1
|
Xue J, Allaband C, Zuffa S, Poulsen O, Meadows J, Zhou D, Dorrestein PC, Knight R, Haddad GG. Gut microbiota and derived metabolites mediate obstructive sleep apnea induced atherosclerosis. Gut Microbes 2025; 17:2474142. [PMID: 40025767 PMCID: PMC11881840 DOI: 10.1080/19490976.2025.2474142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects predominantly obese individuals, and increases atherosclerosis risk. Since we and others have implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to OSA-induced atherosclerosis. Atherosclerotic lesions were compared between conventionally-reared specific pathogen free (SPF) and germ-free (GF) Apoe-/- mice following a high fat high cholesterol diet (HFHC), with and without IHC conditions. The fecal microbiota and metabolome were profiled using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry (LC-MS/MS) respectively. Phenotypic data showed that HFHC significantly increased atherosclerosis as compared to regular chow (RC) in both aorta and pulmonary artery (PA) of SPF mice. IHC exacerbated lesions in addition to HFHC. Differential abundance analysis of gut microbiota identified an enrichment of Akkermansiaceae and a depletion of Muribaculaceae (formerly S24-7) family members in the HFHC-IHC group. LC-MS/MS showed a dysregulation of bile acid profiles with taurocholic acid, taurodeoxycholic acid, and 12-ketodeoxycholic acid enriched in the HFHC-IHC group, long-chain N-acyl amides, and phosphatidylcholines. Interestingly, GF Apoe-/- mice markedly reduced atherosclerotic formation relative to SPF Apoe-/- mice in the aorta under HFHC/IHC conditions. In contrast, microbial colonization did not show a significant impact on the atherosclerotic progression in PA. In summary, this research demonstrated that (1) IHC acts cooperatively with HFHC to induce atherosclerosis; (2) gut microbiota modulate atherogenesis, induced by HFHC/IHC, in the aorta not in PA; (3) different analytical methods suggest that a specific imbalance between Akkermansiaceae and Muribaculaceae bacterial families mediate OSA-induced atherosclerosis; and (4) derived bile acids, such as deoxycholic acid and lithocholic acid, regulate atherosclerosis in OSA. The knowledge obtained provides novel insights into the potential therapeutic approaches to prevent and treat OSA-induced atherosclerosis.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/physiology
- Atherosclerosis/etiology
- Atherosclerosis/microbiology
- Atherosclerosis/metabolism
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/microbiology
- Sleep Apnea, Obstructive/metabolism
- Mice
- Male
- Bacteria/classification
- Bacteria/genetics
- Bacteria/metabolism
- Bacteria/isolation & purification
- Diet, High-Fat/adverse effects
- Feces/microbiology
- Mice, Inbred C57BL
- RNA, Ribosomal, 16S/genetics
- Bile Acids and Salts/metabolism
- Metabolome
- Specific Pathogen-Free Organisms
- Disease Models, Animal
- Tandem Mass Spectrometry
- Mice, Knockout, ApoE
- Apolipoproteins E/genetics
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, San Diego, CA, USA
| | - Orit Poulsen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jason Meadows
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Dan Zhou
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pieter C. Dorrestein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- The Division of Respiratory Medicine, Rady Children’s Hospital, San Diego, CA, USA
| |
Collapse
|
2
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Okunlola FO, Okunlola AR, Adetuyi BO, Soliman MES, Alexiou A, Papadakis M, Fawzy MN, El-Saber Batiha G. Beyond the gut: Unraveling the multifaceted influence of microbiome on cardiovascular health. Clin Nutr ESPEN 2025; 67:71-89. [PMID: 40064239 DOI: 10.1016/j.clnesp.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.
Collapse
Affiliation(s)
- Felix Oladele Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Abimbola Rafiat Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Babatunde Oluwafemi Adetuyi
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Li Z, Wang X, Du H, Liu W, Zhang C, Talifu Z, Xu X, Pan Y, Zhang J, Ke H, Yang D, Gao F, Yu Y, Jing Y, Li J. Unraveling Spinal Cord Injury Nutrition: Effects of Diet on the Host and Microbiome. Adv Nutr 2025:100448. [PMID: 40383300 DOI: 10.1016/j.advnut.2025.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Spinal cord injury (SCI) leads to severe neurological dysfunction with significant nutritional alterations. These alterations are closely associated with gut dysbiosis and neurogenic gut dysfunction after SCI, creating complex interactions that further exacerbate metabolic disturbances and impede neurological recovery. In the context of SCI, diet not only fulfills basic nutritional needs but also serves as an important therapeutic tool to modulate these interactions. This review provides a broad overview of existing research findings, analyzes the impact of existing dietary interventions on SCI, and attempts to clarify the complex relationship between diet and host and gut microbiota. We hope to provide a clear direction for future research and a scientific basis for the development of personalized dietary interventions to improve the nutritional status of SCI patients, reduce the incidence of complications such as metabolic disorders, and promote the recovery of neurological function and overall quality of life of SCI patients. STATEMENT OF SIGNIFICANCE: This review evaluates the nutritional changes in patients with spinal cord injury, comprehensively elucidating the effects of dietary interventions on SCI patients from both the host and gut microbiota perspectives. By revealing the complex interactions among them, it lays the foundation for developing personalized nutritional intervention strategies to optimize recovery and improve long-term health outcomes in the future.
Collapse
Affiliation(s)
- ZeHui Li
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - XiaoXin Wang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - HuaYong Du
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - WuBo Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China
| | - ChunJia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100096, P.R. China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100005, P.R. China; University of Health and Rehabilitation Sciences, Shandong, 266100, P.R. China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; University of Health and Rehabilitation Sciences, Shandong, 266100, P.R. China; Rehabilitation Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, P.R. China
| | - JinMing Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China; Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100013, P.R. China
| | - DeGang Yang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, 100069, P.R. China
| | - YingLi Jing
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, 100069, P.R. China.
| | - JianJun Li
- School of Rehabilitation, Capital Medical University, Beijing, 100069, P.R. China; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100069, P.R. China; Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, P.R. China; University of Health and Rehabilitation Sciences, Shandong, 266100, P.R. China.
| |
Collapse
|
5
|
Geng X, He T, Wang L, Zhang Z, Zhao T, Sun Y, Chang J, Duan Z. Essential Hypertension as an Independent Risk Factor for Erosive Esophagitis: Insights From a Single-Center Retrospective Cohort Analysis. J Inflamm Res 2025; 18:4899-4909. [PMID: 40224391 PMCID: PMC11992977 DOI: 10.2147/jir.s511868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Objective This study aimed to investigate the association between essential hypertension and the incidence of erosive esophagitis (EE) using data from a single-center hospital cohort. Methods A total of 4844 patients who underwent gastroscopy at the First Affiliated Hospital of Dalian Medical University between June 2019 and December 2023 were included in this analysis. Participants were categorized into two groups: those with erosive esophagitis (EE) and those without, the latter comprising individuals who presented with neither reflux-related symptoms nor positive endoscopic findings. Logistic regression hazard models were used to assess the association between hypertension and EE. Correlation analyses were performed to evaluate the relationship between the severity of esophagitis and degree of hypertension. Results Among the participants, 2359 (52.41%) were classified in the EE group, while 2305 (47.59%) were in the non-EE group. Among the individuals with EE, 821 (32.3%) had a history of hypertension, compared to 640 (27.8%) in the non-EE group. This difference was statistically significant (P < 0.05). Furthermore, hypertension was associated with a significantly increased risk of EE (odds ratio [OR]: 1.243 [95% confidence interval [CI], 1.099-1.407], P < 0.05). After adjustments for potential confounders, hypertension was an independent risk factor for EE (OR: 1.213 [95% CI, 1.036-1.419]; P < 0.05). Additional independent risk factors for EE included high body mass index (OR = 1.034, [95% CI: 1.017-1.052; P < 0.05]), presence of hiatal hernia (OR = 5.722 [95% CI: 3.910-8.376; P < 0.05]), smoking history (OR: 1.249 [95% CI, 1.072-1.455]), and elevated albumin levels (OR = 1.046, 95% CI: 1.026-1.066; P < 0.05). Conclusion Essential hypertension was identified as an independent risk factor for erosive esophagitis, which suggests that individuals with essential hypertension may warrant closer monitoring for erosive esophagitis in clinical settings.
Collapse
Affiliation(s)
- Xiaoling Geng
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Dalian Central Laboratory of Integrative Neuro-Gastrointestinal Dynamics and Metabolism Related Diseases Prevention and Treatment, Dalian, People’s Republic of China
| | - Tao He
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Dalian Central Laboratory of Integrative Neuro-Gastrointestinal Dynamics and Metabolism Related Diseases Prevention and Treatment, Dalian, People’s Republic of China
| | - Lixia Wang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Zhifeng Zhang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Tianyu Zhao
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Yuanjun Sun
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Jiuyang Chang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Zhijun Duan
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Dalian Central Laboratory of Integrative Neuro-Gastrointestinal Dynamics and Metabolism Related Diseases Prevention and Treatment, Dalian, People’s Republic of China
| |
Collapse
|
6
|
Liu X, Guan B, Hu Z, Hu X, Liu S, Yang K, Zhou L, Yu L, Yang J, Chen S, Chen Q, Liu D, Liu G, Pan H. Combined traditional Chinese medicine and probiotics (TCMP) alleviates lipid accumulation and improves metabolism in high-fat diet mice via the microbiota-gut-liver axis. Food Res Int 2025; 207:116064. [PMID: 40086971 DOI: 10.1016/j.foodres.2025.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Lipid accumulation and metabolic disorders caused by a high-fat diet (HFD) pose significant threats to human health, and place a substantial burden on individuals and society. In this study, a novel combination comprising three traditional Chinese herbs (lotus leaf, hawthorn, and leaf of Chinese holly) and a probiotic (Bifidobacterium lactis BPL-1) (TCMP) was prepared. Then, its effects on growth performance, fat accumulation, hepatic function and gut microbiota in mice fed a high-fat diet were investigated. According to the results, TCMP significantly reduced adipose tissue fat accumulation, improved hepatic lipid metabolism, and ameliorated glucose homeostasis in HFD-fed mice. Notably, TCMP not only improved the abundance and diversity of gut microbiota and increased the content of beneficial intestinal bacteria related to lipid metabolism (especially Bifidobacterium animalis), but also increased the production of short-chain fatty acids, including2-methylbutyrate, isovaleric acid and isobutyric acid. Additionally, multi-omics (transcriptome and metabolome) analysis revealed that TCMP significantly inhibited the expression of genes involved in the lipid biosynthesis process and modulated the purine and glycerophospholipid metabolism caused by a high-fat diet, thereby achieving the purpose of reducing fat accumulation and regulating lipid metabolism. Taken together, our finding demonstrates the potential of TCMP as a promising therapeutic candidate for combatting obesity and lipid metabolism disorders induced by a high-fat diet.
