1
|
Zhou H, Long Y, Yu F, Ji C, Gui L, Lu Y. Resveratrol improves gasdermin D-mediated pyroptosis of vascular endothelial cells induced by a high-fat diet and palmitic acid possibly via the SIRT1-p66Shc-NLRP3 pathway. J Nutr Biochem 2025; 140:109890. [PMID: 40054674 DOI: 10.1016/j.jnutbio.2025.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Resveratrol (RSV) ameliorates endothelial dysfunction (ED) primarily through sirtuin 1 (SIRT1). Increasing evidence shows pyroptosis as a novel mechanism in palmitic acid (PA)-induced ED. p66Shc is an adaptor protein involved in oxidative stress. However, whether RSV attenuates the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via p66Shc remains elusive. This study aims to evaluate whether the antipyroptotic effect of RSV and the SIRT1 inhibitor EX527 are related to p66Shc. High-fat diet (HFD) induced obesity in mice, and RSV was administered intragastrically with 400mg/kg/d for 22 successive weeks. The serum levels of interleukin-1β (IL-1β) and IL-18 were analyzed, and the expression of related proteins were assayed with immunohistochemistry in the thoracic aorta. human umbilical vein endothelial cells (HUVECs) were induced by PA, then treated with RSV and EX527 respectively, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) and expression of p66Shc, NLRP3, GSDMD and pyroptosis-related genes were assayed. RSV administration ameliorated endothelial cell pyroptosis by decreasing serum IL-1β and IL-18, the expression of NLRP3, p66Shc, and gasdermin D (GSDMD), and increasing the expression of SIRT1 in the HFD-treated thoracic aorta. PA promoted GSDMD-mediated endothelial cell pyroptosis by ROS production, LDH release, decreased MMP and SIRT1 expression, increased expression of p66Shc and activation of the NLRP3 inflammasome in a dose-dependent manner. RSV attenuated PA-induced pyroptosis, whereas EX527 reversed the antipyroptotic effect of RSV in PA-treated HUVECs. Our results suggested a new mechanism that RSV improves PA-induced pyroptosis in endothelial cells via the SIRT1-p66Shc-NLRP3 pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yueming Long
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Guangdong Hydropower Group Hospital, Guangzhou, China
| | - Fangmei Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chenhui Ji
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Li Gui
- The Comprehensive Experimental Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; The Comprehensive Experimental Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Yang Q, Lu D, Wu J, Liang F, Wang H, Yang J, Zhang G, Wang C, Yang Y, Zhu L, Sun X. Nanoparticles for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1665-1680. [PMID: 39104097 PMCID: PMC11688544 DOI: 10.4103/nrr.nrr-d-23-01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Di Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jiuping Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ganggang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhi Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
3
|
Hein ZM, Che Mohd Nassir CMN, Che Ramli MD, El-Serafi I, Chetsawang B. Neuron-Glial2 (NG2) cells: A promising target for neuroinflammation-related neurodegeneration. TRANSLATIONAL RESEARCH IN ANATOMY 2025; 39:100395. [DOI: 10.1016/j.tria.2025.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
|
4
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Unleashing the pharmacological potential of taste receptors in reproductive processes beyond their gustatory role. Steroids 2025; 217:109603. [PMID: 40154931 DOI: 10.1016/j.steroids.2025.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Traditionally, taste receptors (TRs) have been understood to reside within the taste buds on the tongue, serving as initiators for different taste perceptions. However, recent research has expanded our understanding, revealing that TRs are found throughout the body and perform a wide range of functions beyond taste perception as non-tasting functions. These receptors, along with their genetic variations, have been linked to various human health conditions. They are activated by an array of substances, including hormones, nutrients, and toxins, indicating their involvement in numerous biological processes. Specifically, in males, TRs are notably present in the testes and epididymis, where they contribute to the hormonal production, spermatogenesis, and sperm maturation. In females, these receptors are found in the ovaries, uterus, and myometrium, playing crucial roles in ovulation, menstrual cycle regulation, and embryo implantation. There are a lot of missed areas regarding TRs research that imposes to fulfill the gaps in the current understanding of their role in reproduction. This review aims to provide a comprehensive overview of the emerging roles of extraoral TRs in reproductive health, highlighting their physiological and pathophysiological significance in various reproductive processes. As well, grabbing the attention towards the release of new pharmacological interventions to manage conception and contraception in male and female was considered.
Collapse
Affiliation(s)
- Nourhan Magdy
- Central Administration of Pharmaceutical Products, Egyptian Drug Authority, El-Manial, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt.
| |
Collapse
|
5
|
Song C, Shen B, Chen C, Yang L, Zhang C, Liu F, Chen F, Wu X. Identification of ferroptosis-related genes and potential drugs in osteoarthritis. Inflamm Res 2025; 74:70. [PMID: 40299032 DOI: 10.1007/s00011-025-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic degenerative joint disease in orthopedics, and ferroptosis is a newly identified mode of cell death present in OA. Inhibition of inflammatory cytokine expression and modulation of chondrocyte ferroptosis related pathways may be novel strategies for the treatment of OA. The purpose of this work was to uncover prospective biomarkers and molecular processes of ferroptosis in OA, as well as to better understand the molecular mechanisms of ferroptosis in OA treated with resveratrol. MATERIAL AND METHODS We obtained OA gene expression profiles from the Gene Expression Omnibus (GEO) database. OA-expressed ferroptosis-related genes were identified using Genecards data, differential gene analysis, and weighted gene co-expression network analysis. Enrichment analysis was utilized to identify signaling pathways and molecular mechanisms linked with ferroptosis in OA, while immune infiltration analysis indicated immune cell infiltration in OA. The action targets of resveratrol were taken from the TCM database to determine the therapeutic targets of resveratrol for the treatment of OA. To validate the molecular process, molecular docking was performed using the therapeutic targets' enrichment analysis. Finally, in vitro investigations confirmed the molecular mechanism of ferroptosis in resveratrol-treated OA. RESULTS Bioinformatic analysis identified 462 OA ferroptosis gene sets, with GPX4, TFRC, SLC7A11, EGFR, and IL1B serving as significant hub genes. Enrichment analysis revealed that ferroptosis was also linked to animal mitophagy, the FoxO signaling pathway, the Toll-like receptor signaling pathway, the PI3K-Akt signaling pathway, inflammation, immune response activation, and cellular autophagy. The immune infiltration data revealed that T_cells_CD4_memory_resting, T_cells_CD4_memory_activated, NK_cells_activated, and Mast_cells_activated were considerably infiltrated in OA. Resveratrol ameliorated OA via modulating autophagy and ferroptosis via GPX4, TFRC, SLC7A11, EGFR, and IL1B, according to a mechanistic study. CONCLUSION We discovered the mechanism of GPX4, TFRC, SLC7A11, and EGFR, IL1B ferroptosis-related genes in OA, and preliminary evidence suggests that resveratrol improves OA by regulating ferroptosis and immunological processes, which may give a new route for OA treatment.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Baoxin Shen
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chaoqi Chen
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lei Yang
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chi Zhang
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fei Liu
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Feng Chen
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Xiaofei Wu
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Han L, Han P, Zhu Y, Dong J, Guan Z, Xu Y, Li J, Liu X. Piceatannol Inhibits the Immunostimulatory Functions of Dendritic Cells and Alleviates Experimental Arthritis. Int J Mol Sci 2025; 26:3626. [PMID: 40332204 PMCID: PMC12026827 DOI: 10.3390/ijms26083626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent systemic autoimmune disease. Recently, natural small molecules have been explored as alternative therapeutic agents. Iris halophila Pall is the traditional herbal medicine, and it is rich in active ingredients with anti-inflammatory and immunomodulatory effects. In our previous study, LC-MS analysis revealed that piceatannol (PIC) is one of the primary active ingredients in the root of Iris tectorum. The purpose of this study was to explore the immunomodulatory effects of PIC on the maturation and function of dendritic cells, as well as on experimental arthritis induced by complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA). Additionally, we aimed to probe into the potential mechanisms underlying the effects of PIC. We first verified the immunosuppressive effect of PIC using flow cytometry and an ELISA. The immunosuppressive mechanism of PIC on dendritic cells (DCs) was investigated through a joint analysis of network pharmacology and Western blotting. Our findings revealed that under Lipopolysaccharide (LPS)-induced inflammatory conditions, PIC could restrain the maturation and function of DCs (p < 0.001) and decrease the secretion of inflammatory cytokines (p < 0.001) compared to the LPS group. Furthermore, PIC suppressed the activation and polarization of CD4+ T cells, resulting in a decreased proportion of Th1 and Th17 cells (p < 0.001), ultimately improving the symptoms of CFA-induced arthritis in comparison to the model group. The PIC-induced shift in the T helper cell differentiation correlated with the secretion of polarizing cytokines from DCs in the AIA model. Mechanistically, PIC exerted its immunosuppressive function mainly by down-regulating the Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor kappa-B (NF-κB) signaling pathways. Collectively, these data unveil the anti-inflammatory mechanisms of a traditional medicine via the inhibition of the immune activation function of DCs in vivo and open up a therapeutic approach for autoinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (L.H.); (P.H.); (Y.Z.); (J.D.); (Z.G.); (Y.X.)
