1
|
Wang Y, Zhao Y, Liu Y, Wang J, Liu F. Effects of mesenchymal stem cells on repair of injured endometrium in mice. Tissue Cell 2025; 95:102827. [PMID: 40054304 DOI: 10.1016/j.tice.2025.102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 05/15/2025]
Abstract
Endometrial damage severely affects women's reproductive health and function. Although various treatments are available, their efficacy remains generally unsatisfactory. Mesenchymal stem cells (MSCs) possess multidirectional differentiation abilities and immunoregulation. To evaluate whether direct MSC transplantation into the uterine cavity enhances endometrial thickness, an animal model with thin endometrium was developed by administering ethanol into the uterine cavity. Our study aimed to observe and compare repair effects about three types of MSCs on endometrial injury, including menstrual blood-derived MSCs (MenSCs), bone marrow MSCs (BMSCs), and umbilical cord-derived mesenchymal stem cells (UC-MSCs). HE and Masson staining were used to assess endometrial morphology and fibrosis in the third estrous period post-operation. Immunohistochemistry and western blot were utilized to detect the expression of marker proteins in endometrial tissue. Endometrial thickness and protein expression in the MSC transplantation groups showed a notable improvement compared to the control group, though still below normal levels. Among MSC transplantation groups, no statistical difference was observed between MenSC and BMSC groups in endometrial thickness or ItgαVβ3 expression, but MenSCs showed higher levels than UC-MSCs, with statistical significance. CK18 and Vimentin expression in the MenSC and BMSC groups were similarly higher than UC-MSCs, with no significant difference. VEGF expression indicated that MenSCs outperformed both BMSCs and UC-MSCs. In conclusion, all three types of MSCs improved endometrial thickness and regeneration when transplanted into the injured endometrium. MenSCs demonstrated the greatest potential in promoting endometrial regeneration and improving receptivity, suggesting a promising new approach for treating endometrial injury.
Collapse
Affiliation(s)
- Yang Wang
- Reproductive Medicine Department, Xingtai People's Hospital, Xingtai 054001, China
| | - Yuanxi Zhao
- Center for Reproductive Medicine, the First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yuanke Liu
- Center for Reproductive Medicine, the First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jingjing Wang
- Center for Reproductive Medicine, the First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Fang Liu
- Center for Reproductive Medicine, the First Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Yang X, Shi J, Chui Y, Wang T, Xu Y. Resveratrol-loaded nanofibrous scaffolds combined with menstrual blood stem cells for bone healing applications. Tissue Cell 2025; 95:102900. [PMID: 40273592 DOI: 10.1016/j.tice.2025.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
In the field of regenerative medicine, bone tissue engineering has emerged as a promising strategy for addressing bone defects and injuries. A key aspect of this field is the development of biomimetic scaffolds that replicate the intricate architecture of native bone tissue, creating an environment conducive to cellular attachment, proliferation, and differentiation. In this study, we developed a novel resveratrol-loaded nanofibrous collagen/polycaprolactone (PCL) scaffold designed to serve as a delivery system for menstrual blood stem cells (MenSCs) to enhance bone healing. This innovative approach integrates the osteogenic, anti-inflammatory, and antioxidant properties of resveratrol with the multipotency and immunomodulatory effects of MenSCs, creating a dual-functional system that enhances bone regeneration, angiogenesis, and immune modulation. The scaffolds were extensively characterized in vitro, evaluating their microarchitecture, biological properties, hemocompatibility, radical scavenging potential, and anti-inflammatory activity. They were then implanted into a rat model with calvarial bone defects to assess their regenerative potential. Our findings indicate that the scaffolds exhibited no cytotoxicity toward MG-63 cells and demonstrated significant anti-inflammatory activity in vitro. In vivo assessments further revealed that scaffolds loaded with resveratrol and MenSCs promoted bone healing by enhancing collagen deposition and new bone formation. Moreover, gene expression analysis showed upregulation of type I collagen, b-FGF, and VEGFa, while TNF-α expression was downregulated, indicating an improved osteogenic and immunomodulatory response. In conclusion, our study highlights the potential of resveratrol-loaded, MenSCs-seeded scaffolds as a cutting-edge, biomimetic strategy for bone regeneration, offering a novel cell- and drug-based platform for advancing bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Department of Orthopedics, 920th Hospital of Joint Logistic Support Force, Kunming 650000, China
| | - Jian Shi
- Department of Orthopedics, 920th Hospital of Joint Logistic Support Force, Kunming 650000, China
| | - Yi Chui
- Department of Orthopedics, 920th Hospital of Joint Logistic Support Force, Kunming 650000, China
| | - Ting Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Research Key Laboratory of Sustainable Utilization of Southern Medicine in Yunnan Province, Kunming 650000, China
| | - Yongqing Xu
- Department of Orthopedics, 920th Hospital of Joint Logistic Support Force, Kunming 650000, China.
