis of recent preclinical and clinical studies was conducted, examining the role of prebiotics in gut microbiota modulation, immune regulation, and metabolic reprogramming in breast cancer. The impact of short-chain fatty acids (SCFAs) derived from prebiotic fermentation on epigenetic regulation and endocrine resistance was also evaluated. Prebiotics were found to modulate the gut microbiota-estrogen axis, reduce inflammation, and influence immune responses. SCFAs demonstrated selective estrogen receptor downregulation and metabolic reprogramming, suppressing tumor growth. Synbiotic interventions mitigate chemotherapy-related side effects, improving the quality of life in breast cancer patients. Prebiotics offer a promising avenue for breast cancer prevention and therapy by modulating estrogen metabolism, immune function, and metabolic pathways. Future clinical trials are needed to validate their efficacy as adjunctive treatments in breast cancer management.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Sama Abouelnour
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Bassel M. Hassen
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Salma Magdy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Ahmed Yasser
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate 15888, Egypt;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Faisal Radwan
- Center for Coastal Environmental Health and Biomolecular Research, NCCOS/NOS/NOAA, Charleston, SC 29412, USA
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hala Hafiz
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ohaad F. A. Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
8
|
Zheng L, Xin J, Ye H, Sun N, Gan B, Gong X, Bao S, Xiang M, Wang H, Ni X, Li H, Zhang T. Lactobacillus Johnsonii YH1136 alleviates schizophrenia-like behavior in mice: a gut-microbiota-brain axis hypothesis study. BMC Microbiol 2025; 25:191. [PMID: 40175911 PMCID: PMC11963707 DOI: 10.1186/s12866-025-03893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Based on the microbiota-gut-brain axis (MGBA) hypothesis, probiotics play an increasingly important role in treating various psychiatric disorders. Schizophrenia (SCZ) is a common mental disease with a complex pathogenesis and is challenging to treat. Although studies have elucidated the mechanisms associated with the interactions between the microbiota-gut-brain axis and SCZ, few have specifically used probiotics as a therapeutic intervention for SCZ. Accordingly, the current study determines whether L. johnsonii YH1136 effectively prevents SCZ-like behavior in mice and identifies the associated key microbes and metabolites. An SCZ mouse model was established by intraperitoneal injection of MK-801; L. johnsonii YH1136 was administered via oral gavage. L. johnsonii YH1136 significantly improves abnormal behaviors, including psychomotor hyperactivity and sociability and alleviates aberrant enzyme expression associated with tryptophan metabolism in SCZ mice. Additionally, L. johnsonii YH1136 upregulates hippocampal brain-derived neurotrophic factor (BDNF) levels while downregulating tryptophan 2,3-dioxygenase (TDO2), indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1), kynurenine aminotransferase 1 (KAT1). Subsequent 16S rRNA sequencing of intestinal contents suggests that L. johnsonii YH1136 modulates the gut flora structure and composition by increasing the relative abundance of Lactobacillus and decreasing Dubosiella in SCZ mice. N-acetylneuraminic acid and hypoxanthine are the key serum metabolites mediating the interaction between the MGBA and SCZ. These results partially reveal the mechanism underlying the effects of L. johnsonii YH1136 on SCZ-like behavior in mice, supporting the development of therapeutic L. johnsonii probiotic formulations against SCZ.
Collapse
Affiliation(s)
- Liqin Zheng
- School of Life Science and Technology, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, Sichuan Institute for Brain Science and Brain-Inspired Intelligence, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu , Sichuan, 611731, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiqian Ye
- The Fourth People's Hospital of Ya'an, 7 Qingxi Road Ya'an 625000, Yucheng ZoneSichuan, China
| | - Ning Sun
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shusheng Bao
- School of Life Science and Technology, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, Sichuan Institute for Brain Science and Brain-Inspired Intelligence, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu , Sichuan, 611731, China
| | - Min Xiang
- The Fourth People's Hospital of Ya'an, 7 Qingxi Road Ya'an 625000, Yucheng ZoneSichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqin Ni
- Animal Microecology Institute College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- The Fourth People's Hospital of Ya'an, 7 Qingxi Road Ya'an 625000, Yucheng ZoneSichuan, China.
| | - Tao Zhang
- School of Life Science and Technology, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
- MOE Key Lab for Neuroinformation, Sichuan Institute for Brain Science and Brain-Inspired Intelligence, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-Tech Zone, Chengdu , Sichuan, 611731, China.
| |
Collapse
|
9
|
Kore MS, Mamsa R, Patil D, Bhatt LK. Ghrelin in Depression: A Promising Therapeutic Target. Mol Neurobiol 2025; 62:4237-4249. [PMID: 39424690 DOI: 10.1007/s12035-024-04554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Depression is a widespread disease affecting over 300 million individuals of various ethnicities and socioeconomic backgrounds globally. It frequently strikes early in life and becomes a chronic or recurring lifelong illness. Out of the various hypotheses for the pathophysiology of depression, the gut-brain axis and stress hypothesis are the ones that need to be researched, as psychological stress impairs one or more pathways of the brain-gut axis and is likely to cause brain-gut axis dysfunction and depression. A dysfunctional reciprocal gut-brain relationship may contribute to many diseases, including inflammatory disorders, abnormal stress responses, impaired behavior, and metabolic changes. The hormone ghrelin is a topic of interest concerning the gut-brain axis as it interacts with the gut-brain axis indirectly via the central nervous system or via crossing the blood-brain barrier. Ghrelin release is also affected by the gut microbes, which has also been discussed in the review. This review elaborates on Ghrelin's role in depression and its effect on various aspects like neurogenesis, HPA axis, and neuroinflammation. Furthermore, this review focuses on ghrelin as a potential target for alleviation of depressive symptoms.
Collapse
Affiliation(s)
- Mikhil Santosh Kore
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
10
|
Ayayee P, Custer G, Clayton JB, Price J, Ramer-Tait A, Larsen T. Assessing gut microbial provisioning of essential amino acids to host in a murine model with reconstituted gut microbiomes. RESEARCH SQUARE 2025:rs.3.rs-6255159. [PMID: 40195995 PMCID: PMC11975013 DOI: 10.21203/rs.3.rs-6255159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gut microbial essential amino acid (EAA) provisioning to mammalian hosts remains a critical yet poorly understood aspect of host-microbe nutritional interactions, with significant implications for human and animal health. To investigate microbial EAA contributions in mice with reconstituted gut microbiomes, we analyzed stable carbon isotopes (13C) of six EAAs across multiple organs. Germ-free (GF) mice fed a high-protein diet (18%) were compared to conventionalized (CVZ) mice fed a low-protein diet (10%) following fecal microbiota transplantation 30 days prior and a 20-day dietary intervention. We found no evidence for microbial EAA contributions to host tissues, with 13C-EAA fingerprinting revealing nearly identical patterns between GF and CVZ organs. Both groups maintained their expected microbiome statuses, with CVZ gut microbiota dominated by Firmicutes and Bacteroidetes phyla. These findings raise important questions about the functional capacities of reconstituted gut microbiomes. Future studies should investigate longer adaptation periods, varied dietary protein levels, and complementary analytical techniques to better understand the context-dependent nature of microbial EAA provisioning in mammalian hosts.
