1
|
Ge P, Luo Y, Zhang J, Liu J, Xu C, Guo H, Gong A, Zhang G, Chen H. Mechanism Investigation and Clinical Retrospective Evaluation of Qingyi Granules: Pancreas Cleaner About Ameliorating Severe Acute Pancreatitis with Acute Respiratory Distress Syndrome. Drug Des Devel Ther 2024; 18:2043-2061. [PMID: 38863767 PMCID: PMC11166164 DOI: 10.2147/dddt.s454180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Background Despite its extensive utilization in Chinese hospitals for treating acute pancreatitis (AP) and related acute respiratory distress syndrome (ARDS), the active components and mechanisms underlying the action of Qingyi Granule (QYKL) remain elusive. Methods This study consists of four parts. First, we used Mendelian randomization (MR) to investigate the causal relationship between AP, cytokine, and ARDS. Next, 321 patients were collected to evaluate the efficacy of QYKL combined with dexamethasone (DEX) in treating AP. In addition, we used UHPLC-QE-MS to determine the chemical constituents of QYKL extract and rat serum after the oral administration of QYKL. The weighted gene coexpression network analysis (WGCNA) method was used to find the main targets of AP-related ARDS using the GSE151572 dataset. At last, a AP model was established by retrograde injection of 5% sodium taurocholate. Results MR showed that AP may have a causal relationship with ARDS by mediating cytokine storms. Retrospective study results showed early administration of QYKL was associated with a lower incidence of ARDS, mortality, admissions to the intensive care unit, and length of stay in AP patients compared to the Control group. Furthermore, we identified 23 QYKL prototype components absorbed into rat serum. WGCNA and differential expression analysis identified 1558 APALI-related genes. The prototype components exhibited strong binding activity with critical targets. QYKL has a significant protective effect on pancreatic and lung injury in AP rats, and the effect is more effective after combined treatment with DEX, which may be related to the regulation of the IL-6/STAT3 signaling pathway. Conclusion By integrating MR, retrospective analysis, and systematic pharmacological methodologies, this study systematically elucidated the therapeutic efficacy of QYKL in treating AP-related ARDS, establishing a solid foundation for its medicinal use.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yalan Luo
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Jinquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Duarte, CA, USA
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Aixia Gong
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
2
|
Koçak A, Koldemir Gündüz M, Kaymak G, Aydın E. Effects of upadacitinib and PD29 on oxidative damage and inflammation in bleomycin-induced scleroderma model kidney tissues. MARMARA MEDICAL JOURNAL 2024; 37:72-79. [DOI: 10.5472/marumj.1381649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Objective: Scleroderma (SSc) is a rare autoimmune tissue disease. There is currently no effective treatment for SSc. The aim of this
study was to investigate the antioxidant and anti-inflammatory effects of upadacitinib and PD29 on total oxidant status (TOS), total
antioxidant status (TAS), malondialdehyde (MDA), catalase (CAT), glutathione (GSH) peroxidase levels, and interleukin-6 (IL-6) and
interleukin-13 ( IL-13) in kidney tissues of an experimental SSc model.
Materials and Methods: The experimental design was established with five groups of eight mice: Control, bleomycin (BLM) (5 μg/kg),
BLM + upadacitinib (3mg/kg), BLM + PD29 (5 mg/kg) and BLM + PD29 + upadacitinib group. BLM was administered subcutaneously
once a day for 21 days. PD29 was administered subcutaneously and upadacitinib (gavage) were injected for 21 days. Renal tissues were
collected at the end of the experiment. Renal TOS, TAS, MDA, CAT, GSH levels, and IL-6 and IL-13 gene expressions were evaluated.
Results: Upadacitinib and PD29 affected oxidant status and TOS. MDA levels decreased, and GSH, CAT, and TAS levels increased.
Also, upadacitinib and PD29 decreased inflammation via IL-6 and IL-13 cytokines.
Conclusion: Upadacitinib and PD29 may have therapeutic roles for SSc renal crisis.