| |
Collapse
|
3
|
Awano-Kim S, Hosoya S, Yokomizo R, Kishi H, Okamoto A. Novel therapeutic strategies for Asherman's syndrome: Endometrial regeneration using menstrual blood-derived stem cells. Regen Ther 2025; 29:328-340. [PMID: 40242087 PMCID: PMC12002619 DOI: 10.1016/j.reth.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Endometrium is vital to the establishment of pregnancy through its cyclical regeneration, which, when disrupted, can lead to endometrial thinning and Asherman's syndrome (AS). AS is characterized by infertility, pelvic pain, menstrual irregularities, and placental complications. Currently, treatments such as hysteroscopic adhesiolysis and hormone replacement therapy have demonstrated variable efficacy with limited clinical evidence. Recent developments in cell therapy have introduced menstrual blood-derived mesenchymal stem cells (MenSCs) as a promising alternative therapeutic strategy. Menstrual blood offers a noninvasive, periodically available source of mesenchymal stem cells, MenSCs for endometrial regeneration. This review comprehensively examines the endometrial regenerative process, pathophysiology of AS, and therapeutic prospects of MenSCs, underscoring the need for continued research to optimize treatment strategies.
Collapse
Affiliation(s)
- Sena Awano-Kim
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Satoshi Hosoya
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ryo Yokomizo
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
4
|
Rahnama M, Ghasemzadeh N, Latifi Z, Kheradmand F, Koukia FA, Khan S, Golchin A. Menstrual blood and endometrial mesenchymal stem/stromal cells: A frontier in regenerative medicine and cancer therapy. Eur J Pharmacol 2025; 1000:177726. [PMID: 40350020 DOI: 10.1016/j.ejphar.2025.177726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The acquisition of suitable stem cell sources is a significant issue in regenerative medicine. There has been considerable interest in utilizing mesenchymal stem cells (MSCs) derived from endometrial and menstrual blood as a promising resource of MSCs, owing to their unique biochemical properties and prospective use in clinical therapies. This population of stem cells has distinct characteristics in terms of immunophenotype, proliferation rate, and differentiation capacity. A notable characteristic of these stem cells is their capacity to develop into mesodermal lineages, highlighting their regenerative capability. Moreover, the presence of certain surface markers facilitates the augmentation of clonogenic endometrial MSCs. Their distinctive characteristics, along with their swift multiplication ability, underscore their significant promise for therapeutic applicability in regenerative medicine and cell-based treatments. Current investigations are examining possible usage of diverse stem cell resources in the treatment of inflammatory diseases and perhaps intractable illnesses like Parkinson's disease, utilizing their immunomodulatory properties. This review aims to analyze stem cell-related research that has utilized endometrial and menstrual blood-derived MSCs (enMSCs and MenSCs) with a special focus on their clinical application. We will explore the existing evidence about the therapeutic potential for these stem cells across many medical diseases and address the obstacles and prospective trajectories in this domain. Additionally, we will study the unique properties of enMSCs and MenSCs that make them promising candidates for regenerative medicine.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Latifi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fariba Abbasi Koukia
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sharun Khan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ali Golchin
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Independent Researcher, Urmia, Iran.