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (L.H.); (P.H.); (Y.Z.); (J.D.); (Z.G.); (Y.X.)
| |
Collapse
|
7
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
8
|
Cao M, Luan J, Zhai C, Liu H, Zhang Z, Guo N. Targeting leukocyte immunoglobulin‑like receptor B2 in the tumor microenvironment: A new treatment prospect for solid tumors (Review). Oncol Lett 2025; 29:181. [PMID: 39990807 PMCID: PMC11843431 DOI: 10.3892/ol.2025.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Leukocyte immunoglobulin-like receptor B2 (LILRB2) functions as an immunosuppressive receptor that has a prominent role in immune regulation. The expression of LILRB2 is higher in a variety of solid malignant tumors compared with that in corresponding normal tissues. LILRB2 can be expressed in tumor cells and tumor stromal cells within the tumor microenvironment. Upregulation of LILRB2 in tumors is significantly associated with a poorer tumor phenotype, increased tolerance to certain therapeutic drugs, tumor immune escape and shorter patient overall survival time. Therefore, LILRB2 can be utilized as a novel biomarker to predict the prognosis of patients with solid malignant tumors, and targeting LILRB2 may be an effective strategy for targeted cancer therapy. The present review provides a general overview of the role and mechanisms of LILRB2 in the microenvironment of solid tumors, and emphasizes the significance of targeting LILRB2 as a promising approach for tumor-specific therapy.
Collapse
Affiliation(s)
- Meng Cao
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Cui Zhai
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Huan Liu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Zhenhao Zhang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Na Guo
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
9
|
Cho CH, Youm G, Lim KM, Kim M, Lee DK, Cho YB, Yu HJ, Shin HS, Lee SH. Immune-enhancing effects of enzymatic hydrolysates of peanut sprouts in RAW 264.7 macrophages and cyclophosphamide-induced immunosuppressed mouse model. Food Res Int 2025; 205:115752. [PMID: 40032444 DOI: 10.1016/j.foodres.2025.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Immune deficiency is associated with the development of various diseases. Resveratrol, the main bioactive component of peanut sprouts, exerts immunomodulatory effects. Enzymatic hydrolysis increases the yield of bioactive components from plant resources. In this study, the immune-enhancing effects of three types of peanut sprout extracts (peanut sprout non-enzyme extract (PSNE), peanut sprout cellulase extract (PSCE), and peanut sprout pectinase extract (PSPE)) were evaluated to confirm the effectiveness of enzymatic hydrolysis extract of peanut sprouts. The immune-boosting potency of the extracts was assessed by measuring proinflammatory mediators (nitric oxide (NO), and prostaglandin E2 (PGE2)), inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1)) in RAW 264.7 cells. To evaluate the immune-boosting efficacy of the extract in an in vivo model, immune organ indices and total leukocyte and natural killer (NK) cell populations were measured in a cyclophosphamide-induced immunosuppressed mouse model. PSCE had a significantly higher resveratrol content than PSNE and PSPE. Moreover, PSCE actively increased NO and PGE2 production in RAW 264.7 cells in a concentration-dependent manner, indicating its immune-promoting potential. PSCE significantly increased the expression of inflammatory cytokines and promoted the phosphorylation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells, thereby enhancing immunity. In the mouse model, oral administration of PSCE enhanced immunity by suppressing the cyclophosphamide-induced loss of immune organ index and decline of leukocyte population in the blood and NK cell population in the spleen. Our results suggest that hydrolysis using cellulase can promote the immune-enhancing effects of peanut sprout extract by increasing the extraction of resveratrol.
Collapse
Affiliation(s)
- Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Gahee Youm
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyung Min Lim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mingyeong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Da Kyoung Lee
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Yong Baik Cho
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Heong-Jun Yu
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
10
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
11
|
Chen H, Yang Q, Zheng H, Tan J, Xie J, Xu M, Ouyang X, Li Z, Chen Y. Planetary health diet index and mortality among US cancer survivors: mediating roles of systemic immune-inflammation index and neutrophil-to-lymphocyte ratio. Nutr J 2025; 24:28. [PMID: 39987440 PMCID: PMC11846200 DOI: 10.1186/s12937-025-01097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Cancer-related deaths and environmental issues pose significant global challenges. The Planetary Health Diet (PHD) is a healthy dietary pattern that simultaneously promotes human health and ecology. This study aims to investigate the association between the Planetary Health Diet Index (PHDI) and mortality among cancer survivors, as well as the mediating role of inflammation between PHDI and all-cause mortality. METHODS This study analyzed data from 3,442 cancer survivors enrolled in the United States National Health and Nutrition Examination Survey between 1999 and 2018. To investigate the association between PHDI and mortality, we applied weighted multivariate Cox proportional hazards regression, restricted cubic spline analysis, subgroup analysis, and sensitivity analysis. The mediating effects of the Systemic Immune-Inflammation Index (SII) and Neutrophil-to-Lymphocyte Ratio (NLR) were assessed using the bootstrap method with 1000 simulations. RESULTS In the fully adjusted model, each 10-point PHDI increase correlated with a 9% decrease in all-cause mortality (HR, 0.91; 95% CI, 0.86-0.95), a 10% decrease in cancer mortality (HR, 0.90; 95% CI, 0.83-0.99), and a 10% decrease in non-cancer mortality (HR, 0.90; 95% CI, 0.85-0.96). The PHDI was significantly inversely correlated with SII and NLR, which were positively related to all-cause mortality. The mediation proportions of SII and NLR between the PHDI and all-cause mortality were 6.52% and 8.52%, respectively. CONCLUSIONS Adherence to the PHD is associated with reduced all-cause, cancer, and non-cancer mortality among cancer survivors. Additionally, SII and NLR may mediate the relationship between PHDI and all-cause mortality.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Qinglong Yang
- Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Huihui Zheng
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Jianhui Tan
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Jiayi Xie
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Miaojie Xu
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Xue Ouyang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
12
|
Tang Y, Cheng H, Huang C, Zhao T, Li Y, Zhang C. MADS-box BSISTER transcription factors regulate stilbenes biosynthesis in grapes by directly binding to the promoter of STS48. Int J Biol Macromol 2025; 288:138625. [PMID: 39662544 DOI: 10.1016/j.ijbiomac.2024.138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Stilbenes constitute a class of naturally occurring polyphenolic compounds that have been identified in a wide range of plants. In wine, stilbenes play crucial roles in humans, exhibiting anti-cancer, anti-inflammatory, antioxidant properties, and aiding in the prevention of cardiovascular diseases. Therefore, studies on the synthesis and regulatory mechanisms of styrene compounds in grapes are of great economic importance. In this study, we discovered that BS (BSISTER) transcript factors, a member of the MADS-BOX gene family, regulate the biosynthesis of stilbenes in grapevine. Comprehensive transcriptome and phenolic metabolome analysis were conducted on wild-type grapevine callus, as well as on transgenic callus overexpressing 35S::VviBS1-GFP and 35S: VviBS2-GFP under the control of the 35S promoter. The results showed that VviBS1 and VviBS2 down-regulate the synthesis of stilbenes. We screened seven STS differential genes from the transcriptome and further examined the expression of these differential genes in grapevine callus by RT-qPCR, and found that VviSTS48 was the most highly expressed compared to other STS genes. In addition, yeast one-hybrid assay, dual luciferase assay, and Chip-qPCR assay were performed for validation. The results of these experiments indicate that VviBS1 and VviBS2 down-regulate astragalus synthesis by directly binding to the promoter of VviSTS48. In conclusion, our researches provide new insight into the regulatory mechanisms of stilbenes biosynthesis in grapevine, which could be effectively employed for metabolic engineering to regulate stilbenes content and represent a useful reference for further study of BS function.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Agriculture and Forestry Science and Technology, Weifang Vocational College, Weifang, 262737, China.