Collapse
Affiliation(s)
- Ayşe Koçak
- UNIVERSITY OF HEALTH SCIENCES, INSTITUTE OF HEALTH SCIENCES, MEDICAL BIOCHEMISTRY (MEDICINE) (DR)
| | - Meliha Koldemir Gündüz
- KUTAHYA HEALTH SCIENCES UNIVERSITY, FACULTY OF ENGINEERING AND NATURAL SCIENCES, DEPARTMENT OF BASIC SCIENCES OF ENGINEERING
| | - Güllü Kaymak
- KUTAHYA HEALTH SCIENCES UNIVERSITY, VOCATIONAL SCHOOL OF HEALTH SERVICES, MEDICAL IMAGING TECHNIQUES PR
| | - Elif Aydın
- KUTAHYA HEALTH SCIENCES UNIVERSITY, VOCATIONAL SCHOOL OF HEALTH SERVICES, MEDICAL LABORATORY TECHNIQUES PR
| |
Collapse
|
3
|
Zhang F, Xu D. Zerumbone ameliorates the inflammatory response and organ damage in severe acute pancreatitis via the ROS/NF-κB pathway. BMC Gastroenterol 2023; 23:333. [PMID: 37759163 PMCID: PMC10538248 DOI: 10.1186/s12876-023-02962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE The aim of the current study was to determine the mechanism by which Zerumbone (ZER) ameliorates inflammation and organ damage in a rat model of severe acute pancreatitis (SAP). METHODS Different concentrations of ZER (10, 20 and 40 mg/kg) were administered by femoral vein puncture 30 min prior to establishment of the SAP model. Hematoxylin and eosin (H&E) staining was used to assess pathological changes in the pancreatic tissue of SAP-induced rats. The lung wet/dry (W/D) ratio was assessed and serum levels of amylase (AMY), alanine aminotransferase (ALT), creatinine (Cr), aspartate aminotransferase (AST) and phospholipase A2 (PLA2) were measured. Western blot analysis was used to examine changes in the expression of ROS/NF-κB pathway-associated proteins. RESULTS SAP was confirmed by significant histopathological damage to the pancreas. ZER (10, 20 and 40 mg/kg) was found to alleviate pancreatitis and decrease ascites volume, lung W/D ratio, pancreatic pathology score, oxidative stress and inflammatory damage. High concentrations (20 and 40 mg/kg) of ZER were shown to increase levels of hepatorenal toxicity. In contrast, 10 mg/kg ZER was found to attenuate liver enzyme levels, reduce pathological damage to the liver, and protect against extrapancreatic organ damage to the liver in SAP-induced rats. Moreover, ZER showed no significant side effects in normal rats. Finally, we demonstrated that ZER mediated its anti-inflammatory effects on SAP through the ROS/NF-κB signaling pathway. CONCLUSION ZER alleviated SAP-induced oxidative stress and inflammatory injury via the ROS/NF-κB pathway, and had a protective effect on lung injury and liver damage.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Gastroenterology, Haining People's Hospital, Jiaxing City, 314400, Zhejiang, China
| | - Dongjia Xu
- Department of Gastroenterology, Haining People's Hospital, Jiaxing City, 314400, Zhejiang, China.
| |
Collapse
|
4
|
Abu-Elfotuh K, Selim HMRM, Riad OKM, Hamdan AME, Hassanin SO, Sharif AF, Moustafa NM, Gowifel AM, Mohamed MYA, Atwa AM, Zaghlool SS, El-Din MN. The protective effects of sesamol and/or the probiotic, Lactobacillus rhamnosus, against aluminum chloride-induced neurotoxicity and hepatotoxicity in rats: Modulation of Wnt/β-catenin/GSK-3β, JAK-2/STAT-3, PPAR-γ, inflammatory, and apoptotic pathways. Front Pharmacol 2023; 14:1208252. [PMID: 37601053 PMCID: PMC10436218 DOI: 10.3389/fphar.2023.1208252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: Aluminium (Al) is accumulated in the brain causing neurotoxicity and neurodegenerative disease like Alzheimer's disease (AD), multiple sclerosis, autism and epilepsy. Hence, attenuation of Al-induced neurotoxicity has become a "hot topic" in looking for an intervention that slow down the progression of neurodegenerative diseases. Objective: Our study aims to introduce a new strategy for hampering aluminum chloride (AlCl3)-induced neurotoxicity using a combination of sesamol with the probiotic bacteria; Lactobacillus rhamnosus (L. rhamnosus) and also to test their possible ameliorative effects on AlCl3-induced hepatotoxicity. Methods: Sprague-Dawley male rats were randomly divided into five groups (n = 10/group) which are control, AlCl3, AlCl3 + Sesamol, AlCl3 + L. rhamnosus and AlCl3 + Sesamol + L. rhamnosus. We surveilled the behavioral, biochemical, and histopathological alterations centrally in the brain and peripherally in liver. Results: This work revealed that the combined therapy of sesamol and L. rhamnosus produced marked reduction in brain amyloid-β, p-tau, GSK-3β, inflammatory and apoptotic biomarkers, along with marked elevation in brain free β-catenin and Wnt3a, compared to AlCl3-intoxicated rats. Also, the combined therapy exerted pronounced reduction in hepatic expressions of JAK-2/STAT-3, inflammatory (TNF-α, IL-6, NF-κB), fibrotic (MMP-2, TIMP-1, α-SMA) and apoptotic markers, (caspase-3), together with marked elevation in hepatic PPAR-γ expression, compared to AlCl3 -intoxicated rats. Behavioral and histopathological assessments substantiated the efficiency of this combined regimen in halting the effect of neurotoxicity. Discussion: Probiotics can be used as an add-on therapy with sesamol ameliorate AlCl3 -mediated neurotoxicity and hepatotoxicity.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba Mohammed Refat M. Selim
