1
|
Neal M, Brakewood W, Betenbaugh M, Zengler K. Pan-genome-scale metabolic modeling of Bacillus subtilis reveals functionally distinct groups. mSystems 2024; 9:e0092324. [PMID: 39365060 PMCID: PMC11575223 DOI: 10.1128/msystems.00923-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Bacillus subtilis is an important industrial and environmental microorganism known to occupy many niches and produce many compounds of interest. Although it is one of the best-studied organisms, much of this focus including the reconstruction of genome-scale metabolic models has been placed on a few key laboratory strains. Here, we substantially expand these prior models to pan-genome-scale, representing 481 genomes of B. subtilis with 2,315 orthologous gene clusters, 1,874 metabolites, and 2,239 reactions. Furthermore, we incorporate data from carbon utilization experiments for eight strains to refine and validate its metabolic predictions. This comprehensive pan-genome model enables the assessment of strain-to-strain differences related to nutrient utilization, fermentation outputs, robustness, and other metabolic aspects. Using the model and phenotypic predictions, we divide B. subtilis strains into five groups with distinct patterns of behavior that correlate across these features. The pan-genome model offers deep insights into B. subtilis' metabolism as it varies across environments and provides an understanding as to how different strains have adapted to dynamic habitats. IMPORTANCE As the volume of genomic data and computational power have increased, so has the number of genome-scale metabolic models. These models encapsulate the totality of metabolic functions for a given organism. Bacillus subtilis strain 168 is one of the first bacteria for which a metabolic network was reconstructed. Since then, several updated reconstructions have been generated for this model microorganism. Here, we expand the metabolic model for a single strain into a pan-genome-scale model, which consists of individual models for 481 B. subtilis strains. By evaluating differences between these strains, we identified five distinct groups of strains, allowing for the rapid classification of any particular strain. Furthermore, this classification into five groups aids the rapid identification of suitable strains for any application.
Collapse
Affiliation(s)
- Maxwell Neal
- Department of Bioengineering, University of California, San Diego, California, USA
| | - William Brakewood
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Povolotsky TL, Levy Barazany H, Shacham Y, Kolodkin-Gal I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol Adv 2024; 75:108414. [PMID: 39019123 DOI: 10.1016/j.biotechadv.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In their natural habitats, organisms encounter numerous external stimuli and must be able to sense and adapt to those stimuli to survive. Unlike mutations, epigenetic changes do not alter the underlying DNA sequence. Instead, they create modifications that promote or silence gene expression. Bacillus subtilis has long been a model organism in studying genetics and development. It is beneficial for numerous biotechnological applications where it is included as a probiotic, in fermentation, or in bio-concrete design. This bacterium has also emerged recently as a model organism for studying bacterial epigenetic adaptation. In this review, we examine the evolving knowledge of epigenetic regulation (restriction-modification systems (RM), orphan methyltransferases, and chromosome condensation) in B. subtilis and related bacteria, and utilize it as a case study to test their potential roles and future applications in genetic engineering and microbial biotechnology. Finally, we suggest how the implementation of these fundamental findings promotes the design of synthetic epigenetic memory circuits and their future applications in agriculture, medicine, and biotechnology.
Collapse
Affiliation(s)
- Tatyana L Povolotsky
- Institute for Chemistry and Biochemistry, Physical and Theoretical Chemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Hilit Levy Barazany
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Yosi Shacham
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel.
| |
Collapse
|
3
|
Prieto-Santiago V, Aguiló-Aguayo I, Ortiz-Solà J, Anguera M, Abadias M. Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice. Foods 2024; 13:350. [PMID: 38275717 PMCID: PMC10814886 DOI: 10.3390/foods13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Due to recent interest in the potential of probiotics as health promoters and the impact of health and environmental concerns on eating habits, non-dairy probiotic food products are required. This study aimed to evaluate the viability of different probiotic microorganisms in peach and grape juice (PGJ) with or without the prebiotic inulin and their antimicrobial activity against the foodborne pathogen Listeria monocytogenes and the juice spoilage microorganism Saccharomyces cerevisiae. Firstly, the viability of seven probiotic strains was studied in PGJ with an initial concentration of 107 CFU/mL for 21 days at 4 °C and for 3 days at 37 °C. In parallel, the physicochemical effect, the antimicrobial effect and the lactic acid production in PGJ were evaluated. Secondly, the probiotic with the best viability results was selected to study its antimicrobial effect against L. monocytogenes and S. cerevisiae, as well as ethanol and acetaldehyde production by the latter. L. casei showed the highest viability and grew in both refrigerated and fermentation conditions (1 log), produced the greatest lactic acid (5.12 g/L) and demonstrated in vitro anti-Listeria activity. Although the addition of the prebiotic did not improve the viability, lactic acid production or anti-Listeria activity of the probiotics, under the conditions studied, the prebiotic potential of inulin, support the design of a synbiotic juice. Finally, although none of the probiotic, fermentation products, or postbiotics showed any antimicrobial activity against L. monocytogenes or S. cerevisiae, the addition of L. casei to the PGJ significantly reduced the production of S. cerevisiae metabolite ethanol (29%) and acetaldehyde (50%). L. casei might be a suitable probiotic to deliver a safe and functional PGJ, although further research should be carried out to determine the effect of the probiotic and fermentation on the nutritional profile of PGJ.