| | - Huiqing Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Congbo Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ting Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Wang P, Li Z, Song Y, Zhang B, Fan C. Resveratrol-driven macrophage polarization: unveiling mechanisms and therapeutic potential. Front Pharmacol 2025; 15:1516609. [PMID: 39872049 PMCID: PMC11770351 DOI: 10.3389/fphar.2024.1516609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects. For example, resveratrol can activate the senescence-associated secretory phenotype (SASP) pathway and inhibit the signal transducer and activator of transcription (STAT3) and sphingosine-1-phosphate (S1P)-YAP signaling axes, promoting M1 polarization or suppressing M2 polarization, thereby inhibiting tumor growth. Conversely, it can promote M2 polarization or suppress M1 polarization by inhibiting the NF-κB signaling pathway or activating the PI3K/Akt and AMP-activated protein kinase (AMPK) pathways, thus alleviating inflammatory responses. Notably, the effect of resveratrol on macrophage polarization is concentration-dependent; moderate concentrations tend to promote M1 polarization, while higher concentrations may favor M2 polarization. This concentration dependence offers new perspectives for clinical treatment but also underscores the necessity for precise dosage control when using resveratrol. In summary, resveratrol exhibits significant potential in regulating macrophage polarization and treating related diseases.
Collapse
Affiliation(s)
- Panting Wang
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| | - Zixi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowei Zhang
- Southwest Institute of Technical Physics, Chengdu, China
| | - Chaofeng Fan
- Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Vlasova O, Antonova I, Magomedova K, Osipova A, Shtompel P, Borunova A, Zabotina T, Belitsky G, Budunova I, Jordan A, Kirsanov K, Yakubovskaya M. Anticancer Plant Secondary Metabolites Evicting Linker Histone H1.2 from Chromatin Activate Type I Interferon Signaling. Int J Mol Sci 2025; 26:375. [PMID: 39796235 PMCID: PMC11722331 DOI: 10.3390/ijms26010375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4. Chromatin remodeling or multiH1 knocking-down is known to promote the upregulation of repetitive elements, ultimately triggering an interferon (IFN) response. Herein, using HeLa cells and applying fluorescent reporter assay with flow cytometry, immunofluorescence staining and quantitative RT-PCR, we studied effects of PSMs both evicting linker histones from chromatin and not influencing their location in nucleus. We found that (1) 8 PSMs, evicting linker histone H1.2 from chromatin, activated significantly the type I IFN signaling pathway and out of these compounds resveratrol, berberine, genistein, delphinidin, naringenin and curcumin also caused LINE1 expression. Fisetin and quercetin, which also induced linker histone H1.2 eviction from chromatin, significantly activated only type I IFN signaling, but not LINE1 expression; (2) curcumin, sanguinarine and kaempferol, causing significant depletion of the chromatin-bound linker histone H1.4 but not significantly influencing H1.2 presence in chromatin, activate type I IFN signaling less intensively without any changes in LINE1 expression; (3) four PSMs, which did not cause linker histone eviction, displayed neither IFN signaling activation nor enhancement of LINE1 expression. Thus, we have shown for the first time that chromatin destabilization observed by depletion of chromatin-bound linker histone H1.2 caused by anticancer DNA-binding PSMs is accompanied by enhancement of type I IFN signaling, and that LINE1 expression often impacts this activation.
Collapse
Affiliation(s)
- Olga Vlasova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Irina Antonova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Khamis Magomedova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Alena Osipova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
- SBHI Moscow Clinical Scientific Center Named After Loginov MHD, 111123 Moscow, Russia
| | - Polina Shtompel
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Anna Borunova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Tatiana Zabotina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Gennady Belitsky
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Kirill Kirsanov
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Marianna Yakubovskaya
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia (K.M.)
| |
Collapse
|
15
|
Zeng Z, Chen M, Liu Y, Zhou Y, Liu H, Wang S, Ji Y. Role of Akkermansia muciniphila in insulin resistance. J Gastroenterol Hepatol 2025; 40:19-32. [PMID: 39396929 DOI: 10.1111/jgh.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Insulin resistance (IR) is a pathogenic factor in numerous metabolic diseases. The gut microbiota plays a crucial role in maintaining the function of the intestinal barrier and overall human health, thereby influencing IR. Dysbiosis of the gut microbiota can contribute to the development of IR. Therefore, it is essential to maintain a balanced and diverse gut microbiota for optimal health. Akkermansia muciniphila, a widely present microorganism in the human intestine, has been shown to regulate gastrointestinal mucosal barrier integrity, reduce endotoxin penetration, decrease systemic inflammation levels, and improve insulin sensitivity. Reduced abundance of A. muciniphila is associated with an increased risk of IR and other metabolic diseases, highlighting its correlation with IR. Understanding the role and regulatory mechanism of A. muciniphila is crucial for comprehending IR pathogenesis and developing novel strategies for preventing and treating related metabolic disorders. Individual variations may exist in both the gut microbiota composition and its impact on IR among different individuals. Further investigation into individual differences between A. muciniphila and IR will facilitate advancements in personalized medicine by promoting tailored interventions based on the gut microbiota composition, which is a potential future direction that would optimize insulin sensitivity while preventing metabolic disease occurrence. In this review, we describe the physiological characteristics of A. muciniphila, emphasize its roles in underlying mechanisms contributing to IR pathology, and summarize how alterations in its abundance affect IR development, thereby providing valuable insights for further research on A. muciniphila, as well as new drug development targeting diabetes.
Collapse
Affiliation(s)
- Zhijun Zeng
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengjie Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yimin Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yun Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shaohua Wang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanhua Ji
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
16
|
Yang Q, Wang Z, Su J, Yang G, Liu H, Liu B, Cheng J, Dong B, Jafari H, Wang H, Zhang Y, Lei C, Dang R, Yu J. Comprehensive omics analysis of the fecal microbiome and serum metabolome in Dezhou donkey foals at the end of weaning and after weaning. Anim Sci J 2025; 96:e70021. [PMID: 39815660 DOI: 10.1111/asj.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 01/18/2025]
Abstract
Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed. We also identified important microorganisms that maintain intestinal stability and boost immune, such as oscillospiraceae, Firmicutes, and lachnospiraceae. The metabolome showed that serum metabolites were mainly enriched in arachidonic acid metabolism and the tricarboxylic acid cycle (TCA cycle), which can influence energy metabolism, growth, and immunity in weaned donkey foals. We also found that the metabolite resveratrol was positively correlated with g_NK4A214_group and lactobacillus, which may have important implications for the prevention of diseases such as colon-inflammation in donkey foals. In summary, we provide a theoretical basis for studying the mechanism of intestinal microbiome and serum metabolite changes in weaning and postweaning donkey foals.
Collapse
Affiliation(s)
- Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Jiangtian Su
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Haibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| | - Jie Cheng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| | - Boying Dong
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Hua Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| | - Youxin Zhang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China
| |
Collapse
|
17
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
18
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
19
|
Pekdemir B, Raposo A, Saraiva A, Lima MJ, Alsharari ZD, BinMowyna MN, Karav S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024; 16:4368. [PMID: 39770989 PMCID: PMC11677798 DOI: 10.3390/nu16244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms. Some agents that can cross the blood-brain barrier and reach neurons show neuroprotective effects in the brain due to their anti-apoptotic, anti-inflammatory and antioxidant properties. In particular, some agents act by reducing or modulating the accumulation of protein aggregates in neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and prion disease) caused by protein accumulation. Substrate accumulation causes increased oxidative stress and stimulates the brain's immune cells, microglia, and astrocytes, to secrete proinflammatory cytokines. Long-term or chronic neuroinflammatory response triggers apoptosis. Brain damage is observed with neuronal apoptosis and brain functions are impaired. This situation negatively affects processes such as motor movements, memory, perception, and learning. Neuroprotective agents prevent apoptosis by modulating molecules that play a role in apoptosis. In addition, they can improve impaired brain functions by supporting neuroplasticity and neurogenesis. Due to the important roles that these agents play in central nervous system damage or neurodegenerative diseases, it is important to elucidate many mechanisms. This review provides an overview of the mechanisms of flavonoids, which constitute a large part of the agents with neuroprotective effects, as well as vitamins, neurotransmitters, hormones, amino acids, and their derivatives. It is thought that understanding these mechanisms will enable the development of new therapeutic agents and different treatment strategies.
