1
|
Ramesh R, Rekha ND, Gopal S. Pseudomonas aeruginosa biofilm: treatment strategies to combat infection. Arch Microbiol 2025; 207:141. [PMID: 40348909 DOI: 10.1007/s00203-025-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogenic bacterium that is a common cause of both acute and chronic infections. Multidrug-resistant P. aeruginosa poses a significant challenge to antibiotics and therapeutic approaches due to its pathogenicity, virulence, and biofilm-forming ability mediated by quorum sensing. Understanding the pathogenic mechanisms is essential for developing potential drug targets. In this regard, strategies aimed at combating the targeted inhibition of virulence, quorum sensing pathways, secretion systems, biofilm-associated two-component systems, and signalling system regulators (such as c-di-GMP) associated with biofilm formation are critical. Several new antimicrobial agents have been developed using these strategies, including antimicrobial peptides, bacteriophages, nanoantibiotics, photodynamics, and natural products, which are considered promising therapeutic tools. In this review, we address the concept of biofilms, their regulation, and recent treatment strategies to target P. aeruginosa, a clinically significant pathogen known for biofilm formation.
Collapse
Affiliation(s)
- Rashmi Ramesh
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - N D Rekha
- Department of Biotechnology, JSS College of Arts, Commerce and Science (Autonomous), Mysuru, Karnataka, India
| | - Shubha Gopal
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
2
|
Talluri SNL, Rittschof D, Winter RM, Salem DR. Cyanobacteria fouling in photobioreactors: current status and future perspectives for prevention. BIOFOULING 2025:1-27. [PMID: 40337854 DOI: 10.1080/08927014.2025.2499107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
Cyanobacteria biomass sources have the potential to contribute to the replacement of fossil fuels and to the reduction in global warming by sustainable conversion of atmospheric CO2 into biofuels and high-value chemicals. Cyanobacteria cultivation in photobioreactors (PBRs) results in biofouling on their transparent inner walls, which reduces photosynthetic efficiency and productivity. While cyanobacteria biofouling in PBRs is recognized as a significant operating challenge, this review draws attention to the lack of studies on antifouling strategies for PBRs involving cyanobacteria and discusses several areas related to cyanobacteria fouling mechanisms on PBR materials, which require further investigation. These include an in-depth analysis of conditioning films, the role of pili and EPS in gliding and adhesion, potential revisions to existing theoretical models for predicting adhesion, and material properties that affect cyanobacteria adhesion. We use knowledge from marine, medical, and industrial biofouling management to help identify strategies to combat cyanobacteria fouling in PBRs, and we review the applicability of various bioinspired physical and chemical strategies, as well as genetic engineering approaches to prevent cyanobacteria biofilm formation in PBRs.
Collapse
Affiliation(s)
- Suvarna N L Talluri
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio), South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Daniel Rittschof
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, Duke University, Beaufort, North Carolina, USA
| | - Robb M Winter
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composites and Polymer Engineering Laboratory, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio), South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
3
|
Chugh S, Létisse F, Neyrolles O. The exometabolome as a hidden driver of bacterial virulence and pathogenesis. Trends Microbiol 2025; 33:546-557. [PMID: 39701858 DOI: 10.1016/j.tim.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
The traditional view of metabolism as merely supplying energy and biosynthetic precursors is undergoing a paradigm shift. Metabolic dynamics not only regulates gene expression but also orchestrates cellular processes with remarkable precision. Most bacterial pathogens exhibit exceptional metabolic plasticity, enabling them to adapt to diverse environments, including hostile conditions within a host. While the role of intracellular bacterial metabolism in pathogen-host interactions has been extensively studied, the contributions of the extracellularly released or secreted bacterial metabolites (referred to here as the bacterial 'exometabolome') to metabolic adaptations and disease pathogenesis remain largely unexplored. In this review, we highlight the significant and intriguing roles of bacterial exometabolomes in drug tolerance, immune suppression, and disease pathogenesis, opening a new frontier in our understanding of bacterial-host interactions.
Collapse
Affiliation(s)
- Saurabh Chugh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fabien Létisse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Qian L, He Y, Lian W, Ji Z, Tian Z, Wang C, Cao C, Shern T, Stedman T, Sun Y. AgrC biotinylation inhibits Staphylococcus aureus infection. PLoS One 2025; 20:e0318695. [PMID: 40193824 PMCID: PMC11991674 DOI: 10.1371/journal.pone.0318695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/20/2025] [Indexed: 04/09/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of nosocomial infections, particularly among antibiotic-resistant strains. S. aureus virulence is governed by the accessory gene regulator (Agr) quorum sensing (QS) system, which relies on AgrC, a two-component histidine kinase, to detect secreted auto-inducing peptides (AIPs). Emerging evidence highlights the potential of inhibiting the interaction between AgrC and AIPs as a promising therapeutic strategy. Given the limited clinic methods in inhibiting AgrC, we hereby report a novel method utilizing TurboID, an engineered biotin ligase, to inhibit Agr C on S. aureus via its biotinylation. To achieve this goal, a fusion protein named TurboID-AgrD[Formula: see text] (Agr-ID) was designed to include an AgrC binding domain (AgrID[Formula: see text]) and a catalytic domain (TurboID) for AgrC biotinylation. By incubating with Alexa Fluor 647-conjugated streptavidin, the biotinylated AgrC on S. aureus was successfully visualized through fluorescence microscopy with 100x objective. We further confirmed the specific biotinylation of AgrC using Western Blotting, and biotinylated AgrC resulted in inhibiting the growth of S. aureus strains, including S. aureus 25923, S. aureus 43300, and S. aureus 6538 (MRSA). The downstream biological effect of AgrC biotinylation exhibited decreased virulence protein generation as monitored by the lower presence of apoptotic HEK 293T cells after incubating with S. aureus cell lysates and supernatant. The impaired colonizing features from biotinylated S. aureus 6538 were investigated by calculating the decreased ratio of cell death versus live HeLa cells. By further investigating the efficiency of the immune clearance of biotinylated S. aureus by mouse macrophages, we observed the enhanced uptake of S. aureus by murine macrophages in vivo. Overall, our work reveals that the biotinylation of AgrC can inhibit the growth and toxicity of S. aureus while simultaneously promoting the clearance of biotinylated S. aureus via macrophage phagocytosis.