Collapse
Affiliation(s)
- Xiayu Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Boyuan Guan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Ziyi Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xiaoyan Hu
- Guangdong Qingyunshan Chinese Medicine Innovation Co., Ltd., Shaoguan 512000, China
| | - Shuaixing Liu
- Guangdong Qingyunshan Chinese Medicine Innovation Co., Ltd., Shaoguan 512000, China
| | - Ke Yang
- Guangdong Qingyunshan Chinese Medicine Innovation Co., Ltd., Shaoguan 512000, China
| | - Liping Zhou
- Guangdong Qingyunshan Chinese Medicine Innovation Co., Ltd., Shaoguan 512000, China
| | - Longli Yu
- Guangdong Qingyunshan Chinese Medicine Innovation Co., Ltd., Shaoguan 512000, China
| | - Jinyan Yang
- Guangdong Qingyunshan Chinese Medicine Innovation Co., Ltd., Shaoguan 512000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Guanchen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
7
|
Wei C, Yu X, Chen Y, Jiang J, Cao M, Chen X. Fecal occult blood is associated with an increased risk of cerebral small vessel disease in elderly patients. Med Clin (Barc) 2025; 164:287-291. [PMID: 39613713 DOI: 10.1016/j.medcli.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND PURPOSE Studies have shown that fecal occult blood is associated with an increased risk of ischemic stroke, but the relationship between fecal occult blood and cerebral small vessel disease (CSVD) remains largely unknown. This study aimed to identify predictors for CSVD, with fecal occult blood and its proxies as potential influencing factors in elderly patients. METHOD Patients aged 65 years or older with various chronic diseases were enrolled. The presence of CSVD was evaluated by brain MRI results. Fecal occult blood was measured by fecal immunochemical test. Logistic regression analysis was used for the association between the presence of fecal occult blood and the risk of CSVD. RESULTS Logistic regression analysis indicated that a prevalence of positive fecal occult blood was related to CSVD (Model 1, adjusted OR=1.63, 95% CI: 1.15-2.29, P=0.006). We subsequently grouped all subjects as positive fecal occult blood (259, 16.48%) and negative fecal occult blood (1313, 83.52%), and logistic regression analysis indicated that a prevalence of CSVD was related to positive fecal occult blood (Model 2, adjusted OR=1.50, 95% CI: 1.08-2.08, P=0.015). In addition, the ratios of lacunes (67.18% vs. 53.85%, P<0.001) and enlarged perivascular spaces (43.63% vs. 34.42%, P=0.005) were higher in patients with positive fecal occult blood than in controls. CONCLUSIONS The presence of fecal occult blood is probably related to the risk of CSVD in elderly patients and could be used as a screening tool for CSVD in elderly populations.
Collapse
Affiliation(s)
- Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Xiaorong Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Yuan Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Junying Jiang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Meng Cao
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| |
Collapse
|
8
|
Xie Y, Chen Q, Shan D, Pan X, Hu Y. Unraveling the role of the gut microbiome in pregnancy disorders: insights and implications. Front Cell Infect Microbiol 2025; 15:1521754. [PMID: 40125520 PMCID: PMC11925892 DOI: 10.3389/fcimb.2025.1521754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
The gut microbiota is the collective term for the microorganisms that reside in the human gut. In recent years, advances in sequencing technology and bioinformatics gradually revealed the role of gut microbiota in human health. Dramatic changes in the gut microbiota occur during pregnancy due to hormonal and dietary changes, and these changes have been associated with certain gestational diseases such as preeclampsia (PE) and gestational diabetes mellitus (GDM). Modulation of gut microbiota has also been proposed as a potential treatment for these gestational diseases. The present article aims to review current reports on the association between gut microbiota and gestational diseases, explore possible mechanisms, and discuss the potential of probiotics in gestational diseases. Uncovering the link between gut microbiota and gestational diseases could lead to a new therapeutic approach.
Collapse
Affiliation(s)
- Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Xiongfei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- West China Second University Hospital, Sichuan University, Shuangliu Institute of Women’s and Children’s Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| |
Collapse
|
9
|
Liu Y, Bai Z, Yan R, Ma J, Wang L, Li Y, Liu Y, Ma H, Wang T, Yang L, Liu J, Shen W, Zhang X, Jia S, Wang H. Lactobacillus rhamnosus GG ameliorates atherosclerosis via suppression of oxidative stress and inflammation by reshaping the gut microbiota. Biochem Biophys Res Commun 2025; 751:151417. [PMID: 39929060 DOI: 10.1016/j.bbrc.2025.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE With growing awareness of probiotics' benefits, more studies are exploring their efficacy and mechanisms in reducing atherosclerosis (AS). This study aimed to investigate the potential therapeutic effects of Lactobacillus rhamnosus GG (LGG) on atherosclerotic mice and underlying mechanisms. DESIGN ApoE-/- mice were gavaged with a dose of 2 × 109 CFU LGG per mouse once daily, while both ApoE-/- and C57BL/6J mice received normal saline as controls. After 15 weeks, en face Oil Red O staining and aortic sinus morphometry were used to assess the effects of LGG intervention on AS. The expression of the Nrf2/HO-1 pathway, along with oxidative stress and inflammation, was measured in the aortic sinus, aortas, or plasma. Immune cells were analyzed by flow cytometry. 16S rRNA gene sequencing analysis evaluated structural changes in the intestinal microbiota. RESULTS LGG-treated ApoE-/- mice showed a significant reduction of AS progression by suppressing oxidative stress and inflammation. Mechanistically, LGG intervention significantly increased the levels of Nrf2/HO-1 in the aortic sinus of ApoE-/- mice. Moreover, decreased aortic macrophages and elevated blood regulatory T cells (Tregs) were found with LGG intervention in the murine AS model. Moreover, compared to C57BL/6J mice, ApoE-/- mice exhibited disrupted intestinal flora. Nonetheless, LGG intervention restored their intestinal flora to a composition resembling that of C57BL/6J mice, thereby increasing the abundance of beneficial bacteria. CONCLUSION LGG significantly attenuates AS by reducing oxidative stress and inflammation probably via activating the Nrf2/HO-1 pathway. Remarkably, LGG modulates gut microbiota, further enhancing its protective efficacy against AS.
Collapse
Affiliation(s)
- Yajuan Liu
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhixia Bai
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ru Yan
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Liting Wang
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Huiyan Ma
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Libo Yang
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jian Liu
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shaobin Jia
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China; National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, China
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
10
|
Tong J, Han X, Li Y, Wang Y, Liu M, Liu H, Pan J, Zhang L, Liu Y, Jiang M, Zhao H. Distinct metabolites in atherosclerosis based on metabolomics: A systematic review and meta-analysis primarily in Chinese population. Nutr Metab Cardiovasc Dis 2025; 35:103789. [PMID: 39690044 DOI: 10.1016/j.numecd.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
AIMS Atherosclerosis is a life-threatening disease that develops when a plaque builds up inside an artery and progresses silently. Identifying the early pathological changes and the biomarkers of atherosclerosis deserves attention. We aimed to systematically study and integrate the various metabolites of atherosclerosis in the level of disease to provide more evidences to support early prevention and treatment of atherosclerosis. DATA SYNTHESIS The protocol was registered with PROPSERO (CRD42023441845). We searched 14,985 records via EMBASE, PubMed, Web of Science, WanFang data, VIP data, and CNKI databases. The collected metabolites were for qualitative and quantitative meta-analysis. The I2 statistic estimated heterogeneity, with over 50 % considered to adopt the random-effects model. A total of 49 articles were included in the meta-analysis. We finally integrated 83 and 16 metabolites presented more than two times in inclusion studies, respectively in blood (plasma and serum) and urine. Among them, the level of citric acid (SMD = -10.35 [95%CI -15.03, -5.67], p < 0.001), lactic acid (SMD = 6.32 [95%CI 0.12, 12.52], p < 0.001) and TMAO (SMD = 1.40 [95%CI 0.27, 2.53], p < 0.001) had significant differences between atherosclerosis and controls. And we observed blood stasis syndrome of atherosclerosis patients present arterial ischemia and energy disorder obviously. CONCLUSIONS The study provides an in-depth understanding of the roles of metabolites on atherosclerosis progression and prediction primarily in Chinese population, which contributing to development of prevention and therapeutic potential in the future.
Collapse
Affiliation(s)
- Jinlin Tong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyuan Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuyao Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinghua Pan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lei Zhang
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Liu
- Fangta Hospital of Traditional Chinese Medicine, Shanghai, 201600, China.