Collapse
Affiliation(s)
- Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
20
|
Zhao P, Ning J, Huang J, Huang X. Mechanism of Resveratrol on LPS/ATP-induced pyroptosis and inflammatory response in HT29 cells. Autoimmunity 2024; 57:2427094. [PMID: 39534992 DOI: 10.1080/08916934.2024.2427094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis plays an important role in maintenance of intestinal homeostasis, the abnormal activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome can promote the event and development of ulcerative colitis (UC). Its protective effects such as inhibiting pyroptosis in various inflammation-related diseases have been demonstrated, but whether resveratrol (RES) can also alleviate the progression of the disease by inhibiting pyroptosis in UC and the mechanism have rarely been studied. In this study, lipopolysaccharide (LPS) combined with adenosine triphosphate (ATP) was used to induce HT29 human colon cancer cells to construct an intestinal epithelial cell pyroptosis and inflammation model in vitro to investigate the anti-inflammatory effect of RES, reveal the regulatory mechanism of RES on pyroptosis, and provide a new theoretical basis for the treatment of UC. In vitro experiences, HT29 cells were dividing into control group, LPS/ATP group, RES low-dose group, RES high-dose group, NF-κB inhibitor pyrrolidine dithiocarbamate group (PDTC group), and LPS/ATP+PDTC group. The mRNA expressions of pyroptosis-related indicators such as NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), Caspase-1(CASP1), IL-18, IL-1β, and inflammatory factors such as TNF-α and IL-6 were detected by qRT-PCR. The protein expressions of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β, NF-κB-p65 in the nucleus, and IκBα and p-IκBα in the cytoplasm were detected by Western blot. Immunofluorescence saw the distribution and expression of NLRP3, ASC and NF-κB-p65 protein in each group. The morphology and degree of pyroptosis in each group were observed by transmission electron microscope. The results showed that compared with the control group, the pyroptosis-related proteins including NLRP3, ASC, CASP1, IL-18, IL-1β, and inflammatory factors including TNF-α and IL-6 in the LPS/ATP group were increased, and LPS/ATP activated the activity of NF-κB signaling pathway. Compared with the LPS/ATP group, RES downregulated the expression of pyroptosis-related proteins and inflammatory factors in HT29 cells, and inhibited the activation of the NF-κB signaling pathway in HT29 cells pyroptosis. RES down-regulates the pyroptosis of HT29 cells induced by LPS/ATP and the expression of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β and inflammatory factors TNF-α and IL-6 in the inflammatory response and inhibits the occurrence of pyroptosis. The mechanism is related to the inhibition of NF-κB pathway activity.
Collapse
Affiliation(s)
- Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 PMCID: PMC11644657 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Keramatzadeh S, Hosseini SA, Majdinasab N, Cheraghian B, Zilaee M. Effects of resveratrol supplementation on inflammatory markers, fatigue scale, fasting blood sugar and lipid profile in relapsing-remitting multiple sclerosis patients: a double-blind, randomized placebo-controlled trial. Nutr Neurosci 2024:1-9. [PMID: 39565038 DOI: 10.1080/1028415x.2024.2425649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
OBJECTIVES Resveratrol, a polyphenol found in grapes, has been studied extensively for its potential benefits on metabolic markers and inflammation. While promising results have been observed in animal studies and some human trials, the overall evidence is mixed. Moreover, elevated inflammatory markers have been closely linked to more severe symptoms of Multiple Sclerosis (MS). Therefore, strategies to reduce systemic inflammation could potentially improve outcomes for MS patients. So we aimed to examine the effectiveness of resveratrol supplementation on inflammatory markers in patients with Multiple sclerosis (MS), in a randomized placebo-controlled double-blinded parallel clinical trial. METHODS A total of 55 subjects with MS were enrolled in this study and randomly assigned to the two groups who were supplemented with resveratrol at a dose of 500 mg/day or received placebo capsules for 8 weeks. Tumor necrosis factor-alpha (TNF-α), Malondialdehyde (MDA), fasting blood sugar (FBS), triglycerides, total cholesterol, low-density lipoprotein - cholesterol (LDL-C), high-density lipoprotein - cholesterol (HDL-C), and the degree of fatigue were measured at baseline and after the intervention. RESULTS Resveratrol treatment significantly decreased TNF-α (P < 0.001), and MDA (P < 0.001) compared to the placebo. The respective increase and decrease in FBS and HDL levels were seen in both groups, while the change in participants receiving resveratrol was significantly less pronounced. Changes in the levels of TG and fatigue scale remained unchanged. CONCLUSION This study showed that resveratrol supplementation exerted anti-inflammatory and anti-oxidant effects in patients with MS.Trial registration: Iranian Registry of Clinical Trials identifier: IRCT20230315057731N1.
Collapse
Affiliation(s)
- Sara Keramatzadeh
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marzie Zilaee
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Petsini F, Detopoulou M, Choleva M, Kostakis IK, Fragopoulou E, Antonopoulou S. Exploring the Effect of Resveratrol, Tyrosol, and Their Derivatives on Platelet-Activating Factor Biosynthesis in U937 Cells. Molecules 2024; 29:5419. [PMID: 39598808 PMCID: PMC11597468 DOI: 10.3390/molecules29225419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Platelet-activating factor (PAF) is a potent lipid mediator, involved in thrombosis, inflammation, and atherosclerosis. The protective effect of wine and olive oil against atherosclerotic diseases is largely attributed to their phenolic compounds and mostly to resveratrol and tyrosol. Both compounds have been reported to inhibit PAF biosynthesis in interleukin-1β (IL-1β)-stimulated monocytes and also to attenuate PAF biosynthesis in cell lysates. The aim of this study was to investigate the effects of resveratrol, tyrosol, and their derivatives on unstimulated U937 cells and to explore the intracellular messaging pathways that participate in the activation of PAF biosynthesis in the same cell line. Tyrosol and its derivatives did not exert any substantial effect on PAF biosynthesis. Resveratrol (50 and 100 μM), as well as its methoxy derivative (5-20 μM), caused a reduction in the PAF biosynthetic enzymes' activity by 20-43% after 24 h of incubation. On the other hand, lower resveratrol concentration (10 μM) and higher concentration of the methoxy derivative (50 μM) increased the Ca2+-dependent lyso-PAF acetyltransferase (LysoPAF-ATC) activity by 28-45% after half-hour incubation via p38 mitogen-activated protein kinase (p38-MAPK) action. IL-1β activated PAF biosynthetic pathways via different signaling pathways, with phospholipase C-β (PLC-β) being a key enzyme.
Collapse
Affiliation(s)
- Filio Petsini
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece; (F.P.); (M.D.); (M.C.); (E.F.)
| | - Maria Detopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece; (F.P.); (M.D.); (M.C.); (E.F.)
| | - Maria Choleva
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece; (F.P.); (M.D.); (M.C.); (E.F.)
| | - Ioannis K. Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece; (F.P.); (M.D.); (M.C.); (E.F.)
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece; (F.P.); (M.D.); (M.C.); (E.F.)
| |
Collapse
|
24
|
Chen H, Zhao H. Resveratrol Enhances the Efficacy of Combined BM-MSCs Therapy for Rat Spinal Cord Injury via Modulation of the Sirt-1/NF-κB Signaling Pathway. Neurochem Res 2024; 50:12. [PMID: 39549125 DOI: 10.1007/s11064-024-04264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 11/18/2024]
Abstract
Spinal cord injury (SCI) represents a severe trauma to the central nervous system, resulting in significant disability and imposing heavy burdens on families and society. Pathophysiological changes following SCI often trigger secondary injuries that complicate treatment. Bone marrow mesenchymal stem cells (BM-MSCs) have become a focal point of research due to their multifunctionality and self-renewal capabilities; however, their survival and neuroprotective functions are compromised in inflammatory environments. Resveratrol, known for its anti-inflammatory, anti-aging, and anti-oxidative stress properties, has been extensively studied. This research focuses on the anti-inflammatory effects of resveratrol post-SCI and its combined application with BM-MSCs to treat rat spinal cord injuries, exploring both efficacy and mechanisms. In vivo experiments investigated changes in the Sirt-1 signaling pathway post-SCI, while in vitro studies examined the effects of resveratrol on BM-MSCs under inflammatory conditions. The assessment included recovery of motor function, neuronal survival, and apoptosis in SCI rats treated with resveratrol alone or in combination with BM-MSCs. Findings reveal a correlation between Sirt-1 and inflammation signaling pathways post-injury. Resveratrol significantly enhanced the survival and efficacy of BM-MSCs in inflammatory environments by upregulating Sirt-1 and downregulating NF-κB and other inflammatory markers, thereby reducing apoptosis. Combined treatment with resveratrol and BM-MSCs showed superior outcomes in motor function recovery and neuronal survival compared to treatment with BM-MSCs alone. This study offers a novel therapeutic strategy for SCI, enhancing stem cell survival and function through modulation of the Sirt-1/NF-κB pathway, providing a theoretical and experimental foundation for clinical applications.