Collapse
Affiliation(s)
| | | | | | | | - Maribel Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.); (J.O.-S.); (M.A.)
| |
Collapse
|
4
|
Legan TB, Lavoie B, Norberg E, Ley IC, Tack S, Tompkins TA, Wargo MJ, Mawe GM. Tryptophan-synthesizing bacteria enhance colonic motility. Neurogastroenterol Motil 2023; 35:e14629. [PMID: 37357378 PMCID: PMC10527075 DOI: 10.1111/nmo.14629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND An emerging strategy to treat symptoms of gastrointestinal (GI) dysmotility utilizes the administration of isolated bacteria. However, the underlying mechanisms of action of these bacterial agents are not well established. Here, we elucidate a novel approach to promote intestinal motility by exploiting the biochemical capability of specific bacteria to produce the serotonin (5-HT) precursor, tryptophan (Trp). METHODS Mice were treated daily for 1 week by oral gavage of Bacillus (B.) subtilis (R0179), heat-inactivated R0179, or a tryptophan synthase-null strain of B. subtilis (1A2). Tissue levels of Trp, 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured and changes in motility were evaluated. KEY RESULTS Mice treated with B. subtilis R0179 exhibited greater colonic tissue levels of Trp and the 5-HT breakdown product, 5-HIAA, compared to vehicle-treated mice. Furthermore, B. subtilis treatment accelerated colonic motility in both healthy mice as well as in a mouse model of constipation. These effects were not observed with heat-inactivated R0179 or the live 1A2 strain that does not express tryptophan synthase. Lastly, we found that the prokinetic effects of B. subtilis R0179 were blocked by coadministration of a 5-HT4 receptor (5-HT4 R) antagonist and were absent in 5-HT4 R knockout mice. CONCLUSIONS AND INFERENCES Taken together, these data demonstrate that intestinal motility can be augmented by treatment with bacteria that synthesize Trp, possibly through increased 5-HT signaling and/or actions of Trp metabolites, and involvement of the 5-HT4 R. Our findings provide mechanistic insight into a transient and predictable bacterial strategy to promote GI motility.
Collapse
Affiliation(s)
- Theresa B. Legan
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Emilia Norberg
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Isabella C. Ley
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Stephanie Tack
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | | | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Gary M. Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Huang J, Xu Y, Wang M, Yu S, Li Y, Tian H, Zhang C, Li H. Enterococcus faecium R-026 combined with Bacillus subtilis R-179 alleviate hypercholesterolemia and modulate the gut microbiota in C57BL/6 mice. FEMS Microbiol Lett 2023; 370:fnad118. [PMID: 37960899 DOI: 10.1093/femsle/fnad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Probiotics have been demonstrated to lower total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in individuals with mild hypercholesterolemia. Our previous study found that intervention with Bacillus subtilis R-179 and Enterococcus faecium R-026, well-known probiotics, improved obesity-associated dyslipidemia through ameliorating the gut microbiota, but similar studies on hypercholesterolemia have not been reported to date. Here, we investigated the therapeutic effect of live combined B. subtilis R-179 and E. faecium R-026 (LCBE) in a C57BL/6 mouse model of hypercholesterolemia. A total of 40 mice were administered with a high-cholesterol diet (containing 1.2% cholesterol) to establish a state of hypercholesterolemia for 4 weeks. Then, mice were divided into one model group (group M) and three treatment groups (n = 10 per group), which were administered with LCBE at 0.023 g/mouse/day (group L) or 0.230 g/mouse/day (group H), or atorvastatin 0.010 g/kg/day (group A), for 5 weeks while on a high-cholesterol diet. LCBE at high doses significantly alleviated the symptoms of group M and reduced serum TC, LDL-C, and lipopolysaccharide (LPS). LCBE improved liver steatosis and adipocyte enlargement caused by a high-cholesterol diet. In addition, the administration of LCBE regulated the change in gut microbiota and diversity (Shannon index). Compared with group M, the relative abundance of Actinobacteriota, Colidextribacter, and Dubosiella dramatically decreased in the treatment groups, which were positively correlated with serum TC and LPS. These findings indicated that the mechanism of action of LCBE in treating hypercholesterolemia may be modulation of the gut microbiota. In conclusion, LCBE ameliorated lipid accumulation, reduced inflammation, and alleviated the gut microbiota imbalance in hypercholesterolemic mice. These findings support the probiotic role of LCBE as a clinical candidate for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, 710032, Xi'an, China
| | - Yafang Xu
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Minghao Wang
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Shu Yu
- Dalian Women and Children Medical Center (Group), 116033, Dalian, China
| | - Yixuan Li
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Haoxin Tian
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| | - Caihua Zhang
- Department of Pathophysiology, Dalian Medical University, 116044, Dalia, China
| | - Huajun Li
- Department of Microecology, Dalian Medical University, 116044, Dalian, China
| |
Collapse
|
6
|