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Yoshimura T, Okamura T, Yuge H, Hosomi Y, Kimura T, Ushigome E, Nakanishi N, Sasano R, Ogata T, Hamaguchi M, Fukui M. Gut dysbiosis induced by a high-salt diet aggravates atherosclerosis by increasing the absorption of saturated fatty acids in ApoE-deficient mice. J Clin Biochem Nutr 2025; 76:210-220. [PMID: 40151404 PMCID: PMC11936735 DOI: 10.3164/jcbn.24-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 03/29/2025] Open
Abstract
Excessive salt intake has been associated with gut dysbiosis and increased cardiovascular risk. This study investigates the role of gut dysbiosis induced by a high-salt diet in the progression of atherosclerosis in ApoE-deficient mice. Sixteen-week-old male ApoE-deficient mice were fed either a high-fat, high-sucrose diet or high-fat, high-sucrose diet supplemented with 4% NaCl for eight weeks. The group on the HFHSD with high salt showed significant progression of atherosclerosis compared to the high-fat, high-sucrose diet group. Analysis of the gut microbiota revealed reduced abundance of beneficial bacteria such as Allobaculum spp., Lachnospiraceae, and Alphaproteobacteria in the high-salt group. Additionally, this group exhibited increased expression of the Cd36 gene, a transporter of long-chain fatty acids, in the small intestine. Serum and aortic levels of saturated fatty acids, known contributors to atherosclerosis, were markedly elevated in the high-salt group. These findings suggest that a high-salt diet exacerbates atherosclerosis by altering gut microbiota and increasing the absorption of saturated fatty acids through upregulation of intestinal fatty acid transporters. This study provides new insights into how dietary salt can influence cardiovascular health through its effects on the gut microbiome and lipid metabolism.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroki Yuge
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yukako Hosomi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomonori Kimura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Liu TH, Chen MH, Zhang CY, Xie T, Zhang S, Hao H, Bai ZY, Xue YZ, Wang JW, Xiao Y, Wei H, Chen LG. Hypertension inhibition by Dubosiella newyorkensis via reducing pentosidine synthesis. NPJ Biofilms Microbiomes 2025; 11:34. [PMID: 39987250 PMCID: PMC11846869 DOI: 10.1038/s41522-025-00645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/31/2024] [Indexed: 02/24/2025] Open
Abstract
Gut dysbiosis has been associated with hypertension. Herein, we aimed to discover the potential association between gut microbiota and high-salt diet (HSD) induced endothelial dysfunction in conventional hypertensive mice. Dubosiella newyorkensis was found highly sensitive to salt in HSD-induced hypertension. The salt-sensitive nature of Dubosiella newyorkensis was confirmed by bacteria culture in vitro. Oral Dubosiella newyorkensis in HSD-induced hypertensive mice decreased blood pressure, inhibited activation of vascular endothelium, attenuated inflammation and alleviated intestinal vascular barrier injury. Similar effects of Dubosiella newyorkensis were observed in germ-free mice. Interestingly, serum pentosidine was found to function as a biomarker for Dubosiella newyorkensis in response to HSD in both metabolic modes. Supplement of pentosidine, deteriorated hypertension and vascular endothelial damage. Differential genes enriched in the glycerophospholipid metabolism were markedly altered in cultured bacteria. Our study has identified Dubosiella newyorkensis as a new salt-sensitive gut microbe that inhibits pentosidine production thereby alleviating hypertension.
Collapse
Affiliation(s)
- Tian-Hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Ming-Hao Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Chen-Yang Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ting Xie
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Haining Hao
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Zhen-Yu Bai
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-Zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, China.
| | - Hong Wei
- Yu-Yue Pathology Scientific Research Center, Jinfeng Laboratory, Chongqing, China.
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Li-Guo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Li Z, Yang Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Dendritic cells immunotargeted therapy for atherosclerosis. Acta Pharm Sin B 2025; 15:792-808. [PMID: 40177571 PMCID: PMC11959979 DOI: 10.1016/j.apsb.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, is markedly influenced by both immune and inflammatory reactions throughout its progression. Dendritic cells, as pivotal antigen-presenting entities, play a crucial role in the initiation of immune responses and the preservation of immunological homeostasis. Accumulating data indicates that dendritic cells are present in healthy arteries and accumulate significantly in atherosclerotic plaques. Novel immunotherapeutic approaches and vaccination protocols have yielded substantial clinical advancements in managing chronic inflammatory diseases, with dendritic cell-centric modalities emerging for atherosclerotic management. In this review, we delineate the essential functions and underlying mechanisms of dendritic cells and their subsets in the modulation of atherosclerotic inflammation and immune responses. We underscore the immense promise of dendritic cell-based immunotherapeutic strategies, including vaccines and innovative combinations with nanotechnological drug delivery platforms for atherosclerosis treatment. We also discuss the challenges associated with dendritic cell immunotherapy and provide perspectives on the future direction of this field.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266400, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Yongxin Li
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266400, China
| |
Collapse
|
14
|
Huang D, Ren Q, Xie L, Chen Y, Li C, Su X, Lin L, Liu L, Zhao H, Luo T, Wu J, Cai S, Dong H. Association between airway microbiota and systemic inflammation markers in non-small cell lung cancer patients. Sci Rep 2025; 15:3539. [PMID: 39875410 PMCID: PMC11775180 DOI: 10.1038/s41598-025-86231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Growing evidences have suggested the airway microbiota may participate in lung cancer progression. However, little was known about the relationship between airway microbiota and lung cancer associated systemic inflammation. Here we aimed to explore the association between sputum microbiota and systemic inflammation in lung cancer. The microbiota of spontaneous sputum samples from 51 non-small cell lung cancer (NSCLC) patients and 6 patients with lung benign nodules were sequenced via 16 S rRNA sequencing. Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and C reactive protein (CRP) were used to represent systemic inflammation. Patients were divided into 2 groups based on level of inflammatory biomarkers respectively (CRP_low versus CRP_high; NLR_low versus NLR_high; PLR_low versus PLR_high). α-diversity was significantly decreased in CRP_high and NLR_high patients. β diversity analysis based on weighted unifrac distance indicated that microbial community structure differed significantly between patients with different inflammation status. Lefse identified genera Porphyromonas, Selenomonas, Moryella, Megasphaera, Corynebacterium were enriched in CRP_low group. Compared with NLR_high, genera Veillonella, Neisseria, Bulleidia, Moryella were enriched in NLR_low group. For patients with different PLR level, genera Veillonella, Prevotella, Moryella, Selenomonas were increased in PLR_ low patients. Function analysis identified propionate metabolism pathway was significantly enriched in CRP_low and PLR_low groups. Moreover, RDA analysis showed that compared with PLR, NLR and CRP had strongest association with microbial community. Airway microbial structure differed between lung cancer with different systemic inflammation status. Patients with relative high inflammation status were associated with alteration of specific airway genera and microbial metabolic function.
Collapse
Affiliation(s)
- DanHui Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - QianNan Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - LingYan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - YueHua Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cui Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - XiaoFang Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - LiShan Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - LaiYu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingyue Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - JianHua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Zhang H, Singal PK, Ravandi A, Rabinovich-Nikitin I. Sex-Specific Differences in the Pathophysiology of Hypertension. Biomolecules 2025; 15:143. [PMID: 39858537 PMCID: PMC11763887 DOI: 10.3390/biom15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Hypertension is one of the most common comorbidities in cardiometabolic diseases, affecting nearly one third of adults. As a result, its pathophysiological mechanisms have been studied extensively and are focused around pressure natriuresis, the renin-angiotensin system (RAS), the sympathetic nervous system, oxidative stress, and endothelial dysfunction. Additionally, hypertension secondary to other underlying etiologies also exists. While clinical evidence has clearly shown differences in hypertension development in males and females, relatively little is known about the pathophysiological mechanisms behind these differences. Sex hormones likely play a key role, as they modulate many factors related to hypertension development. In this review, we postulate the potential role for sexually dimorphic fat metabolism in the physiology of hypertension. In brief, estrogen promotes subcutaneous fat deposition over visceral fat and increases in mass via adaptive hyperplasia rather than pathogenic hypertrophy. This adipose tissue subsequently produces anti-inflammatory effects and inhibits metabolic dysfunction-associated fatty liver disease (MAFLD) and RAS activation, ultimately leading to decreased levels of hypertension in pre-menopausal females. On the other hand, androgens and the lack of estrogens promote visceral and ectopic fat deposition, including in the liver, and lead to increased circulating pro-inflammatory cytokines and potentially subsequent RAS activation and hypertension development in males and post-menopausal females. Understanding the sex-specific differences in fat metabolism may provide deeper insights into the patho-mechanisms associated with hypertension and lead to more comprehensive sex-specific care.
Collapse
Affiliation(s)
- Hannah Zhang
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
16
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
17
|
Abdulrahim AO, Doddapaneni NSP, Salman N, Giridharan A, Thomas J, Sharma K, Abboud E, Rochill K, Shreelakshmi B, Gupta V, Lakkimsetti M, Mowo-Wale A, Ali N. The gut-heart axis: a review of gut microbiota, dysbiosis, and cardiovascular disease development. Ann Med Surg (Lond) 2025; 87:177-191. [PMID: 40109640 PMCID: PMC11918638 DOI: 10.1097/ms9.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality worldwide and there are strong links existing between gut health and cardiovascular health. Gut microbial diversity determines gut health. Dysbiosis, described as altered gut microbiota, causes bacterial translocations and abnormal gut byproducts resulting in systemic inflammation. Objective To review the current literature on the relationships between gut microbiota, dysbiosis, and CVD development, and explore therapeutic methods to prevent dysbiosis and support cardiovascular health. Summary Dysbiosis increases levels of pro-inflammatory substances while reducing those of anti-inflammatory substances. This accumulative inflammatory effect negatively modulates the immune system and promotes vascular dysfunction and atherosclerosis. High Firmicutes to Bacteroidetes ratios, high trimethylamine-n-oxide to short-chain fatty acid ratios, high indole sulfate levels, low cardiac output, and polypharmacy are all associated with worse cardiovascular outcomes. Supplementation with prebiotics and probiotics potentially alleviates some CVD risk. Blood and stool samples may be used in clinical practice to quantify and qualify gut bacterial ratios and byproducts, assess patients' risk for adverse cardiovascular outcomes, and track their gut health progress. Further research is required to set population-based cutoffs for normal and abnormal gut microbiota and byproduct ratios.
