1
|
Ed-Dra A, Nalbone L, Shahat AA, Laaraj S, Farihi A, Moujane S, Noman OM, Elfazazi K, Giuffrida A, Giarratana F. Antilisterial activity of Thymus vulgaris essential oil: In vitro, in situ, and in silico investigations. Microb Pathog 2025; 204:107557. [PMID: 40203959 DOI: 10.1016/j.micpath.2025.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Listeria monocytogenes is a major foodborne pathogen that significantly threatens public health and food safety. While Thymus vulgaris essential oil (TV-EO) is widely recognized for its potent antibacterial activity, its specific effects against L. monocytogenes remain unexplored. This study aimed to assess the antilisterial activity of TV-EO using in vitro, in situ, and in silico approaches. The in vitro assessment included disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), biofilm inhibition assay, and predictive modeling to assess L. monocytogenes reduction in the presence of TV-EO at 10 °C and 20 °C. In situ approach evaluated the inhibitory effect of TV-EO on L. monocytogenes in minced poultry meat stored at 4 °C. Finally, in silico approach, based on molecular docking, was employed to evaluate the binding affinity of major TV-EO components for β-ketoacyl-ACP synthase II and chorismate synthase, key proteins involved in fatty acid biosynthesis and biofilm formation, respectively. Our finding revealed that TV-EO exhibited strong in vitro antilisterial activity, with inhibitory zones ranging from 51.00 ± 1.00 mm to 55.67 ± 1.15 mm, a MIC value of 0.125 %, and a MBC value of 0.25 %, indicating its bactericidal effect. TV-EO at 0.125 % demonstrated a high capacity to inhibit and eradicate the biofilm, with 100 ± 0.00 % and 91.33 ± 1.23 %, respectively. Predictive modeling, based on the combination of TV-EO and ζ values, revealed that L. monocytogenes inactivation was more pronounced at low temperature. Furthermore, the in-situ approach showed a significant reduction of L. monocytogenes amount, with decreases of 1.068 ± 0.132 log cfu/g, 0.671 ± 0.091 log cfu/g, and 0.317 ± 0.029 log cfu/g at TV-EO concentrations of 1 %, 0.5 %, and 0.25 %, respectively (p < 0.05). In silico analysis indicated that TV-EO components, particularly carvacrol, exhibited high affinity for β-ketoacyl-ACP synthase II and chorismate cynthase, suggesting strong antilisterial and ani-biofilm activity. These findings highlight the antilisterial efficacy of TV-EO, demonstrating its potential as a natural alternative to conventional preservatives for enhancing food preservation and safety.
Collapse
Affiliation(s)
- Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco.
| | - Luca Nalbone
- Department of Veterinary Science, University of Messina, Polo Universitario della Annunziata, 98168, Messina, Italy.
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salah Laaraj
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat, 10090, Morocco; Environmental, Ecological, and Agro-Industrial Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Ayoub Farihi
- Oriental Center for Water and Environmental Sciences and Technologies (COSTE), Mohammed Premier University, Oujda, 60000, Morocco
| | - Soumia Moujane
- Faculty of Medicine and Pharmacy of Guelmim, Ibn Zohr University, Guelmim, Morocco
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kaoutar Elfazazi
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat, 10090, Morocco
| | - Alessandro Giuffrida
- Department of Veterinary Science, University of Messina, Polo Universitario della Annunziata, 98168, Messina, Italy
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario della Annunziata, 98168, Messina, Italy
| |
Collapse
|
2
|
Voloshchuk O, Rolon ML, Bartlett KV, Mendez Acevedo M, LaBorde LF, Kovac J. Pseudomonadaceae increased the tolerance of Listeria monocytogenes to sanitizers in multi-species biofilms. Food Microbiol 2025; 128:104687. [PMID: 39952739 DOI: 10.1016/j.fm.2024.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 02/17/2025]
Abstract
The persistence of the foodborne pathogen Listeria monocytogenes in food processing facilities may be facilitated by the formation of multi-species biofilms by environmental microbiota. This study aimed to determine whether multi-species biofilm formation results in an increased tolerance of L. monocytogenes in biofilms to the sanitizers benzalkonium chloride (BAC) and peroxyacetic acid (PAA) at concentrations commonly used in food processing facilities. Biofilms composed of microbiota previously shown to co-occur with L. monocytogenes in tree fruit packing facilities (i.e., Pseudomonadaceae, Xanthomonadaceae, Flavobacteriaceae, and Microbacteriaceae) were formed with L. monocytogenes in single- and multi-family assemblages. Multi-family biofilms were exposed to 250 or 500 ppm of PAA, or 200 ppm of BAC to determine the die-off kinetics of L. monocytogenes. Furthermore, the ability of a commercial biofilm remover to disrupt biofilms and inhibit bacteria in the formed single- and multi-family assemblage biofilms was assessed. The die-off kinetics of total bacteria and L. monocytogenes in biofilm assemblages throughout the exposure to a sanitizer was determined using the aerobic plate count and the most probable number methods, respectively. Biofilm assemblages that included Pseudomonadaceae resulted in an increased tolerance of L. monocytogenes to BAC and PAA compared to biofilm assemblages without Pseudomonadaceae. Further, the use of the biofilm remover significantly disrupted biofilms and reduced the concentration of L. monocytogenes in single- and multi-family biofilms by 5 or more logarithmic units. These findings highlight the need to improve the control of biofilm-forming microbiota in food processing facilities to mitigate the persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - M Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Katelyn V Bartlett
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | | | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Chung J, Chang Y. Complete genome sequence of bacteriophage LMC infecting Listeria monocytogenes from fowl droppings. Microbiol Resour Announc 2025:e0033325. [PMID: 40401941 DOI: 10.1128/mra.00333-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Listeria monocytogenes-targeting phage (LMC) was isolated from fowl droppings, and its complete genome was analyzed. LMC consists of 42,151 bp with a GC content of 36.58% and contains 59 open reading frames. It has an icosahedral capsid and a long tail. It shows a high antibacterial ability against L. monocytogenes ATCC 19115.
Collapse
Affiliation(s)
- Jiyoon Chung
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, South Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, South Korea
| |
Collapse
|
4
|
Poswal V, Anand S, Kraus B. Characterizing Environmental Background Microflora and Assessing Their Influence on Listeria Persistence in Dairy Processing Environment. Foods 2025; 14:1694. [PMID: 40428474 DOI: 10.3390/foods14101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Listeria monocytogenes (Lm) may persist in food processing environments (FPEs) alongside diverse background microflora. While microbial communities in FPEs can influence Lm survival, their role in supporting or suppressing its growth remains unclear. This study aimed to characterize the microflora in floor swabs and air samples collected from a dairy processing facility across three seasons and assess their potential impact on the growth of a Lm test strain previously isolated from a dairy processing environment. A total of 167 environmental isolates, representing 30 bacterial genera, were identified. Pseudomonas was consistently prevalent across all sample types. Seasonal shifts in bacterial genera were observed, with differences in microbial composition and relative abundance between production lines with and without Listeria innocua occurrence. Microflora distribution appeared more influenced by environmental and operational factors than by spatial proximity. Co-culture growth assays revealed no competitive exclusion of the Lm test strain, and no zones of inhibition were observed in antimicrobial assays using cell-free extract and dialyzed cell-free extract from environmental isolates against Lm. These findings suggest that Lm could potentially establish itself within mixed microbial communities in dairy processing environments, emphasizing the complexity of microbial interactions in FPEs and their potential role in Lm persistence.
Collapse
Affiliation(s)
- Vaishali Poswal
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57006, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57006, USA
| | - Brian Kraus
- Wells Enterprises Inc., Le Mars, IA 51031, USA
| |
Collapse
|
5
|
Nikolaou FG, Colobatiu LM, Ciupescu LM, Tabaran A, Hategan AR, Mihaiu R, Tanasuica R, Poenaru MM, Mihaiu M. Prevalence and Antimicrobial Resistance of Listeria monocytogenes Isolated from Dairy Products in Romania. Antibiotics (Basel) 2025; 14:482. [PMID: 40426548 DOI: 10.3390/antibiotics14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives:Listeria monocytogenes is a significant foodborne pathogen associated with dairy products, which can pose serious public health risks, particularly for vulnerable populations. This study aimed to assess the prevalence, serotype distribution, and antimicrobial resistance profiles of Listeria monocytogenes isolated from dairy products collected in Romania over a three-year period (2021-2023). To the best of our knowledge, this is the first comprehensive study addressing these issues within the country. Methods: A total of 10,306 dairy samples, including milk, cheeses, ice cream, yogurt, and other dairy-based products, were collected and analyzed using standard microbiological methods. Molecular serotyping was performed to identify the most common serogroups. The antimicrobial susceptibility of the isolates was also conducted. Results: The overall prevalence of Listeria monocytogenes was 0.41% (43/10,306). The most frequently detected serogroup was IVb (74.41%), followed by IIa (23.25%) and IIb (2.32%). Ice cream was the most affected product, followed by fresh telemea made from cow milk. Antimicrobial susceptibility testing revealed higher resistance rates for oxacillin and trimethoprim-sulfamethoxazole (13.95% each), while all isolates were susceptible to ciprofloxacin, levofloxacin, and moxifloxacin. Conclusions: The findings emphasize the need for continuous monitoring of Listeria monocytogenes in dairy products, particularly ice cream and fresh cheeses, due to their high contamination rates. The study's results are valuable for comparative analysis with findings from other countries, helping to establish a broader understanding of Listeria monocytogenes contamination trends and resistance profiles.
Collapse
Affiliation(s)
- Filippos Georgios Nikolaou
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liora Mihaela Colobatiu
- Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Alexandra Tabaran
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ariana Raluca Hategan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Faculty of Economic Sciences and Business Administration, Babes-Bolyai University, 400591 Cluj-Napoca, Romania
| | - Radu Tanasuica
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 011464 Bucharest, Romania
| | | | - Marian Mihaiu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Karthikeyan A, Tabassum N, Mani AK, Javaid A, Kim TH, Oh DK, Kim YM, Jung WK, Khan F. Targeting motility of Listeria monocytogenes: Alternative strategies to control foodborne illness. Microb Pathog 2025; 202:107427. [PMID: 40021026 DOI: 10.1016/j.micpath.2025.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Listeria monocytogenes, a gram-positive facultative anaerobic bacterium, demonstrates remarkable adaptability to various environmental stressors in food processing environments. It can survive and grow under extremely challenging environmental conditions such as low pH and temperatures, high salinity, and UV radiation. Its ability to generate biofilms at multiple stages of the food processing chain poses significant food safety issues. This bacterium is known for causing severe listeriosis, making it a major problem in microbiology and food safety. L. monocytogenes relies on motility to explore surfaces, attach, and build biofilms. It comprises actin-based motility, which is used for cell-to-cell propagation inside host tissues, and flagellar-driven motility, which assists in surface colonization and infection spread. Flagellar motility also plays an important function in increasing virulence throughout infection cycles. L. monocytogenes motility is regulated by a complex network of regulatory proteins that govern the expression of motility-associated genes. These proteins directly impact pathogenicity by influencing motility and biofilm formation, as well as an indirect impact via regulatory pathways. Efforts to control L. monocytogenes infections and decrease food safety impact include a variety of procedures. Natural compounds, synthetic agents, nanomaterials, and conjugates have emerged as intriguing options for inhibiting motility, disrupting biofilm formation, and reducing virulence. These strategies focus on vital elements of the L. monocytogenes life cycle and pathophysiology to improve food safety and public health. This review provides a comprehensive discussion of the regulatory mechanisms governing L. monocytogenes motility, emphasizing their role in pathogenicity, and explores potential strategies for attenuating the motility and virulence properties. Understanding these mechanisms is essential for developing targeted therapeutic approaches against L. monocytogenes infections and improving food safety practices.