Chen Q, Xiao Z, He QY, Zhang RR, Chen SX, Dong JW, Zhang H, Chen XF. Effect of Shenling Baizhu powder on immunity to diarrheal disease: A systematic review and meta-analysis. Front Pharmacol 2022; 13:938932. [PMID: 36188567 PMCID: PMC9516002 DOI: 10.3389/fphar.2022.938932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Diarrhea is one of the leading causes of death worldwide and is associated with immune dysfunction. The modulatory effects of Shenling Baizhu powder (SLBZS) on immune function in diarrheal disease have been validated in various animal models. However, the results of these studies have not been systematically evaluated. This study aimed to evaluate the preclinical data on SLBZS for the treatment of diarrhea from an immunological perspective. Methods: PubMed, Embase, Cochrane Library, CNKI, Wanfang Database, VIP, and Chinese Medicine Database were searched for all animal trials on SLBZS for the treatment of diarrhea published up to April 2022. Standardized mean differences (SMD) were used as effect sizes in the meta-analysis of continuous variables, including immune organs, immune cells, and immune cytokines. Subgroup analysis was performed according to animal species and disease models. The GRADE was used to assess the quality of evidence. Results: A total of 26 studies were included. Meta-analysis showed that compared to those in the model group, SLBZS significantly increased body weight [SMD = 1.54, 95% confidence interval (CI) (1.06, 2.02)], spleen mass [SMD = 1.42, 95% CI (0.98, 1.87)], thymus mass [SMD = 1.11, 95% CI (0.69, 1.53)], macrophage phagocytic capacity (SMD = 1.07, 95% CI [0.59, 1.54]), sIgA [SMD = 1.04, 95% CI (0.33, 1.74)], RBC-C3b-RR [SMD = 1.16, 95% CI (0.65, 1.67)], IL-2 [SMD = 1.52, 95% CI (0.89, 2.14)] and decreased diarrhea scores [SMD = -1.40, 95% CI (-2.03, -0.87)], RBC-IC-RR [SMD = -1.40, 95% CI (-1.94, -0.87)], and IL-8 [SMD = -2.80, 95% CI (-3.54, -2.07)]. Subgroup analysis showed that SLBZS regulated TNF-α, IL-1β, and IL-10 in rats and mice, and improved IL-6 and IL-10 in different diseases, with differences between subgroups (p < 0.05). Owing to heterogeneity, the reliability of the results remains to be verified. The quality of evidence was "very low". Conclusion: SLBZS improve diarrhea symptoms by enhancing immune function. It has curative effects with differences between different species and diseases, however, because the reporting in the original studies was too unclear to be assessed, the analysis was inconclusive. For higher quality evidences, future research should pay attention to the scientific rigor of the experimental design and the completeness of the reported results.
Collapse
Affiliation(s)
- Qian Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zheng Xiao
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qing-Ying He
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Rui-Rong Zhang
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shu-Xian Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jia-Wei Dong
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiao-Fan Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Preclinical Safety Assessment of Bacillus subtilis BS50 for Probiotic and Food Applications. Microorganisms 2022; 10:microorganisms10051038. [PMID: 35630480 PMCID: PMC9144164 DOI: 10.3390/microorganisms10051038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the commercial rise of probiotics containing Bacillaceae spp., it remains important to assess the safety of each strain before clinical testing. Herein, we performed preclinical analyses to address the safety of Bacillus subtilis BS50. Using in silico analyses, we screened the 4.15 Mbp BS50 genome for genes encoding known Bacillus toxins, secondary metabolites, virulence factors, and antibiotic resistance. We also assessed the effects of BS50 lysates on the viability and permeability of cultured human intestinal epithelial cells (Caco-2). We found that the BS50 genome does not encode any known Bacillus toxins. The BS50 genome contains several gene clusters involved in the biosynthesis of secondary metabolites, but many of these antimicrobial metabolites (e.g., fengycin) are common to Bacillus spp. and may even confer health benefits related to gut microbiota health. BS50 was susceptible to seven of eight commonly prescribed antibiotics, and no antibiotic resistance genes were flanked by the complete mobile genetic elements that could enable a horizontal transfer. In cell culture, BS50 cell lysates did not diminish either Caco-2 viability or monolayer permeability. Altogether, BS50 exhibits a robust preclinical safety profile commensurate with commercial probiotic strains and likely poses no significant health risk to humans.
Collapse
|
8
|
Chen YM, Li Y, Wang X, Wang ZL, Hou JJ, Su S, Zhong WL, Xu X, Zhang J, Wang BM, Wang YM. Effect of Bacillus subtilis, Enterococcus faecium, and Enterococcus faecalis supernatants on serotonin transporter expression in cells and tissues. World J Gastroenterol 2022; 28:532-546. [PMID: 35316963 PMCID: PMC8905020 DOI: 10.3748/wjg.v28.i5.532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/16/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacillus subtilis (B. subtilis), Enterococcus faecium (E. faecium), and Enterococcus faecalis (E. faecalis) are probiotics that are widely used in the clinical treatment of irritable bowel syndrome (IBS). Whether the supernatants of these three probiotics can improve gastrointestinal sensation and movement by regulating the serotonin transporter (SERT) expression needs to be clarified.
AIM To investigate whether B. subtilis, E. faecium, and E. faecalis supernatants can upregulate SERT expression in vitro and in vivo.
METHODS Caco-2 and HT-29 cells were stimulated with probiotic culture supernatants for 12 and 24 h, respectively. A male Sprague-Dawley rat model of post-infectious irritable bowel syndrome (PI-IBS) was established and the rats were treated with phosphate-buffered saline (group A) and three probiotics culture supernatants (groups B, C, and D) for 4 wk. The levels of SERT were detected by quantitative PCR and western blotting.