Collapse
Affiliation(s)
- Paul Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Gordon Custer
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Thomas Larsen
- Max Planck Institute of Geoanthropology, Jena, Germany
- Institute for Prehistoric and Protohistoric Archaeology, University of Kiel, Kiel, Germany
| |
Collapse
|
11
|
Beltran-Velasco AI, Clemente-Suárez VJ. Impact of Peripheral Inflammation on Blood-Brain Barrier Dysfunction and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2440. [PMID: 40141084 PMCID: PMC11942216 DOI: 10.3390/ijms26062440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis by regulating molecular exchange between the systemic circulation and the central nervous system. However, its dysfunction, often driven by peripheral inflammatory processes, has been increasingly linked to the development and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Emerging evidence suggests that the gut-brain axis plays a key role in BBB integrity, with intestinal dysbiosis and chronic inflammation contributing to barrier disruption through immune and metabolic pathways. Furthermore, the selective vulnerability of specific brain regions to BBB dysfunction appears to be influenced by regional differences in vascularization, metabolic activity, and permeability, making certain areas more susceptible to neurodegenerative processes. This review explored the molecular mechanisms linking peripheral inflammation, gut microbiota, and BBB dysfunction, emphasizing their role in neurodegeneration. A comprehensive literature review was conducted using Web of Science, PubMed, Scopus, Wiley, ScienceDirect, and Medline, covering publications from 2015 to 2025. The findings highlight a complex interplay between gut microbiota-derived metabolites, immune signaling, and BBB permeability, underscoring the need for targeted interventions such as microbiome modulation, anti-inflammatory therapies, and advanced drug delivery systems. The heterogeneity of the BBB across different brain regions necessitates the development of region-specific therapeutic strategies. Despite advancements, critical knowledge gaps persist regarding the precise mechanisms underlying BBB dysfunction. Future research should leverage cutting-edge methodologies such as single-cell transcriptomics and organ-on-chip models to translate preclinical findings into effective clinical applications. Addressing these challenges will be crucial for developing personalized therapeutic approaches to mitigate the impact of BBB dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Isabel Beltran-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28248 Madrid, Spain;
| | - Vicente Javier Clemente-Suárez
- Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
12
|
Li J, Xu Q, Xu X, He W, Zhang H, Ren H, Wang Y, Wang X, Zhao D. Apigenin protects ischemic stroke by regulating intestinal microbiota homeostasis, regulates brain metabolic profile. Front Pharmacol 2025; 16:1553081. [PMID: 40124778 PMCID: PMC11925864 DOI: 10.3389/fphar.2025.1553081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Background and Objective Ischemic stroke is a cerebrovascular disease with highly incidence. Previous research has demonstrated that apigenin provides protective effects against ischemic stroke. However, it remains unclear whether apigenin can regulate intestinal flora against ischemic stroke. Methods In this study, we evaluated the regulatory effects of apigenin on intestinal microbiota using a middle cerebral artery occlusion rat model. The protective impact of apigenin on brain damage in ischemic stroke rats was assessed through Nissl staining, hematoxylin and eosin staining, and immunohistochemistry. Additionally, we employed 16S rRNA sequencing to analyze intestinal contents and utilized non-targeted metabolomics to investigate the effects of apigenin on brain metabolites, thereby exploring its mechanism of action. AMPK levels were detected by Western blot and immunohistochemistry. The kit was used to detect oxidative stress and inflammation. Results The intervention with apigenin resulted in significant alterations in the intestinal flora, characterized by an increase in the abundance of probiotic species and a decrease in harmful flora, alongside notable changes in brain metabolite profiles. This protective effect is attributed to apigenin's promotion of AMPK expression and enhancement of energy metabolism in the context of ischemic stroke. In addition, apigenin improved oxidative stress and inflammation in ischemic stroke. Conclusion These findings suggest that apigenin exerts a protective effect on ischemic stroke through the AMPK signaling pathway by modulating intestinal flora and associated metabolites. Consequently, apigenin emerges as a therapeutic candidate warranting further investigation.
Collapse
Affiliation(s)
- Jinjian Li
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qiaoli Xu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaoming Xu
- Department of Encephalopathy, Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei He
- Department of Encephalopathy, Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Hui Zhang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Haoxu Ren
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yue Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
13
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2025; 42:341-360. [PMID: 39655451 DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Significance: Hydrogen sulfide (H2S), a ubiquitous small gaseous signaling molecule, plays a critical role in various diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), ischemic stroke, and myocardial infarction (MI) via reducing inflammation, inhibiting oxidative stress, and cell apoptosis. Recent Advances: Uncontrolled inflammation is closely related to pathological process of ischemic stroke, RA, MI, and IBD. Solid evidence has revealed the axes between gut and other organs like joint, brain, and heart, and indicated that H2S-mediated anti-inflammatory effect against IBD, RA, MI, and ischemic stroke might be related to regulating the functions of axes between gut and other organs. Critical Issues: We reviewed endogenous H2S biogenesis and the H2S-releasing donors, and revealed the anti-inflammatory effects of H2S in IBD, ischemic stroke, RA, and MI. Importantly, this review outlined the potential role of H2S in the gut-joint axis, gut-brain axis, and gut-heart axis as a gasotransmitter. Future Direction: The rate, location, and timing of H2S release from its donors determine its potential success or failure as a useful therapeutic agent and should be focused on in the future research. Therefore, there is still a need to explore internal and external sources monitoring and controlling H2S concentration. Moreover, more efficient H2S-releasing compounds are needed; a better understanding of their chemistry and properties should be further developed. Antioxid. Redox Signal. 42, 341-360.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Tzikos G, Chamalidou E, Christopoulou D, Apostolopoulou A, Gkarmiri S, Pertsikapa M, Menni AE, Theodorou IM, Stavrou G, Doutsini ND, Shrewsbury AD, Papavramidis T, Tsetis JK, Theodorou H, Konsta A, Kotzampassi K. Psychobiotics Ameliorate Depression and Anxiety Status in Surgical Oncology Patients: Results from the ProDeCa Study. Nutrients 2025; 17:857. [PMID: 40077722 PMCID: PMC11901992 DOI: 10.3390/nu17050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Psychological disorders are prevalent in patients having undergone gastrointestinal cancer surgery, and their emotional status may further deteriorate during subsequent chemotherapy. Psychobiotics are specific probiotics that have the unique characteristics of producing neuroactive substances that are thought to act on the brain-gut axis. The aim of the present study was to evaluate the benefits of a psychobiotic formula on depression and anxiety status, as well as on perceived stress, versus a placebo in patients on a chemotherapy course following gastrointestinal surgery for cancer. Patients: The enrolled patients, allocated to the psychobiotic and placebo groups, were assessed by means of these psychometric tests: Beck's Depression Inventory and the Hamilton Depression Rating 17-item Scale for depression; the General Anxiety Disorder-7 for anxiety; and the Perceived Stress Scale-14 Item for perceived stress at three time-points: upon allocation [T1], after one month of treatment [T2], and two months thereafter [T3]. Results: In total, 266 patients were included. One month of psychobiotic treatment improved [i] depression status by 60.4% [48 depressed patients at T1, reduced to 16 at T3]; [ii] anxiety by 57.0% [72 patients at T1, 26 at T3]; and [iii] stress by 60.4% [42 at T1, 14 at T3]. The placebo-treated patients experienced a deterioration in all parameters studied, i.e., depression increased by 62.9%, anxiety by 39.7%, and stress by 142.5%. Conclusions: Based on these findings, it can be recognized that psychobiotic treatment has great potential for every patient at risk of suffering from depression, anxiety, or stress during the course of surgery/chemotherapy for gastrointestinal cancer.
Collapse
Affiliation(s)
- Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Eleni Chamalidou
- Outpatient Surgical Oncology Unit, Chemotherapy Department, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Dimitra Christopoulou
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Aikaterini Apostolopoulou
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (S.G.); (M.P.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (S.G.); (M.P.)
| | - Marianthi Pertsikapa
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (S.G.); (M.P.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | | | - George Stavrou
- Department of Surgery, 417 NIMTS (Army Share Fund Hospital), 11521 Athens, Greece;
| | - Nektaria-Dimitra Doutsini
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | - Theodosios Papavramidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| | | | - Helen Theodorou
- Department of Sociology, School of Social Sciences, University of Crete, 74100 Rethymno, Greece;
| | - Anastasia Konsta
- First Department of Psychiatry, “Papageorgiou” General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.T.); (D.C.); (A.-E.M.); (N.-D.D.); (A.D.S.); (T.P.)