- Pharmaceutical Sciences Department, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Omnia Karem M. Riad
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. E. Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Soha Osama Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Asmaa F. Sharif
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Clinical Medical Sciences Department, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Nouran Magdy Moustafa
- Basic Medical Science Department, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ayah M.H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Marwa Y. A. Mohamed
- Biology Department, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ahmed M. Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Sameh S. Zaghlool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
5
|
Çomaklı S, Özdemir S, Küçükler S, Kandemir FM. Beneficial effects of quercetin on vincristine-induced liver injury in rats: Modulating the levels of Nrf2/HO-1, NF-kB/STAT3, and SIRT1/PGC-1α. J Biochem Mol Toxicol 2023; 37:e23326. [PMID: 36808657 DOI: 10.1002/jbt.23326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Our experimental objective was to investigate the hepatotoxic effect of vincristine (VCR) administration in rats and determined whether combined therapy with Quercetin (Quer) ensured protection. Five groups with seven rats each were used for this purpose, and experimental groups were formulated as follows: Control group; Quer group; VCR group; VCR plus Quer 25 group; VCR plus Quer 50 group. The results showed that VCR significantly increased the activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes. Besides, VCR caused considerable increases in the malondialdehyde (MDA) contents, along with significant decreases in reduced glutathione levels, superoxide dismutase, catalase, and glutathione peroxidase enzyme activities in the rat livers. Quer treatment in VCR toxicity markedly decreased the activity of ALT, AST, ALP enzymes, and MDA contents and enhanced the activities of antioxidant enzymes. The results also showed that VCR significantly increased the levels of NF-kB, STAT3, and the expression of caspase 3, Bax, and MAP LC3 and decreased the expression of Bcl2 and levels of Nrf2, HO-1, SIRT1, and PGC-1α. Compared to the VCR group, Quer treatment exhibited significantly lower levels of NF-kB, STAT3, and the expression of caspase 3, Bax, and MAP LC3, and higher levels of Nrf2, HO-1, SIRT1, and PGC-1α. In conclusion, our study demonstrated that Quer could alleviate the harmful effects of VCR via activation of NRf2/HO-1 and SIRT1/PGC-1α pathways, and via attenuation of oxidative stress, apoptosis, autophagy, and NF-kB/STAT3 pathways.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
6
|
Guo MX, Zhang MM, Yang HY, Zhang CL, Cheng HY, Li NZ, Yi LT, Zhu JX. Lagotis brachystachya maxim attenuates chronic alcoholic liver injury combined with gouty arthritis in rats via its anti-inflammatory activity. Front Pharmacol 2022; 13:995777. [PMID: 36176434 PMCID: PMC9513826 DOI: 10.3389/fphar.2022.995777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Lagotis brachystachya Maxim, a common herb in Tibetan medicine, is mainly used to treat pneumonia, hepatitis, yellow water disease (gouty arthritis). Since long-term heavy drinking is also a risk factor for gouty arthritis, the present study aimed to evaluate the underlying protective role and mechanism of extracts of Lagotis brachystachya (ELB) in chronic alcoholic liver injury combined with gouty arthritis. The rat chronic alcoholic liver injury combined with gouty arthritis model was established by long-term alcohol consumption and monosodium urate (MSU) injection. The therapeutical action of ELB was then evaluated by biochemical measurement, histopathological examination, ankle swelling assessment, and protein detection. According to biochemical measurements and histopathological evaluation, ELB could alleviate the symptoms of alcoholic liver injury combined with gouty arthritis. In addition, chronic alcohol consumption and MSU activated inflammatory-related signaling such as TLR4/MyD88/NF-κB, NLRP3, and JAK2/STAT3 pathways in the liver and synovial tissues, while ELB significantly inhibited the activation of the inflammatory signaling pathway. In conclusion, ELB is protective in rats with chronic alcoholic liver injury and gouty arthritis, possibly mediated by the inhibition of TLR4/MyD88/NF-κB, NLRP3, and JAK2-STAT3 signaling pathways in both the hepatic and synovial tissues.
