1
|
Gu D, Huang S, Zhao K, Zhang X, Zhang J, Xiong W. Global trends in resistance studies of gemcitabine and pancreatic cancer: a bibliometric and visual analysis from 2010 to 2024. Front Pharmacol 2025; 16:1564561. [PMID: 40351434 PMCID: PMC12062017 DOI: 10.3389/fphar.2025.1564561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Pancreatic adenocarcinoma (PC) represents a prevalent and highly aggressive malignancy within the digestive system, characterized by an exceedingly poor prognosis and a dismal 5-year survival rate of below 7%. Gemcitabine (GEM) remains the cornerstone chemotherapeutic agent in the management of PC; however, the growing challenge of GEM chemoresistance, which undermines treatment efficacy, represents a significant obstacle in clinical practice. To date, no comprehensive bibliometric analysis has been undertaken to systematically explore studies on GEM resistance in the context of PC. This study aims to deliver a thorough evaluation of the research hotspots pertaining to GEM resistance in PCs. Method A systematic search was conducted for articles published from 1 January 2010, to 15 December 2024, focusing on resistance studies of GEM in PC. Bibliometric analysis and visualization were performed utilizing VOSviewer and CiteSpace tools, applied to literature data extracted from the Web of Science Core Collection (WoSCC). Results Between 2010 and 2024, a total of 2,689 papers were published across 472 institutions in 74 countries, reflecting a consistent upward trajectory in annual publication output. China and Fudan University emerged as the leading contributors to the research output on this topic, representing the most prolific country and institution, respectively. Giovannetti, Elisa, and Yu, Xianjun are the most prolific scholars in this field. Cancer Research stands out as the most cited and impactful journal, while research on the tumor microenvironment, targeted therapy, and circular RNA has emerged as a key focus area in recent years. Conclusion This study provides a systematic and comprehensive overview of the literature on GEM resistance in PC over the past 15 years. This analysis offers scholars critical insights into the field from a bibliometric perspective, potentially informing future studies on the development of chemotherapeutic treatments for PC.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Gastroenterology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Shaoyang Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Kai Zhao
- Department of Gastroenterology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Xiaohong Zhang
- Department of Gastroenterology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Jinjing Zhang
- Department of Gastroenterology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
2
|
Lv Z, Wu J. Research Hotspots of Interferon Gamma in the Treatment of Lung Cancer: A Bibliometric Analysis Based on CiteSpace. J Interferon Cytokine Res 2025; 45:109-118. [PMID: 39874560 DOI: 10.1089/jir.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Interferon-gamma (IFN-γ) is an important cytokine associated with antitumor immunity and has been implicated in the pathogenesis and progression of lung cancer. Nevertheless, no bibliometric analyses have been published in this field to date, and thus we aim to address this gap in knowledge. A search of the Web of Science (WOS) for literature related to the treatment of lung cancer with IFN-γ was conducted from 2002 to 2024. The extracted information from the included articles was subjected to visual analysis, and network diagrams were generated using software such as CiteSpace and VOSviewer. In total, 589 articles related to the treatment of lung cancer with IFN-γ were included in WOS between 2002 and 2024. The number of articles and citation frequency generally showed an increasing trend year by year. The United States and the University of California are the countries and institutions with the largest number of articles. The researcher who made the largest contribution to this field was Xin Cai from China (6). The Journal for ImmunoTherapy of Cancer published the largest number of relevant papers in the field (16 papers, IF = 12.469). The research hotspots in the field of immune escape in recent years have been IFN-γ, mechanism, immune checkpoints, and microtumor inhibitors. The field of IFN-γ treatment of lung cancer is evolving at a rapid pace. The current research focus within this field is on elucidating the mechanism of IFN-γ treatment of lung cancer, investigating the role of immune checkpoint inhibitors, and examining the tumor microenvironment and other pertinent topics.