RESULTS The levels of SERT at post-treatment 12 and 24 h were significantly elevated in Caco-2 cells treated with B. subtilis supernatant compared with those in the control group (aP < 0.05). Those levels were markedly upregulated in Caco-2 cells stimulated with E. faecium and E. faecalis supernatants at 24 h (aP < 0.05). In addition, SERT expression in groups B, C, and D was significantly higher than that in group A in the 2nd wk (aP < 0.05). Increased SERT expression was only found in group D in the 3rd wk (aP < 0.05). However, there was no significant difference in SERT expression between the groups in the last week (P > 0.05).
CONCLUSION The supernatants of B. subtilis, E. faecium, and E. faecalis can upregulate SERT expression in intestinal epithelial cells and the intestinal tissues in the rat model of PI-IBS.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ze-Lan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei-Long Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
9
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
10
|
Aguilar C, Wissmann R, Fraefel C, Eichwald C. Display of Heterologous Proteins in Bacillus Subtilis Biofilms for Enteric Immunization. Methods Mol Biol 2022; 2465:73-95. [PMID: 35118616 DOI: 10.1007/978-1-0716-2168-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the foremost goals in vaccine development is the design of effective, heat-stable vaccines that simplify the distribution and delivery while conferring high levels of protective immunity. Here, we describe a method for developing a live, oral vaccine that relies on the biofilm-forming properties of the spore-former bacterium Bacillus subtilis. The amyloid protein TasA is an abundant component of the extracellular matrix of the biofilms formed by B. subtilis that can be genetically fused to an antigen of interest. Spores of the recombinant strain are then prepared and applied via the oral route in an animal model. Due to the intrinsic resistance of the spores, they can bypass the stomach barrier, germinate, and subsequently colonize the gut, where they develop into biofilms, expressing the antigen of interest. We describe here the steps necessary to produce spores, immunization, and downstream analysis of the vaccine efficacy.
Collapse
Affiliation(s)
- Claudio Aguilar
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Ramona Wissmann
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
11
|
Huang J, Huang J, Yin T, Lv H, Zhang P, Li H. Enterococcus faecium R0026 Combined with Bacillus subtilis R0179 Prevent Obesity-Associated Hyperlipidemia and Modulate Gut Microbiota in C57BL/6 Mice. J Microbiol Biotechnol 2021; 31:181-188. [PMID: 33144552 PMCID: PMC9706029 DOI: 10.4014/jmb.2009.09005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023]
Abstract
Bacillus subtilis and Enterococcus faecium are commonly used probiotics. This study aimed to identify the effect of live combined Bacillus subtilis R0179 and Enterococcus faecium R0026 (LCBE) on obesityassociated hyperlipidemia and gut microbiota in C57BL/6 mice. Forty male C57BL/6 mice were divided into four groups: normal group (N group), model group (M group), low-dose group (L group), and high-dose group (H group). Mice were gavaged with LCBE at 0.023 g/mice/day (L group) or 0.23 g/mice/day (H group) and fed with a high-fat diet for 8 weeks. In vitro E. faecium R0026 showed an ability to lower the low-concentration of cholesterol by 46%, and the ability to lower the highconcentration of cholesterol by 58%. LCBE significantly reduced the body weight gain, Lee index, brown fat index and body mass index of mice on a high-fat diet. Moreover, LCBE markedly improved serum lipids (including serum triglyceride, total cholesterol, low-density lipoprotein and highdensity lipoprotein) while also significantly reducing liver total cholesterol. Serum lipopolysaccharide and total bile acid in L and H groups decreased significantly compared with M group. PCR-DGGE analysis showed that the composition of gut microbiota in the treatment groups was improved. Akkermansia muciniphila was found in H group. The PCA result indicated a similar gut microbiota structure between LCBE treatment groups and normal group while the number of bands and Shannon diversity index increased significantly in the LCBE treatment groups. Finally, qPCR showed Bifidobacterium spp. increased significantly in H group compared with M group, LCBE alleviated liver steatosis and improved brown adipose tissue index.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China
| | - Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China
| | - Tianyi Yin
- First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Huiyun Lv
- First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Pengyu Zhang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China,Corresponding author Phone: +86-411 86110305 Fax: +86-411-86110282 E-mail:
| |
Collapse
|
12
|
Spears JL, Kramer R, Nikiforov AI, Rihner MO, Lambert EA. Safety Assessment of Bacillus subtilis MB40 for Use in Foods and Dietary Supplements. Nutrients 2021; 13:nu13030733. [PMID: 33668992 PMCID: PMC7996492 DOI: 10.3390/nu13030733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022] Open
Abstract
With the growing popularity of probiotics in dietary supplements, foods, and beverages, it is important to substantiate not only the health benefits and efficacy of unique strains but also safety. In the interest of consumer safety and product transparency, strain identification should include whole-genome sequencing and safety assessment should include genotypic and phenotypic studies. Bacillus subtilis MB40, a unique strain marketed for use in dietary supplements, and food and beverage, was assessed for safety and tolerability across in silico, in vitro, and in vivo studies. MB40 was assessed for the absence of undesirable genetic elements encoding toxins and mobile antibiotic resistance. Tolerability was assessed in both rats and healthy human volunteers. In silico and in vitro testing confirmed the absence of enterotoxin and mobile antibiotic resistance genes of safety concern to humans. In rats, the no-observed-adverse-effect level (NOAEL) for MB40 after repeated oral administration for 14 days was determined to be 2000 mg/kg bw/day (equivalent to 3.7 × 1011 CFU/kg bw/day). In a 28 day human tolerability trial, 10 × 109 CFU/day of MB40 was well tolerated. Based on genome sequencing, strain characterization, screening for undesirable attributes and evidence of safety by appropriately designed safety evaluation studies in rats and humans, Bacillus subtilis MB40 does not pose any human health concerns under the conditions tested.