Collapse
Affiliation(s)
- Min-Xia Guo
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Hai-Yan Yang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chu-Ling Zhang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hong-Yu Cheng
- College of Humanities, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Na-Zhi Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Ji-Xiao Zhu,
| |
Collapse
|
7
|
Zhang Y, Yu L, Yang J, Ding Z, He Y, Wan H. Spectrum effect correlation of yangyin tongnao granules on cerebral ischemia-reperfusion injury rats. Front Pharmacol 2022; 13:947978. [PMID: 36016577 PMCID: PMC9395610 DOI: 10.3389/fphar.2022.947978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Yangyin Tongnao Granules (YYTNG), as traditional Chinese medicine (TCM) compound preparation, have a good curative effect on cerebral ischemia-reperfusion injury. This study aimed to investigate the relationship between the active components of YYTNG in the plasma and the inflammatory response in cerebral ischemia-reperfusion injury rats. High-performance liquid chromatography (HPLC) was conducted to determine the fingerprints at different time points of middle cerebral artery occlusion (MCAO) rats after the administration of YYTNG at different times points. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of interleukin-18 (IL-18) and tumor necrosis factor-α (TNF-α) in the plasma of MCAO rats at different time points. The spectral-effect relationship between the YYTNG fingerprints and inflammatory indexes in vivo was established by combining three different mathematical models, grey correlation, multiple linear regression, and partial least-square method. The results revealed that each chromatographic peak in the HPLC of the plasma exhibited a certain correlation with the inflammatory index, in the following order: P2 >P6 >P5 >P1 >P3 >P4. Therefore, this study successfully established the spectrum-effect correlation of YYTNG on cerebral ischemia-reperfusion injury rats. The results provide a certain guiding ideology for the analyses of the relationship between fingerprints and the pharmacodynamics of TCM prescriptions.
Collapse
Affiliation(s)
- Yangyang Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Xiang S, Huang R, He Q, Xu L, Wang C, Wang Q. Arginine regulates inflammation response-induced by Fowl Adenovirus serotype 4 via JAK2/STAT3 pathway. BMC Vet Res 2022; 18:189. [PMID: 35590365 PMCID: PMC9118595 DOI: 10.1186/s12917-022-03282-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Fowl Adenovirus serotype 4 (FAdV-4) infection causes severe inflammatory response leading to hepatitis-hydropericardium syndrome (HHS) in poultry. As an essential functional amino acid of poultry, arginine plays a critical role in anti-inflammatory and anti-oxidative stress. Results In this study, the differential expression genes (DEGs) were screened by transcriptomic techniques, and the DEGs in gene networks of inflammatory response-induced by FAdV-4 in broiler’s liver were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The results showed that the cytokines pathway and JAK/STAT pathway were significantly enriched, in which the DEGs levels of IL-6, IL-1β, IFN-α, JAK and STAT were significantly up-regulated after FAdV-4 infection. It was further verified with real-time fluorescence quantitative polymerase chain reaction (Real-time qPCR) and Western blotting (WB) in vitro and in vivo. The findings demonstrated that FAdV-4 induced inflammatory response and activated JAK2/STAT3 pathway. Furthermore, we investigated whether arginine could alleviate the liver inflammation induced by FAdV-4. After treatment with 1.92% arginine level diet to broilers or 300 μg/mL arginine culture medium to LMH cell line with FAdV-4 infection at the same time, we found that the mRNA levels of IL-6, IL-1β, IFN-α and the protein levels of p-JAK2, p-STAT3 were down-regulated, compared with FAdV-4 infection group. Furthermore, we confirmed that the inflammation induced by FAdV-4 was ameliorated by pre-treatment with JAK inhibitor AG490 in LMH cells, and it was further alleviated in LMH cells treatment with AG490 and ARG. Conclusions These above results provide new insight that arginine protects hepatocytes against inflammation induced by FAdV-4 through JAK2/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03282-9.