Collapse
Affiliation(s)
- Hao Chen
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Haosen Zhao
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China.
| |
Collapse
|
25
|
Gao J, Su G, Liu J, Shen M, Zhang Z, Wang M. Formyl peptide receptors in the microglial activation: New perspectives and therapeutic potential for neuroinflammation. FASEB J 2024; 38:e70151. [PMID: 39520282 DOI: 10.1096/fj.202401927r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Secondary neurological impairment mediated by neuroinflammation is recognized as a crucial pathological factor in central nervous system (CNS) diseases. Currently, there exists a lack of specific therapies targeting neuroinflammation. Given that microglia constitute the primary immune cells involved in the neuroinflammatory response, a thorough comprehension of their role in CNS diseases is imperative for the development of efficacious treatments. Recent investigations have unveiled the significance of formyl peptide receptors (FPRs) in various neuroinflammatory diseases associated with microglial overactivation. Consequently, FPRs emerge as promising targets for modulating the neuroinflammatory response. This review aims to comprehensively explore the therapeutic potential of targeting FPRs in the management of microglia-mediated neuroinflammation. It delineates the molecular characteristics and functions of FPRs, elucidates their involvement in the inflammatory response linked to microglial overactivation, and synthesizes therapeutic strategies for regulating microglia-mediated neuroinflammation via FPR modulation, thereby charting a novel course for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Han A, Chang YH. Physicochemical, structural, and in-vitro release properties of carboxymethyl cellulose-based cryogel beads incorporating resveratrol-loaded microparticles for colon-targeted delivery system. Food Chem 2024; 457:140153. [PMID: 38908240 DOI: 10.1016/j.foodchem.2024.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The objective of this study was to investigate the physicochemical, structural, and in vitro release properties of carboxymethyl cellulose (CMC)-based cryogel beads incorporating resveratrol-loaded microparticles (MP) for colon-targeted delivery system. CMC-based cryogel beads were produced by ionic cross-linking with different concentrations (2%, 3%, and 4%) of AlCl3. Based on FE-SEM images, CMC-based cryogel beads showed a smoother surface and more compact internal structure with increasing AlCl3 concentrations, which was proven to be due to the new cross-linking between the -COO- group of CMC and Al3+ by FT-IR analysis. The encapsulation efficiency of the cryogel beads was significantly increased from 79.48% to 85.74% by elevating the concentrations of AlCl3 from 2% to 4%, respectively. In vitro release study showed that all CMC-based cryogel beads had higher stability for resveratrol than MP in simulated gastric conditions and can efficiently deliver resveratrol to colon without the premature release.
Collapse
Affiliation(s)
- Areum Han
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
27
|
Wu SK, Wang L, Wang F, Zhang J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1α signal pathway in SAP. Sci Rep 2024; 14:26216. [PMID: 39482340 PMCID: PMC11528064 DOI: 10.1038/s41598-024-76825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
NLRP3 inflammasomes- pyroptosis axis is activated by microcirculation dysfunction and touched off severe acute pancreatitis (SAP). Activation of PGC-1α can improve microcirculation dysfunction by promoting mitochondrial biogenesis. Resveratrol (RSV), one typical SIRT1 agonist, possesses the ability of alleviating SAP and activing PGC-1α. Therefore, the study was designated to explore whether the protective effect of RSV in SAP was though suppressing NLRP3 inflammasomes- pyroptosis axis via advancing SIRT1/PGC-1α-dependent mitochondrial biogenesis. The models of SAP were induced by treating with sodium taurodeoxycholate in rats and AR42J cells. The pathological injury, water content (dry/wet ratio) and microcirculation function of pancreas, activity of lipase and amylase were used to evaluate pancreatic damage. The expression of inflammatory cytokine was measured by ELISA and RT-PCR. The damage of mitochondrial was evaluated by measuring the changes in Mitochondrial Membrane Potential (ΔΨm), mitochondrial ROS, ATP content and MDA as well as relocation of mtDNA and the activity of SOD and GSH. The expressions of NLRP3 inflammasomes- pyroptosis axis proteins were detected by Western blotting as well as SIRT1/PGC-1α/NRF1/TFAM pathway protein. Moreover, the modification of PGC-1α was measured by co-immunoprecipitation. The results displayed that RSV can significantly improve the damage of pancreas and mitochondrial, decrease the expression of pro-inflammatory factor and the activation of NLRP3 inflammasomes- pyroptosis axis, promote the expression of an-inflammatory factor and the deacetylation of PGC-1α together with facilitating SIRT1/PGC-1α-mediating mitochondrial biogenesis. Therefore, the protective effect of RSV in SAP is though inactivation of NLRP3 inflammasomes- pyroptosis axis via promoting mitochondrial biogenesis in a SIRT1/PGC-1α-dependent manner.
Collapse
Affiliation(s)
- Shu-Kun Wu
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Wang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China
| | - Fang Wang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China.
| | - Jiong Zhang
- Division of Nephrology, Sichuan Provincial People's Hospital & Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, China.
| |
Collapse
|
28
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
29
|
Gołąbek-Grenda A, Juzwa W, Kaczmarek M, Olejnik A. Resveratrol and Its Natural Analogs Mitigate Immune Dysregulation and Oxidative Imbalance in the Endometriosis Niche Simulated in a Co-Culture System of Endometriotic Cells and Macrophages. Nutrients 2024; 16:3483. [PMID: 39458478 PMCID: PMC11510005 DOI: 10.3390/nu16203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Inflammation and immune cell dysfunction are critical facilitators of endometriosis pathophysiology. Macrophages are renowned for stimulating lesion growth, vascularization, innervation, and pain generation. By combining macrophages and endometriotic cells, we determined if resveratrol and its natural analogs can target the immune dysregulation and oxidative imbalance in endometriosis. Methods: After treatment with compounds (5, 10, 25 µM), we evaluated the expression of key inflammatory and oxidative stress markers, cytokines release, and ROS production by applying q-PCR, ELISA, Cytometric Beads Array, and multiplexed fluorogenic staining and flow cytometry analysis with bioimaging. Results: The results showed that endometriosis-related macrophages treated with stilbenes have impaired expression of pro-inflammatory markers (IL6, IL8, IL1B, TNF, CCL2, CXCL10, PTGS2). The effect of resveratrol, pterostilbene, and piceatannol was observed, especially in reducing IL1B, CCL2, and CXCL10 genes up to 3.5-, 5-, and 7.7-fold at 25 µM, respectively. Also, with piceatannol or polydatin exposure, the IL-6 decrease was noticeable. This study reported an antioxidant effect by reducing ROS-positive cells from 96% to 48% by pterostilbene. Results from flow cytometry correlated with the transcript activation of detoxification enzymes (SOD, GPX). Conclusions: Prospects for potential therapy based on regulating the immune microenvironment and reducing the accumulation of free radicals with stilbenes application were described in the article.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., 61-866 Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| |
Collapse
|
30
|
Li X, Sha Y, Li S, Wang Z, Yang Y, Jiao T, Zhao S. Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages. Front Immunol 2024; 15:1462805. [PMID: 39464877 PMCID: PMC11502325 DOI: 10.3389/fimmu.2024.1462805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Resveratrol (Res), a natural plant antitoxin polyphenol, is widely used in animal husbandry due to its antioxidant and anti-inflammatory properties, and current research has focused on humans, sows, and female mice. This study aimed to analyze the effects of dietary Res supplementation in ewes on antioxidant activity, immune responses, hormone levels, rumen microbiota and metabolites across various reproductive stages (estrus, pregnancy, and lactation). Methods Twenty-four healthy ewe lambs (Hu sheep, 2 months old) with a similar body weight (BW) (mean: 21.79 ± 2.09 kg) were selected and randomly divided into two groups: the control group (Con) and the Res group (Res). The Res group received 10 mg/kg Res (based on BW) in addition to their basal diet. Results Res increased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in ewes at sexual maturity (p < 0.05). Additionally, Res supplementation induced significant increases in serum glutathione peroxidase (GSH-Px), IgG, FSH, and LH levels during estrus (p < 0.05); serum IgA, IgG and IgM during pregnancy and lactation (p < 0.05); and serum LH, glucose, GSH-Px, and catalase (CAT) levels during lactation (p < 0.05). Meanwhile, serum interleukin 1β (IL-1β) (p =0.005) and cholesterol levels (p = 0.041) during the lactation stage decreased following Res supplementation. Notably, colostrum IgA, IgG, and fat concentrations were significantly higher in the Res group than in the Con group (p < 0.05). Moreover, Res altered the rumen microbiota in ewes. Specifically, the relative abundance of Prevotella (p < 0.05) during pregnancy and Rikenellaceae_RC9_gut_group (p < 0.001) during lactation were significantly increased in ewes under Res treatment. The abundance of Rikenellaceae_RC9_gut_group was positively correlated with the levels of Ig A, Ig M, E2, FSH, LH, GSH-PX, and CAT. Additionally, Res altered the activity of metabolic pathways such as progesterone-mediated oocyte maturation, the estrogen signaling pathway, ovarian steroidogenesis, and the AMPK signaling pathway, and the levels of AICAR and 2-hydroxyestradiol metabolites, both during pregnancy and lactation. Discussion There findings show that Res can improve health, antioxidant status, and immune activity throughout the reproductive cycle in ewes by regulating rumen microorganisms and metabolites.