Collapse
Affiliation(s)
- Lijuan Qian
- College of Biomedicine and Health, Anhui Science and Technology University, Anhui, China
- College of Agriculture, Anhui Science and Technology University, Anhui, China
| | - Yuxin He
- BS-united China Group, International Genetically Engineered Machine (iGEM) Team, Anhui Science and Technology University, Anhui, China
| | - Wenzhe Lian
- BS-united China Group, International Genetically Engineered Machine (iGEM) Team, Anhui Science and Technology University, Anhui, China
| | - Zhiyuan Ji
- BS-united China Group, International Genetically Engineered Machine (iGEM) Team, Anhui Science and Technology University, Anhui, China
| | - Ziming Tian
- BS-united China Group, International Genetically Engineered Machine (iGEM) Team, Anhui Science and Technology University, Anhui, China
| | - Chuyun Wang
- BS-united China Group, International Genetically Engineered Machine (iGEM) Team, Anhui Science and Technology University, Anhui, China
| | - Chen Cao
- BS-united China Group, International Genetically Engineered Machine (iGEM) Team, Anhui Science and Technology University, Anhui, China
| | - Tyler Shern
- Columbia College, Columbia University, New York, United States of America
| | - Teagan Stedman
- Graduate School of Arts and Sciences, Columbia University Irving Medical Center, New York, United States of America
| | - Yujun Sun
- College of Biomedicine and Health, Anhui Science and Technology University, Anhui, China
- College of Agriculture, Anhui Science and Technology University, Anhui, China
| |
Collapse
|
5
|
Subramani T, Saravanan H, David H, Solanke J, Rajaramon S, Dandela R, Solomon AP. Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects. Bioorg Chem 2025; 156:108192. [PMID: 39874908 DOI: 10.1016/j.bioorg.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections. Quorum quenching has emerged as a promising approach, utilizing quorum quenching enzymes and quorum sensing inhibitors to disrupt quorum sensing signalling pathways, thus reducing virulence and biofilm formation. This review focuses on natural and synthetic bioorganic compounds that act as quorum-sensing inhibitors, providing insights into their mechanisms, structure-activity relationships, and potential as anti-virulence agents. The review also explores the communication languages of bacteria, including AHLs in gram-negative bacteria, oligopeptides in gram-positive bacteria, and LuxS, a universal microbial language. By highlighting recent advancements and prospects in bioorganic QSIs, this article underscores their crucial role in developing effective anti-virulence therapies and combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Tarunkarthick Subramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Harish Saravanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Jayshree Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
6
|
Muleshkova T, Bazukyan I, Papadimitriou K, Gotcheva V, Angelov A, Dimov SG. Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter. J Microbiol Biotechnol 2025; 35:e2411043. [PMID: 40081886 PMCID: PMC11925754 DOI: 10.4014/jmb.2411.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/16/2025]
Abstract
In recent years, the research community has been interested in members of the Acinetobacter genus mainly because of their role as causative agents of nosocomial infections. However, this rich-in-species genus has been proven to play a significant role in several biotechnological processes, such as bioremediation and fermented foods production. To partially fill the lack of information on Acinetobacter's dualistic nature, in this review, based on literature data, we attempt to summarize the available information on the different roles the members of the genus play by considering their genetic constitution and metabolic properties. We analyzed reports of genetic divergence between the pathogenic and non-pathogenic species and isolates, which can be explained by their high adaptability to the different ecological niches. In turn, this adaptability could result from intrinsic genetic variability due to mechanisms of horizontal genetic transfer, as well as high mutability determined by the expression of error-prone DNA polymerases. Yet, we concluded that further studies are needed, especially whole-genome sequencing of non-pathogenic isolates, which for the moment are relatively scarce.
Collapse
Affiliation(s)
- Tsvetana Muleshkova
- Sofia University “St. Kliment Ohridski”, Faculty of Biology, Department of Genetics, 8, Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| | - Inga Bazukyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology, 1, Alex Manoogian str., 0025 Yerevan, Armenia
| | - Konstantinos Papadimitriou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, Athina 118 55, Greece
| | - Velitchka Gotcheva
- University of Food Technologies in Plovdiv, Faculty of Technology, Department of Biotechnology, 26, Maritza blvd., 4002 Plovdiv, Bulgaria
| | - Angel Angelov
- Center of Competence "Agrofood Systems and Bioeconomy”, 26, Maritza blvd., 4002 Plovdiv, Bulgaria
| | - Svetoslav G. Dimov
- Sofia University “St. Kliment Ohridski”, Faculty of Biology, Department of Genetics, 8, Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
7
|
Benny AT, Radhakrishnan EK. Assessing the antibiofilm activity of flavonol esters against Pseudomonas aeruginosa PAO1 biofilm: an in vitro, molecular docking, and molecular dynamics study. J Biomol Struct Dyn 2025; 43:813-829. [PMID: 39737751 DOI: 10.1080/07391102.2023.2283811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/24/2023] [Indexed: 01/01/2025]
Abstract
Pseudomonas aeruginosa is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of P. aeruginosa biofilm treated with esters of flavonols were evaluated. Pyocyanin, cell surface hydrophobicity, LasA protease estimation, rhamnolipid estimation, and pyoverdine estimation were performed to evaluate the antivirulence activities of the test compounds against P. aeruginosa. Previous studies on the antivirulence activity of flavonoids against P. aeruginosa demonstrate that even if they can inhibit bacterial growth, relatively high concentrations of the compound are generally required for the inhibition of virulence factors. The esters showed more than 40% inhibition in all the tested virulence factors at their sub minimum inhibitory concentration. The gene expression studies of selected esters toward lasB and rhlA genes show downregulation of rhlA which suggests the inhibition in biofilm formation through rhamnolipid inhibition, quorum sensing inhibition, or biofilm formation inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Ethiraj K Radhakrishnan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Chiscuzzu F, Crescio C, Varrucciu S, Rizzo D, Sali M, Delogu G, Bussu F. Current Evidence on the Relation Between Microbiota and Oral Cancer-The Role of Fusobacterium nucleatum-A Narrative Review. Cancers (Basel) 2025; 17:171. [PMID: 39857953 PMCID: PMC11763498 DOI: 10.3390/cancers17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one the most prevalent head and neck cancers and represents a major cause of morbidity and mortality worldwide. The main established risk factors for OSCC include tobacco and alcohol consumption and betel quid chewing, which may contribute alone or in combination with other environmental factors to carcinogenesis. The oral microbiota is emerging as a key player in the establishment of the molecular and cellular mechanisms that may trigger or promote carcinogenesis, including in the oral cavity. Among the bacterial species found in the oral microbiota, Fusobacterium nucleatum, an anaerobic bacterium commonly found in oral biofilms and a periodontal pathogen, has gained attention due to solid evidence implicating F. nucleatum in colorectal cancer (CRC). F. nucleatum has been shown to induce chronic inflammation, promote cell proliferation and trigger cellular invasion while deploying immune evasion mechanisms. These experimental findings were first obtained in in vitro and in vivo models of CRC and are being confirmed in studies on OSCC. In this review, we summarize the most recent findings on the role of F. nucleatum in OSCC, discuss the clinical implications in terms of prognosis and provide an overview of the key mechanisms involved. Moreover, we identify research questions and aspects that require investigations to clarify the role of F. nucleatum in OSCC. We anticipate that studies in this emerging field may have a significant clinical impact on the diagnosis, prognosis and management of OSCC.
Collapse
Affiliation(s)
| | - Claudia Crescio
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
| | - Simona Varrucciu
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| | - Davide Rizzo
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Delogu
- Mater Olbia Hospital, 07026 Olbia, Italy; (F.C.); (G.D.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Bussu
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| |
Collapse
|
9
|
Yao P, Mohd Esah E, Zhao C. Regulatory mechanisms and applications of Lactobacillus biofilms in the food industry. Front Microbiol 2025; 15:1465373. [PMID: 39845052 PMCID: PMC11753222 DOI: 10.3389/fmicb.2024.1465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Lactobacillus is widely recognized for its probiotic benefits and has been widely used in food production. While biofilms are typically associated with pathogenic bacteria, they also served as a self-protective mechanism formed by microorganisms in an adverse environments. In recent years, relevant studies have revealed the excellent characteristics of Lactobacillus biofilms, offering new insights into their potential applications in the food industry. The Lactobacillus biofilms is important in improving fermentation processes and enhancing the resilience of Lactobacillus in various conditions. This paper reviews how quorum sensing regulates the formation of Lactobacillus biofilms and explores their roles in stress resistance, bacteriostasis and food production. Additionally, it highlights the emerging concept of fourth-generation probiotics, developed through biofilm technology, as a novel approach to probiotic applications.