Collapse
Affiliation(s)
- Silin Xiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Ruiling Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Qing He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Lihui Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.
| | - Quanxi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry Univesity, Fuzhou, 350002, P.R. China.
| |
Collapse
|
9
|
He Q, Sun X, Zhang M, Chu L, Zhao Y, Wu Y, Zhang J, Han X, Guan S, Ding C. Protective effect of baicalin against arsenic trioxide-induced acute hepatic injury in mice through JAK2/STAT3 signaling pathway. Int J Immunopathol Pharmacol 2022; 36:20587384211073397. [PMID: 35088608 PMCID: PMC8801635 DOI: 10.1177/20587384211073397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Baicalin (BA) is a kind of flavonoid that is isolated from Scutellaria baicalensis Georgi, which has been verified to have hepatoprotective effects in some diseases. However, the role of BA in acute hepatic injury induced by arsenic trioxide (ATO) remains unclear. The aim of this study was to investigate the protective action of BA on acute hepatic injury induced by ATO and to probe its possible mechanism. Mice were pretreated with BA (50, 100 mg/kg) by gavage. After 7 h, ATO (7.5 mg/kg) was injected intraperitoneally to induce liver injury. After 7 days of treatment, serum and hepatic specimens were collected and assayed to evaluate the hepatoprotective effect of BA. Pathological sections and the liver function index indicated that ATO caused significant liver injury. The fluorescence of reactive oxygen species and oxidative stress indicators showed that ATO also increased oxidative stress. The inflammatory markers in ATO-induced mice also increased significantly. Staining of the terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic factor assay showed that apoptosis increased. However, with BA pretreatment, these changes were significantly weakened. In addition, BA treatment promoted the expression of proteins related to the JAK2/STAT3 signaling pathway. The results suggest that BA can ameliorate acute ATO-induced hepatic injury in mice, which is related to the inhibition of oxidative stress, thereby reducing inflammation and apoptosis. The mechanism of this protection is potentially related to the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Muqing Zhang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China
| | - Yang Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongchao Wu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Shengjiang Guan, Affiliated Hospital, Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Luquan Economic Development Zone, Luquan District, Shijiazhuang, Hebei 050011, China.
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital of PLA, Shijiazhuang, China
- Chao Ding, Department of Cardiology, Bethune International Peace Hospital of PLA, Shijiazhuang, Hebei 050011, China. Email
| |
Collapse
|
10
|
Diallyl Disulfide Attenuates STAT3 and NF-κB Pathway Through PPAR-γ Activation in Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Inflammation 2022; 45:45-58. [DOI: 10.1007/s10753-021-01527-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
|
11
|
Liu W, Du JJ, Li ZH, Zhang XY, Zuo HD. Liver injury associated with acute pancreatitis: The current status of clinical evaluation and involved mechanisms. World J Clin Cases 2021; 9:10418-10429. [PMID: 35004974 PMCID: PMC8686151 DOI: 10.12998/wjcc.v9.i34.10418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a very common acute disease, and the mortality rate of severe AP (SAP) is between 15% and 35%. The main causes of death are multiple organ dysfunction syndrome and infections. The mortality rate of patients with SAP related to liver failure is as high as 83%, and approximately 5% of the SAP patients have fulminant liver failure. Liver function is closely related to the progression and prognosis of AP. In this review, we aim to elaborate on the clinical manifestations and mechanism of liver injury in patients with AP.