Collapse
Affiliation(s)
- Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuyan Li
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Zhengwen Wang
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Jiao
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
31
|
Kumar AR, Nair B, Kamath AJ, Nath LR, Calina D, Sharifi-Rad J. Impact of gut microbiota on metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma: pathways, diagnostic opportunities and therapeutic advances. Eur J Med Res 2024; 29:485. [PMID: 39367507 PMCID: PMC11453073 DOI: 10.1186/s40001-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and progression to hepatocellular carcinoma (HCC) exhibits distinct molecular and immune characteristics. These traits are influenced by multiple factors, including the gut microbiome, which interacts with the liver through the "gut-liver axis". This bidirectional relationship between the gut and its microbiota and the liver plays a key role in driving various liver diseases, with microbial metabolites and immune responses being central to these processes. Our review consolidates the latest research on how gut microbiota contributes to MASH development and its progression to HCC, emphasizing new diagnostic and therapeutic possibilities. We performed a comprehensive literature review across PubMed/MedLine, Scopus, and Web of Science from January 2000 to August 2024, focusing on both preclinical and clinical studies that investigate the gut microbiota's roles in MASH and HCC. This includes research on pathogenesis, as well as diagnostic and therapeutic advancements related to the gut microbiota. This evidence emphasizes the critical role of the gut microbiome in the pathogenesis of MASH and HCC, highlighting the need for further clinical studies and trials. This is to refine diagnostic techniques and develop targeted therapies that exploit the microbiome's capabilities, aiming to enhance patient care in liver diseases.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health. Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
33
|
Biswas S, Biswas S, PadmaPriya G, Kaur J, Pramanik A, Islam F, Tariq F, Imran A, Shah MA. Role of nutraceuticals in viral infections as immunomodulators: A comprehensive review. EFOOD 2024; 5. [DOI: 10.1002/efd2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractNutraceuticals are dietary supplements produced from food sources that are intended to improve health through immune system modulation or by helping to prevent and treat a variety of ailments. Their anti‐inflammatory, immunomodulatory, and antioxidant qualities are well recognized. In certain instances, they even show direct microbiological efficacy against viral infections. Because of their special capacity, they may be able to help slow the spread and effects of very infectious illnesses, such as pandemics like COVID‐19. Nutraceuticals work well against viral infections because of a number of intricate processes. Reducing the harm that infections do to the immune system is one of the main effects. Nutraceuticals have the power to stimulate and activate the immune system, improving the body's capacity to identify and eliminate infections. Additionally, they are essential in reducing oxidative damage, which can result in serious consequences and is frequently intensified during viral infections. Nutraceuticals also strengthen immunity by promoting regulatory T cell differentiation and proliferation, which is crucial for preserving immune system homeostasis and limiting hyperinflammatory reactions. They control the production of proinflammatory cytokines, which helps to avoid cytokine storms during viral infections that may seriously harm tissue. This regulation lowers the danger of hyperinflammation and enhances overall results by supporting a balanced immune response. Through a number of biochemical mechanisms, nutraceuticals can strengthen the body's defenses against viral infections. They promote a more effective and efficient immune response by regulating immune cell activities, oxidative stress reduction, and antioxidant pathway activation. Furthermore, by interacting with different cellular signaling pathways, nutraceuticals can affect the synthesis and function of important immune components. This study clarifies the molecular processes behind the immunomodulatory effects of nutraceuticals, highlighting their crucial role in both treating and preventing viral infections.
Collapse
Affiliation(s)
- Sunanda Biswas
- Department of Food & Nutrition Acharya Prafulla Chandra College Kolkata West Bengal India
| | - Souti Biswas
- Department of Pediatrics Barasat District Hospital Kolkata West Bengal India
| | - Gopalakrishnan PadmaPriya
- Department of Chemistry and Biochemistry School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Jaspreet Kaur
- Department of Nutrition and Dietetics Chandigarh Group of Colleges Mohali Punjab India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation Uttaranchal University Dehradun Uttarakhand India
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
- Department of Clinical Nutrition NUR International University Lahore Pakistan
| | - Fatima Tariq
- Department of Clinical Nutrition NUR International University Lahore Pakistan
| | - Ali Imran
- Department of Food Sciences Government College University Faisalabad Faisalabad Pakistan
| | - Mohd Asif Shah
- Department of Economics Kardan University Kabul Afghanistan
- Division of Research and Development Lovely Professional University Phagwara Punjab India
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology Chitkara University Rajpura Punjab India
| |
Collapse
|
34
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
35
|
Ji P, Zhou Z, Zhang J, Bai T, Li C, Zhou B, Wang M, Tan Y, Wang S. Non-apoptotic cell death in osteoarthritis: Recent advances and future. Biomed Pharmacother 2024; 179:117344. [PMID: 39191021 DOI: 10.1016/j.biopha.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/23/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. Multiple tissues are altered during the development of OA, resulting in joint pain and permanent damage to the osteoarticular joints. Current research has demonstrated that non-apoptotic cell death plays a crucial role in OA. With the continuous development of targeted therapies, non-apoptotic cell death has shown great potential in the prevention and treatment of OA. We systematically reviewed research progress on the role of non-apoptotic cell death in the pathogenesis, development, and outcome of OA, including autophagy, pyroptosis, ferroptosis, necroptosis, immunogenic cell death, and parthanatos. This article reviews the mechanism of non-apoptotic cell death in OA and provides a theoretical basis for the identification of new targets for OA treatment.
Collapse
Affiliation(s)
- Pengfei Ji
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Ziyu Zhou
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Tianding Bai
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Binghao Zhou
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Mengjie Wang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Yingdong Tan
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China.
| | - Shengwang Wang
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China.