Collapse
Affiliation(s)
| | | | - Andrey I. Nikiforov
- Toxicology Regulatory Services, Charlottesville, VA 22911, USA; (A.I.N.); (M.O.R.)
| | - Marisa O. Rihner
- Toxicology Regulatory Services, Charlottesville, VA 22911, USA; (A.I.N.); (M.O.R.)
| | | |
Collapse
|
13
|
Effect of Combined Live Probiotics Alleviating the Gastrointestinal Symptoms of Functional Bowel Disorders. Gastroenterol Res Pract 2020; 2020:4181748. [PMID: 33014039 PMCID: PMC7519468 DOI: 10.1155/2020/4181748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Changes of the gut microbiota are related to the pathogenesis of functional bowel disorders (FBDs), and probiotic supplementation may be an effective treatment option. Therefore, we aimed to investigate the effect of combined live probiotics on the gastrointestinal symptoms of FBDs via altering the gut microbiota. Methods Patients with the gastrointestinal symptoms of FBDs attending the Outpatient Department, from July to November 2019, were recruited. After the bowel preparation with polyethylene glycol electrolyte powder and colonoscopy, patients with normal result of colonoscopy were randomly divided into the probiotics group and control group. Patients in the probiotics group were prescribed with combined live Bacillus subtilis and Enterococcus faecium enteric-coated capsules for 4 weeks. Small intestinal bacteria overgrowth (SIBO) was measured by lactulose hydrogen breath test, and the microbial DNA was extracted from the fecal samples and the bacteria were classified by 16S rDNA gene amplicon sequencing. Results Twenty-five patients of each group were recruited, and there was no significant difference between the probiotics and control groups on baseline gastrointestinal symptom rating scale (GSRS), positive rate of SIBO, and relative abundances of the gut microbiota at the phylum level. After 4 weeks of treatment, the values of the probiotics and control groups were as follows: GSRS 1.4 ± 1.4 and 3.6 ± 1.6 and positive rate of SIBO 28.0% and 56.0%, respectively. The median relative abundances of the gut microbiota were 1.01% and 5.03% Actinobacteria and 43.80% and 35.17% Bacteroidetes at the phylum level; 0.76% and 3.29% Bifidobacterium, 0.13% and 0.89% Cillinsella, 0.03% and 0.01% Enterococcus, 0.18% and 0.36% Lachnospiraceae, 0.10% and 0.16% Ruminococcus torques group, 1.31% and 2.44% Blautia, and 0.83% and 2.02% Fusicatenibacter at the genus level (P < 0.05), respectively. Conclusion Combined live probiotic supplementation after the bowel preparation can alter the gut microbiota, decontaminate SIBO, and alleviate the gastrointestinal symptoms of FBDs. This trial is registered with ChiCTR1900026472.
Collapse
|
14
|
Kang M, Feng F, Ge Q, Zhu F, Chen L, Lv P, Ma S, Yao Q, Chen K. Display of quintuple glucagon-like peptide 1 (28-36) nonapeptide on Bacillus subtilis spore for oral administration in the treatment of type 2 diabetes. J Appl Microbiol 2020; 130:314-324. [PMID: 32473615 DOI: 10.1111/jam.14729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
AIMS To develop an oral delivery system of glucagon-like peptide 1 (GLP-1) (28-36) for treating type-2 diabetes, B.S-GLP-1(28-36), a recombinant Bacillus subtilis spores transformed with a plasmid vector encoding five consecutive GLP-1 (28-36) nonapeptides with an enterokinase site was constructed. METHODS AND RESULTS GLP-1(28-36) nonapeptide was successfully expressed on the surface of B. subtilis spores and validated by Western blot and immunofluorescence. The therapeutic effect of oral administration of B.S-GLP-1(28-36) spores was evaluated in type 2 diabetic model mice. The efficacy of recombinant spores was examined for a period of 13 weeks after oral administration in diabetic mice. At the end of the sixth week, diabetic mice with oral administration of BS-GLP-1(28-36) spores showed decreased blood glucose levels from 2·4 × 10- 2 mol l-1 to 1·7 × 10- 2 mol l-1 . By the ninth week, the mean fasting blood glucose level in the experimental group was significantly lower than that in the control group 30 min after injection of pyruvate. At the end of the 10th week of oral administration, the blood glucose of the experimental group was significantly lower than that of the control group after intraperitoneal injection of glucose. By the 12th week, fasting blood glucose level and fasting insulin level were measured in all mice, the results showed that the recombinant spores increased the insulin sensitivity of mice. CONCLUSIONS The results of pathological observation showed that the recombinant spores also had a certain protective effect on the liver and islets of mice, and the content of GLP-1(28-36) in the pancreas of the experimental group was increased. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study revealed that GLP-1(28-36) nonapeptides can reduce blood glucose and play an important role in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- M Kang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - F Feng
- School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui, PR China
| | - Q Ge
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - F Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - L Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - P Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - S Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Q Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - K Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| |
Collapse
|
15
|