| |
Collapse
|
15
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2025; 28:156-170. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
16
|
Huang J, Qin TS, Bo Y, Li YJ, Liu RS, Yu Y, Li XD, He JC, Ma AX, Tao DP, Ren WJ, Peng J. The Role of the Intestinal Flora and Its Derivatives in Neurocognitive Disorders: A Narrative Review from Surgical Perspective. Mol Neurobiol 2025; 62:1404-1414. [PMID: 38985257 PMCID: PMC11772545 DOI: 10.1007/s12035-024-04322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Perioperative neurocognitive dysfunction is a significant concern for population health, impacting postoperative recovery and increasing the financial burden on patients. With an increasing number of surgical procedures being performed, the prevention and management of perioperative neurocognitive dysfunction have garnered significant attention. While factors such as age, lifestyle, genetics, and education are known to influence the development of cognitive dysfunction, recent research has highlighted the role of the gut microbiota in neurological health. An increased abundance of pro-inflammatory gut microbiota can trigger and worsen neuroinflammation, neuronal cell damage, and impaired cellular autophagy. Moreover, the inflammation-promoting gut microbiota can disrupt immune function, impair neuroautophagy, and affect the production and circulation of extracellular vesicles and neurotransmitters. These factors collectively play a role in the onset and advancement of cognitive impairment. This narrative review delves into the molecular mechanisms through which gut microbiota and their derivatives contribute to cognitive impairment, focusing on the impact of anesthesia surgery, changes in gut microbial populations, and perioperative cognitive impairment associations. The study suggests that alterations in the abundance of various bacterial species and their metabolites pre- and post-surgery may be linked to postoperative cognitive impairment. Furthermore, the potential of probiotics or prebiotics in addressing cognitive impairment is discussed, offering a promising avenue for investigating the treatment of perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Jian Huang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, People's Republic of China
| | - Tian-Shou Qin
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, People's Republic of China
| | - Yun Bo
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yu-Jin Li
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Rong-Sheng Liu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yang Yu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Xiao-Dong Li
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, People's Republic of China
| | - Jin-Can He
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, People's Republic of China
| | - Ai-Xin Ma
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, People's Republic of China
| | - Da-Peng Tao
- School of Information Science and Engineering, Yunnan University, Kunming, 650504, China
| | - Wen-Jun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| |
Collapse
|
17
|
Zhou XP, Sun LB, Liu WH, Zhu WM, Li LC, Song XY, Xing JP, Gao SH. The complex relationship between gut microbiota and Alzheimer's disease: A systematic review. Ageing Res Rev 2025; 104:102637. [PMID: 39662839 DOI: 10.1016/j.arr.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the central nervous system. Despite extensive research conducted on this disorder, its precise pathogenesis remains unclear. In recent years, the microbiota-gut-brain axis has attracted considerable attention within the field of AD. The gut microbiota communicates bidirectionally with the central nervous system through the gut-brain axis, and alterations in its structure and function can influence the progression of AD. Consequently, regulating the gut microbiota to mitigate the progression of AD has emerged as a novel therapeutic approach. Currently, numerous studies concentrate on the intrinsic relationship between the microbiota-gut-brain axis and AD. In this paper, we summarize the multifaceted role of the gut microbiota in AD and present detailed therapeutic strategies targeting the gut microbiota, including the treatment of AD with Traditional Chinese Medicine (TCM), which has garnered increasing attention in recent years. Finally, we discuss potential therapeutic strategies for modulating the gut microbiota to alleviate the progression of AD, the current challenges in this area of research, and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wu-Ming Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Lin-Chun Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
18
|
Samalia PD, Solanki J, Kam J, Angelo L, Niederer RL. From Dysbiosis to Disease: The Microbiome's Influence on Uveitis Pathogenesis. Microorganisms 2025; 13:271. [PMID: 40005638 PMCID: PMC11857511 DOI: 10.3390/microorganisms13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiome, comprising the diverse microbial communities inhabiting the human body, has emerged as a critical factor in regulating immune function and inflammation. The relationship between the microbiome and uveitis represents a promising frontier in ophthalmological research, with the microbiome increasingly implicated in disease onset and progression. Research has predominantly focused on the gut microbiome, with animal studies providing evidence that dysbiosis is a key factor in autoimmunity. As the understanding of the microbiome increases, so does the potential for developing innovative treatments that leverage the microbiome's impact on immune and inflammatory processes. Future research will be crucial for deciphering the complexities of the interaction between the microbiome and immune system and for creating effective microbiome-based therapies for those with uveitis. Incorporating microbiome research into clinical practice could transform how uveitis is managed, leading to better and more individualized approaches for management. This review discusses the current understanding of the microbiome-uveitis axis, the promise of microbiome-based diagnostics and therapeutics, and the critical need for large-scale, longitudinal studies. Unlocking the potential of microbiome-targeted approaches may revolutionize the management of uveitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Priya D. Samalia
- Health New Zealand Auckland, Auckland 1051, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
| | | | - Joseph Kam
- Health New Zealand Auckland, Auckland 1051, New Zealand
- Department of Ophthalmology, University of Auckland, Auckland 1010, New Zealand
| | - Lize Angelo
- Department of Ophthalmology, University of Auckland, Auckland 1010, New Zealand
| | - Rachael L. Niederer
- Health New Zealand Auckland, Auckland 1051, New Zealand
- Department of Ophthalmology, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
19
|
Lin L, Guo Z, Ren Z, Feng Y, Fang P, Wang T, Chen M. Bibliometric insights into astrocytic roles in depression and treatment. Front Cell Neurosci 2025; 18:1521398. [PMID: 39882216 PMCID: PMC11775634 DOI: 10.3389/fncel.2024.1521398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Depression is a mental disorder that significantly impairs both physical and mental health. Recent studies have shown that reactive astrogliosis have gained significant attention for their involvement in the pathophysiology of depression. However, there is no bibliometric analysis in this research field. This study aims to provide a comprehensive overview of the knowledge structure and research hotspots regarding the role of astrocytes in the mechanisms and treatment of depression through bibliometric analysis. The scope of the literature review encompasses both basic and clinical research. Methods Publications related to astrocytes in depression and treatment from 2014 to 2023 were searched in the Web of Science Core Collection (WoSCC) database. VOSviewer, CiteSpace, and the R package "bibliometrix" were used to conduct this bibliometric analysis. Results From 2014 to 2023, a total of 1,502 documents from 78 countries on astrocytes in depression and treatment were analyzed from 169 journals, with the most co-cited journals being the Journal of Neuroscience and PNAS. China Medical University was the most productive institution. The analysis identified key authors like Verkhratsky Alexei and Baoman Li, and major co-cited references by Rajkowska and Liddelow. Keywords such as "synaptic plasticity," "astrocytes," and "neuroinflammation" revealed research trends focusing on molecular mechanisms, gut microbiota, and inflammation. Conclusion This is the first bibliometric study to comprehensively summarize the research trends and advancements regarding astrocytes in depression and its treatment. Through this bibliometric analysis, we aim to enhance the understanding of the significance of astrocytes in depression research and provide new perspectives and insights for future investigations. We hope that this study will facilitate a broader integration of basic and clinical research, offering novel approaches for the treatment of depression.
Collapse
Affiliation(s)
- Linsun Lin
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Ziyi Guo
- National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuoyu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanchen Feng
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peigang Fang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Tao Wang
- Encephalopathy Center, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macao SAR, China
- Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Shouman S, Hesham N, Salem TZ. Viruses and neurodegeneration: a growing concern. J Transl Med 2025; 23:46. [PMID: 39800721 PMCID: PMC11727702 DOI: 10.1186/s12967-024-06025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Neurodegenerative diseases (NDDs) cause a progressive loss of neurons. Since NDDs are multifactorial, the precise etiology varies on the basis of the type of disease and patient history. Cohort studies and case studies have demonstrated a potential link between viral infections and the onset or progression of NDDs. Recent findings concerning the mechanisms by which neuropathic infections occur have provided more insights into the importance of such connections. In this review, we aim to elaborate on the occurrence of the neuropathic effects of viruses from epidemiological, clinical, and biological perspectives while highlighting potential treatments and challenges. One of the key players in viral neuropathogenesis is neuroinflammation caused by the immune response to the virus; this can occur due to both neurotropic and nonneurotropic viruses. The COVID-19 pandemic has raised concerns about whether vaccines are essential for preventing viruses or whether vaccines may play a part in exacerbating or accelerating NDDs. By classifying viruses and the common NDDs associated with them and further delving into their cellular pathways, this review provides insights to advance the development of potential treatments and diagnostic methods.