Collapse
Affiliation(s)
| | | | - Nadhra Salman
- Department of Internal Medicine, Baqai Medical University, Karachi, Pakistan
| | | | | | - Kavya Sharma
- Maharishi Markandeshwar Medical College and Hospital, Himachal Pradesh, India
| | - Elias Abboud
- Faculty of Medicine, University of Saint Joseph, Beirut, Lebanon
| | | | - B Shreelakshmi
- Navodaya Medical College Hospital & Research Centre, Karnataka, India
| | | | | | | | - Noor Ali
- Dubai Medical College, Dubai, United Arab Emirates
| |
Collapse
|
18
|
Wang Z, Xu M, Li Q, Lu S, Liu Z. Subchronic Chloroform Exposure Causes Intestinal Damage and Induces Gut Microbiota Disruption and Metabolic Dysregulation in Mice. ENVIRONMENTAL TOXICOLOGY 2025; 40:5-18. [PMID: 39221872 DOI: 10.1002/tox.24417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chloroform is a prevalent toxic environmental pollutant in urban settings, posing risks to human health through exposure via various mediums such as air and tap water. The gut microbiota plays a pivotal role in maintaining host health. However, there is a paucity of research elucidating the impact of chloroform exposure on the gut microbiota. In this investigation, 18 SPF Kunming female mice were stratified into three groups (n = 6) and subjected to oral gavage with chloroform doses equivalent to 0, 50, and 150 mg/kg of body weight over 30 days. Our findings demonstrate that subchronic chloroform exposure significantly perturbs hematological parameters in mice and induces histopathological alterations in cecal tissues, consequently engendering marked disparities in the functional composition of cecal microbiota and metabolic equilibrium of cecal contents. Ultimately, our investigation revealed a statistically robust correlation, exhibiting a high degree of significance, between the intestinal microbiome composition and the metabolites that were differentially expressed consequent to chloroform exposure.
Collapse
Affiliation(s)
- Zaishan Wang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Meng Xu
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Qiang Li
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Sihan Lu
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Zhu Liu
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| |
Collapse
|
19
|
Bao Z, Yang Z, Sun R, Chen G, Meng R, Wu W, Li MD. Predicting host health status through an integrated machine learning framework: insights from healthy gut microbiome aging trajectory. Sci Rep 2024; 14:31143. [PMID: 39732755 DOI: 10.1038/s41598-024-82418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The gut microbiome, recognized as a critical component in the development of chronic diseases and aging processes, constitutes a promising approach for predicting host health status. Previous research has underscored the potential of microbiome-based predictions, and the rapid advancements of machine learning techniques have introduced new opportunities for exploiting microbiome data. To predict various host nonhealthy conditions, this study proposed an integrated machine learning-based estimation pipeline of Gut Age Index (GAI) by establishing a health aging baseline with the gut microbiome data from healthy individuals. We assessed the performance of GAI pipeline on two extensive cohorts - the Guangdong Gut Microbiome Project (GGMP) and the American Gut Project (AGP). In the GGMP cohort, for 20 common chronic diseases such as metabolic syndrome, obesity, and cardiovascular diseases, the proposed GAI achieved a balanced accuracy, ranging from 66 to 75%, with the prediction performance for atherosclerosis being the highest. In the AGP cohort, the balanced accuracy of GAI ranged from 58 to 72% for 10 diseases. Based on the results from these two datasets, we conclude that our proposed approach in this study can be used to predict individual health status, which offers the potential for scalable, cost-effective, and personalized health insights.
Collapse
Affiliation(s)
- Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruixiang Sun
- The Maiyata Research Institute For Beneficial Bacteria, Shaoxing, Zhejiang, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiling Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
- Guangdong Provincial Institute of Public Health, Guangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Roles of the gut microbiota in human neurodevelopment and adult brain disorders. Front Neurosci 2024; 18:1446700. [PMID: 39659882 PMCID: PMC11628544 DOI: 10.3389/fnins.2024.1446700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Growing evidence demonstrates the connection between gut microbiota, neurodevelopment, and adult brain function. Microbial colonization occurs before the maturation of neural systems and its association with brain development. The early microbiome interactions with the gut-brain axis evolved to stimulate cognitive activities. Gut dysbiosis can lead to impaired brain development, growth, and function. Docosahexaenoic acid (DHA) is critically required for brain structure and function, modulates gut microbiota, and impacts brain activity. This review explores how gut microbiota influences early brain development and adult functions, encompassing the modulation of neurotransmitter activity, neuroinflammation, and blood-brain barrier integrity. In addition, it highlights processes of how the gut microbiome affects fetal neurodevelopment and discusses adult brain disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Xue J, Allaband C, Zuffa S, Poulsen O, Meadows J, Zhou D, Dorrestein PC, Knight R, Haddad GG. Gut Microbiota and Derived Metabolites Mediate Obstructive Sleep Apnea Induced Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624205. [PMID: 39605650 PMCID: PMC11601605 DOI: 10.1101/2024.11.18.624205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects predominantly obese individuals, and increases atherosclerosis risk. Since we and others have implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to OSA-induced atherosclerosis. Results Atherosclerotic lesions were compared between conventionally-reared specific pathogen free (SPF) and germ-free (GF) ApoE -/- mice following a high fat high cholesterol diet (HFHC), with and without IHC conditions. The fecal microbiota and metabolome were profiled using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry (LC-MS/MS) respectively. Phenotypic data showed that HFHC significantly increased atherosclerosis as compared to regular chow (RC) in both aorta and pulmonary artery (PA) of SPF mice. IHC exacerbated lesions in addition to HFHC. Differential abundance analysis of gut microbiota identified an enrichment of Akkermansiaceae and a depletion of Muribaculaceae (formerly S24-7) family members in the HFHC-IHC group. LC-MS/MS showed a dysregulation of bile acid profiles with taurocholic acid, taurodeoxycholic acid, and 12-ketodeoxycholic acid enriched in the HFHC-IHC group, long-chain N-acyl amides, and phosphatidylcholines. Interestingly, GF ApoE -/- mice markedly reduced atherosclerotic formation relative to SPF ApoE -/- mice in the aorta under HFHC/IHC conditions. In contrast, microbial colonization did not show a significant impact on the atherosclerotic progression in PA. Conclusions In summary, this research demonstrated that (1) IHC acts cooperatively with HFHC to induce atherosclerosis; (2) gut microbiota modulate atherogenesis, induced by HFHC/IHC, in the aorta not in PA; (3) different analytical methods suggest that a specific imbalance between Akkermansiaceae and Muribaculaceae bacterial families mediate OSA-induced atherosclerosis; and (4) derived bile acids, such as deoxycholic acid and lithocholic acid, regulate atherosclerosis in OSA. The knowledge obtained provides novel insights into the potential therapeutic approaches to prevent and treat OSA-induced atherosclerosis.
Collapse
|
22
|
Dharmarathne G, Kazi S, King S, Jayasinghe TN. The Bidirectional Relationship Between Cardiovascular Medications and Oral and Gut Microbiome Health: A Comprehensive Review. Microorganisms 2024; 12:2246. [PMID: 39597635 PMCID: PMC11596509 DOI: 10.3390/microorganisms12112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of widespread morbidity and mortality. It has been found that the gut and oral microbiomes differ in individuals with CVDs compared to healthy individuals. Patients with CVDs often require long-term pharmacological interventions. While these medications have been extensively studied for their cardiovascular benefits, emerging research indicates that they may also impact the diversity and composition of the oral and gut microbiomes. However, our understanding of how these factors influence the compositions of the oral and gut microbiomes in individuals remains limited. Studies have shown that statins and beta-blockers, in particular, cause gut and oral microbial dysbiosis, impacting the metabolism and absorption of these medications. These alterations can lead to variations in drug responses, highlighting the need for personalized treatment approaches. The microbiome's role in drug metabolism and the impact of CVD medications on the microbiome are crucial in understanding these variations. However, there are very few studies in this area, and not all medications have been studied, emphasizing the necessity for further research to conclusively establish cause-and-effect relationships and determine the clinical significance of these interactions. This review will provide evidence of how the oral and gut microbiomes in patients with cardiovascular diseases (CVDs) interact with specific drugs used in CVD treatment.