Dib W, Grar H, Gourine H, El Mecherfi KE, Negaoui H, Biscola V, Kaddouri H, Chobert JM, Haertlé T, Saidi D, Kheroua O. Prophylactic properties of Bacillus subtilis in a bovine β-lactoglobulin sensitized mice model. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Sohail G, Xu X, Christman MC, Tompkins TA. Probiotic Medilac-S ® for the induction of clinical remission in a Chinese population with ulcerative colitis: A systematic review and meta-analysis. World J Clin Cases 2018; 6:961-984. [PMID: 30568952 PMCID: PMC6288505 DOI: 10.12998/wjcc.v6.i15.961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To assess the effects of probiotic Medilac-S® as adjunctive therapy for the induction of remission of ulcerative colitis (UC) in a Chinese population through a systematic review and meta-analysis. METHODS A systematic literature search was conducted to find randomized, controlled trials in a Chinese population with at least two study arms - a control arm which receives a conventional, oral aminosalicylate drug, and a treatment arm, which administers the same conventional drug in conjunction with the probiotic Medilac-S® per os. Both English and Chinese databases were searched, including PubMed, EMBASE, Google Scholar, Chinese National Knowledge Infrastructure, Wanfang Data, and VIP Search, and study data was extracted onto standardized abstraction sheets. Meta-analyses were conducted for primary and secondary outcomes of interest using a fixed or random effects model. The primary outcome was the induction of clinical remission and the secondary outcomes included changes in Sutherland index, endoscopic and histological scores, proportion of reported clinical symptoms and adverse events (AEs). For outcomes with sufficient data, the type of conventional drug therapy was also assessed to determine if the effects of combination therapy with Medilac-S® was influenced by drug type. All tests were conducted using a type I error rate of 0.05 and all confidence intervals (CI) were based on a 95% confidence level. Review protocol was uploaded to PROSPERO (CRD42018085658 upon completion). RESULTS Fifty-three clinical trials with a total of 3984 participants were identified and included in the review. Medilac-S® adjunctive therapy significantly improved induction of clinical remission (RR = 1.21; 95%CI: 1.18-1.24; P < 0.0001) with the estimated likelihood of effective treatment, on average, 21% higher for those consuming the probiotic. Sutherland index scores showed the control mean was on average 3.10 (CI: 2.41-3.78; P = 0.0428) units greater than the treatment mean, thereby demonstrating significant improvement in participants taking the probiotic. Similarly, a significant difference was seen between the overall reduction of endoscopic and histological scores of control and treatment arm participants, with score decreases in the control groups 0.71 (CI: 0.3537-1.0742) and 1.1 (CI: 0.9189-1.2300) units smaller than treatment group score decreases. The proportion of participants reporting clinical symptoms, (abdominal pain, tenesmus, blood and mucous in stool, and diarrhea) was significantly reduced after combination therapy with Medilac-S® (P < 0.0001) and estimated to be on average 44% (RR = 0.44, CI: 0.32-0.59), 53% (RR = 0.53, CI: 0.38-74), 40% (RR = 0.40, CI: 0.28-0.58) and 47% (RR = 0.47 CI: 0.36-0.42) respectively, of the proportion of individuals reporting the aforementioned symptoms after conventional therapy alone. The risk of AEs was also significantly reduced with adjunctive Medilac-S® therapy. The proportion of individuals in the treatment groups reporting AEs was an estimated 72% of the proportion of individuals in the control groups reporting AEs (RR = 0.72, CI: 0.55-0.94, P = 0.0175). Upon comparing effect means for different drug types in conjunction with Medilac-S®, evidence of significant variability (P < 0.0001) was observed, and sulfasalazine was found to be the most effective drug in both primary and secondary outcomes. CONCLUSION Evidence suggests Medilac-S® adjunctive therapy should be considered standard care for UC in a Chinese population because it aids in the induction of clinical remission, improves symptoms of the gastrointestinal tract and reduces risk of AEs.
Collapse
Affiliation(s)
- Ghania Sohail
- Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada
| | - Xiaoyu Xu
- Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada
| | - Mary C Christman
- MCC Statistical Consulting, Gainesville, FL 32605, United States
| | | |
Collapse
|
17
|
Vogt CM, Hilbe M, Ackermann M, Aguilar C, Eichwald C. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm. Microb Cell Fact 2018; 17:187. [PMID: 30477481 PMCID: PMC6258259 DOI: 10.1186/s12934-018-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model. RESULTS In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin. CONCLUSIONS The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.
Collapse
Affiliation(s)
- Cédric M Vogt
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | - Monika Hilbe
- Laboratory for Animal Model Pathology, Institute of Pathology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| |
Collapse
|
18
|
Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018; 7:foods7060092. [PMID: 29899254 PMCID: PMC6025323 DOI: 10.3390/foods7060092] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023] Open
Abstract
Probiotic microorganisms are generally considered to beneficially affect host health when used in adequate amounts. Although generally used in dairy products, they are also widely used in various commercial food products such as fermented meats, cereals, baby foods, fruit juices, and ice creams. Among lactic acid bacteria, Lactobacillus and Bifidobacterium are the most commonly used bacteria in probiotic foods, but they are not resistant to heat treatment. Probiotic food diversity is expected to be greater with the use of probiotics, which are resistant to heat treatment and gastrointestinal system conditions. Bacillus coagulans (B. coagulans) has recently attracted the attention of researchers and food manufacturers, as it exhibits characteristics of both the Bacillus and Lactobacillus genera. B. coagulans is a spore-forming bacterium which is resistant to high temperatures with its probiotic activity. In addition, a large number of studies have been carried out on the low-cost microbial production of industrially valuable products such as lactic acid and various enzymes of B. coagulans which have been used in food production. In this review, the importance of B. coagulans in food industry is discussed. Moreover, some studies on B. coagulans products and the use of B. coagulans as a probiotic in food products are summarized.