Collapse
Affiliation(s)
- Zhen Lv
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jianjun Wu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Singh P, Semwal P, Gargi B, Painuli S, Aschner M, Alsharif KF, Khan H, Bachheti RK, Worku LA. Global research and current trends on nanotherapy in lung cancer research: a bibliometric analysis of 20 years. Discov Oncol 2024; 15:539. [PMID: 39384612 PMCID: PMC11465009 DOI: 10.1007/s12672-024-01332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Lung cancer ranks as one of the most rapidly growing malignancies. Which is characterized by its poor prognosis and a low survival rate due to late diagnosis and limited efficacy of conventional treatments. In recent years nanotechnology has emerged as a promising frontier in the management of lung cancer, presenting novel strategies to enhance drug administration, improve therapeutic efficiency, and mitigate side effects. This research comprehensively evaluates the current state and research trends concerning the application of nanomaterials in lung cancer through bibliometric analysis. MATERIALS AND METHODS We employed a systematic approach by retrieving studies from the Scopus database that focused on nanomaterials and lung cancer between 2003 and 2023. Subsequently, we carefully selected relevant articles based on predetermined inclusion criteria. The selected publications were then subjected to bibliometric and visual analysis using softwares such as VOSviewer and Biblioshiny. RESULTS A total of 3523 studies that meet inclusion criteria were selected for bibliometric analysis. We observed a progressive increase in the number of annual publications from 2003 to 2023, indicating the growing interest in this field. According to our analysis, China is the primary contributor to publication output among the countries. The "Ministry of Education of the People's Republic of China" was the most influential institution. Among the authors, "Dr. Jack A. Roth" and "Dr. Huang Leaf" had the highest number of publications and cited publications, respectively. The "International Journal of Nanomedicine" was found to be the most prolific journal in this field. Additionally, "Biomaterials" emerged as the most cited journal. Through keyword analysis, we identified five main research themes and future research directions; nono-immunotherapy and green synthesis are the hot topics in this research field. CONCLUSION Our study summarized the key characteristics of publications in this field and identified the most influential countries, institutions, authors, journals, hot topics, and trends related to the application of nanomaterials in lung cancer. These findings contribute to the existing body of knowledge and serve as a foundation for future research endeavors in this area. More effective efforts are needed in this field to reduce the burden of lung cancer and help achieve the United Nation's Sustainable Development Goals.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
- Research and Development Cell, Graphic Era Hill University, Society Area, Dehradun, 248002, Uttarakhand, India.
| | - Baby Gargi
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun, 248006, Uttarakhand, India
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10463, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, 21944, Taif, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Nardan, 23200, Pakistan
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Sciences and Technology University, P. O. Box-16417, Addis Ababa, Ethiopia
- Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun, 248002, Uttarakhand, India
- University Centre for Research and Development, Chandigarh University, Gharuan 140413, Punjab, India
| | - Limenew Abate Worku
- College of Natural and Computational Science, Department of Chemistry, Debre Tabor University, Debre Tabor, Ethiopia.
| |
Collapse
|
4
|
Li Y, Liu Y, Ran Y, Peng S, Yuan X, Zhao L, Sun H, Su F, Huang D, Pachaiyappan SK, He M. Pueraria thomsonii Benth-Associated Endophytes: A Multifaceted Exploration of Its Bioactive Molecules. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/28/2024] [Indexed: 01/03/2025] Open
|
5
|
Deng X, Yang H, Tian L, Ling J, Ruan H, Ge A, Liu L, Fan H. Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023. Front Microbiol 2024; 15:1393422. [PMID: 39144230 PMCID: PMC11322113 DOI: 10.3389/fmicb.2024.1393422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Breast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the disease's management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the field's current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots. Method Publications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field. Results A total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as "metabolomics" and "probiotics" have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment. Conclusion Research on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer.
Collapse
Affiliation(s)
- Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Yang
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lingjia Tian
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Ling
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Anqi Ge
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongqiao Fan
- Department of Cosmetic and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Yang J, Yang W, Zhang J, Huang A, Yin S, Zhang H, Luo Z, Li X, Chen Y, Ma L, Wang C. Non-small cell lung cancer and metabolism research from 2013 to 2023: a visual analysis and bibliometric study. Front Oncol 2024; 14:1322090. [PMID: 38863621 PMCID: PMC11165026 DOI: 10.3389/fonc.2024.1322090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background As one of the most prevalent primary lung tumors, non-small cell lung cancer (NSCLC) has garnered considerable research interest due to its high metastasis rates and poor prognosis outcomes. Across different cancer types, metabolic processes are required for tumors progression and growth, thus interfering with such processes in NSCLC may therapeutically viable for limiting/halting disease progression. Therefore, comprehending how metabolic processes contribute to growth and survival mechanisms in cancers, including NSCLC, may elucidate key functions underpinning tumor cell metabolism. However, no bibliometric analyses have been published in this field, therefore we address this knowledge gap here. Methods Between 2013 and 2023 (December 28th), articles related to the NSCLC and metabolism (NSCLC-Met) field were retrieved from the Web of Science Core Collection (WoSCC). To fully dissect NSCLC-Met research directions and articles, we used the Bibliometrix package in R, VOSviewer and CiteSpace software to visually represent global trends and hotspots. Results Between 2013 and 2023, 2,246 NSCLC-Met articles were retrieved, with a continuous upward trend and rapid development observed year on year. Cancers published the most articles, with Cancer Research recording the highest average citation numbers. Zhang Li from China was the most prolific author, but the highest number of authors came from the USA. China, USA, and Italy were the top three countries with the highest number of published articles, with close cooperation identified between countries. Recent hotspots and research directions were reflected by "lung adenocarcinoma", "immunotherapy", "nivolumab", "checkpoint inhibitors", "blockade", and "pembrolizumab", while "gut microbiome", "egfr" and "dose painting" were important topics for researchers. Conclusion From our analyses, scientists can now explore new hotspots and research directions in the NSCLC-Met field. Further in-depth research in this field will undoubtedly provide more new insights on disease diagnostics, treatment, and prognostics.