Collapse
Affiliation(s)
- Gangani Dharmarathne
- Australian Laboratory Services Global, Water and Hydrographic, Hume, ACT 2620, Australia
| | - Samia Kazi
- Westmead Applied Research Centre, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Shalinie King
- Westmead Applied Research Centre, The University of Sydney, Sydney, NSW 2145, Australia
- The Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thilini N. Jayasinghe
- The Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- The Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Duttaroy AK. Functional Foods in Preventing Human Blood Platelet Hyperactivity-Mediated Diseases-An Updated Review. Nutrients 2024; 16:3717. [PMID: 39519549 PMCID: PMC11547462 DOI: 10.3390/nu16213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Backgrounds/Objectives: Abnormal platelet functions are associated with human morbidity and mortality. Platelets have emerged as critical regulators of numerous physiological and pathological processes beyond their established roles in hemostasis and thrombosis. Maintaining physiological platelet function is essential to hemostasis and preventing platelet-associated diseases such as cardiovascular disease, cancer metastasis, immune disorders, hypertension, diabetes, sickle cell disease, inflammatory bowel disease, sepsis, rheumatoid arthritis, myeloproliferative disease, and Alzheimer's disease. Platelets become hyperactive in obesity, diabetes, a sedentary lifestyle, hypertension, pollution, and smokers. Platelets, upon activation, can trawl leukocytes and progenitor cells to the vascular sites. Platelets release various proinflammatory, anti-inflammatory, and angiogenic factors and shed microparticles in the circulation, thus promoting pathological reactions. These platelet-released factors also maintain sustained activation, further impacting these disease processes. Although the mechanisms are unknown, multiple stimuli induce platelet hyperreactivity but involve the early pathways of platelet activation. The exact mechanisms of how hyperactive platelets contribute to these diseases are still unclear, and antiplatelet strategies are inevitable for preventing these diseases. Reducing platelet function during the early stages could significantly impact these diseases. However, while this is potentially a worthwhile intervention, using antiplatelet drugs to limit platelet function in apparently healthy individuals without cardiovascular disease is not recommended due to the increased risk of internal bleeding, resistance, and other side effects. The challenge for therapeutic intervention in these diseases is identifying factors that preferentially block specific targets involved in platelets' complex contribution to these diseases while leaving their hemostatic function at least partially intact. Since antiplatelet drugs such as aspirin are not recommended as primary preventives, it is essential to use alternative safe platelet inhibitors without side effects. METHODS A systematic search of the PUBMED database from 2000 to 2023 was conducted using the selected keywords: "functional foods", "polyphenols", "fatty acids", "herbs", fruits and vegetables", "cardioprotective agents", "plant", "platelet aggregation", "platelet activation", "clinical and non-clinical trial", "randomized", and "controlled". RESULTS Potent natural antiplatelet factors have been described, including omega-3 fatty acids, polyphenols, and other phytochemicals. Antiplatelet bioactive compounds in food that can prevent platelet hyperactivity and thus may prevent several platelet-mediated diseases, including cardiovascular disease. CONCLUSIONS This narrative review describes the work during 2000-2023 in developing functional foods from natural sources with antiplatelet effects.
Collapse
Affiliation(s)
- Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
25
|
Zhang WW, Huo JL, Xiao MD, Xu YJ, Zhou J. Exploring the potential link between gut microbiota and chronic kidney disease in causality: A 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40236. [PMID: 39470494 PMCID: PMC11521073 DOI: 10.1097/md.0000000000040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Increasing evidence indicates a significant correlation between gut microbiota (GM) and susceptibility to chronic kidney disease (CKD). However, causal relationship presence remains uncertain. Mendelian randomization (MR) was applied to evaluate potential causal relation from GM to CKD. Genomic association analysis aggregates publicly online databases, utilizing Genome-Wide Association Study (GWAS) database focused on GM and CKD. For examination of potential causal connection from GM to CKD, a 2-way, 2-sample Mendelian randomization (MR) method was applied. Sensitivity analyses were utilized to scrutinize for heterogeneity, horizontal pleiotropy, MR outcomes resilience. Result from inverse variance weighting (IVW) method revealed that 10 microbiotas such as Porphyromonadaceae (OR = 1.351, 95% CI: 1.114-1.638, P = .002), Dorea (OR = 1.236, 95% CI: 1.040-1.468, P = .016), Ruminococcus torques group (OR = 1.290, 95% CI: 1.035-1.608, P = .024) are potential CKD risk factors. Five microbiotas, including the Prevotellaceae (OR = 0.814, 95% CI: 0.719-0.922, P = .001) are potential CKD protective factors. Sensitivity analyses reveal no horizontal pleiotropy or heterogeneity. Additionally, reverse MR results unveiled potential relation between CKD and disorders in 3 microbiotas, including Senegalimassilia. According to the investigation, MR method was employed to delve into reciprocal causal connection from GM to CKD. Our findings identified 15 types of GM causally linked to CKD, as well as CKD demonstrating causal associations with 3 types of GM. Further exploration of these associated GM types is hopeful to raise novel insights, for CKD preventing and early monitoring.
Collapse
Affiliation(s)
- Wen Wen Zhang
- First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jin Lin Huo
- College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Pudong New Area, Shanghai, China
| | - Mei Di Xiao
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ya Jie Xu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jin Zhou
- First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Department of Traditional Chinese Medicine, Shenzhen Second People’s Hospital, Shenzhen Municipal Health Commission Traditional Chinese Medicine Key Specialty, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Zhu Y, Yin C, Wang Y. Probiotic Enterococcus Faecium Attenuated Atherosclerosis by Improving SCFAs Associated with Gut Microbiota in ApoE -/- Mice. Bioengineering (Basel) 2024; 11:1033. [PMID: 39451408 PMCID: PMC11505145 DOI: 10.3390/bioengineering11101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Atherosclerosis, as the main root cause, makes cardiovascular diseases (CVDs) a substantial worldwide health concern. Inflammation and disrupted cholesterol metabolism are the primary clinical risk elements contributing to the onset of atherosclerosis. Few works exist on the improvement effect of gut microbiota on atherosclerosis. One specific probiotic strain, Enterococcus faecium NCIMB11508, has shown promise in mitigating inflammation. Consequently, it is critical to investigate its potential in reducing the progression of atherosclerosis. In our study, we administered E. faecium NCIMB11508 orally to ApoE-/- mice, resulting in a decrease in the formation of atherosclerotic lesions. Additionally, it demonstrated the ability to lower the inflammatory factor levels both in the aorta and blood serum while maintaining the integrity of the small intestine against lipopolysaccharides. Moreover, E. faecium NCIMB11508 had a beneficial impact on the gut microbiota composition by increasing the levels of short-chain fatty acids (SCFAs), which in turn helped to reduce inflammation and protect the intestine. The probiotic E. faecium NCIMB11508, according to our research, has a definitive capacity to prevent atherosclerosis progression by beneficially altering the SCFA composition in the gut microbiota of ApoE-/- mice.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China;
| | - Chao Yin
- Taian Institute for Food and Drug Control, Taian 271000, China;
| | - Yeqi Wang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
28
|
Galasso L, Cerrito L, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. The Molecular Mechanisms of Portal Vein Thrombosis in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3247. [PMID: 39409869 PMCID: PMC11482560 DOI: 10.3390/cancers16193247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the sixth most diagnosed cancer worldwide and is the second leading cause of cancer-related death in the world. The association of HCC and portal vein thrombosis (PVT) represents an advanced stage of the tumor. PVT has a prevalence of about 25-50% in HCC, determining poor prognosis and a remarkable reduction in therapeutic perspectives in these patients, leading to severe complications such as ascites, metastasis, an increase in portal hypertension and potentially fatal gastrointestinal bleeding. The aim of this review is to evaluate the molecular mechanisms that are at the basis of PVT development, trying to evaluate possible strategies in the early detection of patients at high risk of PVT.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
29
|
Lu J, An Y, Wang X, Zhang C, Guo S, Ma Y, Qiu Y, Wang S. Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells. J Vet Med Sci 2024; 86:1016-1026. [PMID: 39069486 PMCID: PMC11422687 DOI: 10.1292/jvms.24-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a polyphenol substance contained in many plants, which has good antioxidant activity. This experiment aimed to explore the protective effects of CGA on hydrogen peroxide (H2O2)-induced inflammatory response, apoptosis, and antioxidant capacity of bovine intestinal epithelial cells (BIECs-21) under oxidative stress and its mechanism. The results showed that compared with cells treated with H2O2 alone, CGA pretreatment could improve the viability of BIECs-21. Importantly, Chlorogenic acid pretreatment significantly reduced the formation of malondialdehyde (MDA), lowered reactive oxygen species (ROS) levels, and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) (P<0.05). In addition, CGA can also improve the intestinal barrier by increasing the abundance of tight junction proteins claudin-1 and occludin. Meanwhile, CGA can reduce the gene expression levels of pro-inflammatory factors Interleukin-6 (IL-6) and Interleukin-8 (IL-8), increase the expression of anti-inflammatory factor Interleukin-10 (IL-10), promote the expression of the nuclear factor-related factor 2 (Nrf2) signaling pathway, enhance cell antioxidant capacity, and inhibit Nuclear Factor Kappa B (NF-κB) the activation of the signaling pathway reducing the inflammatory response, thereby alleviating inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Jia Lu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
30
|
Cui D, Zhang S, Zhao Y, Wang B. Disturbance of gut microbiota aggravates the inflammatory response and damages the vascular endothelial function in patients with preeclampsia. Am J Transl Res 2024; 16:4662-4670. [PMID: 39398586 PMCID: PMC11470327 DOI: 10.62347/csjl6508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To investigate the influence of intestinal flora imbalance on inflammatory factors in the serum and vascular endothelial functionality in individuals with preeclampsia (PE). METHODS From January 2022 to December 2023, a total of 58 individuals with PE (PE group) and 60 healthy controls (CON group) were included in this study; they were matched for age and pre-pregnancy Body Mass Index (BMI). A comparison was made between the two groups in terms of the general data and the number of unique intestinal flora. Additionally, clinical blood measures, serum inflammatory factors, and vascular endothelial function were also assessed and compared between the groups. RESULTS Age, gestational age, and pre-pregnancy BMI were similar between the PE and control group. However, diastolic and systolic blood pressure were significantly higher in the PE group. The abundance of Lactobacillus, Bifidobacterium, Enterobacter, and Enterococcus. Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were considerably higher in the PE group compared to the CON group, but Interleukin-4 (IL-4) was noticeably lower, and the amount of White blood cells (WBC), neutrophil count (N) and lymphocyte count (L) in the PE group were significantly higher than those in the CON group. In the PE group, serum vascular endothelin (ET) and soluble endoglin (sEng) were higher than in the CON group, vascular endothelial growth factor (VEGF) and nitric oxide (NO) levels were considerably lower than in the CON group, and the levels of TC, TG, LDL-C and HDL-C were significantly higher in the PE group than in the CON group. The presence of Lactobacillus and Bifidobacterium was inversely associated with levels of TNF-α, IL-6, Interleukin-10 (IL-10), ET, and sEng, and positively associated with levels of IL-4, VEGF, and NO. Nevertheless, there was a positive correlation between the abundance of Enterobacterium and Enterococcus with the levels of TNF-α, IL-6, IL-10, ET, and sEng. Conversely, there was a negative correlation between the abundance of Enterobacterium and Enterococcus and the levels of IL-4, VEGF, and NO. CONCLUSION Patients with PE exhibited dysbiosis of intestinal flora, characterized by altered gut microbiota diversity, increased serum pro-inflammatory factors, and impaired vascular endothelial function.