| |
Collapse
|
36
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
37
|
Ghemrawi R, Abuamer L, Kremesh S, Hussien G, Ahmed R, Mousa W, Khoder G, Khair M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024; 12:2158. [PMID: 39335671 PMCID: PMC11429153 DOI: 10.3390/biomedicines12092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer immunotherapy has emerged as a transformative approach in oncology, utilizing the body's immune system to specifically target and destroy malignant cells. This review explores the scope and impact of various immunotherapeutic strategies, including monoclonal antibodies, chimeric antigen receptor (CAR)-T cell therapy, checkpoint inhibitors, cytokine therapy, and therapeutic vaccines. Monoclonal antibodies, such as Rituximab and Trastuzumab, have revolutionized treatment paradigms for lymphoma and breast cancer by offering targeted interventions that reduce off-target effects. CAR-T cell therapy presents a potentially curative option for refractory hematologic malignancies, although challenges remain in effectively treating solid tumors. Checkpoint inhibitors have redefined the management of cancers like melanoma and lung cancer; however, managing immune-related adverse events and ensuring durable responses are critical areas of focus. Cytokine therapy continues to play a vital role in modulating the immune response, with advancements in cytokine engineering improving specificity and reducing systemic toxicity. Therapeutic vaccines, particularly mRNA-based vaccines, represent a frontier in personalized cancer treatment, aiming to generate robust, long-lasting immune responses against tumor-specific antigens. Despite these advancements, the field faces significant challenges, including immune resistance, tumor heterogeneity, and the immunosuppressive tumor microenvironment. Future research should address these obstacles through emerging technologies, such as next-generation antibodies, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based gene editing, and AI-driven drug discovery. By integrating these novel approaches, cancer immunotherapy holds the promise of offering more durable, less toxic, and highly personalized treatment options, ultimately improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Lama Abuamer
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghadeer Hussien
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rahaf Ahmed
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
38
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
39
|
Livraghi V, Mazza L, Chiappori F, Cardano M, Cazzalini O, Puglisi R, Capoferri R, Pozzi A, Stivala LA, Zannini L, Savio M. A proteasome-dependent inhibition of SIRT-1 by the resveratrol analogue 4,4'-dihydroxy- trans-stilbene. J Tradit Complement Med 2024; 14:534-543. [PMID: 39262665 PMCID: PMC11384077 DOI: 10.1016/j.jtcme.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Resveratrol (RSV), is a stilbene-based compound exerting wide biological properties. Its analogue 4,4'-dihydroxy-trans-stilbene (DHS) has shown improved bioavailability and antiproliferative activity in vitro and in vivo. One of the hypotheses on how resveratrol works is based on SIRT1 activation. Since their strict structural similarities, we have explored a potential interaction between DHS and SIRT1, in comparison with the parental molecule. Experimental procedure Timing of incubation and concentrations of DHS have been determined using MTT assay in normal human lung fibroblasts. Untreated, DHS- or RSV-treated cells were harvested and analysed by Western Blotting or RT-PCR, in order to evaluate SIRT1 levels/activity and expression, and by Cellular Thermal shift assay (CETSA) to check potential DHS or RSV-SIRT1 interaction. Transfection experiments have been performed with two SIRT1 mutants, based on the potential binding pockets identified by Molecular Docking analysis. Results and conclusion We unexpectedly found that DHS, but not RSV, exerted a time-dependent inhibitory effect on both SIRT1 protein levels and activity, the latter measured as p53 acetylation. At the mRNA level no significant changes were observed, whereas a proteasome-dependent mechanism was highlighted for the reduction of SIRT1 levels by DHS in experiments performed with the proteasome inhibitor MG132. Bioinformatics analysis suggested a higher affinity of RSV in binding all SIRT1 complexes compared to DHS, except comparable results for complex SIRT1-p53. Nevertheless, both CETSA and SIRT1 mutants transfected in cells did not confirm this interaction. In conclusion, DHS reduces SIRT1 protein level, thereby inhibiting its activity through a proteasome-mediated mechanism.
Collapse
Affiliation(s)
- Vittoria Livraghi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Laura Mazza
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Federica Chiappori
- National Research Council - Institute for Biomedical Technologies (CNR - ITB), Segrate, Mi, Italy
| | - Miriana Cardano
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza - National Research Council (IGM-CNR), Pavia, Italy
| | - Ornella Cazzalini
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Roberto Puglisi
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Rossana Capoferri
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Anna Pozzi
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Laura Zannini
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza - National Research Council (IGM-CNR), Pavia, Italy
| | - Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
41
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
42
|
DJALDETTI MEIR. Immunomodulatory and chemopreventive effects of resveratrol on the digestive system cancers. Oncol Res 2024; 32:1389-1399. [PMID: 39220125 PMCID: PMC11361903 DOI: 10.32604/or.2024.049745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Resveratrol (RSV), the primary polyphenol found in grapes, has been revealed to have anti-inflammatory properties by reducing the capacity of the peripheral blood mononuclear cells to produce pro-inflammatory cytokines, including IL-1β, IL-6, IL-1ra and TNFα. Considering the close association between chronic inflammation and cancer development, RSV's immunomodulatory properties are one way by which the polyphenol may inhibit cancer initiation, proliferation, neovascularization, and migration. Resveratrol influences the generation of microtumor environment which is one of the key factors in cancer progress. In addition to immunomodulation, RSV inhibits cancer development by expressing anti-oxidant effects, causing cell cycle arrest, stimulating the function of certain enzymes, and activating cell signaling pathways. The end outcome is one of the various forms of cell death, including apoptosis, pyroptosis, necroptosis, and more, as it has been observed in vitro. RSV has been shown to act against cancer in practically every organ, while its effects on colon cancer have been documented more frequently. It is remarkable that longer-term clinical studies that may have established the potential for this natural substance to serve as a therapeutic adjuvant to traditional anti-cancer medications were not prompted by the encouraging outcomes seen with cancer cells treated with non-toxic doses of resveratrol. The current review aims to assess the recent findings about the immunological and anti-cancer characteristics of RSV, with a particular emphasis on cancers of the digestive tract, as a challenge for future clinical research that may contribute to the better prognosis of cancer.
Collapse
Affiliation(s)
- MEIR DJALDETTI
- />Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah-Tiqva, the Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| |
Collapse
|
43
|
Wang S, Liu W, Wei B, Wang A, Wang Y, Wang W, Gao J, Jin Y, Lu H, Ka Y, Yue Q. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118182. [PMID: 38621464 DOI: 10.1016/j.jep.2024.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute gouty arthritis (AGA) is characterized by a rapid inflammatory reaction caused by the build-up of monosodium urate (MSU) crystals in the tissues surrounding the joints. This condition often associated with hyperuricemia (HUA), is distinguished by its symptoms of intense pain, active inflammation, and swelling of the joints. Traditional approaches in AGA management often fall short of desired outcomes in clinical settings. However, recent ethnopharmacological investigations have been focusing on the potential of Traditional Herbal Medicine (THM) in various forms, exploring their therapeutic impact and targets in AGA treatment. AIM OF THE REVIEW This review briefly summarizes the current potential pharmacological mechanisms of THMs - including active ingredients, extracts, and prescriptions -in the treatment of AGA, and discusses the relevant potential mechanisms and molecular targets in depth. The objective of this study is to offer extensive information and a reference point for the exploration of targeted AGA treatment using THMs. MATERIALS AND METHODS This review obtained scientific publications focused on in vitro and in vivo studies of anti-AGA THMs conducted between 2013 and 2023. The literature was collected from various journals and electronic databases, including PubMed, Elsevier, ScienceDirect, Web of Science, and Google Scholar. The retrieval and analysis of relevant articles were guided by keywords such as "acute gouty arthritis and Chinese herbal medicine," "acute gouty arthritis herbal prescription," "acute gouty arthritis and immune cells," "acute gouty arthritis and inflammation," "acute gouty arthritis and NOD-like receptor thermoprotein domain associated protein 3 (NLRP3)," "acute gouty arthritis and miRNA," and "acute gouty arthritis and oxidative stress." RESULTS We found that AGA has a large number of therapeutic targets, highlighting the effectiveness the potential of THMs in AGA treatment through in vitro and in vivo studies. THMs and their active ingredients can mitigate AGA symptoms through a variety of therapeutic targets, such as influencing macrophage polarization, neutrophils, T cells, natural killer (NK) cells, and addressing factors like inflammation, NLRP3 inflammasome, signaling pathways, oxidative stress, and miRNA multi-target interactions. The anti-AGA properties of THMs, including their active components and prescriptions, were systematically summarized and categorized based on their respective therapeutic targets. CONCLUSION phenolic, flavonoid, terpenoid and alkaloid compounds in THMs are considered the key ingredients to improve AGA. THMs and their active ingredients achieve enhanced efficacy through interactions with multiple targets, of which NLRP3 is a main therapeutic target. Nonetheless, given the intricate composition of traditional Chinese medicine (TCM), additional research is required to unravel the underlying mechanisms and molecular targets through which THMs alleviate AGA.