Collapse
Affiliation(s)
- Jin Yang
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Wei Yang
- Affiliated Hospital of Southwest Jiaotong University, General Hospital of Western Theater Command, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jie Zhang
- Department of Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Huang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Shiyuan Yin
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Hua Zhang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Zongrui Luo
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaojuan Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Human Resource, Yibin Sixth People’s Hospital, Yibin, China
| | - Yihua Chen
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Lijie Ma
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| | - Chao Wang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
7
|
Xu R, Cao JW, Lv HL, Geng Y, Guo MY. Polyethylene microplastics induced gut microbiota dysbiosis leading to liver injury via the TLR2/NF-κB/NLRP3 pathway in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170518. [PMID: 38286276 DOI: 10.1016/j.scitotenv.2024.170518] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that have negative impacts on health and safety. The gut microbiota plays multiple roles as a newly discovered virtual metabolic organ. The objective of this study was to investigate the potential of MPs to cause liver injury by disrupting the balance of gut microbiota. The results indicated that exposure to MPs resulted in liver damage and disrupted the homeostasis of gut microbiota. MPs significantly reduced the liver organ coefficient, leading to liver cell injury and impaired function. Additionally, there was an increase in the expression of fibril-related proteins, which positively correlated with MPs concentration. Furthermore, MPs increased the relative abundances of Desulfovibrio, Clostridia, Enterorhabdus, Bacteroides, and Gemella while decreasing the abundance of Dubosoella. Different concentrations of MPs exhibited varying effects on specific bacterial groups, however, both concentrations resulted in an increase in pathogenic bacteria and a decrease in beneficial bacteria, as well as alterations in microbial structure. Moreover, MPs induced oxidative stress, inflammation, apoptosis and necrosis in liver cells. The study found that MPs disrupted gut microbiota homeostasis and activated TLR2/NF-κB/NLRP3 pathway in the liver, providing a new insight into the mechanism underlying MPs-induced liver injury. These findings serve as a warning regarding environmental pollution caused by MPs.
Collapse
Affiliation(s)
- Ran Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing-Wen Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Li Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Liu Q, Yang Y, Pan M, Yang F, Yu Y, Qian Z. Role of the gut microbiota in tumorigenesis and treatment. Theranostics 2024; 14:2304-2328. [PMID: 38646653 PMCID: PMC11024857 DOI: 10.7150/thno.91700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Karim MR, Iqbal S, Mohammad S, Morshed MN, Haque MA, Mathiyalagan R, Yang DC, Kim YJ, Song JH, Yang DU. Butyrate's (a short-chain fatty acid) microbial synthesis, absorption, and preventive roles against colorectal and lung cancer. Arch Microbiol 2024; 206:137. [PMID: 38436734 DOI: 10.1007/s00203-024-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Department of Microbiology, Varendra Institute of Biosciences, Affiliated University of Rajshahi, Natore, 6400, Rajshahi, Bangladesh
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Deok Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
- Hanbangbio Inc., Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea
| | - Joong Hyun Song
- Department of Veterinary International Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Korea.