Collapse
Affiliation(s)
- Dan Cui
- Department of Obstetrics, Xingtai People’s Hospital, Affiliated Hospital of Hebei Medical UniversityXingtai 054001, Hebei, China
| | - Shujing Zhang
- Department of Obstetrics, Xingtai People’s Hospital, Affiliated Hospital of Hebei Medical UniversityXingtai 054001, Hebei, China
| | - Yefang Zhao
- Department of Obstetrics, Xingtai People’s Hospital, Affiliated Hospital of Hebei Medical UniversityXingtai 054001, Hebei, China
| | - Bingjie Wang
- Department of Proctology, Xingtai People’s Hospital, Affiliated Hospital of Hebei Medical UniversityXingtai 054001, Hebei, China
| |
Collapse
|
31
|
Bordoni L, Petracci I, Feliziani G, de Simone G, Rucci C, Gabbianelli R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1061. [PMID: 39334721 PMCID: PMC11428692 DOI: 10.3390/antiox13091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Trimethylamine (TMA), a byproduct of gut microbiota metabolism from dietary precursors, is not only the precursor of trimethylamine-N-oxide (TMAO) but may also affect gut health. An in vitro model of intestinal epithelium of Caco-2 cells was used to evaluate the impact of TMA on inflammation, paracellular permeability, epigenetics and mitochondrial functions. The expression levels of pro-inflammatory cytokines (IL-6, IL-1β) increased significantly after 24 h exposure to TMA 1 mM. TMA exposure was associated with an upregulation of SIRT1 (TMA 1 mM, 400 μM, 10 μM) and DNMT1 (TMA 1 mM, 400 µM) genes, while DNMT3A expression decreased (TMA 1 mM). In a cell-free model, TMA (from 0.1 µM to 1 mM) induced a dose-dependent reduction in Sirtuin enzyme activity. In Caco-2 cells, TMA reduced total ATP levels and significantly downregulated ND6 expression (TMA 1 mM). TMA excess (1 mM) reduced intracellular mitochondrial DNA copy numbers and increased the methylation of the light-strand promoter in the D-loop area of mtDNA. Also, TMA (1 mM, 400 µM, 10 µM) increased the permeability of Caco-2 epithelium, as evidenced by the reduced transepithelial electrical resistance values. Based on our preliminary results, TMA excess might promote inflammation in intestinal cells and disturb epigenetic and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Giulia Feliziani
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Gaia de Simone
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Chiara Rucci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
32
|
Tang F, Shen L, Gu Z, Zhang L, Fang L, Sun H, Ma D, Guo Y, Yang Y, Lu B, Li Q, Zhong S, Wang Z. Causal relationships between gut microbiota, gut metabolites, and diabetic neuropathy: A mendelian randomization study. Clin Nutr ESPEN 2024; 62:128-136. [PMID: 38901934 DOI: 10.1016/j.clnesp.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Previous studies have shown a strong correlation between gut microbiota and diabetes and its associated complications. We aimed to evaluate the causal relationships between the gut microbiota, gut metabolites, and diabetic neuropathy. METHODS Summary statistics of 211 gut microbiota and 12 gut-related metabolites (β-hydroxybutyric acid, betaine, trimethylamine-N-oxide, carnitine, choline, glutamate, kynurenine, phenylalanine, propionic acid, serotonin, tryptophan, and tyrosine) were obtained from previous genome-wide association studies (GWAS). A two-sample Mendelian randomization (MR) design was used to estimate the effects of gut microbiota and gut metabolites on the risk of diabetic neuropathy based on FinnGen GWAS. RESULTS Higher levels of Acidaminococcaceae (OR = 0.62; 95%CI = 0.46 to 0.84; P = 0.002), Peptococcaceae (OR = 0.70; 95%CI = 0.54 to 0.90; P = 0.006), and Eubacterium coprostanoligenes group (OR = 0.68; 95%CI = 0.50 to 0.93; P = 0.016) are genetically determined to provide protection against diabetic neuropathy. Conversely, the presence of Alistipes (OR = 1.65; 95%CI = 1.18 to 2.31; P = 0.003), ChristensenellaceaeR7 group (OR = 1.52; 95%CI = 1.03 to 2.23; P = 0.033), Eggerthella (OR = 1.28; 95%CI = 1.05 to 1.55; P = 0.014), RuminococcaceaeUCG013 (OR = 1.35; 95%CI = 1.01 to 1.82; P = 0.046), and Firmicutes (OR = 1.42; 95%CI = 1.05 to 1.93; P = 0.023) increases the risk of diabetic neuropathy. Moreover, a correlation has been identified between diabetic neuropathy and two gut metabolites: betaine (OR = 0.95; 95%CI = 0.90 to 1.00; P = 0.033) and tyrosine (OR = 1.03; 95%CI = 1.01 to 1.06; P = 0.019). Sensitivity analysis indicated robust results with no sign of heterogeneity or pleiotropy. CONCLUSION The present study elucidated the impact of specific gut microbiota and gut metabolites on the susceptibility to diabetic neuropathy. Interventions targeting the improvement of the gut microbiota diversity and composition hold considerable promise as a potential strategy.
Collapse
Affiliation(s)
- Fengyan Tang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Liwen Shen
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Ziliang Gu
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Li Zhang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Lingna Fang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Heping Sun
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Dan Ma
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Yuting Guo
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Yiqian Yang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Bing Lu
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Quanmin Li
- Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Shao Zhong
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China; Department of Clinical Nutrition, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| |
Collapse
|
33
|
Bridge LA, Hernández Vargas JA, Trujillo-Cáceres SJ, Beigrezaei S, Chatelan A, Salehi-Abargouei A, Muka T, Uriza-Pinzón JP, Raeisi-Dehkordi H, Franco OH, Grompone G, Artola Arita V. Two cosmoses, one universe: a narrative review exploring the gut microbiome's role in the effect of urban risk factors on vascular ageing. Maturitas 2024; 184:107951. [PMID: 38471294 DOI: 10.1016/j.maturitas.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
In the face of rising global urbanisation, understanding how the associated environment and lifestyle impact public health is a cornerstone for prevention, research, and clinical practice. Cardiovascular disease is the leading cause of morbidity and mortality worldwide, with urban risk factors contributing greatly to its burden. The current narrative review adopts an exposome approach to explore the effect of urban-associated physical-chemical factors (such as air pollution) and lifestyle on cardiovascular health and ageing. In addition, we provide new insights into how these urban-related factors alter the gut microbiome, which has been associated with an increased risk of cardiovascular disease. We focus on vascular ageing, before disease onset, to promote preventative research and practice. We also discuss how urban ecosystems and social factors may interact with these pathways and provide suggestions for future research, precision prevention and management of vascular ageing. Most importantly, future research and decision-making would benefit from adopting an exposome approach and acknowledging the diverse and boundless universe of the microbiome.
Collapse
Affiliation(s)
- Lara Anne Bridge
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Juliana Alexandra Hernández Vargas
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Silvia Juliana Trujillo-Cáceres
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sara Beigrezaei
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Angeline Chatelan
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Julieth Pilar Uriza-Pinzón
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hamidreza Raeisi-Dehkordi
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Oscar H Franco
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Vicente Artola Arita
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
34
|
Ramdani S, Haddiya I. Updates in the management of hypertension. Ann Med Surg (Lond) 2024; 86:3514-3521. [PMID: 38846840 PMCID: PMC11152838 DOI: 10.1097/ms9.0000000000002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Hypertension is the leading cause of cardiovascular diseases and nephropathies. Its treatment and management require long-term follow-up which can be facilitated by the emergence of device-based therapies. Novel recommendations have been well described in the latest ESH guidelines as well as new risk factors have been identified. The authors summarized the published evidence on hypertension management. The authors also cited in this review novel treatment approaches in different settings and the intervention of medication adherence in treatment success. Such non-communicable disease requires long-term follow-up and monitoring, which is quite facilitated in the era of digitalization by cuff-less devices based on prediction tools.