Collapse
Affiliation(s)
- Peilin Yao
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| | - Effarizah Mohd Esah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Chuanping Zhao
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| |
Collapse
|
10
|
Mulder OJ, Kostman MP, Almodaimegh A, Edge MD, Larkin JW. An Agent-Based Model of Metabolic Signaling Oscillations in Bacillus subtilis Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629727. [PMID: 39763919 PMCID: PMC11702635 DOI: 10.1101/2024.12.20.629727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this process, glutamate-starved interior cells release potassium, triggering a depolarizing wave that spreads to exterior cells and limits their glutamate uptake. More nutrients diffuse to the interior, temporarily reducing glutamate stress and leading to oscillations. In our model, each cell has a membrane potential coupled to metabolism. As a simulated biofilm grows, collective membrane potential oscillations arise spontaneously as cells deplete nutrients and trigger potassium release, reproducing experimental observations. We further validate our model by comparing spatial signaling patterns and cellular signaling rates with those observed experimentally. By oscillating external glutamate and potassium, we find that biofilms synchronize to external potassium more strongly than to glutamate, providing a potential mechanism for previously observed biofilm synchronization. By tracking cellular glutamate concentrations, we find that oscillations evenly distribute nutrients in space: non-oscillating biofilms have an external layer of well-fed cells surrounding a starved core, whereas oscillating biofilms exhibit a relatively uniform distribution of glutamate. Our work shows the potential of agent-based models to connect cellular properties to collective phenomena and facilitates studies of how inheritance of cellular traits can affect the evolution of group behaviors.
Collapse
Affiliation(s)
- Obadiah J. Mulder
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Joseph W. Larkin
- Departments of Biology and Physics, Boston University, Boston, MA, USA
| |
Collapse
|
11
|
Di Maro M, Gargiulo L, Gomez d'Ayala G, Duraccio D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int J Mol Sci 2024; 25:13171. [PMID: 39684881 DOI: 10.3390/ijms252313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins. Their extraction and antimicrobial activity against a wide spectrum of bacteria is analyzed in depth. Also, their possible mechanisms of activity are described and classified based on their effect on bacteria, such as the (i) alteration of the cell membrane, (ii) inhibition of energy metabolism and DNA synthesis, and iii) disruption of quorum sensing and biofilm formation. These bioactive molecules have a wide range of possible applications ranging from cosmetics to food packaging. However, despite their potential, the amount of wastes transformed into valuable compounds is very low, due to the high costs relating to their extraction, technical challenges in managing supply chain complexity, limited infrastructure, policy and regulatory barriers, and public perception. For these reasons, further research is needed to develop cost-effective, scalable technologies for biomass valorization.
Collapse
Affiliation(s)
- Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luca Gargiulo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
12
|
Yu Z, Gan Z, Tawfik A, Meng F. Exploring interspecific interaction variability in microbiota: A review. ENGINEERING MICROBIOLOGY 2024; 4:100178. [PMID: 40104221 PMCID: PMC11915528 DOI: 10.1016/j.engmic.2024.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 03/20/2025]
Abstract
Interspecific interactions are an important component and a strong selective force in microbial communities. Over the past few decades, there has been a growing awareness of the variability in microbial interactions, and various studies are already unraveling the inner working dynamics in microbial communities. This has prompted scientists to develop novel techniques for characterizing the varying interspecific interactions among microbes. Here, we review the precise definitions of pairwise and high-order interactions, summarize the key concepts related to interaction variability, and discuss the strengths and weaknesses of emerging characterization techniques. Specifically, we found that most methods can accurately predict or provide direct information about microbial pairwise interactions. However, some of these methods inevitably mask the underlying high-order interactions in the microbial community. Making reasonable assumptions and choosing a characterization method to explore varying microbial interactions should allow us to better understand and engineer dynamic microbial systems.
Collapse
Affiliation(s)
- Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Parfirova O, Mikshina P, Petrova O, Smolobochkin A, Pashagin A, Burilov A, Gorshkov V. Phosphonates of Pectobacterium atrosepticum: Discovery and Role in Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:11516. [PMID: 39519067 PMCID: PMC11546328 DOI: 10.3390/ijms252111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Many phytopathogens' gene products that contribute to plant-pathogen interactions remain unexplored. In one of the most harmful phytopathogenic bacterium Pectobacterium atrosepticum (Pba), phosphonate-related genes have been previously shown to be among the most upregulated following host plant colonization. However, phosphonates, compounds characterized by a carbon-phosphorus bond in their composition, have not been described in Pectobacterium species and other phytopathogenic bacteria, with the exception of Pseudomonas syringae and Pantoea ananatis. Our study aimed to determine whether Pba synthesizes extracellular phosphonates and, if so, to analyze their physiological functions. We demonstrated that Pba produces two types of extracellular phosphonates: 2-diethoxyphosphorylethanamine and phenylphosphonic acid. Notably, such structures have not been previously described among natural phosphonates. The production of Pba phosphonates was shown to be positively regulated by quorum sensing and in the presence of pectic compounds. Pba phosphonates were found to have a positive effect on Pba stress resistance and a negative effect on Pba virulence. The discovered Pba phosphonates are discussed as metabolites that enable Pba to control its "harmful properties", thereby maintaining its ecological niche (the host plant) in a relatively functional state for an extended period.
Collapse
Affiliation(s)
- Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088 Kazan, Russia; (A.S.); (A.B.)
| | - Alexander Pashagin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088 Kazan, Russia; (A.S.); (A.B.)
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (P.M.); (O.P.); (A.P.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
14
|
Valiei A, Dickson A, Aminian-Dehkordi J, Mofrad MRK. Metabolic interactions shape emergent biofilm structures in a conceptual model of gut mucosal bacterial communities. NPJ Biofilms Microbiomes 2024; 10:99. [PMID: 39358363 PMCID: PMC11447261 DOI: 10.1038/s41522-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiome plays a major role in human health; however, little is known about the structural arrangement of microbes and factors governing their distribution. In this work, we present an in silico agent-based model (ABM) to conceptually simulate the dynamics of gut mucosal bacterial communities. We explored how various types of metabolic interactions, including competition, neutralism, commensalism, and mutualism, affect community structure, through nutrient consumption and metabolite exchange. Results showed that, across scenarios with different initial species abundances, cross-feeding promotes species coexistence. Morphologically, competition and neutralism resulted in segregation, while mutualism and commensalism fostered high intermixing. In addition, cooperative relations resulted in community properties with little sensitivity to the selective uptake of metabolites produced by the host. Moreover, metabolic interactions strongly influenced colonization success following the invasion of newcomer species. These results provide important insights into the utility of ABM in deciphering complex microbiome patterns.
Collapse
Affiliation(s)
- Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Andrew Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:27. [PMID: 39364333 PMCID: PMC11445061 DOI: 10.1038/s44259-024-00046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.