Collapse
Affiliation(s)
- Abirami Karthikeyan
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, 612001, Tamil Nadu, India; Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Arun Kumar Mani
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, 612001, Tamil Nadu, India
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Do Kyung Oh
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
7
|
Romero de Castilla López B, Gómez Lozano D, Herrera Marteache A, Conchello Moreno P, Rota García C. Control of Persistent Listeria monocytogenes in the Meat Industry: From Detection to Prevention. Foods 2025; 14:1519. [PMID: 40361601 PMCID: PMC12071965 DOI: 10.3390/foods14091519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Listeria monocytogenes poses a significant food safety risk, particularly in ready-to-eat (RTE) products, due to its persistence in food processing environments. This study aimed to assess the significance of L. monocytogenes contamination routes, persistence, and monitoring and control in two Spanish food industries: a fresh pork-cutting industry (Industry A) and an RTE food production industry (Industry B). A total of 698 samples from raw materials, final products, food contact surfaces (FCSs), and non-food contact surfaces (NFCSs) were analyzed using impedanciometry, isolation and identification on chromogenic agars, and molecular typing using serotyping and pulsed-field gel electrophoresis. In Industry A, L. monocytogenes contamination increased from 16.7% in raw materials to 53.3% in final products, with four persistent strains detected mainly on FCSs, pointing to their role in pathogen dissemination. In Industry B, the presence of L. monocytogenes decreased from 21.2% in raw materials to undetectable levels in the final products. Only one persistent strain was identified, mainly on NFCSs. Serotype 1/2a predominated in both environments. These findings emphasize the importance of robust monitoring, including contamination characterization, for L. monocytogenes prevention and control. Strengthening control measures in fresh meat processing and enhancing facility and equipment designs could improve overall hygiene and reduce the persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Belén Romero de Castilla López
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón -IA2-, Universidad de Zaragoza-CITA, C/Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
8
|
Kinde MZ, Kerisew B, Eshetu T, Gessese AT. Genomic analysis of Listeria monocytogenes strains from dairy products in Ethiopia. FRONTIERS IN BIOINFORMATICS 2025; 5:1572241. [PMID: 40309116 PMCID: PMC12041059 DOI: 10.3389/fbinf.2025.1572241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
This study explored virulence genes, antibiotic resistance genes, and mobile genetic elements in 14 Listeria monocytogenes strains from milk and dairy products collected from different regions of Ethiopia. The strains were classified into two Multilocus Sequence Typing sequence types (ST2 and ST45) and further grouped into clonal complexes (CC2) and different cgMLST types. Twenty-nine virulence genes were identified across all 14 strains, with lplA1 detected at higher levels in all strains except SAMN28661660. All L. monocytogenes strains also carried four antibiotic resistance genes (fosX, lin, norB, mprF), contributing to their ability to withstand multiple antimicrobial agents. Notably, no plasmids or mobile genetic elements were detected. Stress resistance genes, including stress survival islet 1 (SSI1_lmo0447), lmo 1800, and lmo1799, were identified in all strains. However, genes encoding for disinfectant resistance were not identified from all strains. LGI-2 was found in all the strains and none of the studied strains harbored LGI-1 and LGI-3. Conserved CRISPR-Cas systems were found in some strains. KEGG pathway analysis revealed that inlA and inlB genes facilitate bacterial internalization through host actin polymerization. Overall, the study provided crucial insights into the genomic features of L. monocytogenes in the Ethiopian dairy chain. It is crucial to establish continuous monitoring of L. monocytogenes in dairy products, improve sanitation, enforce stricter antibiotic usage and food safety regulations, and raise public awareness of associated risks.
Collapse
Affiliation(s)
- Mebrie Zemene Kinde
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Tegegne Eshetu
- Department of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Donkor ES, Sosah FK, Odoom A, Odai BT, Kunadu APH. How Long Do Microorganisms Survive and Persist in Food? A Systematic Review. Microorganisms 2025; 13:901. [PMID: 40284737 PMCID: PMC12029915 DOI: 10.3390/microorganisms13040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 04/29/2025] Open
Abstract
Foodborne illnesses caused by microorganisms pose a significant threat to public health. Understanding the survival and persistence of these microorganisms in various food matrices is crucial for developing effective control strategies. This systematic review aims to address the current knowledge gaps related to the duration of survival and persistence of microbial pathogens in food, as well as the impact of external environmental conditions on their viability. A comprehensive search was conducted across major databases, including studies published until 3 June 2024. The PRISMA guidelines were followed to ensure a systematic and transparent approach. Foodborne bacteria, such as Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7, were found to persist for extended durations, ranging from days to over a year. The mean duration of persistence for all of the bacteria was 246 days, whereas the survival duration was 16 days. Bacterial survival and persistence were significantly influenced by temperature, with warmer conditions (>25 °C) generally supporting longer persistence. Relative humidity also played a role, with low-humidity environments (<50% RH) favouring the survival of pathogens like Listeria monocytogenes and Escherichia coli. In contrast, viruses, such as hepatitis A virus and Human norovirus, showed only survival patterns, with average durations of 21 days and temperature being the primary environmental factor influencing their survival. Overall, this review provides evidence that a wide range of microbial pathogens, including Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and the hepatitis A virus, can survive and persist in food for prolonged periods, leading to potential harm. These insights underscore the necessity of stringent food safety measures and continuous monitoring to mitigate the risks posed by these resilient pathogens, contributing to a safer and more secure food supply chain.
Collapse
Affiliation(s)
- Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (F.K.S.); (A.O.)
| | - Famous K. Sosah
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (F.K.S.); (A.O.)
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (F.K.S.); (A.O.)
| | - Bernard T. Odai
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra P.O. Box LG 80, Ghana;
| | | |
Collapse
|
10
|
Ofori KF, Parsaeimehr A, Ozbay G. Investigation of the presence and persistence of bacteria in seawater and oysters from an aquaculture farm in Rehoboth Bay, Delaware. Microbiol Spectr 2025; 13:e0305424. [PMID: 40207947 PMCID: PMC12054098 DOI: 10.1128/spectrum.03054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
The filter-feeding nature of oysters, anthropogenic activities, and increasing agriculture in Delaware compromise the microbial safety of Eastern oysters from local aquaculture farms. From July to October 2023, we evaluated the presence and persistence of eight bacteria in seawater and oysters produced from off-bottom and bottom cultures at Sally Cove, an aquaculture farm within Rehoboth Bay in Delaware. A control site within Sally Cove, which was without oyster cultures, was also included in the study. Seawater temperature, salinity, pH, and dissolved oxygen were measured in situ during sampling. Molecular confirmation with PCR and qPCR showed that Vibrio parahaemolyticus, Shiga-toxin-producing Escherichia coli, Salmonella enterica, Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium spp. were present and persisted in seawater and oyster samples from both cultures at Sally Cove and in off-bottom and bottom seawater samples from the control site throughout the study. Shigella spp. and Listeria monocytogenes were consistently found in seawater and oyster samples from July to September. However, Shigella spp. was only detected in samples from the bottom cultures, whereas L. monocytogenes was undetectable in all samples from both cultures in October. The observed temperature, salinity, pH, and dissolved oxygen levels across the study period were in the range of 15.30-29.67°C, 29.33-31.87 ppt, 7.25-7.95, and 3.79-8.10 mg/L, respectively, and comparable with the conditions suitable for the growth and survival of these bacteria. These findings suggest that consuming raw oysters from Sally Cove poses contamination risks from several bacteria, especially in the summer months.IMPORTANCEAlthough studies have evaluated bacterial contamination in seawater and oysters within the Delaware Inland Bays and nearby areas, the focus has primarily been on Vibrio species. However, other bacteria have been found in seawater and seafood at various locations and could potentially occur in oysters produced from aquaculture farms within the Delaware Inland Bays. Sally Cove is an oyster aquaculture farm that produces Eastern oysters (Crassostrea virginica) for consumption in Delaware using both off-bottom and bottom culturing methods. The risk of bacterial contamination from consuming raw oysters from this farm is unknown. This paper shows the presence and persistence of several bacteria, including those associated with waste, in seawater and oysters at the farm. The findings can inform consumers about the contamination risks from consuming raw oysters produced at the farm.
Collapse
Affiliation(s)
- Kelvin F. Ofori
- Food Science and Biotechnology Program, Department of Human Ecology, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
| | - Ali Parsaeimehr
- Department of Agriculture and Natural Resources, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
| | - Gulnihal Ozbay
- Food Science and Biotechnology Program, Department of Human Ecology, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
- Department of Agriculture and Natural Resources, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
| |
Collapse
|
11
|
Manyi-Loh CE, Lues R. Listeria monocytogenes and Listeriosis: The Global Enigma. Foods 2025; 14:1266. [PMID: 40238523 PMCID: PMC11989209 DOI: 10.3390/foods14071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Listeria monocytogenes is an intracellular, Gram-positive, non-spore-forming, non-encapsulated, facultative anaerobic, rod-shaped, and psychrotrophic food-borne pathogen that causes the infection, listeriosis, thus it attracts great attention following listeriosis outbreaks, which are often associated with high mortality rates. The prevalence of listeriosis is quite low globally; however, the most recent and deadliest outbreak occurred in South Africa, during which 216 persons lost their lives. L. monocytogenes is endowed with the potential to multiply through a wide range of harsh environmental conditions, forming biofilms on varying surfaces in the food industry, as well as having persistent and antibiotic-resistant cells, which pose a major threat and burden to the ready-to-eat food industry. A more frustrating characteristic of this bacterium is its strain divergence, alongside an increased level of antibiotic resistance registered among the strains of L. monocytogenes recovered from food, humans, and environmental sources, especially to those antibiotics involved in the treatment of human listeriosis. Antibiotic resistance exerted by and among pathogenic food-borne microbes is an ongoing public health menace that continues to be an issue. Against this background, a thorough search into different databases using various search engines was performed, which led to the gathering of salient information that was organised, chronologically, based on Listeria monocytogenes and listeriosis. Altogether, the findings elaborated in this study present up-to date knowledge on different aspects of this pathogen which will improve our understanding of the mystery associated with it and the ways to prevent and control its dissemination through ready-to-eat foods. In addition, constant monitoring of the antibiotic resistance profiles of strains of L. monocytogenes from varying sources detected changes, giving an update on the trend in antibiotic resistance. Overall, monitoring of bacterial contamination serves as the key aspect in the control of the food safety output in the food industry.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein X9301, South Africa;
| | | |
Collapse
|
12
|
Moreno DS, Cunha J, de Melo LDR, Tanaka K, Bamba T, Hasunuma T, Azeredo J, Domingues L. CRISPR-Cas9 engineered Saccharomyces cerevisiae for endolysin delivery to combat Listeria monocytogenes. Appl Microbiol Biotechnol 2025; 109:81. [PMID: 40175837 PMCID: PMC11965161 DOI: 10.1007/s00253-025-13464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Listeriosis is an infection caused by the consumption of food contaminated with Listeria monocytogenes. It leads to febrile gastroenteritis, central nervous system infections, and even death in risk populations. Bacteriophage endolysins selectively kill bacteria hydrolyzing their cell walls and have emerged as a potential tool for listeriosis control. Ply511 is an anti-Listeria endolysin that has activity against all serovars of L. monocytogenes. The yeast Saccharomyces cerevisiae has been used to produce endolysins for biocontrol, but prior efforts relied on plasmids, which can lead to gene loss and include selection markers unsuitable for therapeutic use. Integration of endolysins in its genome has also been previously demonstrated, relying however, on selection markers for selection and maintenance of the modifications. This study explores S. cerevisiae as a generally regarded as safe (GRAS) platform for producing and displaying Ply511 through CRISPR-Cas9 integration, offering a marker-free and stable solution for Listeria biocontrol. Our results demonstrate that the surface display of Ply511 does not lead to bacterial reduction. In contrast, we show that yeast secreting endolysin significantly reduces L. monocytogenes in cells, supernatants, and cell extracts. The strongest effect was observed with concentrated spent supernatant and cell extract, which reduced L. monocytogenes below the lower limit of quantification. Additionally, the spent supernatant exhibited active anti-Listeria activity in milk. This study highlights yeast-secreted endolysins as a promising platform for listeriosis control and demonstrates the yeast secretion of endolysins can be used for the biocontrol of pathogenic bacteria. KEY POINTS: • S. cerevisiae was edited using CRISPR-Cas9 to display or secrete endolysin Ply511. • Cells, supernatants, and extracts of yeast secreting Ply511 act against L. monocytogenes. • Demonstrates the yeast-based delivery of endolysins to control L. monocytogenes.