Collapse
Affiliation(s)
- Sara Ramdani
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy of Oujda, University Mohammed First
| | - Intissar Haddiya
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy of Oujda, University Mohammed First
- Department of Nephrology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
35
|
Jiang C, Wang S, Wang Y, Wang K, Huang C, Gao F, Peng Hu H, Deng Y, Zhang W, Zheng J, Huang J, Li Y. Polyphenols from hickory nut reduce the occurrence of atherosclerosis in mice by improving intestinal microbiota and inhibiting trimethylamine N-oxide production. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155349. [PMID: 38522315 DOI: 10.1016/j.phymed.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal microbiota through metabolizing phosphatidylcholine, choline, l-carnitine and betaine in the diet, has been implicated in the pathogenesis of atherosclerosis (AS). Concurrently, dietary polyphenols have garnered attention for their potential to ameliorate obesity, diabetes and atherosclerosis primarily by modulating the intestinal microbial structure. Hickory (Carya cathayensis) nut, a polyphenol-rich food product favored for its palatability, emerges as a candidate for exploration. HYPOTHESIS/PURPOSE The relationship between polyphenol of hickory nut and atherosclerosis prevention will be firstly clarified, providing theoretical basis for the discovery of natural products counteracting TMAO-induced AS process in hickory nut. STUDY DESIGN AND METHODS Employing Enzyme-linked Immunosorbent Assay (ELISA) and histological examination of aortic samples, the effects of total polyphenol extract on obesity index, inflammatory index and pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high choline diet were evaluated. Further, the composition, abundance, and function of mouse gut microbiota were analyzed through 16srDNA sequencing. Concurrently, the levels of TMAO and the expression of key enzymes (CutC and FMO3) involved in its synthesis are quantified using ELISA, Western Blot and Real-Time Quantitative PCR (RT-qPCR). Additionally, targeted metabolomic profiling of the hickory nut polyphenol extract was conducted, accompanied by molecular docking simulations to predict interactions between candidate polyphenols and the CutC/FMO3 using Autodock Vina. Finally, the docking prediction were verified by microscale thermophoresis (MST) . RESULTS Polyphenol extracts of hickory nut improved the index of obesity and inflammation, and alleviated the pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high-choline diet. Meanwhile, these polyphenol extracts also changed the composition and function of intestinal microbiota, and increased the abundance of microorganisms in mice. Notably, the abundance of intestinal microbiota endowed with CutC gene was significantly reduced, coherent with expression of CutC catalyzing TMA production. Moreover, polyphenol extracts also decreased the expression of FMO3 in the liver, contributing to the reduction of TMAO levels in serum. Furthermore, metabonomic profile analysis of these polyphenol extracts identified 647 kinds of polyphenols. Molecular docking predication further demonstrated that Casuariin and Cinnamtannin B2 had the most potential inhibition on the enzymatic activities of CutC or FMO3, respectively. Notably, MST analysis corroborated the potential for direct interaction between CutC enzyme and available polyphenols such as Corilagin, (-)-Gallocatechin gallate and Epigallocatechin gallate. CONCLUSION Hickory polyphenol extract can mitigate HFD-induced AS by regulating intestinal microflora in murine models. In addition, TMA-FMO3-TMAO pathway may play a key role in this process. This research unveils, for the inaugural time, the complex interaction between hickory nut-derived polyphenols and gut microbial, providing novel insights into the role of dietary polyphenols in AS prevention.
Collapse
Affiliation(s)
- Chenyu Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Song Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yihan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Fei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Huang Peng Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yangyong Deng
- Hangzhou Yaoshengji Food Co., Ltd, Hangzhou, Zhejiang 310052, China
| | - Wen Zhang
- Suichang County Food and Drug Safety Inspection and Testing Center, Suichang, Zhejiang 323300, China
| | - Jian Zheng
- Suichang County Food and Drug Safety Inspection and Testing Center, Suichang, Zhejiang 323300, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
36
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
37
|
Shariff S, Kwan Su Huey A, Parag Soni N, Yahia A, Hammoud D, Nazir A, Uwishema O, Wojtara M. Unlocking the gut-heart axis: exploring the role of gut microbiota in cardiovascular health and disease. Ann Med Surg (Lond) 2024; 86:2752-2758. [PMID: 38694298 PMCID: PMC11060260 DOI: 10.1097/ms9.0000000000001744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/24/2023] [Indexed: 05/04/2024] Open
Abstract
Introduction Gut microbiota has emerged as a pivotal player in cardiovascular health and disease, extending its influence beyond the gut through intricate metabolic processes and interactions with the immune system. Accumulating evidence supports a significant association between gut microbiota and cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Dietary patterns have been identified as key factors shaping the composition of the gut microbiota and exerting notable impacts on cardiovascular health. Probiotics and prebiotics have shown promise in mitigating the risks of cardiovascular disease by modulating key cardiovascular parameters. Faecal microbiota transplantation (FMT) has recently emerged as a novel and intriguing therapeutic strategy. Aim This review paper aims to explore and elucidate the multifaceted role of gut microbiota in cardiovascular health. It will also address the prevailing challenges and limitations in gut microbiota studies, emphasizing the importance of future research in overcoming these obstacles to expand our understanding of the gut-heart axis. Materials and methods A comprehensive literature search was conducted using various databases including ClinicalTrials, Google Scholar, PubMed, ScienceDirect, MEDLINE, and Ovid Resources. The search strategy included utilizing keywords such as "Gut microbiota," "Randomized controlled trials (RCTs)," "Gut-heart axis," "Dysbiosis," "Diet," "Probiotics," "Prebiotics," "Faecal Microbiota transplantation," "cardiovascular disease," "Meta-analyses," and other compatible terms thereof. Only articles written in English were considered, and selection criteria included relevance to the research objectives, reasonable sample sizes, and robust methodology. In addition to the identified articles, meta-analyses, animal models and studies, and references from the selected articles were also examined to ensure a comprehensive review of the literature. Results Dietary patterns exert a significant influence on the composition of the gut microbiota, and certain diets, such as the Mediterranean diet, have been associated with a favourable gut microbiota profile and a reduced risk of cardiovascular disease (CVD). Probiotics and prebiotics have emerged as potential interventions to mitigate CVD risks by modulating blood pressure, glycemic control, lipid profiles, and gut dysbiosis. Another innovative therapeutic approach is FMT, which involves transferring faecal material from a healthy donor to restore a balanced gut microbiota. FMT holds promise for improving cardiometabolic parameters in individuals with CVD, although further research is needed to elucidate its precise mechanisms and assess its effectiveness. Conclusion The gut microbiota is emerging as a potential therapeutic target for CVD prevention and management. However, current research has limitations, including the need for larger and more diverse studies, the challenges of establishing causality, and concerns regarding the long-term consequences and safety of gut microbiota modulation. Despite these limitations, understanding the gut-heart axis holds promise for the development of personalized therapies and interventions for cardiovascular health. Further research is needed to expand our knowledge and address the ethical and safety issues associated with gut microbiota modification.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Alicia Kwan Su Huey
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, University of Glasgow, Glasgow, UK
| | - Nishant Parag Soni
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- GMERS Medical College, Ahmedabad, India
| | - Amer Yahia
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Mohamed 6 of Health Sciences, Casablanca, Morocco
| | - Doha Hammoud
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- National University of Pharmacy, Kharkiv, Ukraine
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, NY
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- University of Michigan Medical School; Ann Arbor, MI
| |
Collapse
|
38
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
39
|
Jin Q, Zhang C, Chen R, Jiang L, Li H, Wu P, Li L. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic. J Transl Med 2024; 22:352. [PMID: 38622667 PMCID: PMC11017595 DOI: 10.1186/s12967-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, 410013, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Chen
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Luping Jiang
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Hongli Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| | - Liang Li
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
40
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Xiong Y, He Y, Chen Z, Wu T, Xiong Y, Peng Y, Yang X, Liu Y, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Li Q. Lactobacillus induced by irbesartan on spontaneously hypertensive rat contribute to its antihypertensive effect. J Hypertens 2024; 42:460-470. [PMID: 38009301 DOI: 10.1097/hjh.0000000000003613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
OBJECTIVE Hypertension is linked to gut dysbiosis. Here, the impact of the angiotensin receptor antagonist irbesartan on the gut microbiota of spontaneously hypertensive rats (SHR) were investigated. In addition, we assessed their contribution to its antihypertensive effect. METHODS Eight-week-old Wistar-Kyoto (WKY) rats and SHR were administered irbesartan for 8 weeks. Fecal microbiota transplantation (FMT) was performed from SHR treated with irbesartan or untreated SHR to recipient untreated SHR. The preventive effect of Lactobacillus on hypertension in SHR was evaluated. Blood pressure (BP) was calculated using a tail-sleeve sphygmomanometer. To better assess the composition of the gut microbiota, the V3-V4 region of the 16S rRNA gene was amplified while short-chain fatty acids (SCFAs) in feces were tested by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS Irbesartan restored gut dysbiosis, increased the abundance of Lactobacillus , and improved anti-inflammatory ability, antioxidative ability, intestinal integrity, and intestinal inflammation in SHR. The microbiota in SHR-treated irbesartan could reduce BP and improve antioxidative ability and gut integrity in SHR. Lactobacillus johnsonii ( L. johnsonii ) and Lactobacillus reuteri ( L. reuteri ) reduced BP, restored gut dysbiosis and improved anti-inflammatory ability, antioxidative ability, intestinal integrity in SHR. Most notably, irbesartan, L. johnsonii , and L. reuteri can significantly increase SCFA content in SHR feces. CONCLUSION The current study demonstrated that irbesartan treatment ameliorated gut dysbiosis in SHR. Irbesartan induced alterations in gut microbiota, with increased prevalence of Lactobacillus .
Collapse
Affiliation(s)
- Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Department of Pharmacy, First hospital of Nanchang, Nanchang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yanping He
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Zhi Chen
- Department of Hypertension, Xingsha Hospital, Changsha, China
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yilei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland, USA
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| |
Collapse
|
42
|
Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med 2024; 19:275-293. [PMID: 37505311 PMCID: PMC10954893 DOI: 10.1007/s11739-023-03374-w] [Citation(s) in RCA: 207] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The intestine is the largest interface between the internal body and the external environment. The intestinal barrier is a dynamic system influenced by the composition of the intestinal microbiome and the activity of intercellular connections, regulated by hormones, dietary components, inflammatory mediators, and the enteric nervous system (ENS). Over the years, it has become increasingly evident that maintaining a stable intestinal barrier is crucial to prevent various potentially harmful substances and pathogens from entering the internal environment. Disruption of the barrier is referred to as 'leaky gut' or leaky gut wall syndrome and seems to be characterized by the release of bacterial metabolites and endotoxins, such as lipopolysaccharide (LPS), into the circulation. This condition, mainly caused by bacterial infections, oxidative stress, high-fat diet, exposure to alcohol or chronic allergens, and dysbiosis, appear to be highly connected with the development and/or progression of several metabolic and autoimmune systemic diseases, including obesity, non-alcoholic fatty liver disease (NAFLD), neurodegeneration, cardiovascular disease, inflammatory bowel disease, and type 1 diabetes mellitus (T1D). In this review, starting from a description of the mechanisms that enable barrier homeostasis and analyzing the relationship between this complex ecosystem and various pathological conditions, we explore the role of the gut barrier in driving systemic inflammation, also shedding light on current and future therapeutic interventions.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy.