Collapse
Affiliation(s)
- S Shouman
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - N Hesham
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - T Z Salem
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
- Molecular Biology and Virology Laboratory (MBVL), Center for X-Ray Determination of the Structure of Matter (CXDS), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt.
| |
Collapse
|
21
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
22
|
Huarcaya LRD. Gut Microbiota and Alzheimer Disease. ACTA NEUROLOGICA TAIWANICA 2025; 34:1-12. [PMID: 40396795 DOI: 10.4103/ant.ant_113_0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 05/22/2025]
Abstract
ABSTRACT The hallmarks of Alzheimer's disease (AD) include brain dysfunction and the buildup of amyloid and tau proteins. The onset of dementia is one of the latter symptoms. Imaging diagnostics allowed for the detection of amyloid buildup in the brain 10-20 years before the emergence of overt signs of the disease. The application of imaging diagnostic techniques allowed for this identification. Within the next few decades, the incidence and frequency of this disease are expected to reach epidemic proportions unless measures are done to stop or slow its growth. However, unless action is taken to slow or stop the disease's progression, it will continue to threaten the health of the general public. Recently, there has been some speculation that the gut flora might contribute to the development of AD. Not only that, but the rapidly expanding ischemia etiology is another possible contributor to the issue. Rumor has it that there's a network connecting the brain and the stomach called the "gut-brain-microbiota axis." The hypothesis is based on this network. Furthermore, a large amount of evidence implies that the gut microbiota (GMB) could potentially contribute to the onset of AD. It has been suggested that the GMB could play a role in the onset of AD. This notion has been bolstered by new studies. It is quite probable that this review will address the prospect of a link between the microbiome and AD. This concept could be explored as a potential therapy or preventative measure. Some techniques that show promise as new treatments for AD include changes to the GMB, which can be achieved through dietary changes or positive microflora interventions, and changes to microbiological partners and their products, like amyloid protein.
Collapse
|
23
|
Díez-Madueño K, de la Cueva Dobao P, Torres-Rojas I, Fernández-Gosende M, Hidalgo-Cantabrana C, Coto-Segura P. Gut Dysbiosis and Adult Atopic Dermatitis: A Systematic Review. J Clin Med 2024; 14:19. [PMID: 39797102 PMCID: PMC11721037 DOI: 10.3390/jcm14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). Methods: We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, EMBASE, and Web of Science. Observational and interventional studies were analyzed. Results: Although the studies showed heterogeneous results, some distinguishing characteristics were found in the intestinal microbial composition of adults with dermatitis. Even though no significant differences in diversity were found between healthy and affected adults, certain microorganisms, such as Bacteroidales, Enterobacteriaceae, and Clostridium (perfringens), were more characteristic of the fecal microbiota in adults with AD. Healthy individuals exhibited lower abundances of aerobic bacteria and higher abundances of short-chain fatty acid-producing species and polyamines. Clinical trials showed that the consumption of probiotics (Bifidobacterium and/or Lactobacillus), fecal microbiota transplants, and balneotherapy modified the fecal microbiota composition of participants and were associated with significant improvements in disease management. Conclusions: In anticipation of forthcoming clinical trials, it is essential to conduct meta-analyses that comprehensively evaluate the effectiveness and safety of interventions designed to modify intestinal flora in the context of AD. Preliminary evidence suggests that certain interventions may enhance adult AD management.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pablo de la Cueva Dobao
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Torres-Rojas
- Allergy Department, Hospital Universitario Infanta Sofía, 28702 Alcobendas, Spain;
| | | | | | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, 33611 Mieres, Spain;
| |
Collapse
|
24
|
Samuel V, Solomons R, Mason S. Targeted metabolomics investigation of metabolic markers of Mycobacterium tuberculosis in the cerebrospinal fluid of paediatric patients with tuberculous meningitis. PLoS One 2024; 19:e0314854. [PMID: 39689104 DOI: 10.1371/journal.pone.0314854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE To investigate metabolic markers linked to Mycobacterium tuberculosis (M. tb) in the cerebrospinal fluid (CSF) of a South African cohort of paediatric tuberculous meningitis (TBM). METHODS Targeted proton magnetic resonance (1H-NMR) spectroscopy and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) metabolomics approaches were used to evaluate M. tb-linked metabolites in the CSF of 21 definite cases of TBM and 25 control cases. Uni- and multivariate statistical analyses were performed. RESULTS Four statistically significant metabolites were identified to discriminate TBM cases from controls. Mannose and arabinose were found at lower concentrations in the TBM group. Nonanoic acid and propanoic acid were found in higher concentrations in the definite TBM group. CONCLUSIONS We identified the novel presence of nonanoic acid for the first time as a M. tb-linked marker in the CSF of cases of TBM, possibly as a degradation product of the M. tb cell wall. Propanoic acid can be related to perturbed brain neuro-energetics and neuro-inflammation in TBM cases and is likely a host-response metabolite. Mannose and arabinose-supposed surrogates for lipoarabinomannan, a component of the M. tb cell wall-were not reliable markers for M. tb. Further research should focus on the analysis of fatty acids in the CSF of patients with TBM.
Collapse
Affiliation(s)
- Victory Samuel
- Biochemistry Department, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Shayne Mason
- Biochemistry Department, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
25
|
Menezes AA, Shah ZA. A Review of the Consequences of Gut Microbiota in Neurodegenerative Disorders and Aging. Brain Sci 2024; 14:1224. [PMID: 39766423 PMCID: PMC11726757 DOI: 10.3390/brainsci14121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025] Open
Abstract
Age-associated alterations in the brain lead to cognitive deterioration and neurodegenerative disorders (NDDs). This review with a particular focus on Alzheimer's disease (AD), emphasizes the burgeoning significance of the gut microbiota (GMB) in neuroinflammation and its impact on the gut-brain axis (GBA), a communication conduit between the gut and the central nervous system (CNS). Changes in the gut microbiome, including diminished microbial diversity and the prevalence of pro-inflammatory bacteria, are associated with AD pathogenesis. Promising therapies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, may restore gut health and enhance cognitive performance. Clinical data remain insufficient, necessitating further research to elucidate causes, enhance therapy, and consider individual variances. This integrative approach may yield innovative therapies aimed at the GMB to improve cognitive function and brain health in older people.
Collapse
Affiliation(s)
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
26
|
Chen S, Jiao Y, Han C, Li Y, Zou W, Liu J. Drug-Resistant Epilepsy and Gut-Brain Axis: an Overview of a New Strategy for Treatment. Mol Neurobiol 2024; 61:10023-10040. [PMID: 38087164 DOI: 10.1007/s12035-023-03757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2024]
Abstract
Drug-resistant epilepsy (DRE), also known as intractable epilepsy or refractory epilepsy, is a disease state with long-term poorly controlled seizures attack. Without effective treatment, patients are at an elevated risk of injury, premature death, mental disorders, and poor quality of life, increasing the need for a fresh perspective on the etiology and treatment of DRE. The gut is known to harbor a wide variety of microorganisms that can regulate the host's response to exogenous signals and participate in various physiological and pathological processes in the human body. Interestingly, emerging evidence has uncovered the changes in gut microbiota in patients with epilepsy, particularly those with DRE. In addition, both dietary interventions and specific antibiotic therapy have been proven to be effective in restoring the microecological environment and, more importantly, reducing seizures. Here, we reviewed recent studies on DRE and the involvement of gut microbiota in it, describing changes in the gut microflora composition in patients with DRE and corresponding animal models. Furthermore, the influence of the ketogenic diet, probiotics, fecal microbiota transplantation (FMT), and antibiotics as microbiome-related factors on seizure control and its possible mechanisms are broadly discussed. Finally, we highlighted the significance of gut microbiome in DRE, in order to provide a new prospect for early identification and individualized treatment of patients with DRE.
Collapse
Affiliation(s)
- Shuna Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Yang Jiao
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, People's Republic of China.
| |
Collapse
|
27
|
Nyam TTE, Wee HY, Chiu MH, Tu KC, Wang CC, Yeh YT, Kuo CL. Hyperbaric Oxygen Therapy Reduces the Traumatic Brain Injury-Mediated Neuroinflammation Through Enrichment of Prevotella Copri in the Gut of Male Rats. Neurocrit Care 2024; 41:798-812. [PMID: 38750394 PMCID: PMC11599330 DOI: 10.1007/s12028-024-01997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Gastrointestinal dysfunction frequently occurs following traumatic brain injury (TBI) and significantly increases posttraumatic complications. TBI can lead to alterations in gut microbiota. The neuroprotective effects of hyperbaric oxygen (HBO) have not been well recognized after TBI. The study''s aim was to investigate the impact of HBO on TBI-induced dysbiosis in the gut and the pathological changes in the brain following TBI. METHODS Anesthetized male Sprague-Dawley rats were randomly assigned to three groups: sham surgery plus normobaric air (21% oxygen at 1 atmospheres absolute), TBI (2.0 atm) plus normobaric air, and TBI (2.0 atm) plus HBO (100% oxygen at 2.0 atmospheres absolute) for 60 min immediately after TBI, 24 h later, and 48 h later. The brain injury volume, tumor necrosis factor-α expression in microglia and astrocytes, and neuronal apoptosis in the brain were subsequently determined. The V3-V4 regions of 16S ribosomal rRNA in the fecal samples were sequenced, and alterations in the gut microbiome were statistically analyzed. All parameters were evaluated on the 3rd day after TBI. RESULTS Our results demonstrated that HBO improved TBI-induced neuroinflammation, brain injury volume, and neuronal apoptosis. HBO appeared to increase the abundance of aerobic bacteria while inhibiting anaerobic bacteria. Intriguingly, HBO reversed the TBI-mediated decrease in Prevotella copri and Deinococcus spp., both of which were negatively correlated with neuroinflammation and brain injury volume. TBI increased the abundance of these gut bacteria in relation to NOD-lik0065 receptor signaling and the proteasome pathway, which also exhibited a positive correlation trend with neuro inflammation and apoptosis. The abundance of Prevotella copri was negatively correlated with NOD-like receptor signaling and the Proteasome pathway. CONCLUSIONS Our study demonstrated how the neuroprotective effects of HBO after acute TBI might act through reshaping the TBI-induced gut dysbiosis and reversing the TBI-mediated decrease of Prevotella copri.