Collapse
Affiliation(s)
- Wei Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Juan-Juan Du
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zeng-Hui Li
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xin-Yu Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
12
|
Xiong Y, Wang Y, Xiong Y, Teng L. Protective effect of Salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways. Food Sci Nutr 2021; 9:5060-5069. [PMID: 34532015 PMCID: PMC8441355 DOI: 10.1002/fsn3.2459] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/17/2023] Open
Abstract
High-altitude hypoxia-induced oxidative stress and inflammation played an essential role in the incidence and development of liver injury. Salidroside (Sal), a phenylpropanoid glycoside extracted from the plant Rhodiola rosea, has recently demonstrated antioxidant, anti-inflammatory, and antihypoxia properties. Herein, we hypothesized that salidroside may alleviate hypoxia-induced liver injury via antioxidant and antiinflammatory-related pathways. A high-altitude hypoxia animal model was established using hypobaric chamber. Male SD rats were randomly divided into the control group, hypoxia group, control +Sal group, and hypoxia +Sal group. Salidroside treatment significantly inhibited hypoxia-induced increases of serum and hepatic pro-inflammatory cytokines release, hepatic ROS production and MDA contents; attenuated hypoxia-induced decrease of hepatic SOD, CAT, and GSH-Px activities. Furthermore, salidroside treatment also potentiated the activation of Nrf2-mediated anti-oxidant pathway, as indicated by upregulation of n-Nrf2 and its downstream HO-1 and NQO-1. In vitro study found that blocking the Nrf2 pathway using specific inhibitor ML385 significantly reversed the protective effect of salidroside on hypoxia-induced liver oxidative stress. In addition, salidroside treatment significantly inhibited hepatic pro-inflammatory cytokines release via JAK2/STAT3-mediated pathway. Taken together, our findings suggested that salidroside protected against hypoxia-induced hepatic oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yanlei Xiong
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
- Department of PathophysiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS)School of Basic MedicinePeking Union Medical College (PUMC)BeijingChina
| | - Yueming Wang
- Department of anatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Yanlian Xiong
- Department of anatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Lianghong Teng
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Piao X, Sui X, Liu B, Cui T, Qi Z. Picroside II Improves Severe Acute Pancreatitis-Induced Hepatocellular Injury in Rats by Affecting JAK2/STAT3 Phosphorylation Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9945149. [PMID: 34368363 PMCID: PMC8337114 DOI: 10.1155/2021/9945149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/03/2021] [Accepted: 07/04/2021] [Indexed: 11/17/2022]
Abstract
Picroside II is an important ingredient agent in Traditional Chinese medicine and hoped to reduce hepatocellular injury caused by severe acute pancreatitis (SAP). An SAP-induced hepatocellular injury model was established in rats by using pentobarbital sodium. 27 rats were divided into 3 groups: the sham group (SG), model group (MG), and Picroside groups (PG). SAP-induced hepatocellular injury was assessed using hematoxylin and eosin staining. We measured hepatocellular enzymes (amylase (AMY), alanine aminotransferase (ALT), and aspartate aminotransferase (AST)), oxidative stress factors (superoxidase dismutase (SOD) and malondialdehyde (MDA)), and inflammatory factors (tumor necrosis factor α (TNF-α), interleukin- (IL-) 6, and IL-10), apoptotic factors (BAX and cleaved caspase 3), and inflammatory signaling (Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), p-JAK2, and p-STAT3) in hepatocellular tissues. The SAP-induced hepatocellular injury model was successfully established. Picroside II treatment repaired hepatocellular injury by reducing the activities of AMY, ALT, and AST; reducing the levels of MDA, TNF-α, IL-1, IL-6, p-JAK2, p-STAT3, BAX, and cleaved caspase 3; and increasing the levels of SOD and IL-10. Picroside II exerted protective function for the SAP-induced hepatocellular injury model. Picroside II improved SAP-induced hepatocellular injury and antioxidant and anti-inflammatory properties by affecting JAK2/STAT3 phosphorylation signaling.