Collapse
Affiliation(s)
- Gözde Konuray
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| | - Zerrin Erginkaya
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| |
Collapse
|
19
|
Oral Application of Recombinant Bacillus subtilis Spores to Dogs Results in a Humoral Response against Specific Echinococcus granulosus Paramyosin and Tropomyosin Antigens. Infect Immun 2018; 86:IAI.00495-17. [PMID: 29229735 DOI: 10.1128/iai.00495-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Bacillus subtilis is known as an endospore- and biofilm-forming bacterium with probiotic properties. We have recently developed a method for displaying heterologous proteins on the surface of B. subtilis biofilms by introducing the coding sequences of the protein of interest into the bacterial genome to generate a fusion protein linked to the C terminus of the biofilm matrix protein TasA. Although B. subtilis is a regular component of the gut microflora, we constructed a series of recombinant B. subtilis strains that were tested for their ability to be used to immunize dogs following oral application of the spores. Specifically, we tested recombinant spores of B. subtilis carrying either the fluorescent protein mCherry or else selected antigenic peptides (tropomyosin and paramyosin) from Echinococcus granulosus, a zoonotic intestinal tapeworm of dogs and other carnivores. The application of the recombinant B. subtilis spores led to the colonization of the gut with recombinant B. subtilis but did not cause any adverse effect on the health of the animals. As measured by enzyme-linked immunosorbent assay and immunoblotting, the dogs were able to develop a humoral immune response against mCherry as well as against E. granulosus antigenic peptides. Interestingly, the sera of dogs obtained after immunization with recombinant spores of E. granulosus peptides were able to recognize E. granulosus protoscoleces, which represent the infective form of the head of the tapeworms. These results represent an essential step toward the establishment of B. subtilis as an enteric vaccine agent.
Collapse
|
20
|
Shen Z, Mustapha A, Lin M, Zheng G. Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. Int J Food Microbiol 2017; 250:37-44. [DOI: 10.1016/j.ijfoodmicro.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023]
|
21
|
Lefevre M, Racedo SM, Denayrolles M, Ripert G, Desfougères T, Lobach AR, Simon R, Pélerin F, Jüsten P, Urdaci MC. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul Toxicol Pharmacol 2017; 83:54-65. [DOI: 10.1016/j.yrtph.2016.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
|
22
|
Vogt CM, Schraner EM, Aguilar C, Eichwald C. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms. Microb Cell Fact 2016; 15:137. [PMID: 27514610 PMCID: PMC4982213 DOI: 10.1186/s12934-016-0532-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. RESULTS We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. CONCLUSIONS In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.
Collapse
Affiliation(s)
- Cédric M. Vogt
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Claudio Aguilar
- rqmicro Ltd, ETH, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Catherine Eichwald
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Lefevre M, Racedo SM, Ripert G, Housez B, Cazaubiel M, Maudet C, Jüsten P, Marteau P, Urdaci MC. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study. IMMUNITY & AGEING 2015; 12:24. [PMID: 26640504 PMCID: PMC4669646 DOI: 10.1186/s12979-015-0051-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
Background Bacillus probiotics health benefits have been until now quite poorly studied in the elderly population. This study aimed to assess the effects of Bacillus subtilis CU1 consumption on immune stimulation and resistance to common infectious disease (CID) episodes in healthy free-living seniors. Results One hundred subjects aged 60–74 were included in this randomized, double-blind, placebo-controlled, parallel-arms study. Subjects consumed either the placebo or the probiotic (2.109B. subtilis CU1 spores daily) by short periodical courses of 10 days intermittently, alternating 18-day course of break. This scheme was repeated 4 times during the study. Symptoms of gastrointestinal and upper/lower respiratory tract infections were recorded daily by the subjects throughout the study (4 months). Blood, saliva and stool samples were collected in a predefined subset of the first forty-four subjects enrolled in the study. B. subtilis CU1 supplementation did not statistically significantly decrease the mean number of days of reported CID symptoms over the 4-month of study (probiotic group: 5.1 (7.0) d, placebo group: 6.6 (7.3) d, P = 0.2015). However, in the subset of forty-four randomized subjects providing biological samples, we showed that consumption of B. subtilis CU1 significantly increased fecal and salivary secretory IgA concentrations compared to the placebo. A post-hoc analysis on this subset showed a decreased frequency of respiratory infections in the probiotc group compared to the placebo group. Conclusion Taken together, our study provides evidence that B. subtilis CU1 supplementation during the winter period may be a safe effective way to stimulate immune responses in elderly subjects.