Collapse
Affiliation(s)
- Tee-Tau Eric Nyam
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan
- Center of General Education, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hsiao-Yue Wee
- Department of Neurosurgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Min-Hsi Chiu
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Kuan-Chi Tu
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan.
| | - Ching-Lung Kuo
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan.
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
- School of Medicine, Colledge of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Hou L, Zhao J, Yin L, Dai L, Deng H, Jiang L. Brain injury in premature infants may be related to abnormal colonization of early gut microbiome. BMC Microbiol 2024; 24:483. [PMID: 39558267 PMCID: PMC11575211 DOI: 10.1186/s12866-024-03643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Premature infants are more prone to brain injuries owing to incomplete nervous system development and poor adaptation outside the mother's body. Without timely intervention, premature infants with brain injuries often develop intellectual disabilities, causing significant burdens on families and the society. Multiple studies have shown that gut dysbiosis can affect the nervous system, and vice versa. This study aimed to explore the changes in gut microbiota of typical premature infants and those with brain injuries on the third and seventh days after birth using 16 S rRNA technology. METHODS Fecal samples from typical premature infants (non-brain injury group, n = 17) and those with brain injuries (brain injury group, n = 21) were collected on days 1, 3, and 7 after birth for 16 S rRNA sequencing. Alpha diversity analysis was used to evaluate the diversity of gut microbiome. LEfSe and DESeq2 were used to analyze of the microorganisms' characteristics and differentiate the microorganisms between the two groups. RESULTS At the phylum level, Firmicutes, Proteobacteria, and Actinobacteria were the dominant flora in both groups. At the genus level, the proportion of Enterococcus in fecal samples of the brain injury group was higher than that of the non-brain injury group on day three after birth; however, the opposite was observed on day seven. Rothia and Lactobacillales were characteristic bacteria of the non-brain injury group on days three and seven after birth, whereas Enterococcus and Bifidobacteria were characteristic bacteria of the brain injury group on days three and seven after birth, respectively. Three days after birth, the Shannon and Simpson indices of the non-brain injury group were significantly higher than those of the brain injury group. CONCLUSION Premature infants with brain injuries have a unique gut microbiota that is different from that of typical premature infants, indicating correlation between brain injuries and gut microbiota.
Collapse
Affiliation(s)
- Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Lu Dai
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Hong Deng
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| |
Collapse
|
29
|
Albuquerque Pereira MDF, Morais de Ávila LG, Dos Santos Cruz BC, Almeida LF, Macedo Simões J, Campos Silva B, Pereira Aguilar A, de Oliveira LL, Vilela Gonçalves R, Ribon ADOB, Mendes TADO, Gouveia Peluzio MDC. Daily intake of household-produced milk kefir on Salmonella Typhimurium infection in C57BL/6 mice: mortality, microbiota modulation, and immunological implications. J Appl Microbiol 2024; 135:lxae249. [PMID: 39317667 DOI: 10.1093/jambio/lxae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
AIMS Salmonellosis, a major global cause of diarrheal diseases, significantly impacts the intestinal microbiome. Probiotic-rich beverages, such as kefir, are increasingly utilized as alternative health-promoting beverages associated with various microbiota benefits. This study investigated the repercussions of daily consumption of household-produced milk kefir on Salmonella enterica serovar Typhimurium infection in C57BL-6 mice. METHODS AND RESULTS Kefir consumption pre-infection reduced the presence of inflammatory cells in the colon and altered the cytokine profile by reducing IL-10 and increasing IFN-γ. Despite reducing intestinal inflammation, kefir intake did not yield a prompt response to an acute infection caused by the aggressive pathogen Salmonella. This contributed to increased mortality in the mice, evidenced by higher fecal Salmonella counts post-infection. Metabarcoding analysis demonstrated that the use of kefir before infection increases butyric acid by the higher abundance of Lachnospiraceae and Prevotellaceae families and genus in feces, coupled with an increase in Muribaculaceae family and Bacteroides genus among infected kefir-treated mice. While kefir hinted at microbiota alterations reducing enterobacteria (Helicobacter), decrease IL-10, and increased IFN-γ, butyric acid on pre-infection, the beverage potentially facilitated the systemic translocation of pathogens, intensifying the infection's severity by altering the immune response. CONCLUSIONS The use of kefir in the dosage of 10% w/v (109 CFU), for acute infections with Salmonella Typhimurium, may not be enough to combat the infection and worsen the prognosis, leaving the intestine less inflamed, favoring the replication and translocation of the pathogen. These findings underscore the importance of prudently evaluating the widespread use of probiotics and probiotic-rich beverages, especially during acute infections, given their potential association with adverse effects during these diseases.
Collapse
Affiliation(s)
| | - Larissa Gabriela Morais de Ávila
- Institute of Biological Science - Interunit Postgraduate Program in Bioinformatics, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Cristina Dos Santos Cruz
- Institute of Biological Sciences and Health, Universidade Federal de Viçosa - Campus Rio Paranaíba, Km 7, Rural area, 38810-000, Rio Paranaíba, Minas Gerais, Brazil
| | - Lucas Filipe Almeida
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jordana Macedo Simões
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Bruno Campos Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Reggiani Vilela Gonçalves
- Department of Animal Biology, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n., 36570-900,Viçosa, Minas Gerais, Brazil
| | - Andréa de Oliveira Barros Ribon
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV. Av. P.H. Rolfs, s/n., 36570-900, Viçosa, Minas Gerais, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Institute of Biological Science - Interunit Postgraduate Program in Bioinformatics, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Singh I, Anand S, Gowda DJ, Kamath A, Singh AK. Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders. Biogerontology 2024; 25:899-922. [PMID: 39177917 PMCID: PMC11486790 DOI: 10.1007/s10522-024-10128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shashi Anand
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Deepashree J Gowda
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Amitha Kamath
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
31
|
Li J, Zhao J, Ze X, Li L, Li Y, Zhou Z, Wu S, Jia W, Liu M, Li Y, Shen X, He F, Cheng R. Lacticaseibacillus paracasei 207-27 alters the microbiota-gut-brain axis to improve wearable device-measured sleep duration in healthy adults: a randomized, double-blind, placebo-controlled trial. Food Funct 2024; 15:10732-10745. [PMID: 39385735 DOI: 10.1039/d4fo01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Objective: Probiotics have been reported to exert beneficial effects on sleep through the gut-brain axis. Therefore, this randomized, double-blind, placebo-controlled trial assessed the effects of Lacticaseibacillus paracasei 207-27 supplementation on sleep quality and its safety and potential mechanisms. Method and study design: Healthy adults under mild stress aged 18-35 years consumed low or high doses of L. paracasei 207-27 or a placebo for 28 days. Fecal samples, blood samples, and questionnaires were collected at the baseline and the end of the intervention. Sleep quality was measured using wearable devices and Pittsburgh sleep quality index (PSQI) questionnaire. Serum inflammatory markers, corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol (COR), γ-aminobutyric acid, and 5-hydroxytryptamine levels were detected using enzyme-linked immunosorbent assay. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Short-chain fatty acids levels were detected using gas chromatography-mass spectrometry. Results: Both the low-dose and high-dose groups exhibited significant improvements in wearable device- measured sleep duration compared to the placebo group. The global scores of PSQI in three groups significantly decreased after intervention without statistical difference between groups. At the phylum level, the low-dose group exhibited a higher relative abundance of Bacteroidota and a lower Firmicutes-to-Bacteroidetes (F/B) ratio. At the genus level, two treatment groups had higher relative abundance of Bacteroides and Megamonas, alongside lower levels of Escherichia-Shigella. Furthermore, the low-dose group exhibited significant increases in acetic acid, propionic acid, butyric acid, and valeric acid levels, while two treatment groups exhibited a significant decrease in COR levels. Correlation analysis revealed that the increased levels of acetic acid and butyric acid in the low-dose group may be associated with decreased ACTH. Conclusion: L. paracasei 207-27 administration in healthy adults resulted in improvements in gut microbiota community and sleep duration. The mechanisms might involve modulation of the gut microbiota structure to regulate the function of the gut-brain axis, including increases in SCFA levels and decreases in hypothalamic-pituitary-adrenal axis activity. The Chinese clinical trial registry number is ChiCTR2300069453 (https://www.chictr.org.cn/showproj.html?proj=191193, registered 16 May 2023 - retrospectively registered).