Collapse
Affiliation(s)
- David Sáez Moreno
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Cunha
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís Daniel Rodrigues de Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kenya Tanaka
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, Nada, Kobe, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
| | - Tomosiha Hasunuma
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, Nada, Kobe, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
13
|
Dos Santos LR, Alía A, Martin I, Freitas CP, Rodrigues LB, Dos Santos JS, Borges KA, Furian TQ, Córdoba JJ. Antilisterial activity of cinnamon essential oil, pomegranate extract, or strawberry tree extract against Listeria monocytogenes in slices of dry-cured ham and pork loin. FOOD SCI TECHNOL INT 2025; 31:183-189. [PMID: 37499189 DOI: 10.1177/10820132231190103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Owing to concerns about the antimicrobial resistance of agents that can prevent the growth of Listeria monocytogenes in meat, researchers have investigated natural preservatives with antilisterial effects. However, in vivo application of essential oils and plant extracts usually results in reduced antimicrobial activity in meat products when compared to in vitro studies. This study aimed to evaluate the in vivo antimicrobial activity of cinnamon essential oil, pomegranate, and strawberry tree extracts in slices of dry-cured ham and pork loin against L. monocytogenes. Fragments of sterile dry-cured ham were inoculated with 100 μL cinnamon oil 0.5%, pomegranate, or strawberry crude extract. After 10 min, 100 μL of L. monocytogenes serotype 4b (104 colony-forming unit [CFU]/mL) was inoculated, and samples were incubated at 7 °C for 7 d to simulate the processing and storage temperature conditions of dry-cured meat products. L. monocytogenes was detected and quantified. Only strawberry extract presented significant differences (P < 0.05) from the control; thus, it was selected for the assay with 2% and 4% salt-treated pork loin. The strawberry tree extract significantly (P < 0.05) reduced the growth of L. monocytogenes in dry-cured ham. However, it could not reduce L. monocytogenes growth in pork loin, regardless of the salt concentration. This is the first report on the antimicrobial effect of strawberry tree leaf extract against L. monocytogenes in dry-cured ham.
Collapse
Affiliation(s)
- Luciana Ruschel Dos Santos
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Programa de Pós Graduação em Bioexperimentação, Escola de Ciências Agrárias, Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Alberto Alía
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Irene Martin
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Carla Patrícia Freitas
- Programa de Pós Graduação em Bioexperimentação, Escola de Ciências Agrárias, Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Laura Beatriz Rodrigues
- Programa de Pós Graduação em Bioexperimentação, Escola de Ciências Agrárias, Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jucilene Sena Dos Santos
- Programa de Pós Graduação em Ciência e Tecnologia de Alimentos, Escola de Ciências Agrárias, Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juan J Córdoba
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
14
|
Lin M, Dan H, Guan J. A streamlined procedure for advancing the detection and isolation of Listeria monocytogenes from artificially contaminated ground beef in a single working day. Microbiol Spectr 2025; 13:e0157724. [PMID: 39998161 PMCID: PMC11960439 DOI: 10.1128/spectrum.01577-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Listeria monocytogenes, a rod-shaped Gram-positive bacterium widely distributed in nature, can contaminate foods and represents a foodborne pathogen of public health significance causing a high mortality rate of 20%-30%. Rapid and reliable identification of foods and food-processing environments contaminated with L. monocytogenes is a crucial step in implementing effective intervention strategies to ensure food safety and limit the transmission of bacteria to humans. This study designed and refined a practical workflow to streamline and accelerate the detection of a low level of L. monocytogenes present in ground beef. The workflow coupled an abbreviated 5 h culture enrichment in PALCAM liquid medium with physical separation (filtration and centrifugation) to preprocess enrichment samples. Specific capture was achieved using magnetic separation with a bacteriophage endolysin-derived cell wall-binding domain in a Hyglos Listeria capture kit. Molecular detection was performed using a MicroSEQ L. monocytogenes RTi-PCR detection kit combined with a nested PCR strategy. Preprocessing of enrichment culture samples using a multi-stage filtration system constructed for the study or commercially available BagFilter Pull-up filter bags, in conjunction with centrifugation, enabled the recovery of ~30 colony-forming units (CFUs) from the enrichment culture of a 25 g ground beef sample artificially contaminated with 1 CFU of L. monocytogenes. Integration of magnetic separation into the workflow for capturing L. monocytogenes cells specifically from preprocessed samples and further cleaning up the samples yielded bacterial counts similar to those obtained by direct plating of preprocessed samples. The RTi-PCR-based molecular detection method integrated into the workflow was capable of detecting pure cultures of L. monocytogenes as low as 12.5 CFUs. Evaluation of the workflow using artificially ground beef demonstrated the consistent detection of L. monocytogenes within an 8 h workday in a 25 g sample unit containing the cell count as low as 2 CFU following a 5 h culture enrichment. IMPORTANCE Consuming foods contaminated with the bacterial pathogen Listeria monocytogenes can lead to the development of human listeriosis, a severe and life-threatening foodborne illness. Timely detection of L. monocytogenes present at a low level in foods and food processing environments is a necessary measure to prevent the spread of the Listeria-associated illness. This study designed and evaluated a multi-step workflow for testing L. monocytogenes in artificially contaminated food samples. The workflow was composed of a short 5 h culture enrichment, filtration-based sample preprocessing, magnetic separation, a single-tube nested RTi-PCR, and culture plating. It allowed L. monocytogenes to be detected within 8 h from a 25 g ground beef sample containing the target cells as low as 2 colony-forming units, significantly improving and streamlining the detection methods for this important foodborne pathogen.
Collapse
Affiliation(s)
- Min Lin
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hanhong Dan
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, Ottawa, Ontario, Canada
| | - Jiewen Guan
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Gmeiner A, Ivanova M, Njage PMK, Hansen LT, Chindelevitch L, Leekitcharoenphon P. Quantitative prediction of disinfectant tolerance in Listeria monocytogenes using whole genome sequencing and machine learning. Sci Rep 2025; 15:10382. [PMID: 40140458 PMCID: PMC11947258 DOI: 10.1038/s41598-025-94321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Listeria monocytogenes is a potentially severe disease-causing bacteria mainly transmitted through food. This pathogen is of great concern for public health and the food industry in particular. Many countries have implemented thorough regulations, and some have even set 'zero-tolerance' thresholds for particular food products to minimise the risk of L. monocytogenes outbreaks. This emphasises that proper sanitation of food processing plants is of utmost importance. Consequently, in recent years, there has been an increased interest in L. monocytogenes tolerance to disinfectants used in the food industry. Even though many studies are focusing on laboratory quantification of L. monocytogenes tolerance, the possibility of predictive models remains poorly studied. Within this study, we explore the prediction of tolerance and minimum inhibitory concentrations (MIC) using whole genome sequencing (WGS) and machine learning (ML). We used WGS data and MIC values to quaternary ammonium compound (QAC) disinfectants from 1649 L. monocytogenes isolates to train different ML predictors. Our study shows promising results for predicting tolerance to QAC disinfectants using WGS and machine learning. We were able to train high-performing ML classifiers to predict tolerance with balanced accuracy scores up to 0.97 ± 0.02. For the prediction of MIC values, we were able to train ML regressors with mean squared error as low as 0.07 ± 0.02. We also identified several new genes related to cell wall anchor domains, plasmids, and phages, putatively associated with disinfectant tolerance in L. monocytogenes. The findings of this study are a first step towards prediction of L. monocytogenes tolerance to QAC disinfectants used in the food industry. In the future, predictive models might be used to monitor disinfectant tolerance in food production and might support the conceptualisation of more nuanced sanitation programs.
Collapse
Affiliation(s)
- Alexander Gmeiner
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Mirena Ivanova
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- National Food Institute, Research Group for Food Microbiology and Hygiene, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Serrano S, Grujović MŽ, Marković KG, Barreto-Crespo MT, Semedo-Lemsaddek T. From Dormancy to Eradication: Strategies for Controlling Bacterial Persisters in Food Settings. Foods 2025; 14:1075. [PMID: 40232118 PMCID: PMC11942268 DOI: 10.3390/foods14061075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing practical solutions to combat bacterial persisters in food production environments. This review explores the primary mechanisms behind persister cell formation, including toxin-antitoxin systems, the alarmone guanosine tetraphosphate (ppGpp), stochastic processes (in which persistence occurs as a random event), and the SOS response. Given the serious implications for food safety and quality, the authors also report a range of physical, chemical, and biological methods for targeting and eradicating persister cells. The strategies discussed, whether applied individually or in combination, offer varying levels of availability and applicability within the industry and can serve as a guide for implementing microbial contamination control plans. While significant progress has been achieved, further research is crucial to fully understand the complex mechanisms underlying bacterial persistence in food and to develop effective and targeted strategies for its eradication in food-industry settings. Overall, the translation of these insights into practical applications aims to support the food industry in overcoming this persistent challenge, ensuring safer, more sustainable food production.