Collapse
Affiliation(s)
- Xuehua Piao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaodan Sui
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Baohai Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Tingfang Cui
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Zinan Qi
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
14
|
Wang Y, Kong XQ, Wu F, Xu B, Bao DJ, Cheng CD, Wei XP, Dong YF, Niu CS. SOCS1/JAK2/STAT3 axis regulates early brain injury induced by subarachnoid hemorrhage via inflammatory responses. Neural Regen Res 2021; 16:2453-2464. [PMID: 33907034 PMCID: PMC8374552 DOI: 10.4103/1673-5374.313049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SOCS1/JAK2/STAT3 axis is strongly associated with tumor growth and progression, and participates in cytokine secretion in many diseases. However, the effects of the SOCS1/JAK2/STAT3 axis in experimental subarachnoid hemorrhage remain to be studied. A subarachnoid hemorrhage model was established in rats by infusing autologous blood into the optic chiasm pool. Some rats were first treated with JAK2/STAT3 small interfering RNA (Si-JAK2/Si-STAT3) or overexpression plasmids of JAK2/STAT3. In the brains of subarachnoid hemorrhage model rats, the expression levels of both JAK2 and STAT3 were upregulated and the expression of SOCS1 was downregulated, reaching a peak at 48 hours after injury. Simultaneously, the interactions between JAK2 and SOCS1 were reduced. In contrast, the interactions between JAK2 and STAT3 were markedly enhanced. Si-JAK2 and Si-STAT3 treatment alleviated cortical neuronal cell apoptosis and necrosis, destruction of the blood-brain barrier, brain edema, and cognitive functional impairment after subarachnoid hemorrhage. This was accompanied by decreased phosphorylation of JAK2 and STAT3 protein, decreased total levels of JAK2 and STAT3 protein, and increased SOCS1 protein expression. However, overexpression of JAK2 and STAT3 exerted opposite effects, aggravating subarachnoid hemorrhage-induced early brain injury. Si-JAK2 and Si-STAT3 inhibited M1-type microglial conversion and the release of pro-inflammatory factors (inducible nitric oxide synthase, interleukin-1β, and tumor necrosis factor-α) and increased the release of anti-inflammatory factors (arginase-1, interleukin-10, and interleukin-4). Furthermore, primary neurons stimulated with oxyhemoglobin were used to simulate subarachnoid hemorrhage in vitro, and the JAK2 inhibitor AG490 was used as an intervention. The in vitro results also suggested that neuronal protection is mediated by the inhibition of JAK2 and STAT3 expression. Together, our findings indicate that the SOCS1/JAK2/STAT3 axis contributes to early brain injury after subarachnoid hemorrhage both in vitro and in vivo by inducing inflammatory responses. This study was approved by the Animal Ethics Committee of Anhui Medical University and the First Affiliated Hospital of University of Science and Technology of China (approval No. LLSC-20180202) on March 1, 2018.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiang-Qian Kong
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fei Wu
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Bin Xu
- Anhui Medical College, Anhui Provincial Medical Genetics Center, Hefei, Anhui Province, China
| | - De-Jun Bao
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chuan-Dong Cheng
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiang-Ping Wei
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yong-Fei Dong
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Shi Niu
- Department of Neurosurgery, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Gao GZ, Hao YX. Progress in research of liver injury induced by acute biliary pancreatitis. Shijie Huaren Xiaohua Zazhi 2020; 28:81-85. [DOI: 10.11569/wcjd.v28.i3.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute biliary pancreatitis (ABP) not only causes acute inflammation of the pancreas, but also leads to obstruction or infection of the biliary system. Liver injury is one of the most common complications of ABP. The pathological mechanisms mainly include infection and endotoxin, cholestasis, pancreatic enzyme damage, microcirculatory disorders, and oxidative stress, and the research conclusions are mostly derived from animal experiments. On the basis of routine medical treatment of ABP, active anti-infective treatment and rapid relief of biliary obstruction can promote the recovery of ABP-related liver injury.
Collapse
Affiliation(s)
- Guang-Zhou Gao
- Department of Gastroenterology (Division II), Baoding First Central Hospital, Baoding 071300, Hebei Province, China
| | - Ying-Xia Hao
- Department of Gastroenterology (Division II), Baoding First Central Hospital, Baoding 071300, Hebei Province, China
| |
Collapse
|
16
|