- AIBIOME, 6, Jeonmin-Ro 30Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Wu S, Wen S, An K, Xiong L, Zeng H, Niu Y, Yin T. Bibliometric analysis of global research trends between gut microbiota and pancreatic cancer: from 2004 to 2023. Front Microbiol 2023; 14:1281451. [PMID: 38088976 PMCID: PMC10715435 DOI: 10.3389/fmicb.2023.1281451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal malignancies of the digestive system and is expected to be the second leading cause of cancer-related death in the United States by 2030. A growing body of evidence suggests that the gut microbiota (GM) is intimately involved in the clinical diagnosis, oncogenic mechanism and treatment of PC. However, no bibliometric analysis of PC and GM has been reported. METHODS The literature on PC and GM was retrieved from the Web of Science Core Collection (WoSCC) database for the period from January 1, 2004 to April 25, 2023. Microsoft Excel 2021, CiteSpace, VOSviewer, Scimago Graphica, Graphpad Prism, Origin, the R package "bibliometrics" and the bibliometric online analysis program were used to visualize the publishing trends and hot spots in this field. RESULTS A total of 1,449 articles were included, including 918 articles and 531 reviews. Publishing had grown rapidly since 2017, with the 2023 expected to publish 268 articles. Unsurprisingly, the United States ranked highest in terms of number of literatures, H index and average citations. The University of California System was the most active institution, but Harvard University tended to be cited the most on average. The three most influential researchers were Robert M. Hoffman, Zhao Minglei, and Zhang Yong. Cancers had published the most papers, while Nature was the most cited journal. Keyword analysis and theme analysis indicated that "tumor microenvironment," "gemcitabine-resistance," "ductal adenocarcinoma," "gut microbiota" and "diagnosis" will be the hotspots and frontiers of research in the future. CONCLUSION In summary, the field is receiving increasing attention. We found that future hotspots of PC/GM research may focus on the mechanism of oncogenesis, flora combination therapy and the exploitation of new predictive biomarkers, which provides effective suggestions and new insights for scholars.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Niu
- Department of Ophthalmology, Henan Provincial People’s Hospital, Clinical Medical College of Henan University, Zhengzhou, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Zyoud SH, Shakhshir M, Abushanab AS, Koni A, Shahwan M, Jairoun AA, Abu Taha A, Al-Jabi SW. Unveiling the hidden world of gut health: Exploring cutting-edge research through visualizing randomized controlled trials on the gut microbiota. World J Clin Cases 2023; 11:6132-6146. [PMID: 37731574 PMCID: PMC10507538 DOI: 10.12998/wjcc.v11.i26.6132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The gut microbiota plays a crucial role in gastrointestinal and overall health. Randomized clinical trials (RCTs) play a crucial role in advancing our knowledge and evaluating the efficacy of therapeutic interventions targeting the gut microbiota. AIM To conduct a comprehensive bibliometric analysis of the literature on RCTs involving the gut microbiota. METHODS Using bibliometric tools, a descriptive cross-sectional investigation was conducted on scholarly publications concentrated on RCTs related to gut microbiota, spanning the years 2003 to 2022. The study used VOSviewer version 1.6.9 to examine collaboration networks between different countries and evaluate the frequently employed terms in the titles and abstracts of the retrieved publications. The primary objective of this analysis was to identify key research areas and focal points associated with RCTs involving the gut microbiota. RESULTS A total of 1061 relevant articles were identified from the 24758 research articles published between 2003 and 2022. The number of publications showed a notable increase over time, with a positive correlation (R2 = 0.978, P < 0.001). China (n = 276, 26.01%), the United States (n = 254, 23.94%), and the United Kingdom (n = 97, 9.14%) were the leading contributing countries. Københavns Universitet (n = 38, 3.58%) and Dankook University (n = 35, 3.30%) were the top active institutions. The co-occurrence analysis shows current gut microbiota research trends and important topics, such as obesity interventions targeting the gut microbiota, the efficacy and safety of fecal microbiota transplantation, and the effects of dietary interventions on humans. CONCLUSION The study highlights the rapid growth and importance of research on RCTs that involve the gut microbiota. This study provides valuable insight into research trends, identifies key players, and outlines potential future directions in this field. Additionally, the co-occurrence analysis identified important topics that play a critical role in the advancement of science and provided insights into future research directions in this field.
Collapse
Affiliation(s)
- Sa’ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Amani S Abushanab
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Amer Koni
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Division of Clinical Pharmacy, Hematology and Oncology Pharmacy Department, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Department of Health and Safety, Dubai Municipality, Dubai 67, United Arab Emirates
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
| | - Adham Abu Taha
- Department of Pathology, An-Najah National University Hospital, Nablus 44839, Palestine
- Department of Biomedical Sciences, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Samah W Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| |
Collapse
|