Collapse
Affiliation(s)
- Susana Serrano
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
| | - Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Maria Teresa Barreto-Crespo
- iBET, Institute of Experimental Biology and Technology, 2781-901 Oeiras, Portugal;
- ITQB, Institute of Chemical and Biological Technology António Xavier, Nova University of Lisbon, Republic Avenue, 2780-157 Oeiras, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
17
|
Voglauer EM, Alteio LV, Pracser N, Thalguter S, Quijada NM, Wagner M, Rychli K. Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression. Microbiol Res 2025; 292:127997. [PMID: 39700628 DOI: 10.1016/j.micres.2024.127997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Listeria (L.) monocytogenes can survive for extended periods in the food producing environment. Here, biofilms possibly provide a niche for long-term survival due to their protective nature against environmental fluctuations and disinfectants. This study examined the behaviour of a L. monocytogenes ST121 isolate in a multispecies biofilm composed of Pseudomonas (P.) fragi, Brochothrix (B.) thermosphacta, and Carnobacterium (C.) maltaromaticum, previously isolated from a meat processing facility. The composition of the biofilm community and matrix, and transcriptional activity were analysed. L. monocytogenes colonised the multispecies biofilm, accounting for 6.4 % of all total biofilm cells after six hours. Transcriptomic analysis revealed 127 significantly up-regulated L. monocytogenes genes compared to the inoculum, including motility, chemotaxis, iron, and protein transport related genes. When comparing the differentially expressed transcripts within the multispecies biofilm with and without L. monocytogenes, only a cadmium/zinc exporting ATPase gene in C. maltaromaticum was significantly upregulated, while the other 9313 genes in the biofilm community showed no significant differential expression. We further monitored biofilm development over time (6, 24 hours and 7 days). P. fragi remained the dominant species, while L. monocytogenes was able to survive in the multispecies biofilm accounting for 2.4 % of total biofilm cells after 7 days, without any significant changes in its abundance. The presence of L. monocytogenes did neither alter the biofilm community nor its matrix composition (amount of extracellular DNA, carbohydrates, and protein). Our data indicate that L. monocytogenes resides in multispecies biofilms, potentially increasing survival against cleaning and disinfection in food processing environments, supporting persistence.
Collapse
Affiliation(s)
- Eva M Voglauer
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| | - Lauren V Alteio
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - Nadja Pracser
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - Sarah Thalguter
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - Narciso M Quijada
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor 37185, Salamanca, Spain
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria; Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna 1210, Austria
| | - Kathrin Rychli
- Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna 1210, Austria
| |
Collapse
|
18
|
Mandinyenya T, Wambui J, Muchaamba F, Stevens MJA, Tasara T. Nisin resistance is increased through GtcA mutation induced loss of cell wall teichoic acid N-acetylglucosamine modifications in Listeria monocytogenes. Int J Food Microbiol 2025; 428:110954. [PMID: 39566380 DOI: 10.1016/j.ijfoodmicro.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024]
Abstract
Nisin resistance development is one of food safety challenges posed by Listeria monocytogenes, an important foodborne pathogen that causes human listeriosis. The GtcA flippase enzyme is functionally crucial in two separate pathways that glycosylate cell envelope wall teichoic acids (WTA) with N-acetylglucosamine (NAG) and lipoteichoic acids (LTA) with galactose, respectively. This study investigated phenotypic roles and molecular mechanisms underlying GtcA involvement in L. monocytogenes nisin resistance. A GtcAA65V mutation was linked with increased nisin resistance in a food processing environment associated L. monocytogenes strain. Examination of nisin stress survival and growth phenotypes among L. monocytogenes gtcA mutants in different genetic backgrounds showed that GtcA function promoted sensitivity and loss of its function through genetic deletion (ΔgtcA) and a natural GtcAA65V mutation increased nisin resistance. Individual contributions of GtcA WTA NAG and LTA galactose glycosylation functions to nisin resistance modulation were examined through nisin sensitivity analysis of genetic deletion mutants and L. monocytogenes strains complemented using functionally altered GtcA mutants. This revealed WTA NAG glycosylation to be the main functional mechanism that determines GtcA dependent nisin phenotypic sensitization. An examination for mechanisms underlying GtcA involvement in nisin sensitivity revealed that the loss of GtcA function induces changes in the cell envelope carbohydrate composition profiles reducing cell surface hydrophobicity. Overall, our results showed that cell envelope WTA NAG glycosylation promotes nisin susceptibility through facilitation of hydrophobic interactions between nisin and the Listeria cell envelope. There may be practical implications from our observations since nisin resistance could be gained in food associated L. monocytogenes strains that develop phage resistance through acquisition of mutations in genes that cause loss of cell envelope WTA NAG modifications.
Collapse
Affiliation(s)
- Toruvandepi Mandinyenya
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland.
| |
Collapse
|
19
|
Al-Sharify ZT, Al-Najjar SZ, Naser ZA, Alsherfy ZAI, Onyeaka H. The Impact of Fluid Flow on Microbial Growth and Distribution in Food Processing Systems. Foods 2025; 14:401. [PMID: 39941998 PMCID: PMC11817348 DOI: 10.3390/foods14030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This article examines the impact of fluid flow dynamics on microbial growth, distribution, and control within food processing systems. Fluid flows, specifically laminar and turbulent flows, significantly influence microbial behaviors, such as biofilm development and microbial adhesion. Laminar flow is highly conducive to biofilm formation and microbial attachment because the flow is smooth and steady. This smooth flow makes it much more difficult to sterilize the surface. Turbulent flow, however, due to its chaotic motion and the shear forces that are present, inhibits microbial growth because it disrupts attachment; however, it also has the potential to contaminate surfaces by dispersing microorganisms. Computational fluid dynamics (CFD) is highlighted as an essential component for food processors to predict fluid movement and enhance numerous fluid-dependent operations, including mixing, cooling, spray drying, and heat transfer. This analysis underscores the significance of fluid dynamics in controlling microbial hazards in food settings, and it discusses some interventions, such as antimicrobial surface treatments and properly designed equipment. Each process step from mixing to cooling, which influences heat transfer and microbial control by ensuring uniform heat distribution and optimizing heat removal, presents unique fluid flow requirements affecting microbial distribution, biofilm formation, and contamination control. Food processors can improve microbial management and enhance product safety by adjusting flow rates, types, and equipment configurations. This article helps provide an understanding of fluid-microbe interactions and offers actionable insights to advance food processing practices, ensuring higher standards of food safety and quality control.
Collapse
Affiliation(s)
- Zainab Talib Al-Sharify
- Department of Oil and Gas Refining Engineering, Al Hikma University College, Baghdad 10052, Iraq;
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad 10047, Iraq;
| | - Shahad Zuhair Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad 10081, Iraq;
| | - Zainab A. Naser
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad 10047, Iraq;
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Casella V, Della Sala G, Scarpato S, Buonocore C, Ragozzino C, Tedesco P, Coppola D, Vitale GA, de Pascale D, Palma Esposito F. Novel Insights into the Nobilamide Family from a Deep-Sea Bacillus: Chemical Diversity, Biosynthesis and Antimicrobial Activity Towards Multidrug-Resistant Bacteria. Mar Drugs 2025; 23:41. [PMID: 39852543 PMCID: PMC11766569 DOI: 10.3390/md23010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
With rising concerns about antimicrobial resistance, the identification of new lead compounds to target multidrug-resistant bacteria is essential. This study employed a fast miniaturized screening to simultaneously cultivate and evaluate about 300 marine strains for biosurfactant and antibacterial activities, leading to the selection of the deep-sea Bacillus halotolerans BCP32. The integration of tandem mass spectrometry molecular networking and bioassay-guided fractionation unveiled this strain as a prolific factory of surfactins and nobilamides. Particularly, 84 nobilamide congeners were identified in the bacterial exometabolome, 71 of them being novel metabolites. Among these, four major compounds were isolated, including the known TL-119 and nobilamide I, as well as the two new nobilamides T1 and S1. TL-119 and nobilamide S1 exhibited potent antibiotic activity against various multidrug-resistant Staphylococcus strains and other Gram-positive pathogens, including the foodborne pathogen Listeria monocytogenes. Finally, in silico analysis of Bacillus halotolerans BCP32 genome revealed nobilamide biosynthesis to be directed by a previously unknown heptamodular nonribosomal peptide synthetase.
Collapse
Affiliation(s)
- Vincenza Casella
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Silvia Scarpato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Giovanni Andrea Vitale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, 55, 80133 Naples, Italy; (V.C.); (S.S.); (C.B.); (C.R.); (P.T.); (D.C.); (G.A.V.); (D.d.P.); (F.P.E.)
| |
Collapse
|
21
|
Zawiasa A, Olejnik-Schmidt A. The Genetic Determinants of Listeria monocytogenes Resistance to Bacteriocins Produced by Lactic Acid Bacteria. Genes (Basel) 2025; 16:50. [PMID: 39858597 PMCID: PMC11765107 DOI: 10.3390/genes16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a serious foodborne disease that can lead to serious health complications. Pregnant women, newborns, the elderly, and patients with weakened immune systems are particularly susceptible to infection. Due to the ability of L. monocytogenes to survive in extreme environmental conditions, such as low temperatures, high salinity, and acidity, this bacterium poses a serious threat to food production plants and is particularly difficult to eliminate from these plants. One of the promising solutions to reduce the presence of this bacterium in food products is bacteriocins as natural control agents. These are substances with antibacterial activity produced by other bacteria, mainly lactic acid bacteria (LAB), which can effectively inhibit the development of pathogens such as L. monocytogenes. The use of bacteriocins in the food industry is beneficial due to their natural origin, specificity of action, and consumer safety. However, the problem of resistance to these substances exists. RESULTS This review focuses on the mechanisms of bacteriocin resistance, such as modifications of bacteriocin docking receptors, changes in the structure of the cell wall and membrane, and the occurrence of cross-resistance to different bacteriocins. Genetic factors determining these mechanisms and strategies to cope with the problem of resistance are also presented. CONCLUSIONS Research on this issue is crucial for developing effective preventive methods that will enable the safe and long-term use of bacteriocins in food production.
Collapse
Affiliation(s)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| |
Collapse
|
22
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
23
|
Elnar AG, Jang YJ, Eum BG, Kang MH, Hwang GW, Kil DY, Kim GB. Distinct phenotypes of salivaricin-producing Ligilactobacillus salivarius isolated from the gastrointestinal tract of broiler chickens and laying hens. Poult Sci 2025; 104:104537. [PMID: 39571198 PMCID: PMC11617682 DOI: 10.1016/j.psj.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
Ligilactobacillus salivarius harbors bacteriocin genes in its repA-type megaplasmid, specifically salivaricin P (salP), a class IIb bacteriocin. This study aimed to differentiate 25 salP-positive Lig. salivarius strains isolated from the gastrointestinal tract (GIT) of broilers and laying hens. Results showed that 12 isolates were classified as Type A, with active bacteriocins, while the rest were Type B, with no active bacteriocins. In vitro and in silico characterization of salP bacteriocins revealed narrow-spectrum antibacterial activity against Listeria monocytogenes and Enterococcus faecalis. SalP bacteriocins were predicted as positively charged, hydrophobic, small molecular weight (α, 4.097 kDa; ß, 4.285 kDa) bacteriocins with characteristic GXXXG motif. Investigation of the salP gene cluster based on genomic data revealed that Type B strains lacked the lanT and hlyD genes that encode export proteins dedicated to the modification and extracellular transport of mature salP peptides. However, two Type B strains (B4311 and B5258) showed inhibitory activity against L. monocytogenes ATCC19114. Multiplex PCR analysis and synteny mapping analysis revealed that B4311 and B5258 strains harbored the lanT gene, highlighting the importance of LanT protein in the cleavage of leader peptide and excretion of mature peptides. Further analysis revealed that the resistance of Type B strains to salP was attributable to the presence of a dedicated immunity protein, blurring the evolutionary significance of producing active bacteriocins for competitive advantage. Additionally, the loss of export proteins occurred in a polyphyletic manner, consistent with the genetic plasticity of the repA-type megaplasmid. This suggests that the loss of lanT and hlyD is likely in the presence of limited nutritional competitors. In conclusion, the observed differences in salivaricin production of Lig. salivarius exist independent of isolation host and that Type A and Type B strains can coexist in the same environment. Finally, the functional characterization of active salP allows for a better understanding of its potential to control specific bacteria in human food and animal production.