Collapse
Affiliation(s)
- Ho Yu Liu
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| | - Emma L Prentice
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| |
Collapse
|
16
|
Xu Y, Phillips KS, Ren D. Micron-scale topographies affect phagocytosis of bacterial cells on polydimethylsiloxane surfaces. Acta Biomater 2024; 187:253-260. [PMID: 39214161 PMCID: PMC11446655 DOI: 10.1016/j.actbio.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Many medical devices implanted in patients to mitigate diseases and medical conditions have different types of topographic features. While appropriate textures can promote the integration of host cells and reduce scar tissue formation, some textured implants with inappropriate topographies have been associated with inflammation, bacterial colonization, or even malignant complications. To better understand how surface topography affects host immune response to colonizing bacteria, a protocol was developed to investigate phagocytosis of bacterial cells attached on polydimethylsiloxane (PDMS) surfaces with different square-shaped recessive patterns. The interaction between activated RAW 264.7 macrophages and Escherichia coli in recessive wells was visualized in 3D using multiple fluorescent markers. The results revealed that there is a threshold dimension of topography, below which phagocytosis of attached bacterial cells is significantly impeded. Specifically, under our experimental condition, up to 100-fold reduction in phagocytosis was observed in square-shaped patterns with 5 µm side length and 10 µm depth compared to the flat control and patterns with 10 µm or longer side length. The spacing between wells also showed significant effects; e.g., phagocytosis in the wells further decreased when spacing increased to 50 µm. These results are helpful for understanding how undesired topographies may contribute to bacterial colonization and thus infection and other associated complications. STATEMENT OF SIGNIFICANCE: Surface topography plays an important role in bacteria-material infections and thus the safety of implantable medical devices. Undesired topographic features can cause biofilm formation and related complications. However, how surface topography affects the capability of host immune cells to clear colonizing bacteria is not well understood. In this study, the interaction between macrophage RAW264.7 and colonizing E. coli cells on polydimethylsiloxane (PDMS) with recessive features is investigated. It was discovered that the size of recessive features and the spacing between these features have significant effects on phagocytosis of bacteria by macrophages. These new results are helpful for understanding the complex interaction among host cells, bacteria, and implanted biomaterials, which will help guide the rational design of safer medical devices.
Collapse
Affiliation(s)
- Yikang Xu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - K Scott Phillips
- Laboratory of Analytical Chemistry, Division of Biological Standards and Quality Control, Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
17
|
Angst PDM, Van der Velden U, Susin C, Gomes SC. Supportive periodontal care with or without subgingival instrumentation: Microbiological results of a 2-year randomized clinical trial. J Clin Periodontol 2024; 51:1302-1310. [PMID: 38956881 DOI: 10.1111/jcpe.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
AIM To compare the subgingival microbiota of patients receiving supportive periodontal care (SPC) with and without subgingival instrumentation, over 2 years. MATERIALS AND METHODS This study was a randomized clinical trial that included 62 participants (50.97 ± 9.26 years old; 40 females) who completed non-surgical periodontal therapy. Participants were randomly assigned to receive oral prophylaxis with oral hygiene instructions alone (test) or in combination with subgingival instrumentation (control) during SPC. Pooled subgingival biofilm samples were obtained from four sites per patient at SPC baseline and at 3, 6, 12, 18, and 24 months. Real-time polymerase chain reaction was used for absolute quantification of Eubacteria and the target bacteria Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Data were analysed using generalized estimating equations, taking into consideration the clustering of observations within individuals. RESULTS No significant differences were found between the experimental groups regarding the mean counts of Eubacteria and target bacteria, as well as the periodontal parameters at the sampled sites. Although significant variability in bacterial counts was present during SPC, all counts after 2 years were not statistically different from those at baseline. Bacterial counts were associated with the presence of plaque, bleeding on probing, mean probing depth ≥3 mm, and follow-up period. CONCLUSIONS SPC with or without subgingival instrumentation can result in comparable subgingival microbiological outcomes. CLINICAL TRIAL REGISTRATION clinicaltrials.gov: NCT01598155 (https://clinicaltrials.gov/study/NCT01598155?intr=supragingival%20control&rank=4#study-record-dates).
Collapse
Affiliation(s)
- P D M Angst
- Conservative Dentistry Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - U Van der Velden
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - C Susin
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - S C Gomes
- Conservative Dentistry Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
18
|
Vanessa V, Waturangi DE, Yulandi A, Julyantoro PGS, Papuangan N. Antibiofilm activity of Morganella morganii JB8F and Pseudomonas fluorescens JB3B compound to control single and multi-species of aquaculture pathogens. BMC Microbiol 2024; 24:381. [PMID: 39354382 PMCID: PMC11443639 DOI: 10.1186/s12866-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Indonesia is a country that uses half or more aquatic foods as protein intake. The increased production in aquaculture industries might cause several problems, such as bacterial disease resulting in mass mortality and economic losses. Antibiotics are no longer effective because aquaculture pathogens can form biofilm. Biofilm is a microbial community that aggregates and firmly attaches to living or non-living surfaces. Biofilm formation can be caused by environmental stress, the presence of antibiotics, and limited nutrients. Therefore, it is important to explore antibiofilm to inhibit biofilm formation and/or eradicate mature biofilm. Phyllosphere bacteria can produce bioactive compounds for antimicrobial, antibiofilm, and anti-quorum sensing. Three aquaculture pathogens were used in this study, such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. RESULTS Pseudomonas fluorescens JB3B and Morganella morganii JB8F extracts could disrupt single and multi-species biofilms. Both extracts could inhibit single biofilm formation from one to seven days of incubation time. We confirmed the destruction activity on multi-species biofilm using light microscope and scanning electron microscope. Using GC-MS analysis, indole was the most active fraction of the P. fluorescens JB3B extracts and octacosane from the M. morganii JB8F extract. We also conducted a toxicity test using brine shrimp lethality assay on P. fluorescens JB3B and M. morganii JB8F extracts. P. fluorescens JB3B, M. morganii JB8F, and a mixture of both extracts were confirmed non-toxic according to the LC50 value of the brine shrimp lethality test. CONCLUSIONS P. fluorescens JB3B and M. morganii JB8F phyllosphere extracts had antibiofilm activity to inhibit single biofilm and disrupt single and multi-species biofilm of aquaculture pathogens. Both extracts could inhibit single species biofilm until seven days of incubation. Bioactive compounds that might contribute to antibiofilm properties were found in both extracts, such as indole and phenol. P. fluorescens JB3B, M. morganii JB8F extracts, and mixture of both extracts were non-toxic against Artemia salina.
Collapse
Affiliation(s)
- Valencia Vanessa
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia.
| | - Adi Yulandi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| |
Collapse
|
19
|
Arisah FM, Ramli N, Ariffin H, Maeda T, Farid MAA, Yusoff MZM. Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation. J Microbiol Biotechnol 2024; 34:1877-1889. [PMID: 39343606 PMCID: PMC11473487 DOI: 10.4014/jmb.2406.06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024]
Abstract
Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in Pseudomonas aeruginosa RW9. In this study, P. aeruginosa RW9 was grown in the presence of 10 mg l-1 Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: rhlA, rhlB, and rhlC. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in P. aeruginosa RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.