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Liang Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China
| | - Yapeng Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Zhimo Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Meixun Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan, University, Chengdu 610041, China.
| |
Collapse
|
32
|
Duan DM, Wang YC, Hu X, Wang YB, Wang YQ, Hu Y, Zhou XJ, Dong XZ. Effects of regulating gut microbiota by electroacupuncture in the chronic unpredictable mild stress rat model. Neuroscience 2024; 557:24-36. [PMID: 39128700 DOI: 10.1016/j.neuroscience.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.
Collapse
Affiliation(s)
- Dong-Mei Duan
- No.1 Health Care Department, Second Medical Center of Chinese, PLA General Hospital, 100853, China
| | - Yi-Chen Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Xin Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China; School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Bo Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yu-Qing Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yuan Hu
- Chinese PLA General Hospital, 100853, China
| | | | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China.
| |
Collapse
|
33
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Mualem R, Morales-Quezada L, Farraj RH, Shance S, Bernshtein DH, Cohen S, Mualem L, Salem N, Yehuda RR, Zbedat Y, Waksman I, Biswas S. Econeurobiology and brain development in children: key factors affecting development, behavioral outcomes, and school interventions. Front Public Health 2024; 12:1376075. [PMID: 39391155 PMCID: PMC11465878 DOI: 10.3389/fpubh.2024.1376075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 10/12/2024] Open
Abstract
The Econeurobiology of the brain describes the environment in which an individual's brain develops. This paper explores the complex neural mechanisms that support and evaluate enrichment at various stages of development, providing an overview of how they contribute to plasticity and enhancement of both achievement and health. It explores the deep benefits of enrichment and contrasts them with the negative effects of trauma and stress on brain development. In addition, the paper strongly emphasizes the integration of Gardner's intelligence types into the school curriculum environment. It emphasizes the importance of linking various intelligence traits to educational strategies to ensure a holistic approach to cognitive development. In the field of Econeurobiology, this work explains the central role of the environment in shaping the development of the brain. It examines brain connections and plasticity and reveals the impact of certain environmental factors on brain development in early and mid-childhood. In particular, the six key factors highlighted are an environment of support, nutrition, physical activity, music, sleep, and cognitive strategies, highlighting their potential to improve cognitive abilities, memory, learning, self-regulation, and social and emotional development. This paper also investigates the social determinants of health and education in the context of Econeurobiology. It emphasizes the transformative power of education in society, especially in vulnerable communities facing global challenges in accessing quality education.
Collapse
Affiliation(s)
- Raed Mualem
- Department of Natural and Environmental Sciences, Faculty of Education, Oranim Academic College, Kiryat Tiv'on, Israel
- The Institute for Brain and Rehabilitation Sciences, Nazareth, Israel
- Econeurobiology Research Group, Research Authority, Oranim Academic College, Kiryat Tiv'on, Israel
- Ramat Zevulun High School, Ibtin, Israel
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Rania Hussein Farraj
- Econeurobiology Research Group, Research Authority, Oranim Academic College, Kiryat Tiv'on, Israel
| | - Shir Shance
- The Institute for Brain and Rehabilitation Sciences, Nazareth, Israel
- Econeurobiology Research Group, Research Authority, Oranim Academic College, Kiryat Tiv'on, Israel
| | | | - Sapir Cohen
- Econeurobiology Research Group, Research Authority, Oranim Academic College, Kiryat Tiv'on, Israel
| | - Loay Mualem
- Department of Computer Science, Haifa University, Haifa, Israel
| | - Niven Salem
- The Institute for Brain and Rehabilitation Sciences, Nazareth, Israel
| | - Rivka Riki Yehuda
- The Institute for Brain and Rehabilitation Sciences, Nazareth, Israel
| | | | - Igor Waksman
- Bar Ilan University Medical School, Tzfat, Israel
| | - Seema Biswas
- Global Health Research Laboratory, Department of Surgery B, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
36
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
37
|
Yuan Y, Li L, Wang J, Myagmar BO, Gao Y, Wang H, Wang Z, Zhang C, Zhang X. Gut microbiota-derived acetate promotes long-term recovery through angiogenesis guided by lymphatic ingrowth in older adults with stroke. Front Neurosci 2024; 18:1398913. [PMID: 39371609 PMCID: PMC11450648 DOI: 10.3389/fnins.2024.1398913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Ischemic stroke is a leading cause of morbidity and mortality in older adults. Therefore, in this study, we sought to understand the interplay between the microbiota, gut, and brain in the context of stroke in older adults. Objective To determine whether gut microbiota from younger individuals promotes recovery through angiogenesis in both elderly stroke patients and aged stroke mice, we explored the changes in gut microbiota and the correlation between short-chain fatty acids (SCFAs) and angiogenesis in the aged stroke population. Then, we altered the gut microbiome in aged mice by transplanting microbiota from younger donors before inducing experimental stroke to explore the mechanism by which gut microbiota-derived SCFAs promote angiogenesis. Methods Part I: We conducted a single-center, double-blind trial to compare gut microbiota diversity and SCFA levels in fecal samples from older stroke patients with those from younger stroke patients. Additionally, we measured levels of vascular endothelial growth factor (VEGF) and VEGFC levels in plasma to assess their correlation with SCFA levels. Part II: We performed fecal microbiota transplantation (FMT) 3 days before inducing ischemic stroke in aged male mice (16-18) via distal middle cerebral artery occlusion (dMCAO). The FMT was conducted using gut microbiomes from either young donors (2-3 months) or aged donors (16-18 months). Results In older stroke patients, gut microbiota diversity was significantly reduced compared to that in younger stroke patients. Furthermore, levels of acetate, a bacterially derived SCFA, were lower and positively correlated with angiogenesis markers (VEGF and VEGF-C). In aged stroke mice, transplantation of young microbiota improved stroke outcomes by promoting angiogenesis, which was facilitated by lymphatic ingrowth into the cortex. This protective effect was linked to gut microbiota-derived acetate, which enhanced lymphangiogenesis by replenishing acetyl coenzyme A. Conclusions (a) Gut microbiota-derived acetate promotes angiogenesis post-stroke and (b) lymphatic ingrowth into the cerebral cortex was observed in post-dMCAO mice. These findings suggest that selectively promoting SCFA-producing bacteria, particularly acetate-producers, could be a promising therapeutic strategy to reduce functional impairments in older stroke subjects.