Collapse
Affiliation(s)
- A G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Y J Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - B G Eum
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - M H Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G W Hwang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G B Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
24
|
Chang S, Zhang Z, Liu Q, Wu H, Dong A. An Innovative Food Processing Technology: Microwave Electrodeless Ultraviolet, Luminescence Mechanism, Microbial Inactivation, and Food Application. Foods 2024; 13:4110. [PMID: 39767052 PMCID: PMC11675193 DOI: 10.3390/foods13244110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Microwave electrodeless ultraviolet (MWUV) technology, as an emerging food processing technique, has garnered growing attention in the realm of food science in recent years. Based on different application requirements, MWUV equipment types are categorized as microwave oven reactor, continuous-flow UV-microwave reactor, coaxially driven MWUV reactor, and complete ultraviolet reactor. The luminescence properties of MWUV equipment depend on their filler gas; mercury is commonly used as a filler gas to produce a wavelength at 253.7 nm for food non-thermal sterilization. The microbial sterilization effect of MWUV is primarily attributed to the synergistic action of microwave and ultraviolet (UV): MWUV enhances reactive oxygen species (ROS) production, disrupts the cell membrane structures of bacteria, leads to bacterial endosome leakage, and induces nucleic acid damage. MWUV extends food shelf-life by eliminating microorganisms without significantly altering food quality compared with traditional thermal sterilization methods. Additionally, MWUV, combined with digestion reagents such as HNO3 and H2O2, can effectively enhance the digestion of food samples to detect essential and toxic elements. Studies on MWUV technology hold broad potential in the food industry, with promising implications for food safety and consumer demand for high-quality food. Future research may focus on optimizing the equipment parameters and integrating with other food processing technologies to facilitate further development and application of MWUV.
Collapse
Affiliation(s)
- Shuqi Chang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Zhaoyi Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Qin Liu
- Inner Mongolia Tailida Dairy Co., Ltd., Hohhot 010010, China;
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (S.C.); (Z.Z.)
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| |
Collapse
|
25
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
26
|
Olszewska MA, Zimińska A, Draszanowska A, Sawicki T. Blackthorn fruit peel polyphenol extracts and photodynamic effect under blue light against Listeria monocytogenes. Food Microbiol 2024; 124:104608. [PMID: 39244360 DOI: 10.1016/j.fm.2024.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024]
Abstract
Photodynamic inactivation is an emerging antimicrobial treatment that can be enhanced by employing exogenous photosensitizers to eradicate foodborne pathogens. This study investigated a novel combinatory strategy to eradicate Listeria monocytogenes using blackthorn fruit peel (BFP) and blue light (BL). Extracts of BFP were characterized in terms of polyphenolic content, individual constituents, and antioxidant and antimicrobial activity. The concentration of phenolic compounds and antioxidant activity were both found to be determinants of antimicrobial activity. It was further speculated that flavonols, predominantly quercetin and rutin, were responsible for the activity of BFP against L. monocytogenes. A combination of BFP and BL resulted in a rapid inactivation of the pathogen by up to 4 log CFU/mL at 58.5 J/cm2, corresponding to 15 min BL illumination. Flow cytometry analysis revealed that the bacterial cells lost activity and suffered extensive membrane damage, exceeding 90% of the population. After photosensitizing L. monocytogenes with the BFP constituents quercetin and rutin, a 1.3-log reduction was observed. When applied together, these compounds could inflict the same damaging effect on cells as they did individually when effects were added. Therefore, the results indicate that BFP represents a natural source of (pro-)photosensitizers, which act additively to create inactivation effects. This study may help identify more effective plant-based photosensitizers to control L. monocytogenes in food-related applications.
Collapse
Affiliation(s)
- Magdalena A Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718, Olsztyn, Poland
| |
Collapse
|
27
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
28
|
Xu DZ, Tan QH. Infection with Listeria monocytogenes meningoencephalitis: A case report. World J Clin Cases 2024; 12:6629-6634. [PMID: 39600479 PMCID: PMC11514345 DOI: 10.12998/wjcc.v12.i33.6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Listeria meningitis is an infectious disease of the central nervous system caused by Listeria monocytogenes. This bacterium is widely present in the natural environment and can be transmitted through channels such as food and water. Patients usually show symptoms such as fever, headache, and neck stiffness. In severe cases, coma, convulsions, or even death may occur. Traditional diagnostic methods, such as cerebrospinal fluid (CSF) culture and serological tests, have certain limitations. Although CSF culture is the "gold standard" for diagnosis, it is time-consuming and has a relatively low positivity rate. Serological detection may also result in false positive or false negative results. The emergence of metagenomic sequencing (mNGS) technology has led to a significant breakthrough in diagnosing Listeria meningitis, allowing quick and accurate detection of various pathogens in samples. CASE SUMMARY Here, we present the case of a previously healthy 64-year-old woman diagnosed with Listeria meningitis using mNGS. She was successfully treated with intravenous ampicillin and meropenem, without any complications. CONCLUSION Listeria meningitis must be considered, especially in patients who fail to show improvement with first-line antibiotic treatments. mNGS significantly reduces the diagnosis time, supporting timely treatment of patients.
Collapse
Affiliation(s)
- Da-Zhen Xu
- Department of Nursing, Shanghai Sixth People’s Hospital, Shanghai 200233, China
| | - Quan-Hui Tan
- Department of Infectious Disease, Shanghai Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
29
|
Pang X, Du X, Hu X, Feng Z, Sun J, Li X, Lu Y. Inhibitory Effect of DNase-Chitosan-Nisin Nanoparticles on Cell Viability, Motility, and Spatial Structures of Listeria monocytogenes Biofilms. Foods 2024; 13:3544. [PMID: 39593960 PMCID: PMC11592910 DOI: 10.3390/foods13223544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Listeria monocytogenes biofilm contamination on food contact surfaces is a major concern for the food industry. Nanoparticle encapsulation appears as a novel strategy for food surface disinfection to prevent biofilm formation. Chitosan nanoparticles loaded with nisin and DNase I (DNase-CS-N) have been constructed to exhibit antimicrobial activity against L. monocytogenes. This study aimed to investigate their ability to inhibit L. monocytogenes biofilm formation and eliminate preformed biofilms on food contact surfaces (polystyrene, polyurethane, and stainless steel). DNase-CS-N could decrease 99% and 99.5% biofilm cell numbers at 1/2 MIC and MIC, respectively. At sub-MICs, DNase-CS-N could reduce cell motility (swimming and swarming) and slime production of L. monocytogenes. In terms of effect on biofilm elimination, DNase-CS-N at the concentration of 4 MIC led to 3-4 log reduction in biofilm cells in preformed biofilms, performing higher efficiency compared with other treatments (CSNPs, CS-N). Furthermore, the three-dimensional structure of L. monocytogenes biofilms was severely disrupted after DNase-CS-N treatment, with bacterial cells scattered on the surface. The morphology of biofilm cells was also greatly damaged with wrinkled surfaces, disrupted cell membranes, and leakage of intracellular nucleic acids and proteins. These results indicate the potential applicability of DNase-CS-N for inhibiting and eliminating L. monocytogenes biofilms on food contact surfaces.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (X.P.); (X.D.); (X.H.); (Z.F.); (J.S.); (X.L.)
| |
Collapse
|
30
|
Souza NAAD, Carvalho LD, Nogueira MH, Furlaneto MC, Maia LF. Potential of enterocin from Enterococcus durans MF5 in controlling Listeria species. J DAIRY RES 2024; 91:516-524. [PMID: 40079125 DOI: 10.1017/s0022029925000160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This research paper presents the characterization of an enterocin-producing Enterococcus durans MF5 isolate and the determination of the in vitro antilisterial activity of enterocin produced by this isolate, named Ent-MF5. PCR-based screening for bacteriocin biosynthetic genes revealed that E. durans MF5 harbors multiple enterocin-encoding genes (ent A, B, P and X), classified as class II bacteriocins and enterocin-P of Enterococcus faecium (sharing up to 99% similarity at the genetic level). E. durans MF5 is sensitive to eight clinically important antibiotics and does not possess cytolysin activator -cylA, gelatinase -gelE and hyaluronidase -hylA virulence genes. The antilisterial activity of Ent-MF5 was abolished by trypsin, α-chymotrypsin, protease and proteinase-K. Ent-MF5 showed thermal and pH stability. In addition, the activity of Ent-MF5 was unaffected in the presence of various surfactants (1% SDS, Triton X-100, Tween 20, and Tween 80). Ent-MF5 exhibited antimicrobial activity against Listeria monocytogenes, Listeria innocua, Listeria ivanovii and Listeria seeligeri at concentrations as low as 0.13 μg/ml. Ent-MF5 had a bactericidal effect against L. monocytogenes with a significant reduction in surviving cells at concentrations equal to or greater than 0.13 μg/ml. A 75-100% reduction in L. monocytogenes growth and bactericidal effect determined by CFU counts was observed following treatment with Ent-MF5 at 4.47 μg/ml at time points starting at 2 and 4 h, respectively. Ent-MF5 action is associated with Listeria cell membrane damage, as observed by flow cytometry and fluorescence microscopy. Thus, the effective antilisterial activity and stability of Ent-MF5 presents promising perspectives for application as biopreservatives in the food industry.