Collapse
Affiliation(s)
- Fatini Mat Arisah
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohammed Abdillah Ahmad Farid
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Murugan PA, Sahu MK, Gupta MK, Sankar TS, Chandran S, Matheshwaran S. Deciphering the influence of NaCl on social behaviour of Bacillus subtilis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240822. [PMID: 39295915 PMCID: PMC11407874 DOI: 10.1098/rsos.240822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
Various environmental signals, such as temperature, pH, nutrient levels, salt content and the presence of other microorganisms, can influence biofilm's development and dynamics. However, the innate mechanisms that govern at the molecular and cellular levels remain elusive. Here, we report the impact of physiologically relevant concentrations of NaCl on biofilm formation and the associated differences in an undomesticated natural isolate of Bacillus subtilis. NaCl exposure and its uptake by bacterial cells induced substantial changes in the architecture of pellicle biofilm and an upsurge in the expansion of biofilm colonies on agar surfaces. We have observed the upregulation of genes involved in motility and the downregulation of genes involved in the biosynthesis of extracellular matrix components through the transcription factor sigD, suggesting the possible underlying mechanisms. To further support these observations, we have used ΔsigD and ΔsrfAC null mutants, which showed compromised NaCl-induced effects. Our results indicate that NaCl induces a lifestyle shift in B. subtilis from a sessile biofilm state to an independent unicellular motile state. Overall, we present evidence that NaCl can reprogramme gene expression and alter cellular morphology and the state of cells to adapt to motility, which facilitates the expansion of bacterial colonies.
Collapse
Affiliation(s)
- Prem Anand Murugan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Muktesh Kumar Sahu
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Manish Kumar Gupta
- Soft and Biological Matter Laboratory, Department of Physics, Indian Institute of Technology, Kanpur, India
| | - T Sabari Sankar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Sivasurender Chandran
- Soft and Biological Matter Laboratory, Department of Physics, Indian Institute of Technology, Kanpur, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology, Kanpur, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
22
|
He L, Zhu G. Regulation and application of quorum sensing on anaerobic digestion system. CHEMOSPHERE 2024; 363:142983. [PMID: 39089336 DOI: 10.1016/j.chemosphere.2024.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.
Collapse
Affiliation(s)
- Liyan He
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
23
|
Ronish LA, Biswas B, Bauer RM, Jacob ME, Piepenbrink KH. The role of extracellular structures in Clostridioides difficile biofilm formation. Anaerobe 2024; 88:102873. [PMID: 38844261 DOI: 10.1016/j.anaerobe.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert M Bauer
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mallory E Jacob
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
24
|
Al-Rabia MW, Asfour HZ, Alhakamy NA, Bazuhair MA, Ibrahim TS, Abbas HA, Mansour B, Hegazy WAH, Seleem NM. Cilostazol is a promising anti-pseudomonal virulence drug by disruption of quorum sensing. AMB Express 2024; 14:87. [PMID: 39090255 PMCID: PMC11294311 DOI: 10.1186/s13568-024-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Resistance to antibiotics is a critical growing public health problem that desires urgent action to combat. To avoid the stress on bacterial growth that evokes the resistance development, anti-virulence agents can be an attractive strategy as they do not target bacterial growth. Quorum sensing (QS) systems play main roles in controlling the production of diverse virulence factors and biofilm formation in bacteria. Thus, interfering with QS systems could result in mitigation of the bacterial virulence. Cilostazol is an antiplatelet and a vasodilator FDA approved drug. This study aimed to evaluate the anti-virulence activities of cilostazol in the light of its possible interference with QS systems in Pseudomonas aeruginosa. Additionally, the study examines cilostazol's impact on the bacterium's ability to induce infection in vivo, using sub-inhibitory concentrations to minimize the risk of resistance development. In this context, the biofilm formation, the production of virulence factors and influence on the in vivo ability to induce infection were assessed in the presence of cilostazol at sub-inhibitory concentration. Furthermore, the outcome of combination with antibiotics was evaluated. Cilostazol interfered with biofilm formation in P. aeruginosa. Moreover, swarming motility, biofilm formation and production of virulence factors were significantly diminished. Histopathological investigation revealed that liver, spleen and kidney tissues damage was abolished in mice injected with cilostazol-treated bacteria. Cilostazol exhibited a synergistic outcome when used in combination with antibiotics. At the molecular level, cilostazol downregulated the QS genes and showed considerable affinity to QS receptors. In conclusion, Cilostazol could be used as adjunct therapy with antibiotics for treating Pseudomonal infections. This research highlights cilostazol's potential to combat bacterial infections by targeting virulence mechanisms, reducing the risk of antibiotic resistance, and enhancing treatment efficacy against P. aeruginosa. These findings open avenues for repurposing existing drugs, offering new, safer, and more effective infection control strategies.
Collapse
Affiliation(s)
- Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hisham A Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
- Department of Pharmaceutical Chemistry, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Wael A H Hegazy
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Department of Pharmaceutical Sciences, Pharmacy Program, College of Health Sciences, 113, Muscat, Oman.
| | - Noura M Seleem
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
25
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
26
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
27
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
28
|
Bendary MM, Ali MAM, Abdel Halim AS, Boufahja F, Chaudhary AA, Elkelish A, Soliman RHM, Hegazy WAH. Investigating Sulforaphane's anti-virulence and anti-quorum sensing properties against Pseudomonas aeruginosa. Front Pharmacol 2024; 15:1406653. [PMID: 38835668 PMCID: PMC11148281 DOI: 10.3389/fphar.2024.1406653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (¼ minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods The sulforaphane's anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics' MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes' expression. Conclusion Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphane and similar structures as pharmacophores for anti-QS candidates.
Collapse
Affiliation(s)
- Mahmoud M Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania H M Soliman
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
29
|
Girija ASS. Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J Appl Oral Sci 2024; 32:e20230382. [PMID: 38747806 PMCID: PMC11090480 DOI: 10.1590/1678-7757-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/01/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.
Collapse
Affiliation(s)
- A S Smiline Girija
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Department of Microbiology, Chennai-600077, Tamilnadu, India
| |
Collapse
|
30
|
Li Y, Xiang Y, Ren H, Zhang C, Hu Z, Leng W, Xia L. Association between periodontitis and dental caries: a systematic review and meta-analysis. Clin Oral Investig 2024; 28:306. [PMID: 38727727 PMCID: PMC11087323 DOI: 10.1007/s00784-024-05687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVES Recent evidence suggested a link between periodontitis (PD) and dental caries, but the trends and nature of this association remained unclear. The overall aim of this study was to critically assess the correlation of two disorders. METHODS A comprehensive search was conducted within the PUBMED and EMBASE databases including grey literatures up to July 5th, 2023. The Newcastle-Ottawa scale was used to qualitatively evaluate the risk of bias. RESULTS Overall, 18 studies were included. In terms of caries risk in PD patients, the prevalence of caries was increased by PD (OR = 1.57, 95%CI:1.20-2.07), both in crown (OR = 1.03, 95%CI:1.01-1.05) and root caries (OR = 2.10, 95%CI:1.03-4.29). Odds of caries were also raised by PD severity (OR moderate = 1.38, 95%CI:1.15-1.66; OR severe = 2.14, 95%CI:1.74-2.64). Besides, patients with PD exhibited a higher mean number of decayed, missing and filled teeth (DMFT) and decayed and filled root teeth (DFR) [weighted mean difference (WMD)DMFT = 0.87, 95%CI: -0.03-1.76; WMDDFR = 1.13, 95%CI: 0.48-1.78]. Likewise, patients with caries had an elevated risk of PD (OR = 1.79, 95%CI:1.36-2.35). However, Streptococcus mutans, one of the main pathogens of caries, was negatively correlated with several main pathogens of periodontitis. CONCLUSIONS This study indicated a positive correlation between dental caries and periodontitis clinically, while the two disease-associated pathogens were antagonistic. CLINICAL RELEVANCE Further research, including clinical cohort studies and mechanisms of pathogens interaction is needed on this link for better prevention and treatment of PD and caries. In addition, innovative prevention strategies need to be developed and incorporated in dental practices to prevent these two highly prevalent oral diseases.