Zhang N, Han L, Xue Y, Deng Q, Wu Z, Peng H, Zhang Y, Xuan L, Pan G, Fu Q. The Protective Effect of Magnesium Lithospermate B on Hepatic Ischemia/Reperfusion via Inhibiting the Jak2/Stat3 Signaling Pathway. Front Pharmacol 2019; 10:620. [PMID: 31231218 PMCID: PMC6558428 DOI: 10.3389/fphar.2019.00620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is an important component of the pathogenesis of hepatic ischemia/reperfusion injury (HIRI). Magnesium lithospermate B (MLB) has strong neuroprotective and cardioprotective effects. The purpose of this study was to determine whether MLB had underlying protective effects against hepatic I/R injury and to reveal the potential mechanisms related to the hepatoprotective effects. In this study, we first examined the protective effect of MLB on HIRI in mice that underwent 1 h ischemia followed by 6 h reperfusion. MLB pretreatment alleviated the abnormal liver function and hepatocyte damage induced by I/R injury. We found that serum inflammatory cytokines, including IL-6, IL-1β, and TNF-α, were significantly decreased by MLB during hepatic ischemia/reperfusion (I/R) injury, suggesting that MLB may alleviate hepatic I/R injury via inhibiting inflammatory signaling pathways. Second, we investigated the protein level of p-Jak2/Jak2 and p-Stat3/Stat3 using Western blotting and found that MLB could significantly inhibit the activation of the Jak2/Stat3 signaling pathway, which was further verified by AG490 in a mouse model. Finally, the effect of MLB on the Jak2/Stat3 pathway was further assessed in an in vitro model of RAW 264.7 cells; 1 µg/ml LPS induced the secretion of inflammatory mediators, including IL-6, TNF-α, and activation of the Jak2/Stat3 signaling pathway. MLB significantly inhibited the abnormal secretion of inflammatory factors and the activation of the Jak2/Stat3 signaling pathway in RAW264.7 cells. In conclusion, MLB was found for the first time to reduce inflammation induced by hepatic I/R via suppressing the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijiang Xuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Zhou X, Gan F, Hou L, Liu Z, Su J, Lin Z, Le G, Huang K. Aflatoxin B 1 Induces Immunotoxicity through the DNA Methyltransferase-Mediated JAK2/STAT3 Pathway in 3D4/21 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3772-3780. [PMID: 30848898 DOI: 10.1021/acs.jafc.8b07309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the most toxic mycotoxin of all of the fungal toxins, aflatoxin B1 (AFB1) has carcinogenesis, heptotoxicity, and immunotoxicity. DNA methylation plays a critical role in gene expression regulation of the pathological process. However, the relationship between DNA methylation and AFB1-induced immunotoxicity was not yet reported. Therefore, the objectives of this study were to verify AFB1-induced immunotoxicity and investigate the potential role of the DNA methyltransferase (DNMT) family in AFB1-induced immunotoxicity and the pathway mechanism in 3D4/21 cells. The results showed that AFB1 could induce cytotoxicity, apoptosis, pro-inflammatory cytokine expression, DNA damage, and oxidative stress and decrease phagocytotic capacity. Meanwhile, the levels of DNMT1 and DNMT3a were significantly increased in 0.04 and 0.08 μg/mL AFB1 compared to the control. Inhibition of DNMT1 and DNMT3a by 5-Aza-2dc could reverse changes of the above parameters. Further, the JAK2/STAT3 pathway was significantly activated in 0.04 μg/mL AFB1. Inhibition of p-JAK2 and p-STAT3 by AG490 could alleviate AFB1-induced immunotoxicity. Moreover, inhibition of DNMT1 and DNMT3a by 5-Aza-2dc could suppress the phosphorylation of JAK2 and STAT3. Taken together, AFB1-induced immunotoxicity is related to the JAK2/STAT3 pathway mediated by DNMTs in 3D4/21 cells.
Collapse
|
18
|
Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018; 24:molecules24010131. [PMID: 30602693 PMCID: PMC6337302 DOI: 10.3390/molecules24010131] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Baicalein (BAI), one of the main components of Scutellaria baicalensis Georgi, possesses numerous pharmacological properties, including anti-cancer, anti-oxidative, anti-virus and anti-bacterial activities. The purpose of this study was to evaluate the hepatoprotective effect of baicalein against acetaminophen (APAP)-exposed liver injury in mice, and elucidate the underlying hepatoprotective mechanism. Baicalein pretreatment significantly alleviated the elevation of IL-6, IL-1β and TNF-α in serum and hepatic in a dose-dependent manner. It also dose-dependently reduced the hepatic malondialdehyde (MDA) concentration, as well as the depletion of hepatic superoxide dismutase (SOD), hepatic glutathione (GSH) and hepatic catalase (CAT). Moreover, pretreatment with baicalein significantly ameliorated APAP-exposed liver damage and histological hepatocyte changes. Baicalein also relieved APAP-induced autophagy by regulating AKT/mTOR pathway, LC3B and P62 expression. Furthermore, the hepatoprotective effect of baicalein to APAP-induced liver injury involved in Jak2/Stat3 and MAPK signaling pathway. Taken together, our findings suggested that baicalein exhibits the ability to prevent liver from APAP-induced liver injury and provided an underlying molecular basis for potential applications of baicalein to cure liver injuries.
Collapse
|