| |
Collapse
|
5
|
Lan D, Zhang D, Dai X, Cai J, Zhou H, Song T, Wang X, Kong Q, Tang Z, Tan J, Zhang J. Mesenchymal stem cells and exosomes: A novel therapeutic approach for aging. Exp Gerontol 2025; 206:112781. [PMID: 40349806 DOI: 10.1016/j.exger.2025.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Mesenchymal stem cells (MSCs), a vital component of the adult stem cell repertoire, are distinguished by their dual capacity for self-renewal and multilineage differentiation. The therapeutic effects of MSCs are primarily mediated through mechanisms such as homing, paracrine signaling, and cellular differentiation. Exosomes (Exos), a type of extracellular vesicles (EVs) secreted by MSCs via the paracrine pathway, play a pivotal role in conveying the biological functions of MSCs. Accumulating evidence from extensive research underscores the remarkable anti-aging potential of both MSCs and their Exos. This review comprehensively explores the impact of MSCs and their Exos on key hallmarks of aging, including genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Furthermore, this paper highlights emerging strategies and novel approaches for modulating the aging process, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
6
|
Goff AD, Zhang X, Thomas B, Ong SSY, Atala A, Zhang Y. Body Fluid-Derived Stem Cells: Powering Innovative, Less-Invasive Cell Therapies. Int J Mol Sci 2025; 26:4382. [PMID: 40362618 PMCID: PMC12072510 DOI: 10.3390/ijms26094382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cell therapy offers significant promise for tissue regeneration and repair. Traditionally, bone marrow- and adipose-derived stem cells have served as primary sources, but their clinical use is limited by invasiveness and low cell yield. This review focuses on body fluid-derived stem cells as an emerging, non-invasive, and readily accessible alternative. We examine stem cells isolated from amniotic fluid, peripheral blood, cord blood, menstrual fluid, urine, synovial fluid, breast milk, and cerebrospinal fluid, highlighting their unique biological properties and therapeutic potential. By comparing their characteristics and barriers to clinical translation, we propose body fluid-derived stem cells as a promising source for regenerative applications, with continued research needed to fully achieve their clinical utility.
Collapse
Affiliation(s)
- Adam David Goff
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC 27101, USA; (A.D.G.); (X.Z.)
- School of Medicine, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Xinyue Zhang
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC 27101, USA; (A.D.G.); (X.Z.)
| | - Biju Thomas
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Sally Shin Yee Ong
- Department of Ophthalmology, School of Medicine, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC 27101, USA; (A.D.G.); (X.Z.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC 27101, USA; (A.D.G.); (X.Z.)
| |
Collapse
|
7
|
Song H, Zhang R, Liu Y, Wu J, Fan W, Wu J, Liu Y, Lin J. Menstrual Blood-Derived Endometrial Stem Cells Ameliorate Ovarian Senescence by Relieving Oxidative Stress-Induced Inflammation. Reprod Sci 2025; 32:1566-1579. [PMID: 39500850 DOI: 10.1007/s43032-024-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/26/2024] [Indexed: 04/30/2025]
Abstract
Senescence is a degenerative process that occurs with ageing, and in the female reproductive system, senescence occurs earlier in the ovaries than in other tissues and organs, which implies a decrease in oocyte quality and exhaustion of the primordial follicular pool, leading to impaired ovarian function and an inability to maintain normal fertility. Unfortunately, the development of curative and effective treatments for ovarian senescence is still a considerable challenge. Currently, mesenchymal stem cells (MSCs)-based therapies for treating various refractory diseases, especially ovarian dysfunction, have been extensively studied and confirmed. However, the mechanisms by which MSCs improve ovarian senescence are not yet clear. Therefore, in this study, a mouse ageing model was generated via the intraperitoneal injection of a D-galactose (D-gal) solution, and the effects of menstrual blood-derived endometrial stem cells (MenSCs) transplantation on the ovarian follicle count, fibrosis level, and degree of apoptosis were evaluated. Subsequently, an ovarian granulosa cell ageing model was induced with H2O2, and CCK-8 assays, flow cytometry, mitochondrial membrane potential analysis and Western blotting were subsequently performed to further investigate the potential mechanism by which MenSCs ameliorate cellular oxidative damage. Overall, our findings demonstrated that MenSCs treatment can increase the cellular antioxidant capacity by activating the NRF2/HO-1 signalling pathway and further ameliorate the inflammatory ovarian microenvironment, apoptosis and dysfunction in ageing mice. These results provide reliable evidence and support for MenSCs-based therapy for ovarian senescence.