Collapse
Affiliation(s)
- Yixin Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yonggang Xiang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Haixia Ren
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
31
|
Ng E, Tay JRH, Boey SK, Laine ML, Ivanovski S, Seneviratne CJ. Antibiotic resistance in the microbiota of periodontitis patients: an update of current findings. Crit Rev Microbiol 2024; 50:329-340. [PMID: 37140235 DOI: 10.1080/1040841x.2023.2197481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
Systemic antibiotics are an effective adjunct in the treatment of periodontitis, but their judicious use is necessary as antimicrobial resistance is a growing global concern. This review aims to explore the current understanding and insight related to antibiotic resistance in the subgingival microbiota of periodontitis patients. A search of MEDLINE (PubMed) was carried out from 1 January 2012 to 25 November 2021 for studies related to antibiotic resistance in periodontitis patients. Of the 90 articles identified, 12 studies were selected for inclusion. A significant incidence of antibiotic resistant isolates was reported for Porphyromonas gingivalis, Prevotella intermedia, Prevotella denticola, Prevotella melaninogenica, Fusobacterium nucleatum, Tanerella forsythia, Aggretibacter actinomycetemcomitans, Streptococcus constellatus, Streptococcus intermedius, and Parvimonas micra, but resistance to specific antibiotics did not reach above 10% of isolates in most studies except for amoxicillin resistance in Aggretibacter actinomycetemcomitans. The highest frequency of resistance across all bacterial species was for amoxicillin, clindamycin, and metronidazole. However, resistance patterns were widely variable across geographical locations, and the high heterogeneity between antibiotic-resistant isolates across studies precludes any clinical recommendations from this study. Although antibiotic resistance has yet to reach critical levels in periodontitis patients, an emphasis on antibiotic stewardship interventions such as point-of-care diagnostics and education for key stakeholders is needed to curb a growing problem.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore
| | - Sean Kuan Boey
- Discipline of Periodontics, National University of Singapore, Singapore
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
| | - Chaminda Jayampath Seneviratne
- School of Dentistry, The University of Queensland, Brisbane, Australia
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Australia
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
| |
Collapse
|
32
|
Elfaky MA, Okairy HM, Abdallah HM, Koshak AE, Mohamed GA, Ibrahim SR, Alzain AA, Hegazy WA, Khafagy ES, Seleem NM. Assessing the antibacterial potential of 6-gingerol: Combined experimental and computational approaches. Saudi Pharm J 2024; 32:102041. [PMID: 38558886 PMCID: PMC10981156 DOI: 10.1016/j.jsps.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.
Collapse
Affiliation(s)
- Mahmoud A. Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan M. Okairy
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wael A.H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noura M. Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
33
|
Zhong S, Yang J, Huang H. The role of single and mixed biofilms in Clostridioides difficile infection and strategies for prevention and inhibition. Crit Rev Microbiol 2024; 50:285-299. [PMID: 36939635 DOI: 10.1080/1040841x.2023.2189950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Clostridioides difficile infection (CDI) is a serious disease with a high recurrence rate. The single and mixed biofilms formed by C. difficile in the gut contribute to the formation of recurrent CDI (rCDI). In parallel, other gut microbes influence the formation and development of C. difficile biofilms, also known as symbiotic biofilms. Interactions between members within the symbiotic biofilm are associated with the worsening or alleviation of CDI. These interactions include effects on C. difficile adhesion and chemotaxis, modulation of LuxS/AI-2 quorum sensing (QS) system activity, promotion of cross-feeding by microbial metabolites, and regulation of intestinal bile acid and pyruvate levels. In the process of C. difficile biofilms control, inhibition of C. difficile initial biofilm formation and killing of C. difficile vegetative cells and spores are the main targets of action. The role of symbiotic biofilms in CDI suggested that targeting interventions of C. difficile-promoting gut microbes could indirectly inhibit the formation of C. difficile mixed biofilms and improved the ultimate therapeutic effect. In summary, this review outlines the mechanisms of C. difficile biofilm formation and summarises the treatment strategies for such single and mixed biofilms, aiming to provide new ideas for the prevention and treatment of CDI.
Collapse
Affiliation(s)
- Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
34
|
Cruz JN, Muzammil S, Ashraf A, Ijaz MU, Siddique MH, Abbas R, Sadia M, Saba, Hayat S, Lima RR. A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents. Heliyon 2024; 10:e29500. [PMID: 38660254 PMCID: PMC11040063 DOI: 10.1016/j.heliyon.2024.e29500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The emergence of antimicrobial resistance among biofilm forming pathogens aimed to search for the efficient and novel alternative strategies. Metallic nanoparticles have drawn a considerable attention because of their significant applications in various fields. Numerous methods are developed for the generation of these nanoparticles however, mycogenic (fungal-mediated) synthesis is attractive due to high yields, easier handling, eco-friendly and being energy efficient when compared with conventional physico-chemical methods. Moreover, mycogenic synthesis provides fungal derived biomolecules that coat the nanoparticles thus improving their stability. The process of mycogenic synthesis can be extracellular or intracellular depending on the fungal genera used and various factors such as temperature, pH, biomass concentration and cultivation time may influence the synthesis process. This review focuses on the synthesis of metallic nanoparticles by using fungal mycelium, mechanism of synthesis, factors affecting the mycosynthesis and also describes their potential applications as antioxidants and antibiofilm agents. Moreover, the utilization of mycogenic nanoparticles as quorum quenching agent in hampering the bacterial cell-cell communication (quorum sensing) has also been discussed.