Collapse
Affiliation(s)
- Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Linlin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bat-Otgon Myagmar
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
- Hebei Vascular Homeostasis Key Laboratory for Neurology, Shijiazhuang, Hebei, China
| |
Collapse
|
38
|
Yang H, Liu W, Gao T, Liu Q, Zhang M, Liu Y, Ma X, Zhang N, Shi K, Duan M, Ma S, Zhang X, Cheng Y, Qu H, Chen M, Zhan S. Causal associations between gut microbiota, circulating inflammatory proteins, and epilepsy: a multivariable Mendelian randomization study. Front Immunol 2024; 15:1438645. [PMID: 39315097 PMCID: PMC11416947 DOI: 10.3389/fimmu.2024.1438645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have suggested that gut microbiota (GM) may be involved in the pathogenesis of epilepsy through the microbiota-gut-brain axis (MGBA). However, the causal relationship between GM and different epilepsy subtypes and whether circulating inflammatory proteins act as mediators to participate in epileptogenesis through the MGBA remain unclear. Therefore, it is necessary to identify specific GM associated with epilepsy and its subtypes and explore their underlying inflammatory mechanisms for risk prediction, personalized treatment, and prognostic monitoring of epilepsy. Methods We hypothesized the existence of a pathway GM-inflammatory proteins-epilepsy. We found genetic variants strongly associated with GM, circulating inflammatory proteins, epilepsy and its subtypes, including generalized and partial seizures, from large-scale genome-wide association studies (GWAS) summary data and used Multivariate Mendelian Randomization to explore the causal relationship between the three and whether circulating inflammatory proteins play a mediating role in the pathway from GM to epilepsy, with inverse variance weighted (IVW) method as the primary statistical method, supplemented by four methods: MR-Egger, weighted median estimator (WME), Weighted mode and Simple mode. Results 16 positive and three negative causal associations were found between the genetic liability of GM and epilepsy and its subtypes. There were nine positive and nine negative causal associations between inflammatory proteins and epilepsy and its subtypes. Furthermore, we found that C-X-C motif chemokine 11 (CXCL11) levels mediated the causal association between Genus Family XIII AD3011 group and epilepsy. Conclusion Our study highlights the possible causal role of specific GM and specific inflammatory proteins in the development of epilepsy and suggests that circulating inflammatory proteins may mediate epileptogenesis through the MGBA.
Collapse
Affiliation(s)
- Han Yang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Liu
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tiantian Gao
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qifan Liu
- Department of Transplant Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengyuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixin Liu
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Ma
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kaili Shi
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minyu Duan
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengying Chen
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
39
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
41
|
Xie Y, Zhao Y, Zhou Y, Jiang Y, Zhang Y, Du J, Cai M, Fu J, Liu H. Shared Genetic Architecture Among Gastrointestinal Diseases, Schizophrenia, and Brain Subcortical Volumes. Schizophr Bull 2024; 50:1243-1254. [PMID: 38973257 PMCID: PMC11349026 DOI: 10.1093/schbul/sbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND HYPOTHESIS The gut-brain axis plays important roles in both gastrointestinal diseases (GI diseases) and schizophrenia (SCZ). Moreover, both GI diseases and SCZ exhibit notable abnormalities in brain subcortical volumes. However, the genetic mechanisms underlying the comorbidity of these diseases and the shared alterations in brain subcortical volumes remain unclear. STUDY DESIGN Using the genome-wide association studies data of SCZ, 14 brain subcortical volumes, and 8 GI diseases, the global polygenic overlap and local genetic correlations were identified, as well as the shared genetic variants among those phenotypes. Furthermore, we conducted multi-trait colocalization analyses to bolster our findings. Functional annotations, cell-type enrichment, and protein-protein interaction (PPI) analyses were carried out to reveal the critical etiology and pathology mechanisms. STUDY RESULTS The global polygenic overlap and local genetic correlations informed the close relationships between SCZ and both GI diseases and brain subcortical volumes. Moreover, 84 unique lead-shared variants were identified. The associated genes were linked to vital biological processes within the immune system. Additionally, significant correlations were observed with key immune cells and the PPI analysis identified several histone-associated hub genes. These findings highlighted the pivotal roles played by the immune system for both SCZ and GI diseases, along with the shared alterations in brain subcortical volumes. CONCLUSIONS These findings revealed the shared genetic architecture contributing to SCZ and GI diseases, as well as their shared alterations in brain subcortical volumes. These insights have substantial implications for the concurrent development of intervention and therapy targets for these diseases.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Zhao
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujing Zhou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yurong Jiang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaojiao Du
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
42
|
Cherednichenko AS, Mozdor PV, Oleynikova TK, Khatam PA, Nastueva FM, Kovalenkov KO, Serdinova AS, Osmaeva AK, Rovchak AI, Esikova YY, Shogenova MK, Akhmedov KI, Amirgamzaev MR, Batyrshina ER. A relationship between intestinal microbiome and epilepsy: potential treatment options for drug-resistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:250-265. [DOI: 10.17749/2077-8333/epi.par.con.2024.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy. Almost 1/3 of patients are diagnosed with drug-resistant epilepsy (DRE). A relationship between intestinal microbiome (IM) and the central nervous system carried out throughout life via bidirectional dynamic network exists. It has been evidenced that IM profile becomes altered in patients with DRE.Objective: to summarize the current literature data on the role for microbiome-gut-brain axis in DRE, as well as to assess an importance of IM composition changes as a prognostic marker for developing DRE.Material and methods. The authors conducted a search for publications in the electronic databases PubMed/MEDLINE and eLibrary, as well as Google Scholar search engine. The evaluation of the articles was carried out in accordance with the PRISMA recommendations. Based on the search, 4,158 publications were retrieved from PubMed/MEDLINE database, 173 – from eLibrary, and 1,100 publications found with Google Scholar. After the selection procedure, 121 studies were included in the review.Results. The review provides convincing evidence about a correlation between IM and DRE demonstrating overt differences in IM composition found in patients with epilepsy related to drug sensitivity. IM dysbiosis can be corrected by exogenous interventions such as ketogenic diet, probiotic treatment and fecal microbiota transplantation subsequently resulting in altered brain neurochemical signaling and, therefore, alleviating epileptic activity.Conclusion. A ketogenic diet, probiotics and antibiotics may have some potential to affect epilepsy by correcting IM dysbiosis, but the current studies provide no proper level of evidence. Future clinical multicenter trials should use standardized protocols and a larger-scale patient sample to provide more reliable evidence. Moreover, further fundamental investigations are required to elucidate potential mechanisms and therapeutic targets.
Collapse
|
43
|
Ma YZ, Zhang YS, Cao JX, Chen HC, Su XM, Li B, Kang YT, Gao LP, Jing YH. Aberration of social behavior and gut microbiota induced by cross-fostering implicating the gut-brain axis. Brain Behav Immun 2024; 120:499-512. [PMID: 38944162 DOI: 10.1016/j.bbi.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/21/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
The gut microbiota and neurological development of neonatal mice are susceptible to environmental factors that may lead to altered behavior into adulthood. However, the role that changed gut microbiota and neurodevelopment early in life play in this needs to be clarified. In this study, by modeling early-life environmental changes by cross-fostering BALB/c mice, we revealed the effects of the environment during the critical period of postnatal development on adult social behavior and their relationship with the gut microbiota and the nervous system. The neural projections exist between the ascending colon and oxytocin neurons in the paraventricular nuclei (PVN), peripheral oxytocin levels and PVN neuron numbers decreased after cross-fostering, and sex-specific alteration in gut microbiota and its metabolites may be involved in social impairments and immune imbalances brought by cross-fostering via the gut-brain axis. Our findings also suggest that social cognitive impairment may result from a combination of PVN oxytocinergic neurons, gut microbiota, and metabolites.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Bing Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Ting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
44
|
Yang H, Shao Y, Hu Y, Qian J, Wang P, Tian L, Ni Y, Li S, Al‐Nusaif M, Liu C, Le W. Fecal microbiota from patients with Parkinson's disease intensifies inflammation and neurodegeneration in A53T mice. CNS Neurosci Ther 2024; 30:e70003. [PMID: 39161161 PMCID: PMC11333719 DOI: 10.1111/cns.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
AIMS We evaluated the potential of Parkinson's disease (PD) fecal microbiota transplantation to initiate or exacerbate PD pathologies and investigated the underlying mechanisms. METHODS We transplanted the fecal microbiota from PD patients into mice by oral gavage and assessed the motor and intestinal functions, as well as the inflammatory and pathological changes in the colon and brain. Furthermore, 16S rRNA gene sequencing combined with metabolomics analysis was conducted to assess the impacts of fecal delivery on the fecal microbiota and metabolism in recipient mice. RESULTS The fecal microbiota from PD patients increased intestinal inflammation, deteriorated intestinal barrier function, intensified microglia and astrocyte activation, abnormal deposition of α-Synuclein, and dopaminergic neuronal loss in the brains of A53T mice. A mechanistic study revealed that the fecal microbiota of PD patients stimulated the TLR4/NF-κB/NLRP3 pathway in both the brain and colon. Additionally, multiomics analysis found that transplantation of fecal microbiota from PD patients not only altered the composition of the gut microbiota but also influenced the fecal metabolic profile of the recipient mice. CONCLUSION The fecal microbiota from PD patients intensifies inflammation and neurodegeneration in A53T mice. Our findings demonstrate that imbalance and dysfunction in the gut microbiome play significant roles in the development and advancement of PD.