Collapse
Affiliation(s)
- Marie Lefevre
- Lesaffre Human Care, Lesaffre Group, 278 Avenue de la Marne, Château rouge, 59700 Marcq en Baroeul, France
| | - Silvia M Racedo
- University of Bordeaux, UMR 5248, Bordeaux Sci Agro, Gradignan, France
| | - Gabrielle Ripert
- University of Bordeaux, UMR 5248, Bordeaux Sci Agro, Gradignan, France
| | | | | | | | - Peter Jüsten
- Lesaffre Human Care, Lesaffre Group, 278 Avenue de la Marne, Château rouge, 59700 Marcq en Baroeul, France
| | - Philippe Marteau
- Paris 7 University and AP-HP, Hôpital Saint Antoine, Paris, France
| | - Maria C Urdaci
- University of Bordeaux, UMR 5248, Bordeaux Sci Agro, Gradignan, France
| |
Collapse
|
24
|
Hanifi A, Culpepper T, Mai V, Anand A, Ford A, Ukhanova M, Christman M, Tompkins T, Dahl W. Evaluation of Bacillus subtilis R0179 on gastrointestinal viability and general wellness: a randomised, double-blind, placebo-controlled trial in healthy adults. Benef Microbes 2015; 6:19-27. [DOI: 10.3920/bm2014.0031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A probiotic formulation of Enterococcus faecium R0026 and Bacillus subtilis R0179 has been evaluated in previous clinical trials. However, B. subtilis R0179 has not been evaluated as a single probiotic strain or in combination with other strains at doses higher than 0.1×109 cfu. To establish oral dose-response tolerance and gastrointestinal (GI) viability of B. subtilis R0179, a randomised, double-blind, placebo-controlled trial in healthy adults (n=81; 18-50 years old) was conducted. Participants received B. subtilis R0179 at 0.1, 1.0 or 10×109 cfu/capsule/day or placebo for four weeks. General wellness was assessed using a daily questionnaire evaluating GI, cephalic, ear-nose-throat, behavioural, emetic, and epidermal symptoms. GI symptoms were further evaluated using a weekly gastrointestinal symptom rating scale (GSRS). GI transit viability of B. subtilis R0179 was assessed by plating and microbiota analysis by 16S rRNA at baseline, week 4 of the intervention and washout. General wellness and GI function were not affected by oral consumption of B. subtilis R0179 at any dose. Daily questionnaire syndrome scores were not different from baseline and did not exceed a clinically significant score of 1. GSRS syndrome scores were not different from baseline and ranged from 1.1±0.1 to 1.9±0.2. Faecal viable counts of B. subtilis R0179 demonstrated a dose response: the placebo group (1.1±0.1 log10 cfu/g) differed from 0.1×109 (4.6±0.1 log10 cfu/g), 1×109 (5.6±0.1 log10 cfu/g) and 10×109 (6.4±0.1 log10 cfu/g) (P<0.0001). No significant changes in phyla were observed, but sequence reads binned to multiple operational taxonomic units matching closest to Ruminococci increased during probiotic supplementation. B. subtilis R0179 survives passage through the human GI tract and is well tolerated by healthy adults at intakes from 0.1 to 10×109 cfu/day. The trial has been registered at www.clinicaltrials.gov under NCT01802151.
Collapse
Affiliation(s)
- A. Hanifi
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL 32611, USA
| | - T. Culpepper
- Department of Epidemiology and Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL 32610, USA
| | - V. Mai
- Department of Epidemiology and Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL 32610, USA
| | - A. Anand
- Department of Epidemiology and Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL 32610, USA
| | - A.L. Ford
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL 32611, USA
| | - M. Ukhanova
- Department of Epidemiology and Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL 32610, USA
| | - M. Christman
- MCC Statistical Consulting LLC, 2219 NW 23rd Ter., Gainesville, FL 32605, USA
| | - T.A. Tompkins
- Lallemand Health Solutions, Inc., 6100 Avenue Royalmount, Montreal, H4P 2R2 Quebec, Canada
| | - W.J. Dahl
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4745-67. [PMID: 24859749 PMCID: PMC4053917 DOI: 10.3390/ijerph110504745] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Probiotics are defined as live microorganisms, which when administered in adequate amounts, confer a health benefit on the host. Health benefits have mainly been demonstrated for specific probiotic strains of the following genera: Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Pediococcus, Leuconostoc, Bacillus, Escherichia coli. The human microbiota is getting a lot of attention today and research has already demonstrated that alteration of this microbiota may have far-reaching consequences. One of the possible routes for correcting dysbiosis is by consuming probiotics. The credibility of specific health claims of probiotics and their safety must be established through science-based clinical studies. This overview summarizes the most commonly used probiotic microorganisms and their demonstrated health claims. As probiotic properties have been shown to be strain specific, accurate identification of particular strains is also very important. On the other hand, it is also demonstrated that the use of various probiotics for immunocompromised patients or patients with a leaky gut has also yielded infections, sepsis, fungemia, bacteraemia. Although the vast majority of probiotics that are used today are generally regarded as safe and beneficial for healthy individuals, caution in selecting and monitoring of probiotics for patients is needed and complete consideration of risk-benefit ratio before prescribing is recommended.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia.
| |
Collapse
|
26
|
Champagne CP, Raymond Y, Pouliot Y, Gauthier SF, Lessard M. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli. Can J Microbiol 2014; 60:287-95. [PMID: 24773334 DOI: 10.1139/cjm-2014-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man - Rogosa - Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μ(max)), lag time (LagT), and biomass (OD(max)) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μ(max) of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μ(max) was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli.
Collapse
Affiliation(s)
- Claude P Champagne
- a Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Que., Canada
| | | | | | | | | |
Collapse
|
27
|
|