Collapse
Affiliation(s)
- Nathália Aparecida Andrade de Souza
- Department of Microbiology, Center of Biological Sciences, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, C.P. 6001, 86051990 Londrina, Paraná, Brazil
| | - Luana de Carvalho
- Department of Food Technology, Technological Federal University of Paraná, Londrina, Pioneiros Avenue 3131, Jardim Morumbi, 86036-370 Londrina, Paraná, Brazil
| | - Matheus Henrique Nogueira
- Department of Food Technology, Technological Federal University of Paraná, Londrina, Pioneiros Avenue 3131, Jardim Morumbi, 86036-370 Londrina, Paraná, Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, Center of Biological Sciences, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, C.P. 6001, 86051990 Londrina, Paraná, Brazil
| | - Luciana Furlaneto Maia
- Department of Food Technology, Technological Federal University of Paraná, Londrina, Pioneiros Avenue 3131, Jardim Morumbi, 86036-370 Londrina, Paraná, Brazil
| |
Collapse
|
31
|
Kraus V, Čižmárová B, Birková A. Listeria in Pregnancy-The Forgotten Culprit. Microorganisms 2024; 12:2102. [PMID: 39458411 PMCID: PMC11510352 DOI: 10.3390/microorganisms12102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis, a severe foodborne illness that is particularly dangerous during pregnancy. It thrives in diverse environments, including refrigerated conditions and food production facilities, due to its adaptability to varying temperatures, pH levels, and salt concentrations. Its virulence stems from the ability to invade host cells, particularly macrophages and epithelial cells, and avoid, or at least postpone, immune detection by utilizing virulence factors such as internalins, listeriolysin O, and actin assembly-inducing protein. This intracellular motility and biofilm formation make LM a persistent pathogen in food safety and public health. Pregnant women are at a much higher risk of listeriosis, which can result in serious fetal complications such as miscarriage, stillbirth, and preterm labor due to LM's affinity for placental tissues. The vertical transmission of LM from mother to fetus can lead to neonatal listeriosis, which can result in sepsis and meningitis, with high mortality rates if not promptly treated. Early diagnosis and treatment with antibiotics, such as ampicillin or gentamicin, are crucial for maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Vladimír Kraus
- Department of Gyneacology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| |
Collapse
|
32
|
Zhang J, Hao J, Wang J, Li H, Zhao D. Strategic manipulation of biofilm dispersion for controlling Listeria monocytogenes infections. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39367886 DOI: 10.1080/10408398.2024.2409340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Listeria monocytogenes (L. monocytogenes), a gram-positive foodborne pathogen that can easily cause listeriosis. It secretes extracellular polymers and forms biofilms that are highly resistant to disinfection methods, such as UV light and germicides, posing risks to food processing equipment and food quality. Dispersion of biofilm is the cycle of its formation in which the bacteria return to planktonic state and become susceptible to antimicrobials, the strategic manipulation of biofilm dispersion is thus heralded as a novel and promising approach for the effective control of biofilm-related infections. Compared to the traditional methods, it is more effective to start with the composition of biofilms, cut off the production of their constituent substances, and genetically reduce the probability of biofilm formation. Meanwhile, the dispersion of bacteria can be supplemented with exogenous substances, making long-term control possible. This paper provides a brief but comprehensive overview of the mechanisms of L. monocytogenes biofilms or cross-contamination and their resistance properties, and facilitates our understanding and control of the prevention and containment of L. monocytogenes biofilm contamination based on the biofilm's active and passive diffusion strategies. This work provides practical guidelines for the food industry to guard against the enduring threat to food safety due to L. monocytogenes biofilms.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jingyi Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huiying Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
33
|
Marques PH, Jaiswal AK, de Almeida FA, Pinto UM, Ferreira-Machado AB, Tiwari S, Soares SDC, Paiva AD. Lactic acid bacteria secreted proteins as potential Listeria monocytogenes quorum sensing inhibitors. Mol Divers 2024; 28:2897-2912. [PMID: 37658910 DOI: 10.1007/s11030-023-10722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Listeria monocytogenes is an important human and animal pathogen able to cause an infection named listeriosis and is mainly transmitted through contaminated food. Among its virulence traits, the ability to form biofilms and to survive in harsh environments stand out and lead to the persistence of L. monocytogenes for long periods in food processing environments. Virulence and biofilm formation are phenotypes regulated by quorum sensing (QS) and, therefore, the control of L. monocytogenes through an anti-QS strategy is promising. This study aimed to identify, by in silico approaches, proteins secreted by lactic acid bacteria (LAB) potentially able to interfere with the agr QS system of L. monocytogenes. The genome mining of Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM revealed 151 predicted secreted proteins. Concomitantly, the three-dimensional (3D) structures of AgrB and AgrC proteins of L. monocytogenes were modeled and validated, and their active sites were predicted. Through protein-protein docking and molecular dynamic, Serine-type D-Ala-D-Ala carboxypeptidase and L,D-transpeptidase, potentially secreted by L. rhamnosus GG and L. acidophilus NCFM, respectively, were identified with high affinity to AgrB and AgrC proteins, respectively. By inhibiting the translocation of the cyclic autoinducer peptide (cyclic AIP) via AgrB, and its recognition in the active site of AgrC, these LAB proteins could disrupt L. monocytogenes communication by impairing the agr QS system. The application of the QS inhibitors predicted in this study can emerge as a promising strategy in controlling L. monocytogenes in food processing environment and as an adjunct to antibiotic therapy for the treatment of listeriosis.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Interunit Bioinformatics Graduate Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Interunit Bioinformatics Graduate Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Alves de Almeida
- Instituto de Laticínios Cândido Tostes (ILCT), Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Juiz de Fora, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
34
|
Al-Mohammadi AR, Abdel-Shafi S, Moustafa AH, Fouad N, Enan G, Ibrahim RA. Potential Use and Chemical Analysis of Some Natural Plant Extracts for Controlling Listeria spp. Growth In Vitro and in Food. Foods 2024; 13:2915. [PMID: 39335846 PMCID: PMC11431611 DOI: 10.3390/foods13182915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Listeria are Gram-negative intracellular foodborne pathogens that can cause invasive infections with high mortality rates. In this work, the antibacterial activity of ten essential oils, infusion extracts, and decoction extracts of some medicinal plants was tested against Listeria monocytogenes and listeria ivanovii strains. The effects of different physical conditions including temperature, pH, sodium chloride, and some organic acids were studied. The results showed that the water extracts gave the maximum bacterial inhibition, while ethanolic extract was inactive against the tested Listeria spp. The antibiotic sensitivity of L. monocytogenes LMG10470 and L. ivanovii LMZ11352 was tested against five antibiotics including imipenem, levofloxacin, amikacin, ampicillin, and amoxicillin. Imipenem was the most effective antibiotic, resulting in inhibition zones of 40 mm and 31 mm for L. monocytogenes and L. ivanovii, respectively. When imipenem mixed with Syzygium aromaticum oil, Salvia officinalis oil, Pimpinella anisum infusion, and Mentha piperita infusion each, the water extract of Moringa oleifera leaves and seeds against LMG10470 and LMZ11352 resulted in broader antibacterial activity. The antimicrobial activity of both Pimpinella anisum and Mentha piperita plant extracts is related to a variety of bioactive compounds indicated by gas chromatography-mass spectrometry analysis of these two plant extracts. These two plant extracts seemed to contain many chemical compounds elucidated by gas chromatography-mass spectrometry (GC-MS) and infrared radiation spectra. These compounds could be classified into different chemical groups such as ethers, heterocyclic compounds, aromatic aldehydes, condensed heterocyclic compounds, ketones, alicyclic compounds, aromatics, esters, herbicides, saturated fatty acids, and unsaturated fatty acids. The use of these natural compounds seems to be a useful technological adjuvant for the control of Listeria spp. in foods.
Collapse
Affiliation(s)
| | - Seham Abdel-Shafi
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Ahmed H. Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Nehal Fouad
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| | - Rehab A. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.-S.); (N.F.); (G.E.)
| |
Collapse
|
35
|
Ikhimiukor OO, Mingle L, Wirth SE, Mendez-Vallellanes DV, Hoyt H, Musser KA, Wolfgang WJ, Andam CP. Long-term persistence of diverse clones shapes the transmission landscape of invasive Listeria monocytogenes. Genome Med 2024; 16:109. [PMID: 39232757 PMCID: PMC11373459 DOI: 10.1186/s13073-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The foodborne bacterium Listeria monocytogenes (Lm) causes a range of diseases, from mild gastroenteritis to invasive infections that have high fatality rate in vulnerable individuals. Understanding the population genomic structure of invasive Lm is critical to informing public health interventions and infection control policies that will be most effective especially in local and regional communities. METHODS We sequenced the whole draft genomes of 936 Lm isolates from human clinical samples obtained in a two-decade active surveillance program across 58 counties in New York State, USA. Samples came mostly from blood and cerebrospinal fluid. We characterized the phylogenetic relationships, population structure, antimicrobial resistance genes, virulence genes, and mobile genetic elements. RESULTS The population is genetically heterogenous, consisting of lineages I-IV, 89 clonal complexes, 200 sequence types, and six known serogroups. In addition to intrinsic antimicrobial resistance genes (fosX, lin, norB, and sul), other resistance genes tetM, tetS, ermG, msrD, and mefA were sparsely distributed in the population. Within each lineage, we identified clusters of isolates with ≤ 20 single nucleotide polymorphisms in the core genome alignment. These clusters may represent isolates that share a most recent common ancestor, e.g., they are derived from the same contamination source or demonstrate evidence of transmission or outbreak. We identified 38 epidemiologically linked clusters of isolates, confirming eight previously reported disease outbreaks and the discovery of cryptic outbreaks and undetected chains of transmission, even in the rarely reported Lm lineage III (ST3171). The presence of animal-associated lineages III and IV may suggest a possible spillover of animal-restricted strains to humans. Many transmissible clones persisted over several years and traversed distant sites across the state. CONCLUSIONS Our findings revealed the bacterial determinants of invasive listeriosis, driven mainly by the diversity of locally circulating lineages, intrinsic and mobile antimicrobial resistance and virulence genes, and persistence across geographical and temporal scales. Our findings will inform public health efforts to reduce the burden of invasive listeriosis, including the design of food safety measures, source traceback, and outbreak detection.
Collapse
Affiliation(s)
| | - Lisa Mingle
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Samantha E Wirth
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | - Hannah Hoyt
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | | | - Cheryl P Andam
- University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
36
|
Ferroni Passos T, Nitschke M. The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids. Food Res Int 2024; 192:114744. [PMID: 39147550 DOI: 10.1016/j.foodres.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
The use of natural and sustainable additives, that are less aggressive to the environment, is a trend in the food industry. Rhamnolipids (RL) biosurfactants have shown potential for controlling food pathogens however, due to the presence of free carboxyl groups, the pH and ionic strength may influence the properties of such surfactants. In this study, we describe the antimicrobial activity of RL under different pH values and NaCl concentrations, towards both planktonic and biofilms of Listeria monocytogenes. RL were effective at pH 5.0 and the addition of 5 % NaCl improved the bactericidal efficacy for planktonic and sessile cells. The effect of NaCl was more pronounced at pH above 6 showing a significant increase in RL antimicrobial activity. At pH 7.0 planktonic population was eradicated by RL only when salt was present whereas biofilm viability was decreased by 5 log with MBIC varying from > 2500.0 mg/L (RL) to 39.0 mg/L (RL + 5 % NaCl). Larger vesicular and lamellar RL self-assembly structures were predominant when NaCl was present, suggesting their association with the antimicrobial activity observed. The pH and ionic strength of the medium are important parameters to be considered for the development of RL-based strategies to control L. monocytogenes.