Collapse
Affiliation(s)
- Huijia Yang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yaping Shao
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yiying Hu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
- Department of Neurology, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Jin Qian
- Department of Neurology, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Panpan Wang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Lulu Tian
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yang Ni
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Song Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Murad Al‐Nusaif
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Weidong Le
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu HospitalShanghaiChina
| |
Collapse
|
45
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Baroni L, Rizzo G, Galchenko AV, Zavoli M, Serventi L, Battino M. Health Benefits of Vegetarian Diets: An Insight into the Main Topics. Foods 2024; 13:2398. [PMID: 39123589 PMCID: PMC11311397 DOI: 10.3390/foods13152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Vegetarian diets are plant-based diets including all the edible foods from the Plant Kingdom, such as grains, legumes, vegetables, fruits, nuts, and seeds. Dairy and eggs can be added in small amounts in the lacto-ovo-vegetarian subtype, or not at all in the vegan subtype. The abundance of non-processed plant foods-typical of all well-planned diets, including vegetarian ones-can provide the body with numerous protective factors (fiber, phytocompounds), while limiting the intake of harmful nutrients like saturated fats, heme-iron, and cholesterol. The beneficial effects on health of this balance have been reported for many main chronic diseases, in both observational and intervention studies. The scientific literature indicates that vegetarians have a lower risk of certain types of cancer, overall cancer, overweight-obesity, type 2 diabetes, dyslipidemia, hypertension, and vascular diseases. Since the trend of following a vegetarian diet is increasing among citizens of developed countries, the knowledge in the field will benefit from further studies confirming the consistency of these findings and clarifying the effects of vegetarian diets on other controversial topics.
Collapse
Affiliation(s)
- Luciana Baroni
- Scientific Society for Vegetarian Nutrition—SSNV, 30171 Venice, Italy; (L.B.); (A.V.G.); (M.Z.)
| | - Gianluca Rizzo
- Scientific Society for Vegetarian Nutrition—SSNV, 30171 Venice, Italy; (L.B.); (A.V.G.); (M.Z.)
| | - Alexey Vladimirovich Galchenko
- Scientific Society for Vegetarian Nutrition—SSNV, 30171 Venice, Italy; (L.B.); (A.V.G.); (M.Z.)
- Earth Philosophical Society “Melodia Vitae”, International, Toronto, CA M9A4X9, Canada
| | - Martina Zavoli
- Scientific Society for Vegetarian Nutrition—SSNV, 30171 Venice, Italy; (L.B.); (A.V.G.); (M.Z.)
| | - Luca Serventi
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Maurizio Battino
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China, Via Pietro Ranieri 65, 60131 Ancona, Italy;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, 60131 Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| |
Collapse
|
47
|
Zhao X, Guo J, Wang Y, Yi X. High-tannin food enhances spatial memory and scatter-hoarding in rodents via the microbiota-gut-brain axis. MICROBIOME 2024; 12:140. [PMID: 39075602 DOI: 10.1186/s40168-024-01849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The mutually beneficial coevolutionary relationships between rodents and plant seeds have been a theme of research in plant-animal relationships. Seed tannins are important secondary metabolites of plants that regulate the food-hoarding behavior of rodents; however, the underlying molecular mechanisms are not yet clear. In this study, we investigated whether and how seed tannins improve spatial memory and regulate the hoarding behavior of Tamias sibiricus by altering their gut microbiota. RESULTS We showed that acorn tannins not only improved spatial memory but also enhanced scatter-hoarding in T. sibiricus. Changes in the composition and function of the gut microbiota in response to tannins from acorns are closely related to these improvements. Metabonomic analyses revealed the role of gut isovaleric acid and isobutyric acid as well as serum L-tryptophan in mediating the spatial memory of T. sibiricus via the gut microbiota. The hippocampal proteome provides further evidence that the microbiota-gut-brain axis regulates spatial memory and scatter-hoarding in animals. Our study is likely the first to report that plant secondary metabolites improve hippocampal function and spatial memory and ultimately modulate food-hoarding behavior via the microbiota-gut-brain axis. CONCLUSION Our findings may have resolved the long-standing puzzle about the hidden role of plant secondary metabolites in manipulating food-hoarding behavior in rodents via the microbiota-gut-brain axis. Our study is important for better understanding the mutualistic coevolution between plants and animals. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jiawei Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
- Present address: Huxi Middle School, Dongchangfu District, Liaocheng, 252000, China
| | - Yiming Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
48
|
Gómez García AM, López Muñoz F, García-Rico E. The Microbiota in Cancer: A Secondary Player or a Protagonist? Curr Issues Mol Biol 2024; 46:7812-7831. [PMID: 39194680 DOI: 10.3390/cimb46080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
The intestinal microbiota and the human body are in a permanent interaction. There is a symbiotic relationship in which the microbiota plays a vitally important role in the performance of numerous functions, including digestion, metabolism, the development of lymphoid tissue, defensive functions, and other processes. It is a true metabolic organ essential for life and has potential involvement in various pathological states, including cancer and pathologies other than those of a digestive nature. A growing topic of great interest for its implications is the relationship between the microbiota and cancer. Dysbiosis plays a role in oncogenesis, tumor progression, and even the response to cancer treatment. The effect of the microbiota on tumor development goes beyond a local effect having a systemic effect. Another aspect of great interest regarding the intestinal microbiota is its relationship with drugs, modifying their activity. There is increasing evidence that the microbiota influences the therapeutic activity and side effects of antineoplastic drugs and also modulates the response of several tumors to antineoplastic therapy through immunological circuits. These data suggest the manipulation of the microbiota as a possible adjuvant to improve oncological treatment. Is it possible to manipulate the microbiota for therapeutic purposes?
Collapse
Affiliation(s)
- Ana María Gómez García
- Internal Medicine Unit, Hospital Universitario HM Madrid, 28015 Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco López Muñoz
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Eduardo García-Rico
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
- Medical Oncology Unit, Hospital Universitario HM Torrelodones, 28250 Torrelodones, Spain
| |
Collapse
|
49
|
Coluzzi F, Scerpa MS, Loffredo C, Borro M, Pergolizzi JV, LeQuang JA, Alessandri E, Simmaco M, Rocco M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int J Mol Sci 2024; 25:7999. [PMID: 39063241 PMCID: PMC11276997 DOI: 10.3390/ijms25147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Chiara Loffredo
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Elisa Alessandri
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Rocco
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
50
|
Rong ZJ, Chen M, Cai HH, Liu GH, Chen JB, Wang H, Zhang ZW, Huang YL, Ni SF. Ursolic acid molecules dock MAPK1 to modulate gut microbiota diversity to reduce neuropathic pain. Neuropharmacology 2024; 252:109939. [PMID: 38570065 DOI: 10.1016/j.neuropharm.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
To investigate the efficacy of Ursolic acid in alleviating neuropathic pain in rats with spinal nerve ligation (SNL), the SNL rat model was surgically induced. Different concentrations of Ursolic acid and manipulated target mitogen-activated protein kinase 1 (MAPK1) were administered to the SNL rats. Fecal samples were collected from each group of rats for 16S rDNA analysis to examine the impact of gut microbiota. Molecular docking experiments were conducted to assess the binding energy between Ursolic acid and MAPK1. In vivo studies were carried out to evaluate the expression of inflammatory factors and signaling pathways in spinal cord and colon tissues. Ursolic acid was found to have a beneficial effect on pain reduction in rats by increasing plantar withdrawal latency (PWL) and paw withdrawal threshold (PWT). Comparing the Ursolic acid group with the control group revealed notable differences in the distribution of Staphylococcus, Allobaculum, Clostridium, Blautia, Bifidobacterium, and Prevotella species. Network pharmacology analysis identified MAPK1 and intercellular adhesion molecule-1 (ICAM1) as common targets for Ursolic acid, SNL, and neuropathic pain. Binding sites between Ursolic acid and these targets were identified. Additionally, immunofluorescent staining showed a decrease in GFAP and IBA1 intensity in the spinal cord along with an increase in NeuN following Ursolic acid treatment. Overexpression of MAPK1 in SNL rats led to an increase in inflammatory factors and a decrease in PWL and PWT. Furthermore, MAPK1 counteracted the pain-relieving effects of Ursolic acid in SNL rats. Ursolic acid was found to alleviate neuropathic pain in SNL rats by targeting MAPK1 and influencing gut microbiota homeostasis.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jin-Biao Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Zhi-Wen Zhang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yu-Liang Huang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| | - Shuang-Fei Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|