Collapse
Affiliation(s)
- Jorddy N. Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Rasti Abbas
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Maimona Sadia
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saba
- Department of Microbiology and Molecular Genetics, The Women University Multan, Mattital Campus, Multan, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| |
Collapse
|
35
|
Al-Rabia MW, Asfour HZ, Alhakamy NA, Abdulaal WH, Ibrahim TS, Abbas HA, Salem IM, Hegazy WAH, Nazeih SI. Thymoquinone is a natural antibiofilm and pathogenicity attenuating agent in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1382289. [PMID: 38638827 PMCID: PMC11024287 DOI: 10.3389/fcimb.2024.1382289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Pseudomonas aeruginosa belongs to the critical pathogens that represent a global public health problem due to their high rate of resistance as listed by WHO. P. aeruginosa can result in many nosocomial infections especially in individuals with compromised immune systems. Attenuating virulence factors by interference with quorum sensing (QS) systems is a promising approach to treat P. aeruginosa-resistant infections. Thymoquinone is a natural compound isolated from Nigella sativa (black seed) essential oil. In this study, the minimum inhibitory concentration of thymoquinone was detected followed by investigating the antibiofilm and antivirulence activities of the subinhibitory concentration of thymoquinone against P. aeruginosa PAO1. The effect of thymoquinone on the expression of QS genes was assessed by quantitative real-time PCR, and the protective effect of thymoquinone against the pathogenesis of PAO1 in mice was detected by the mouse survival test. Thymoquinone significantly inhibited biofilm, pyocyanin, protease activity, and swarming motility. At the molecular level, thymoquinone markedly downregulated QS genes lasI, lasR, rhlI, and rhlR. Moreover, thymoquinone could protect mice from the pathologic effects of P. aeruginosa increasing mouse survival from 20% to 100%. In conclusion, thymoquinone is a promising natural agent that can be used as an adjunct therapeutic agent with antibiotics to attenuate the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ibrahim M. Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| | - Shaimaa I. Nazeih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
36
|
He X, Xiang Y, Xu R, Gao H, Guo Z, Sun W. Bisphenol A affects microbial interactions and metabolic responses in sludge anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19635-19648. [PMID: 38363507 DOI: 10.1007/s11356-024-32422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of bisphenol A (BPA) has resulted in the emergence of new pollutants in various environments, particularly concentrated in sewage sludge. This study investigated the effects of BPA on sludge anaerobic digestion, focusing specifically on the interaction of microbial communities and their metabolic responses. While the influence of BPA on methane accumulation is not significant, BPA still enhanced the conversion of soluble COD, protein, and polysaccharides. BPA also positively influenced the hydrolysis-acidogenesis process, leading to 17% higher concentrations of volatile fatty acids (VFAs). Lower BPA levels (0.2-0.5 mg/kg dw) led to decreased hydrolysis and acidogenesis gene abundance, indicating metabolic inhibition; conversely, higher concentrations (1-5 mg/kg dw) increased gene abundance, signifying metabolic enhancement. Diverse methane metabolism was observed and exhibited alterations under BPA exposure. The presence of BPA impacted both the diversity and composition of microbial populations. Bacteroidetes, Proteobacteria, Firmicutes, and Chloroflexi dominated in BPA-treated groups and varied in abundance among different treatments. Changes of specific genera Sedimentibacter, Fervikobacterium, Blvii28, and Coprothermobacter in response to BPA, affecting hydrolysis and acetogenesis. Archaeal diversity declined while the hydrogenotrophic methanogen Methanospirillum thrived under BPA exposure. BPA exposure enabled microorganisms to form structured community interaction networks and boost their metabolic activities during anaerobic digestion. The study also observed the enrichment of BPA biodegradation pathways at high BPA concentrations, which could interact and overlap to ensure efficient BPA degradation. The study provides insights into the digestion performance and interactions of microbial communities to BPA stress and sheds light on the potential effect of BPA during anaerobic digestion.
Collapse
Affiliation(s)
- Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, People's Republic of China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China.
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
37
|
Arya S, Usha R. Bioprospecting and Exploration of Phytochemicals as Quorum Sensing Inhibitors against Cariogenic Dental Biofilm. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:100-117. [DOI: 10.22207/jpam.18.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Dental caries is a polymicrobial infection affecting the dental hard tissues. Excessive carbohydrate intake leads to the accumulation of acid-producing and acid-resistant microorganisms in the oral region. It is a biofilm-dependent oral infection with cariogenic pathogens and the most prevalent disease globally. The prevention and control of caries play a vital role in global health management. Periodontal diseases and subgingival plaque etiology are due to the combined action of bacterial invasion and immune reaction, resulting in the devastation of periodontal tissues, culminating in tooth loss. The compact micro colony inhabiting the dental surfaces attaches with secreted polymer, forming a biofilm. Bacterial biofilm impervious to various drugs and chemicals poses a significant challenge in therapeutic scenarios of medical and odonatological infections. The quorum-sensing signaling mechanism in bacteria controls the metabolic and physiologic properties involved in bacterial existence, pathogenesis, and virulence. Hence, studies monitoring the molecular mechanism of quorum sensing and their restricted social interactions will be highly beneficial in the treatment regimen of the modern era. Natural bioactive compounds can be exploited for their medicinal value in combating oro-dental infections. Phytochemicals are promising candidates that could provide novel strategies for fighting infections. The current review highlights the mechanism of quorum sensing, plant products’ effect in controlling quorum sensing, and biofilm-induced dental infections like Periodontitis.
Collapse
|
38
|
Luo SC, Wei SM, Luo XT, Yang QQ, Wong KH, Cheung PCK, Zhang BB. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ Biofilms Microbiomes 2024; 10:14. [PMID: 38402294 PMCID: PMC10894247 DOI: 10.1038/s41522-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.
Collapse
Affiliation(s)
- Si-Chen Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Si-Min Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Xin-Tao Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China.
| |
Collapse
|
39
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
40
|
Liu H, Xu T, Xue Z, Huang M, Wang T, Zhang M, Yang R, Guo Y. Current Development of Thiazole-Containing Compounds as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:350-370. [PMID: 38232301 DOI: 10.1021/acsinfecdis.3c00647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.
Collapse
Affiliation(s)
- Hang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
41
|
Lingam M. Information Transmission via Molecular Communication in Astrobiological Environments. ASTROBIOLOGY 2024; 24:84-99. [PMID: 38109216 DOI: 10.1089/ast.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity C (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate ℐ are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance d as ℐ ∝ d-4 and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (C ∼ 3.1 × 103 bits/s; ℐ ∼ 4.7 × 10-2 bits/s) and deep sea hydrothermal vents (C ∼ 4.2 × 103 bits/s; ℐ ∼ 1.2 × 10-1 bits/s) to the hydrocarbon lakes and seas of Titan (C ∼ 3.8 × 103 bits/s; ℐ ∼ 2.6 × 10-1 bits/s).
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
42
|
Copeland R, Zhang C, Hammer BK, Yunker PJ. Spatial constraints and stochastic seeding subvert microbial arms race. PLoS Comput Biol 2024; 20:e1011807. [PMID: 38277405 PMCID: PMC10849242 DOI: 10.1371/journal.pcbi.1011807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains of Vibrio cholerae in transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race.