Collapse
Affiliation(s)
- Tathiane Ferroni Passos
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), Av. Trabalhador São Carlense, 400, CP-780, São Carlos, SP - CEP 13566-590, Brazil
| | - Marcia Nitschke
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), Av. Trabalhador São Carlense, 400, CP-780, São Carlos, SP - CEP 13566-590, Brazil.
| |
Collapse
|
37
|
Alegbeleye O, Rhee MS. Growth of Listeria monocytogenes in fresh vegetables and vegetable salad products: An update on influencing intrinsic and extrinsic factors. Compr Rev Food Sci Food Saf 2024; 23:e13423. [PMID: 39169547 DOI: 10.1111/1541-4337.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The ability of foodborne pathogens to grow in food products increases the associated food safety risks. Listeria monocytogenes (Lm) is a highly adaptable pathogen that can survive and grow under a wide range of environmental circumstances, including otherwise inhibitory conditions, such as restrictive cold temperatures. It can also survive long periods under adverse environmental conditions. This review examines the experimental evidence available for the survival and growth of Lm on fresh vegetables and ready-to-eat vegetable salads. Published data indicate that, depending on certain intrinsic (e.g., nutrient composition) and extrinsic factors (e.g., storage temperature, packaging atmosphere), Lm can survive on and in a wide variety of vegetables and fresh-cut minimally processed vegetable salads. Studies have shown that temperature, modified atmosphere packaging, relative humidity, pH, water activity, background microbiota of vegetables, microbial strain peculiarities, and nutrient type and availability can significantly impact the fate of Lm in vegetables and vegetable salads. The influence of these factors can either promote its growth or decline. For example, some studies have shown that background microbiota inhibit the growth of Lm in vegetables and minimally processed vegetable salads, but others have reported a promoting, neutral, or insignificant effect on the growth of Lm. A review of relevant literature also indicated that the impact of most influencing factors is related to or interacts with other intrinsic or extrinsic factors. This literature synthesis contributes to the body of knowledge on possible strategies for improving food safety measures to minimize the risk of Lm-associated foodborne outbreaks involving vegetables and vegetable salads.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas, Campinas, Brazil
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
38
|
Mendoza ASG, Acosta MFM, Sánchez JAM, Vázquez LEC. Principles and challenges of whole cell microbial biosensors in the food industry. J Food Sci 2024; 89:5255-5269. [PMID: 39175184 DOI: 10.1111/1750-3841.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Whole cell microbial biosensors (WCMB) are mostly genetically modified microorganisms used to detect target molecules as indicators of biological and chemical contaminants as well as in the identification of compounds of interest in the food industry. The specificity and sensitivity of these biosensors are achieved through the design of genetic circuits that make use of genetic sequences such as promoters, terminators, genes encoding regulatory proteins or reporter proteins, among others. Despite the advances of WCMBs for their application, significant challenges are faced, such as cell stability, regulatory restrictions, and the need to optimize response times so that they can be a competitive detection tool in the market. This review explores the technological progress, potential and limitations of WCMBs in the food industry, starting by reviewing the operating principles of biosensors. The importance of selecting appropriate chassis cells and the integration of recognition elements and transducers to maximize their effectiveness in the detection of contaminants and compounds of interest in the food industry is highlighted.
Collapse
Affiliation(s)
- América Selene Gaona Mendoza
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
| | - María Fernanda Mendoza Acosta
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
| | - Julio Armando Massange Sánchez
- Plant Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco A.C. (CIATEJ), Guadalajara, Mexico
| | - Luz Edith Casados Vázquez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, Guanajuato, México
- CONAHCyT-University of Guanajuato, Guanajuato, México
| |
Collapse
|
39
|
Gul A, Pewe LL, Willems P, Mayer R, Thery F, Asselman C, Aernout I, Verbeke R, Eggermont D, Van Moortel L, Upton E, Zhang Y, Boucher K, Miret-Casals L, Demol H, De Smedt SC, Lentacker I, Radoshevich L, Harty JT, Impens F. Immunopeptidomics Mapping of Listeria monocytogenes T Cell Epitopes in Mice. Mol Cell Proteomics 2024; 23:100829. [PMID: 39147027 PMCID: PMC11414675 DOI: 10.1016/j.mcpro.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
Listeria monocytogenes is a foodborne intracellular bacterial model pathogen. Protective immunity against Listeria depends on an effective CD8+ T cell response, but very few T cell epitopes are known in mice as a common animal infection model for listeriosis. To identify epitopes, we screened for Listeria immunopeptides presented in the spleen of infected mice by mass spectrometry-based immunopeptidomics. We mapped more than 6000 mouse self-peptides presented on MHC class I molecules, including 12 high confident Listeria peptides from 12 different bacterial proteins. Bacterial immunopeptides with confirmed fragmentation spectra were further tested for their potential to activate CD8+ T cells, revealing VTYNYINI from the putative cell wall surface anchor family protein LMON_0576 as a novel bona fide peptide epitope. The epitope showed high biological potency in a prime boost model and can be used as a research tool to probe CD8+ T cell responses in the mouse models of Listeria infection. Together, our results demonstrate the power of immunopeptidomics for bacterial antigen identification.
Collapse
Affiliation(s)
- Adillah Gul
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lecia L Pewe
- Department of Pathology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA
| | - Patrick Willems
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rupert Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laura Van Moortel
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ellen Upton
- Department of Microbiology and Immunology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Laia Miret-Casals
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.
| | - John T Harty
- Department of Pathology, University of Iowa-Carver College of Medicine, Iowa City, Iowa, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
40
|
Tadesse BT, Gu L, Solem C, Mijakovic I, Jers C. The Probiotic Enterococcus Lactis SF68 as a Potential Food Fermentation Microorganism for Safe Food Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18089-18099. [PMID: 39102436 DOI: 10.1021/acs.jafc.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.
Collapse
Affiliation(s)
- Belay Tilahun Tadesse
- National Food Institute, Research Group for Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby 2800, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
| | - Liuyan Gu
- Department of Bio- and Chemical Engineering, Aarhus University, Gustav Wieds vej 10, Aarhus 8000, Denmark
| | - Christian Solem
- National Food Institute, Research Group for Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby 2800, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
| |
Collapse
|
41
|
Kawacka I, Olejnik-Schmidt A. Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. Antibiotics (Basel) 2024; 13:749. [PMID: 39200049 PMCID: PMC11350778 DOI: 10.3390/antibiotics13080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
42
|
Rohilla A, Kumar V, Ahire JJ. Unveiling the persistent threat: recent insights into Listeria monocytogenes adaptation, biofilm formation, and pathogenicity in foodborne infections. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1428-1438. [PMID: 38966782 PMCID: PMC11219595 DOI: 10.1007/s13197-023-05918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 07/06/2024]
Abstract
Listeriosis is a severe disease caused by the foodborne pathogen Listeria monocytogenes, posing a significant risk to vulnerable populations such as the elderly, pregnant women, and newborns. While relatively uncommon, it has a high global mortality rate of 20-30%. Recent research indicates that smaller outbreaks of the more severe, invasive form of the disease occur more frequently than previously thought, despite the overall stable infection rates of L. monocytogenes over the past 10 years. The ability of L. monocytogenes to form biofilm structures on various surfaces in food production environments contributes to its persistence and challenges in eradication, potentially leading to contamination of food and food production facilities. To address these concerns, this review focuses on recent developments in epidemiology, risk evaluations, and molecular mechanisms of L. monocytogenes survival in adverse conditions and environmental adaptation. Additionally, it covers new insights into strain variability, pathogenicity, mutations, and host vulnerability, emphasizing the important events framework that elucidates the biochemical pathways from ingestion to infection. Understanding the adaptation approaches of L. monocytogenes to environmental stress factors is crucial for the development of effective and affordable pathogen control techniques in the food industry, ensuring the safety of food production.
Collapse
Affiliation(s)
- Alka Rohilla
- Institute of Biology Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028 India
| | - Jayesh J. Ahire
- Dr. Reddy’s Laboratories Limited, Ameerpet, Hyderabad, 500016 India
| |
Collapse
|
43
|
Melian C, Ploper D, Chehín R, Vignolo G, Castellano P. Impairment of Listeria monocytogenes biofilm developed on industrial surfaces by Latilactobacillus curvatus CRL1579 bacteriocin. Food Microbiol 2024; 121:104491. [PMID: 38637093 DOI: 10.1016/j.fm.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 04/20/2024]
Abstract
The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Diego Ploper
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Rosana Chehín
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
44
|
Hatem O, Steinbach A, Schneider G, Röckel F, Kőrösi L. Wild Vitis Species as Stilbenes Sources: Cane Extracts and Their Antibacterial Activity against Listeria monocytogenes. Molecules 2024; 29:3518. [PMID: 39124922 PMCID: PMC11314568 DOI: 10.3390/molecules29153518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Grapevines (Vitis spp.) produce several valuable polyphenol-type secondary metabolites including various stilbenoids. Although the potential application of stilbenes may offer alternative solutions to food safety or health challenges, only little information is available on their antibacterial activity against foodborne pathogens. In this work, high-performance liquid chromatography was used to analyze the stilbenoid profile of various wild Vitis species, including V. amurensis, V. davidii, V. pentagona, and V. romanetii, selected from the gene bank for grapes at the University of Pécs, Hungary. We found that the stilbene profile of cane extracts is strongly genotype-dependent, showing the predominant presence of ε-viniferin with a wide concentration range ≈ 320-3870 µg/g dry weight. A novel yet simple and efficient extraction procedure was developed and applied for the first time on grape canes, resulting in ε-viniferin-rich crude extracts that were tested against Listeria monocytogenes, an important foodborne pathogen. After 24 h exposure, V. pentagona and V. amurensis crude extracts completely eliminated the bacteria at a minimum bactericidal concentration of 42.3 µg/mL and 39.2 µg/mL of ε-viniferin, respectively. On the other hand, V. romanetii extract with 7.8 µg/mL of ε-viniferin resulted in 4 log reduction in the viable bacterial cells, while V. davidii extract with 1.4 µg/mL of ε-viniferin did not show significant antibacterial activity. These findings indicate that the ε-viniferin content was directly responsible for the antibacterial effect of cane extract. However, pure ε-viniferin (purity > 95%) required a higher concentration (188 µg/mL) to eradicate the bacteria under the same conditions, suggesting the presence of other antibacterial compounds in the cane extracts. Investigating the onset time of the bactericidal action was conducted through a kinetic experiment, and results showed that the reduction in living bacterial number started after 2 h; however, the bactericidal action demanded 24 h of exposure. Our results revealed that the canes of V. pentagona and V. amurensis species are a crucial bio-source of an important stilbene with antimicrobial activity and health benefits.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, H-7622 Pécs, Hungary;
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (A.S.); (G.S.)