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy.
| | - Angelo Del Gaudio
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy
| | - Valentina Petito
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
| | - Loris Riccardo Lopetuso
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro Malattie Apparato Digerente (CeMAD), Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L.go A. Gemelli 8, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, Italy
| |
Collapse
|
43
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Li Y, Chen Y, Li Z, Li Y, Chen Y, Tang L. Gut Microbiome and Atherosclerosis: A Mendelian Randomization Study. Rev Cardiovasc Med 2024; 25:41. [PMID: 39077366 PMCID: PMC11263158 DOI: 10.31083/j.rcm2502041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 07/31/2024] Open
Abstract
Background According to recent studies, atherosclerosis and gut microbiota are related. Nevertheless, it has been discovered that the gut microbiota varies across studies, with its function still being debated, and such relationships not proven to be causal. Thus, our study aimed to identify the key gut microbiota taxa (GM taxa) at different taxonomic levels, namely, the phylum, class, order, family, and genus, to investigate any potential causal links to atherosclerosis. Methods We employed summary data from the MiBioGen consortium on the gut microbiota to conduct a sophisticated two-sample Mendelian randomization (MR) analysis. Pertinent information regarding atherosclerosis statistics was acquired from the FinnGen Consortium R8 publication. To assess causality, the utilized principal analytical technique was the inverse variance-weighted (IVW) method. Supplementary to IVW, additional MR methodologies were employed, including weighted median, MR-Egger, weighted methods, and simple mode. Sensitivity analyses involved the application of Cochrane's Q-test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Results Finally, after performing an MR study on the risk of 211 GM taxa on atherosclerosis, we discovered 20 nominal links and one strong causal link. Firmicutes (phylum ID: 1672) (odds ratio (OR) = 0.852 (0.763, 0.950), p = 0.004) continued to be connected with a lower incidence of coronary atherosclerosis, even after Bonferroni correction. Conclusions Based on the discovered data, it was established that the phylum Firmicutes exhibits a causal relationship with a reduced occurrence of coronary atherosclerosis. This investigation could potentially provide novel insights into therapeutic objectives for atherosclerosis by focusing on the gut microbiota.
Collapse
Affiliation(s)
- Yue Li
- Department of Cardiology, Yue Bei People's Hospital, Shantou University Medical College, 512099 Shaoguan, Guangdong, China
| | - Yunxian Chen
- Department of Cardiology, Yue Bei People's Hospital, Shantou University Medical College, 512099 Shaoguan, Guangdong, China
| | - Zhe Li
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, 518071 Shenzhen, Guangdong, China
| | - Yanrong Li
- Department of Cardiology, Yue Bei People's Hospital, Shantou University Medical College, 512099 Shaoguan, Guangdong, China
| | - Yicai Chen
- Department of Cardiology, Yue Bei People's Hospital, Shantou University Medical College, 512099 Shaoguan, Guangdong, China
| | - Liangqiu Tang
- Department of Cardiology, Yue Bei People's Hospital, Shantou University Medical College, 512099 Shaoguan, Guangdong, China
| |
Collapse
|
45
|
Paraskevaidis I, Briasoulis A, Tsougos E. Oral Cardiac Drug-Gut Microbiota Interaction in Chronic Heart Failure Patients: An Emerging Association. Int J Mol Sci 2024; 25:1716. [PMID: 38338995 PMCID: PMC10855150 DOI: 10.3390/ijms25031716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Regardless of the currently proposed best medical treatment for heart failure patients, the morbidity and mortality rates remain high. This is due to several reasons, including the interaction between oral cardiac drug administration and gut microbiota. The relation between drugs (especially antibiotics) and gut microbiota is well established, but it is also known that more than 24% of non-antibiotic drugs affect gut microbiota, altering the microbe's environment and its metabolic products. Heart failure treatment lies mainly in the blockage of neuro-humoral hyper-activation. There is debate as to whether the administration of heart-failure-specific drugs can totally block this hyper-activation, or whether the so-called intestinal dysbiosis that is commonly observed in this group of patients can affect their action. Although there are several reports indicating a strong relation between drug-gut microbiota interplay, little is known about this relation to oral cardiac drugs in chronic heart failure. In this review, we review the contemporary data on a topic that is in its infancy. We aim to produce scientific thoughts and questions and provide reasoning for further clinical investigation.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Division of Cardiology, Hygeia Hospital, Erithrou Stavrou 4, 15123 Athens, Greece;
- Heart Failure Subdivision, Department of Clinical Therapeutics, Alexandra Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Vassilisis Sofias 80, 11528 Athens, Greece;
| | - Alexandros Briasoulis
- Heart Failure Subdivision, Department of Clinical Therapeutics, Alexandra Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Vassilisis Sofias 80, 11528 Athens, Greece;
| | - Elias Tsougos
- Division of Cardiology, Hygeia Hospital, Erithrou Stavrou 4, 15123 Athens, Greece;
| |
Collapse
|
46
|
Yadav M, Chauhan NS. Role of gut-microbiota in disease severity and clinical outcomes. Brief Funct Genomics 2024; 23:24-37. [PMID: 36281758 DOI: 10.1093/bfgp/elac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2024] Open
Abstract
A delicate balance of nutrients, antigens, metabolites and xenobiotics in body fluids, primarily managed by diet and host metabolism, governs human health. Human gut microbiota is a gatekeeper to nutrient bioavailability, pathogens exposure and xenobiotic metabolism. Human gut microbiota starts establishing during birth and evolves into a resilient structure by adolescence. It supplements the host's metabolic machinery and assists in many physiological processes to ensure health. Biotic and abiotic stressors could induce dysbiosis in gut microbiota composition leading to disease manifestations. Despite tremendous scientific advancements, a clear understanding of the involvement of gut microbiota dysbiosis during disease onset and clinical outcomes is still awaited. This would be important for developing an effective and sustainable therapeutic intervention. This review synthesizes the present scientific knowledge to present a comprehensive picture of the role of gut microbiota in the onset and severity of a disease.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
47
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
48
|
Wang X, Guo L, Qin T, Lai P, Jing Y, Zhang Z, Zhou G, Gao P, Ding G. Effects of X-ray cranial irradiation on metabolomics and intestinal flora in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115898. [PMID: 38171101 DOI: 10.1016/j.ecoenv.2023.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Cranial radiotherapy is an important treatment for intracranial and head and neck tumors. To investigate the effects of cranial irradiation (C-irradiation) on gut microbiota and metabolomic profile, the feces, plasma and cerebral cortex were isolated after exposing mice to cranial X-ray irradiation at a dose rate of 2.33 Gy/min (5 Gy/d for 4 d consecutively). The gut microorganisms and metabolites were detected by 16 S rRNA gene sequencing method and LC-MS method, respectively. We found that compared with sham group, the gut microbiota composition changed at 2 W and 4 W after C-irradiation at the genus level. The fecal metabolomics showed that compared with Sham group, 44 and 66 differential metabolites were found to be annotated into metabolism pathways at 2 W and 4 W after C-irradiation, which were significantly enriched in the arginine and proline metabolism. Metabolome analysis of serum and cerebral cortex showed that, at 4 W after C-irradiation, the expression pattern of metabolites in serum samples of mice was similar to that of sham group, and the cerebral cortex metabolites of the two groups were completely separated. KEGG functional analysis showed that serum and brain tissue differential metabolites were respectively enriched in tryptophan metabolism, and arginine proline metabolism. The correlation analysis showed that the changes of gut microbiota genera were significantly correlated with the changes of metabolism, especially Helicobacter, which was significantly correlated with many different metabolites at 4 W after C-irradiation. These data suggested that C-irradiation could affect the gut microbiota and metabolism profile, even at relatively long times after C-irradiation.
Collapse
Affiliation(s)
- Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Tongzhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Zhaowen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Guiqiang Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; Department of Labor and Environmental Hygiene, School of public health, Weifang Medical University, Weifang, China.
| | - Peng Gao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
49
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
50
|
Liu J, Jiao W, Li F, Xie Y, Meng M, Hao J. Rosuvastatin inhibit ox-LDL-induced platelet activation by the p38/MAPK pathway. Clin Hemorheol Microcirc 2024; 88:551-560. [PMID: 39269826 DOI: 10.3233/ch-242359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
OBJECTIVE This study intends to explore the effects of Rosuvastatin on ox-LDL induced platelet activation and its molecular mechanism. METHODS Platelet aggregation rate was detected by aggregometer. ELISA kit was used to detect the levels of cAMP. Immunofluorescence staining was used to detect the platelet adhesion. The expression levels of platelet surface markers CD62p and PAC-1 were detected by flow cytometry. The protein levels of p-p38, p-IKKa and p-IKKB in platelets were detected by western blot. RESULTS We found that rosuvastatin significantly inhibited platelet aggregation and increased the level of cAMP in a dose-dependent manner. Immunofluorescence staining results showed that rosuvastatin could inhibit platelet adhesion. Flow cytometry results showed that rosuvastatin could reduce the expression of platelet activation markers. Western blot results showed that rosuvastatin could down-regulate the expression levels of p-p38, p-IKKa and p-IKKb. CONCLUSION Our study revealed the rosuvastatin could inhibit the aggregation, adhesion and activation of platelet induced by ox-LDL, its mechanism may be related to inhibition of p38/MAPK signal pathway.
Collapse
Affiliation(s)
- Jinming Liu
- Cardiovascular Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Jiao
- Cardiovascular Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Li
- Cardiovascular Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanan Xie
- Cardiovascular Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingjie Meng
- Cardiovascular Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Hao
- Cardiovascular Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|