Collapse
Affiliation(s)
- Haofeng Song
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, No. 601 East JinSui Road, Xinxiang, 453003, Henan Province, China
| | - Ruiyun Zhang
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, No. 601 East JinSui Road, Xinxiang, 453003, Henan Province, China
| | - Yinglei Liu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jie Wu
- Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Wenqiang Fan
- Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Junfang Wu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, No. 601 East JinSui Road, Xinxiang, 453003, Henan Province, China.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, No. 601 East JinSui Road, Xinxiang, 453003, Henan Province, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, No. 601 East JinSui Road, Xinxiang, 453003, Henan Province, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
8
|
Shao B, Wang HD, Ren SH, Chen Q, Wang ZB, Xu YN, Liu T, Sun CL, Xiao YY, Jiang HY, Li YC, Zhao PY, Yang GM, Liu X, Ren YF, Wang H. Exosomes derived from a mesenchymal-like endometrial regenerative cells ameliorate renal ischemia reperfusion injury through delivery of CD73. Stem Cell Res Ther 2025; 16:148. [PMID: 40140882 PMCID: PMC11948919 DOI: 10.1186/s13287-025-04275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Renal ischemia reperfusion (I/R) injury is a major contributor to graft dysfunction and inflammation leading to graft loss. The deregulation of purinergic signaling has been implicated in the pathogenesis of renal I/R injury. CD73 and the generation of adenosine during purine metabolism to protect against renal I/R injury. A mesenchymal-like endometrial regenerative cell (ERC) has demonstrated a significant therapeutic effect on renal I/R injury. CD73 is a phenotypic marker of human endometrial regenerative cell exosomes (ERC-Exo). However, its immunosuppressive function in regulating purinergic metabolism has been largely neglected. Here, we investigate the protective effects and mechanism of ERC-Exo against renal I/R injury. METHODS Lentivirus-mediated CRISPR-Cas9 technology was employed to obtain CD73-specific knockout ERC-Exo (CD73-/-ERC-Exo). C57BL/6 mice who underwent unilateral ureteral obstruction were divided into the Untreated, ERC-Exo-treated, and CD73-/-ERC-Exo-treated groups. Renal function and pathological injury were assessed 3 days after renal reperfusion. The infiltration of CD4+ T cells and macrophages was analyzed by flow cytometry and immunofluorescence staining in kidneys. CD73-mediated immunosuppressive activity of ERC-Exo was investigated by bone marrow-derived macrophages (BMDM) co-culture assay in vitro. Flow cytometry determined macrophage polarization. ELISA and Treg proliferation assays detected the function of macrophages. Furthermore, the role of the MAPK pathway in CD73-positive Exo-induced macrophage polarization was also elucidated. RESULTS Compared with Untreated and CD73-/-ERC-Exo-treated groups, CD73-positive Exo effectively improved the serum creatinine (sCr), blood urea nitrogen (BUN), and necrosis and detachment of tubular epithelial cells, necrosis and proteinaceous casts induced by ischemia. CD73 improved the capacity of ERC-Exo on CD4+ T cell differentiation in the renal immune microenvironment. Surprisingly, ERC-Exosomal CD73 significantly decreased the populations of M1 cells but increased the proportions of M2 in kidneys. Furthermore, CD73-positive Exo markedly reduced the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased anti-inflammatory factors (IL-10) level in kidneys. ERC-Exosomal CD73 improved macrophage immunoregulatory function associated with the MAPK pathway (including ERK1/2 and p38 pathways), which exerted a potent therapeutic effect against renal I/R. CONCLUSIONS These data collected insight into how ERC-Exo facilitated the hydrolysis of proinflammatory ATP to immunosuppressive ADO via CD73. CD73 is a critical modulator of the MAPK signaling pathway, inducing a polarization shift of macrophages towards an anti-inflammatory phenotype. This study highlights the significance of ERC-Exosomal CD73 in contributing to the therapeutic effects against renal I/R.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Cheng Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Fan Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
9
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025; 25:285-307. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
An J, Ma T, Wang Q, Zhang J, Santerre JP, Wang W, Ma P, Zhang X. Defining optimal electrospun membranes to enhance biological activities of human endometrial MSCs. Front Bioeng Biotechnol 2025; 13:1551791. [PMID: 40078795 PMCID: PMC11896994 DOI: 10.3389/fbioe.2025.1551791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Human endometrial mesenchymal stem cells (H-EMSCs) can inhibit endometrial fibrosis and repair damaged endometrium. However, direct cell injection into dam-aged endometrium shows limited cell survival. Cell seeding onto biomaterial-based electrospun membranes could improve H-EMSCs' survival and prolong their stay at the damaged endometrium. Polycaprolactone (PCL), silk fibroin (SF) and hyaluronic acid (HA) are synthetic or natural biomaterials used by the biomedicine field, however, their effects on the biological activities of H-EMSCs remain unclear. Methods In this study, CD90+CD73+CD45- H-EMSCs were extracted from human endometrium and H-EMSCs showed enhanced adhesion, proliferation on PCL-HA vs. PCL, PCL-SF, establishing the potential of the composite to address cell survival issues. Results H-EMSCs cultured on PCL-HA showed decreased IL-6 gene expression and increased IL-10, VEGFA, TGF-β gene expression vs. PCL-SF, establishing the potential to create a favorable micro-environment for generating vascularized endometrial tissues. PCL, PCL-SF, PCL-HA all supported CD90 and Meflin expression of the seeded H-EMSCs, establishing PCL as a platform to form enhanced biomaterial composites for endometrial repair in the future. Discussion This study provided significant evidence sup-porting the potential of appropriately tailored composites of PCL and HA to moder-ate inflammation and wound-healing, which can be applied for endometrial tissue repair and regeneration.