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (A.S.); (G.S.)
| | - Franco Röckel
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany;
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Hungary
| |
Collapse
|
45
|
Pracser N, Voglauer EM, Thalguter S, Pietzka A, Selberherr E, Wagner M, Rychli K. Exploring the occurrence of Listeria in biofilms and deciphering the bacterial community in a frozen vegetable producing environment. Front Microbiol 2024; 15:1404002. [PMID: 39050638 PMCID: PMC11266072 DOI: 10.3389/fmicb.2024.1404002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The establishment of Listeria (L.) monocytogenes within food processing environments constitutes a significant public health concern. This versatile bacterium demonstrates an exceptional capacity to endure challenging environmental conditions in the food processing environment, where contamination of food products regularly occurs. The diverse repertoire of stress resistance genes, the potential to colonize biofilms, and the support of a co-existing microbiota have been proposed as root causes for the survival of L. monocytogenes in food processing environments. In this study, 71 sites were sampled after cleaning and disinfection in a European frozen vegetable processing facility, where L. monocytogenes in-house clones persisted for years. L. monocytogenes and L. innocua were detected by a culture-dependent method at 14 sampling sites, primarily on conveyor belts and associated parts. The presence of biofilms, as determined by the quantification of bacterial load and the analysis of extracellular matrix components (carbohydrates, proteins, extracellular DNA) was confirmed at nine sites (12.7%). In two cases, L. innocua was detected in a biofilm. Furthermore, we explored the resident microbial community in the processing environment and on biofilm-positive sites, as well as the co-occurrence of bacterial taxa with Listeria by 16S rRNA gene sequencing. Pseudomonas, Acinetobacter, and Exiguobacterium dominated the microbial community of the processing environment. Using differential abundance analysis, amplicon sequence variants (ASVs) assigned to Enterobacterales (Enterobacter, Serratia, unclassified Enterobacteriaceae) and Carnobacterium were found to be significantly higher abundant in Listeria-positive samples. Several Pseudomonas ASVs were less abundant in Listeria-positive compared to Listeria-negative samples. Acinetobacter, Pseudomonas, Janthinobacterium, Brevundimonas, and Exiguobacterium were key players in the microbial community in biofilms, and Exiguobacterium and Janthinobacterium were more relatively abundant in biofilms. Further, the microbial composition varied between the different areas and the surface materials.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Eva M. Voglauer
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Sarah Thalguter
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Evelyne Selberherr
- Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kathrin Rychli
- Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
46
|
Ogunleye SC, Islam S, Chowdhury QMMK, Ozdemir O, Lawrence ML, Abdelhamed H. Catabolite control protein C contributes to virulence and hydrogen peroxide-induced oxidative stress responses in Listeria monocytogenes. Front Microbiol 2024; 15:1403694. [PMID: 38881664 PMCID: PMC11176438 DOI: 10.3389/fmicb.2024.1403694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Listeria monocytogenes causes listeriosis, an infectious and potentially fatal disease of animals and humans. A diverse network of transcriptional regulators, including LysR-type catabolite control protein C (CcpC), is critical for the survival of L. monocytogenes and its ability to transition into the host environment. In this study, we explored the physiological and genetic consequences of deleting ccpC and the effects of such deletion on the ability of L. monocytogenes to cause disease. We found that ccpC deletion did not impact hemolytic activity, whereas it resulted in significant reductions in phospholipase activities. Western blotting revealed that the ΔccpC strain produced significantly reduced levels of the cholesterol-dependent cytolysin LLO relative to the wildtype F2365 strain. However, the ΔccpC mutant displayed no significant intracellular growth defect in macrophages. Furthermore, ΔccpC strain exhibited reduction in plaque numbers in fibroblasts compared to F2365, but plaque size was not significantly affected by ccpC deletion. In a murine model system, the ΔccpC strain exhibited a significantly reduced bacterial burden in the liver and spleen compared to the wildtype F2365 strain. Interestingly, the deletion of this gene also enhanced the survival of L. monocytogenes under conditions of H2O2-induced oxidative stress. Transcriptomic analyses performed under H2O2-induced oxidative stress conditions revealed that DNA repair, cellular responses to DNA damage and stress, metalloregulatory proteins, and genes involved in the biosynthesis of peptidoglycan and teichoic acids were significantly induced in the ccpC deletion strain relative to F2365. In contrast, genes encoding internalin, 1-phosphatidylinositol phosphodiesterase, and genes associated with sugar-specific phosphotransferase system components, porphyrin, branched-chain amino acids, and pentose phosphate pathway were significantly downregulated in the ccpC deletion strain relative to F2365. This finding highlights CcpC as a key factor that regulates L. monocytogenes physiology and responses to oxidative stress by controlling the expression of important metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, MS, United States
| |
Collapse
|
47
|
Guel-García P, García De León FJ, Aguilera-Arreola G, Mandujano A, Mireles-Martínez M, Oliva-Hernández A, Cruz-Hernández MA, Vasquez-Villanueva J, Rivera G, Bocanegra-García V, Martínez-Vázquez AV. Prevalence and Antimicrobial Resistance of Listeria monocytogenes in Different Raw Food from Reynosa, Tamaulipas, Mexico. Foods 2024; 13:1656. [PMID: 38890883 PMCID: PMC11171905 DOI: 10.3390/foods13111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria (L.) monocytogenes is an opportunistic foodborne pathogen that causes listeriosis in humans and animals, reaching up to 30% case mortality. There are only a few reports in Mexico about the L. monocytogenes strains found in various foods. The aim of this study was to determine the prevalence of L. monocytogenes, serogroups, virulence genes, and antimicrobial resistance in different foods from Reynosa, Tamaulipas, Mexico. L. monocytogenes strains were characterized by microbiological and molecular methods. Susceptibility to 12 antibiotics was determined according to CLSI and EUCAST. A total of 300 samples of seafood, pasteurized and raw milk, cheese, beef, and chicken were collected from supermarkets and retail markets. The presence of L. monocytogenes was detected in 5.6% of the samples. Most strains belonged to serogroups 4b, 4d, and 4e (68.4%). All strains presented a minimum of four virulence genes; the most common were actA, hly, and plcB (92.1%). A high percentage of antimicrobial susceptibility was observed, with resistance only to STX-TMP (78.9%), STR (26.3%), MEM (21.0%), and E (2.6%). These results show that the foods in Reynosa, Tamaulipas, are a reservoir of L. monocytogenes and represent a potential health risk.
Collapse
Affiliation(s)
- Paulina Guel-García
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - Francisco Javier García De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz C.P. 23090, Baja California Sur, Mexico;
| | - Guadalupe Aguilera-Arreola
- Laboratorio de Bacteriología Medica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City C.P. 11340, Mexico;
| | - Antonio Mandujano
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - Maribel Mireles-Martínez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - Amanda Oliva-Hernández
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - María Antonia Cruz-Hernández
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - Jose Vasquez-Villanueva
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria C.P. 87274, Tamaulipas, Mexico;
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| | - Ana Verónica Martínez-Vázquez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa C.P. 88710, Tamaulipas, Mexico; (P.G.-G.); (A.M.); (M.M.-M.); (A.O.-H.); (M.A.C.-H.); (G.R.); (V.B.-G.)
| |
Collapse
|
48
|
Silva A, Silva V, Gomes JP, Coelho A, Batista R, Saraiva C, Esteves A, Martins Â, Contente D, Diaz-Formoso L, Cintas LM, Igrejas G, Borges V, Poeta P. Listeria monocytogenes from Food Products and Food Associated Environments: Antimicrobial Resistance, Genetic Clustering and Biofilm Insights. Antibiotics (Basel) 2024; 13:447. [PMID: 38786175 PMCID: PMC11118052 DOI: 10.3390/antibiotics13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Listeria monocytogenes, a foodborne pathogen, exhibits high adaptability to adverse environmental conditions and is common in the food industry, especially in ready-to-eat foods. L. monocytogenes strains pose food safety challenges due to their ability to form biofilms, increased resistance to disinfectants, and long-term persistence in the environment. The aim of this study was to evaluate the presence and genetic diversity of L. monocytogenes in food and related environmental products collected from 2014 to 2022 and assess antibiotic susceptibility and biofilm formation abilities. L. monocytogenes was identified in 13 out of the 227 (6%) of samples, 7 from food products (meat preparation, cheeses, and raw milk) and 6 from food-processing environments (slaughterhouse-floor and catering establishments). All isolates exhibited high biofilm-forming capacity and antibiotic susceptibility testing showed resistance to several classes of antibiotics, especially trimethoprim-sulfamethoxazole and erythromycin. Genotyping and core-genome clustering identified eight sequence types and a cluster of three very closely related ST3 isolates (all from food), suggesting a common contamination source. Whole-genome sequencing (WGS) analysis revealed resistance genes conferring resistance to fosfomycin (fosX), lincosamides (lin), fluoroquinolones (norB), and tetracycline (tetM). In addition, the qacJ gene was also detected, conferring resistance to disinfecting agents and antiseptics. Virulence gene profiling revealed the presence of 92 associated genes associated with pathogenicity, adherence, and persistence. These findings underscore the presence of L. monocytogenes strains in food products and food-associated environments, demonstrating a high virulence of these strains associated with resistance genes to antibiotics, but also to disinfectants and antiseptics. Moreover, they emphasize the need for continuous surveillance, effective risk assessment, and rigorous control measures to minimize the public health risks associated to severe infections, particularly listeriosis outbreaks. A better understanding of the complex dynamics of pathogens in food products and their associated environments can help improve overall food safety and develop more effective strategies to prevent severe health consequences and economic losses.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Alexandra Esteves
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ângela Martins
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Lara Diaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
49
|
Guk K, Yi S, Kim H, Kim S, Lim EK, Kang T, Jung J. PoreGlow: A split green fluorescent protein-based system for rapid detection of Listeria monocytogenes. Food Chem 2024; 438:138043. [PMID: 37992606 DOI: 10.1016/j.foodchem.2023.138043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 μg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.
Collapse
Affiliation(s)
- Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
50
|
Byun KH, Han SH, Choi MW, Kim BH, Ha SD. Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol 2024; 413:110587. [PMID: 38301541 DOI: 10.1016/j.ijfoodmicro.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Fresh produce and animal-based products contaminated with Listeria monocytogenes have been the main cause of listeriosis outbreaks for many years. The present investigation explored the potential of combination treatment of disinfectants with a bacteriophage cocktail to control L. monocytogenes contamination in the food industry. A mixture of 1 minimal inhibitory concentration (MIC) of disinfectants (sodium hypochlorite [NaOCl], hydrogen peroxide [H2O2], and lactic acid [LA]) and multiplicity of infection (MOI) 100 of phage cocktail was applied to both planktonic cells in vitro and already-formed biofilm cells on food contact materials (FCMs; polyethylene, polypropylene, and stainless steel) and foods (celery and chicken meat). All the combinations significantly lowered the population, biofilm-forming ability, and the expression of flaA, motB, hlyA, prfA, actA, and sigB genes of L. monocytogenes. Additionally, in the antibiofilm test, approximately 4 log CFU/cm2 was eradicated by 6 h treatment on FCMs, and 3 log CFU/g was eradicated within 3 days on celery. However, <2 log CFU/g was eradicated in chicken meat, and regrowth of L. monocytogenes was observed on foods after 5 days. The biofilm eradication efficacy of the combination treatment was proven through visualization using scanning electron microscopy (SEM) and confocal microscopy. In the SEM images, the unusual behavior of L. monocytogenes invading from the surface to the inside was observed after treating celery with NaOCl+P or H2O2 + P. These results suggested that combination of disinfectants (NaOCl, H2O2, and LA) with Listeria-specific phage cocktail can be employed in the food industry as a novel antimicrobial and antibiofilm approach, and further research of L. monocytogenes behavior after disinfection is needed.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea; Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|