Collapse
Affiliation(s)
- Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Bowen Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyue Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yue Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Hang Lu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Qingyun Yue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
44
|
Iravani Saadi M, Moayedi J, Hosseini F, Rostamipour HA, Karimi Z, Rahimian Z, Ahmadyan M, Ghahramani Z, Dehghani M, Yousefi K, Kheradmand N, Ramzi M, Fooladivanda N. The Effects of Resveratrol, Gallic Acid, and Piperine on the Expression of miR-17, miR-92b, miR-181a, miR-222, BAX, BCL-2, MCL-1, WT1, c-Kit, and CEBPA in Human Acute Myeloid Leukemia Cells and Their Roles in Apoptosis. Biochem Genet 2024; 62:2958-2974. [PMID: 38062274 DOI: 10.1007/s10528-023-10582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/28/2023] [Indexed: 07/31/2024]
Abstract
MicroRNAs (miRs) play a crucial role in the leukemogenesis and the prognosis of acute myeloid leukemia (AML). This study investigated the therapeutic effects of resveratrol, gallic acid, and piperine as natural anticancer agents on the HL-60 cell line and their roles in apoptosis. In this experimental study, quantitative analysis of miRs, including miR-17, miR-92b, miR-181a, and miR-222, were performed in 150 newly diagnosed patients with AML by real-time PCR assay. HL-60 cell viability as well as the expression of miRs, BAX, BCL-2, MCL-1, WT1, c-Kit, and CEBPA, were also assessed after transfection with the LNA-miRs and treatment with resveratrol, gallic acid, and piperine. The expression of miR-17 and miR-181a decreased significantly in LNA-anti-miRs. Although HL-60 cell viability decreased in LNA-anti-miR-222, miR-17, and miR-92b, blockade of miR-181a increased the cell viability. Besides, the cell viability increased merely in the piperine-treated group. Compared to untreated cells, miR-17 and miR-92b expression significantly increased in gallic acid- and resveratrol-treated cells. In HL-60 cells treated with resveratrol, gallic acid, and piperine, the expression of miR-181a was also increased significantly. The expression of BAX was also increased in resveratrol and piperine-treated groups. Compared to untreated cells, the expression of c-Kit increased significantly in the piperine-treated group; however, it decreased in the resveratrol-treated group. LNA-anti-miRs may be a promising agent for the treatment of AML. All three compounds used in this study showed anticancer effects, which can exert the desired outcome in patients with AML.
Collapse
Affiliation(s)
| | - Javad Moayedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhroddin Hosseini
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahed Karimi
- Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Zahra Rahimian
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ahmadyan
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Karim Yousefi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiya Kheradmand
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Hematology, Oncology and Bone Marrow Transplantation Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
45
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin attenuates CCI-induced neuropathic pain in male rats by promoting the Nrf2 antioxidant pathway to inhibit ROS/TLR4/NF-κB-mediated activation of the NLRP3 inflammasome. J Neurosci Res 2024; 102:e25372. [PMID: 39086264 DOI: 10.1002/jnr.25372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
The objective of this study was to investigate the potential mechanisms by which (+)-catechin alleviates neuropathic pain. Thirty-two male Sprague-Dawley rats were divided into four groups: the sham group, the chronic constriction injury (CCI)group, the CCI+ ibuprofen group, and the CCI+ (+)-catechin group. CCI surgery induces thermal hyperalgesia in rats and (+)-catechin ameliorated CCI-induced thermal hyperalgesia and repaired damaged sciatic nerve in rats. CCI decreased SOD levels in male rat spinal cord dorsal horn and promoted MDA production, induced oxidative stress by increasing NOX4 levels and decreasing antioxidant enzyme HO-1 levels, and also increased protein levels of TLR4, p-NF-κB, NLRP3 inflammasome components, and IL-1β. In contrast, (+)-catechin reversed the above results. In i vitro experiments, (+)-catechin reduced the generation of reactive oxygen species (ROS) in GMI-R1 cells after LPS stimulation and attenuated the co-expression of IBA-1 and NLRP3. It also showed significant inhibition of the NF-κB and NLRP3 inflammatory pathways and activation of the Nrf2-mediated antioxidant system. Overall, these findings suggest that (+)-catechin inhibits the activation of the NLRP3 inflammasome through the triggering of the Nrf2-induced antioxidant system, the inhibition of the TLR4/NF-κB pathway, and the production of ROS to alleviate CCI-induced neuropathic pain in male rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
47
|
Gong W, Sun P, Li X, Wang X, Zhang X, Cui H, Yang J. Investigating the Molecular Mechanisms of Resveratrol in Treating Cardiometabolic Multimorbidity: A Network Pharmacology and Bioinformatics Approach with Molecular Docking Validation. Nutrients 2024; 16:2488. [PMID: 39125368 PMCID: PMC11314475 DOI: 10.3390/nu16152488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Resveratrol is a potent phytochemical known for its potential in treating cardiometabolic multimorbidity. However, its underlying mechanisms remain unclear. Our study systematically investigates the effects of resveratrol on cardiometabolic multimorbidity and elucidates its mechanisms using network pharmacology and molecular docking techniques. METHODS We screened cardiometabolic multimorbidity-related targets using the OMIM, GeneCards, and DisGeNET databases, and utilized the DSigDB drug characterization database to predict resveratrol's effects on cardiometabolic multimorbidity. Target identification for resveratrol was conducted using the TCMSP, SymMap, DrugBank, Swiss Target Prediction, CTD, and UniProt databases. SwissADME and ADMETlab 2.0 simulations were used to predict drug similarity and toxicity profiles of resveratrol. Protein-protein interaction (PPI) networks were constructed using Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed via the DAVID online platform, and target-pathway networks were established. Molecular docking validated interactions between core targets and resveratrol, followed by molecular dynamics simulations on the optimal core proteins identified through docking. Differential analysis using the GEO dataset validated resveratrol as a core target in cardiometabolic multimorbidity. RESULTS A total of 585 cardiometabolic multimorbidity target genes were identified, and the predicted results indicated that the phytochemical resveratrol could be a major therapeutic agent for cardiometabolic multimorbidity. SwissADME simulations showed that resveratrol has potential drug-like activity with minimal toxicity. Additionally, 6703 targets of resveratrol were screened. GO and KEGG analyses revealed that the main biological processes involved included positive regulation of cell proliferation, positive regulation of gene expression, and response to estradiol. Significant pathways related to MAPK and PI3K-Akt signaling pathways were also identified. Molecular docking and molecular dynamics simulations demonstrated strong interactions between resveratrol and core targets such as MAPK and EGFR. CONCLUSIONS This study predicts potential targets and pathways of resveratrol in treating cardiometabolic multimorbidity, offering a new research direction for understanding its molecular mechanisms. Additionally, it establishes a theoretical foundation for the clinical application of resveratrol.
Collapse
Affiliation(s)
- Wei Gong
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan 750004, China
| | - Peng Sun
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Science and Technology Center, Ningxia Medical University, Yinchuan 750001, China
- Ningxia Hui Autonomous Region Institute of Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiujing Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xi Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinyu Zhang
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan 750004, China
| | - Huimin Cui
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Jianjun Yang
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| |
Collapse
|
48
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
49
|
Yang Q, Meng D, Zhang Q, Wang J. Advances in the role of resveratrol and its mechanism of action in common gynecological tumors. Front Pharmacol 2024; 15:1417532. [PMID: 39086397 PMCID: PMC11288957 DOI: 10.3389/fphar.2024.1417532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
The incidence of common gynecological malignancies remains high, with current treatments facing multiple limitations and adverse effects. Thus, continuing the search for safe and effective oncologic treatment strategies continues. Resveratrol (RES), a natural non-flavonoid polyphenolic compound, is widely found in various plants and fruits, such as grapes, Reynoutria japonica Houtt., peanuts, and berries. RES possesses diverse biological properties, including neuroprotective, antitumor, anti-inflammatory, and osteoporosis inhibition effects. Notably, RES is broadly applicable in antitumor therapy, particularly for treating gynecological tumors (cervical, endometrial, and ovarian carcinomas). RES exerts antitumor effects by promoting tumor cell apoptosis, inhibiting cell proliferation, invasion, and metastasis, regulating tumor cell autophagy, and enhancing the efficacy of antitumor drugs while minimizing their toxic side effects. However, comprehensive reviews on the role of RES in combating gynecological tumors and its mechanisms of action are lacking. This review aims to fill this gap by examining the RES antitumor mechanisms of action in gynecological tumors, providing valuable insights for clinical treatment.
Collapse
Affiliation(s)
- Qian Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingchen Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
50
|
Russo C, Valle MS, D’Angeli F, Surdo S, Malaguarnera L. Resveratrol and Vitamin D: Eclectic Molecules Promoting Mitochondrial Health in Sarcopenia. Int J Mol Sci 2024; 25:7503. [PMID: 39062745 PMCID: PMC11277153 DOI: 10.3390/ijms25147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells. These antioxidants can slow down muscle atrophy by regulating mitochondrial functions and neuromuscular junctions. This review provides an overview of the molecular mechanisms leading to skeletal muscle atrophy and summarizes recent advances in using resveratrol and vitamin D supplementation for its prevention and treatment. Understanding these molecular mechanisms and implementing combined interventions can optimize treatment outcomes, ensure muscle function recovery, and improve the quality of life for patients.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| |
Collapse
|