Collapse
Affiliation(s)
- Jiangru An
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Tianyi Ma
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiuhua Wang
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinyi Zhang
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - J. Paul Santerre
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Wenshuang Wang
- Department of Gynecology, Yuhuangding Hospital, Yantai, Shandong, China
| | - Peng Ma
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- International Joint Laboratory of Biomaterials and Tissue Regeneration, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Cheng Y, Guo Q, Cheng Y, Wang D, Sun L, Liang T, Wang J, Wu H, Peng Z, Zhang G. Endostatin-expressing endometrial mesenchymal stem cells inhibit angiogenesis in endometriosis through the miRNA-21-5p/TIMP3/PI3K/Akt/mTOR pathway. Stem Cells Transl Med 2025; 14:szae079. [PMID: 39589222 PMCID: PMC11878778 DOI: 10.1093/stcltm/szae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy. However, the effect and mechanism of action of endostatin-expressing endometrial MSCs (EMSCs) in endometriosis are unclear. Here, EMSCs were genetically modified to overexpress endostatin (EMSCs-Endo). A reduction in the angiogenic capacity of HUVECs was observed in vitro after treatment with EMSCs-Endo. EMSCs-Endo significantly suppressed endometriotic lesion growth in vivo. The limited efficacy was associated with suppressed angiogenesis. The miRNA-21-5p level and the levels of p-PI3K, p-mTOR, and p-Akt in HUVECs and mouse endometriotic lesions significantly decreased after treatment with EMSCs-Endo, whereas TIMP3 expression significantly increased. In summary, targeted gene therapy with EMSCs-Endo is feasible, and its efficacy in regulating endometriosis can be attributed to the inhibition of angiogenesis, suggesting that EMSCs could be used as promising vehicles for targeted gene therapy.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Qiuyan Guo
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yulei Cheng
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
| | - Dejun Wang
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Tian Liang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Han Wu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zhibin Peng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
12
|
Llorca T, Ruiz-Magaña MJ, Abadía AC, Ruiz-Ruiz C, Olivares EG. Decidual stromal cells: fibroblasts specialized in immunoregulation during pregnancy. Trends Immunol 2025; 46:138-152. [PMID: 39947975 DOI: 10.1016/j.it.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Decidual stromal cells (DSCs) are involved in immunoregulatory mechanisms that prevent fetal rejection by the mammalian maternal immune system. Recent studies using single-cell RNA sequencing demonstrated the existence of different types of human and mouse DSCs, highlighting corresponding differentiation (decidualization) pathways, and suggesting their involvement in the immune response during normal and pathological pregnancy. DSCs may be considered tissue-specialized fibroblasts because both DSCs and fibroblasts share phenotypic and functional similarities in immunologically challenged tissues, especially in terms of their immune functions. Indeed, fibroblasts can setup, support, and suppress immune responses and these functions are also performed by DSCs. Moreover, fibroblasts and DSCs can induce ectopic foci as tertiary lymphoid structures (TLSs), and endometriosis, respectively. Thus, understanding DSC immunoregulatory functions is of timely relevance.