Collapse
Affiliation(s)
- Raymond Copeland
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christopher Zhang
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
43
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
44
|
Ghosh C, Das MC, Acharjee S, Bhattacharjee S, Sandhu P, Kumari M, Bhowmik J, Ghosh R, Banerjee B, De UC, Akhter Y, Bhattacharjee S. Combating Staphylococcus aureus biofilm formation: the inhibitory potential of tormentic acid and 23-hydroxycorosolic acid. Arch Microbiol 2023; 206:25. [PMID: 38108905 DOI: 10.1007/s00203-023-03762-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/19/2023]
Abstract
Plant extracts have been used to treat microbiological diseases for centuries. This study examined plant triterpenoids tormentic acid (TA) and 23-hydroxycorosolic acid (HCA) for their antibiofilm effects on Staphylococcus aureus strains (MTCC-96 and MTCC-7405). Biofilms are bacterial colonies bound by a matrix of polysaccharides, proteins, and DNA, primarily impacting healthcare. As a result, ongoing research is being conducted worldwide to control and prevent biofilm formation. Our research showed that TA and HCA inhibit S. aureus planktonic growth by depolarizing the bacterial membrane. In addition, zone of inhibition studies confirmed their effectiveness, and crystal violet staining and biofilm protein quantification confirmed their ability to prevent biofilm formation. TA and HCA exhibited substantial reductions in biofilm formation for S. aureus (MTCC-96) by 54.85% and 48.6% and for S. aureus (MTCC-7405) by 47.07% and 56.01%, respectively. Exopolysaccharide levels in S. aureus biofilm reduced significantly by TA (25 μg/mL) and HCA (20 μg/mL). Microscopy, bacterial motility, and protease quantification studies revealed their ability to reduce motility and pathogenicity. Furthermore, TA and HCA treatment reduced the mRNA expression of S. aureus virulence genes. In silico analysis depicted a high binding affinity of triterpenoids for biofilm and quorum-sensing associated proteins in S. aureus, with TA having the strongest affinity for TarO (- 7.8 kcal/mol) and HCA for AgrA (- 7.6 kcal/mol). TA and HCA treatment reduced bacterial load in S. aureus-infected peritoneal macrophages and RAW264.7 cells. Our research indicates that TA and HCA can effectively combat S. aureus by inhibiting its growth and suppressing biofilm formation.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Manash C Das
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Shukdeb Acharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Samadrita Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Padmani Sandhu
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Monika Kumari
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Joyanta Bhowmik
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Ranjit Ghosh
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | | | - Utpal Chandra De
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
45
|
Prabhukhot GS, Eggleton CD, Patel J. Multispecies Bacterial Biofilms and Their Evaluation Using Bioreactors. Foods 2023; 12:4495. [PMID: 38137299 PMCID: PMC10742677 DOI: 10.3390/foods12244495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pathogenic biofilm formation within food processing industries raises a serious public health and safety concern, and places burdens on the economy. Biofilm formation on equipment surfaces is a rather complex phenomenon, wherein multiple steps are involved in bacterial biofilm formation. In this review we discuss the stages of biofilm formation, the existing literature on the impact of surface properties and shear stress on biofilms, types of bioreactors, and antimicrobial coatings. The review underscores the significance of prioritizing biofilm prevention strategies as a first line of defense, followed by control measures. Utilizing specific biofilm eradication strategies as opposed to a uniform approach is crucial because biofilms exhibit different behavioral outcomes even amongst the same species when the environmental conditions change. This review is geared towards biofilm researchers and food safety experts, and seeks to derive insights into the scope of biofilm formation, prevention, and control. The use of suitable bioreactors is paramount to understanding the mechanisms of biofilm formation. The findings provide useful information to researchers involved in bioreactor selection for biofilm investigation, and food processors in surfaces with novel antimicrobial coatings, which provide minimal bacterial attachment.
Collapse
Affiliation(s)
- Grishma S. Prabhukhot
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (G.S.P.); (C.D.E.)
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (G.S.P.); (C.D.E.)
| | - Jitendra Patel
- US Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
46
|
Alotaibi HF, Alotaibi H, Darwish KM, Khafagy ES, Abu Lila AS, Ali MAM, Hegazy WAH, Alshawwa SZ. The Anti-Virulence Activities of the Antihypertensive Drug Propranolol in Light of Its Anti-Quorum Sensing Effects against Pseudomonas aeruginosa and Serratia marcescens. Biomedicines 2023; 11:3161. [PMID: 38137382 PMCID: PMC10741015 DOI: 10.3390/biomedicines11123161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the β-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.
Collapse
Affiliation(s)
- Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Alotaibi
- Department of Family Medicine, Prince Sultan Military Medical City, Riyadh 12624, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
47
|
Nehela Y, Killiny N. Gamma-Aminobutyric Acid Accumulation Contributes to Citrus sinensis Response against ' Candidatus Liberibacter Asiaticus' via Modulation of Multiple Metabolic Pathways and Redox Status. PLANTS (BASEL, SWITZERLAND) 2023; 12:3753. [PMID: 37960112 PMCID: PMC10650511 DOI: 10.3390/plants12213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Huanglongbing (HLB; also known as citrus greening) is the most destructive bacterial disease of citrus worldwide with no known sustainable cure yet. Herein, we used non-targeted metabolomics and transcriptomics to prove that γ-aminobutyric acid (GABA) accumulation might influence the homeostasis of several metabolic pathways, as well as antioxidant defense machinery, and their metabolism-related genes. Overall, 41 metabolites were detected in 'Valencia' sweet orange (Citrus sinensis) leaf extract including 19 proteinogenic amino acids (PAA), 10 organic acids, 5 fatty acids, and 9 other amines (four phenolic amines and three non-PAA). Exogenous GABA application increased most PAA in healthy (except L-threonine, L-glutamine, L-glutamic acid, and L-methionine) and 'Candidatus L. asiaticus'-infected citrus plants (with no exception). Moreover, GABA accumulation significantly induced L-tryptophan, L-phenylalanine, and α-linolenic acid, the main precursors of auxins, salicylic acid (SA), and jasmonic acid (JA), respectively. Furthermore, GABA supplementation upregulated most, if not all, of amino acids, phenolic amines, phytohormone metabolism-related, and GABA shunt-associated genes in both healthy and 'Ca. L. asiaticus'-infected leaves. Moreover, although 'Ca. L. asiaticus' induced the accumulation of H2O2 and O2•- and generated strong oxidative stress in infected leaves, GABA possibly stimulates the activation of a multilayered antioxidative system to neutralize the deleterious effect of reactive oxygen species (ROS) and maintain redox status within infected leaves. This complex system comprises two major components: (i) the enzymatic antioxidant defense machinery (six POXs, four SODs, and CAT) that serves as the front line in antioxidant defenses, and (ii) the non-enzymatic antioxidant defense machinery (phenolic acids and phenolic amines) that works as a second defense line against 'Ca. L. asiaticus'-induced ROS in citrus infected leaves. Collectively, our findings suggest that GABA might be a promising alternative eco-friendly strategy that helps citrus trees battle HLB particularly, and other diseases in general.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
48
|
Murase LS, Perez de Souza JV, Meneguello JE, Palomo CT, Fernandes Herculano Ramos Milaré ÁC, Negri M, Dias Siqueira VL, Demarchi IG, Vieira Teixeira JJ, Cardoso RF. Antibacterial and immunological properties of piperine evidenced by preclinical studies: a systematic review. Future Microbiol 2023; 18:1279-1299. [PMID: 37882762 DOI: 10.2217/fmb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Carolina Trevisolli Palomo
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | | | - Melyssa Negri
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Izabel Galhardo Demarchi
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Santa Catarina, 88040-900, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
49
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
50
|
Elashiry MM, Bergeron BE, Tay FR. Enterococcus faecalis in secondary apical periodontitis: Mechanisms of bacterial survival and disease persistence. Microb Pathog 2023; 183:106337. [PMID: 37683835 DOI: 10.1016/j.micpath.2023.106337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Enterococcus faecalis is a commensal bacterium commonly found in the human gastrointestinal tract. However, in individuals with compromised immune systems, the pathogen can lead to severe illness. This opportunistic pathogen is associated with secondary apical diseases and is adept at resisting antibiotics and other forms of treatment because of its numerous virulence factors. Enterococcus faecalis is capable of disrupting the normal functions of immune cells, thereby hindering the body's ability to eradicate the infection. However, intensive research is needed in further understanding the adverse immunomodulatory effects of E. faecalis. Potential strategies specific for eradicating E. faecalis have proven beneficial in the treatment of persistent secondary apical periodontitis.
Collapse
Affiliation(s)
- Mohamed M Elashiry
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA; Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Brian E Bergeron
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA
| | - Franklin R Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA
| |
Collapse
|