Collapse
Affiliation(s)
- Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - María José Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Biología Celular, Universidad de Granada, Granada, Spain.
| | - Ana C Abadía
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.
| |
Collapse
|
13
|
Rastegari H, Kazemnejad S, Hayati Roodbari N, Ansaripour S. Role of Menstrual Blood Stem Cell-Derived Secretome, Follicular Fluid, and Melatonin in Oocyte Maturation and Embryo Development in Polycystic Ovary Syndrome. Curr Stem Cell Res Ther 2025; 20:291-301. [PMID: 38899597 DOI: 10.2174/011574888x298902240523103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND In vitro maturation has been considered an approach to mature oocytes derived from women with polycystic ovary syndrome (PCOS). It is suggested that the IVM of oocytes may benefit from mesenchymal stem cells derived conditioned medium (CM-MSC). OBJECTIVE The purpose of this study was to determine the efficacy of a cocktail of menstrual blood stem cell (MenSCs)-derived secretome, along with follicular fluid and melatonin, in oocyte maturation and embryo development in PCOS. METHODS Four hundred left germinal vesicle oocytes were collected from 100 PCOS patients and randomly divided into four treatment groups: 1) control, 2) secretome, 3) follicular fluid, and 4) melatonin. Oocyte maturation, fertilization rate, and embryo development were monitored, as well as the expression levels of oocyte-secreted factors (GDF9- BMP15), oocyte maturation (MPK3), and apoptosis (BAX- Bcl2). RESULTS The rate of oocyte maturation increased in all test groups, but only the results for the SEC group were significant (P= 0.032). There were no significant differences in oocyte fertilization and embryo yield among groups. However, the quality of embryos significantly increased in the melatonin group compared to the control. Cytoplasmic maturation was confirmed by the expression of oocyte maturation-related genes using Real-time PCR. Additionally, the expression level of BCL-2 was significantly higher in the SEC-FF-MEL group than in the control group (p ≤ 0.01). CONCLUSION Enrichment of IVM media using MenSCs-secretome, particularly along with melatonin, could be an effective strategy to improve oocyte maturation and embryo development in PCOS.
Collapse
Affiliation(s)
- Hilda Rastegari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Wei X, Xu A, Xia S, Wang J, Qiu Y, Wan G, Cao J, Wang Z, Gui T. Primary culture of endometrial mesenchymal stem cells derived from ectopic lesions of patients with adenomyosis. Arch Gynecol Obstet 2024; 310:3239-3253. [PMID: 39623118 DOI: 10.1007/s00404-024-07854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE This study aimed to establish a protocol for efficiently isolating and expanding adenomyotic lesion-derived endometrial mesenchymal stem cells (A-eMSCs) in vitro. METHODS Three different methods-namely, the enzymatic method, the explant method, and the enzymatic explant method-were employed to isolate A-eMSCs. The isolation and expansion efficiencies of these three methods were subsequently compared. The enzymatic explant method was then used, and the transforming growth factor beta type I receptor (TGF-βR1) inhibitor A83-01 was added to the culture medium to evaluate its impact on the isolation and expansion efficiencies of A-eMSCs. RESULTS The enzymatic explant method resulted in improved morphology, shorter cell confluence time, and greater SUSD2 enrichment in the isolation of primary endometrial cells compared to the other two methods. The proliferation and differentiation potential of A-eMSCs obtained by sorting primary endometrial cells via the enzymatic explant method were significantly higher than those obtained via the other two methods in vitro. Using the enzymatic explant method, culture medium containing A83-01 further reduced the confluence time of the cells and increased A-eMSCs enrichment during the primary endometrial cell isolation stage. Furthermore, A83-01 enhanced the proliferation and maintained the differentiation potential of A-eMSCs during the cell expansion stage. CONCLUSION Our study identified a robust, cost-effective, and efficient protocol for isolating and expanding A-eMSCs and providing an important foundation for further research on the pathogenesis and clinical treatment of AM.
Collapse
Affiliation(s)
- Xinjun Wei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Xu
- Department of Endocrinology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyu Xia
- Department of Obstetrics and Gynecology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Jindan Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - YingYing Qiu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Cao
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhihui Wang
- Department of Obstetrics and Gynecology, Suzhou Xiangcheng People's Hospital, Suzhou, China.
| | - Tao Gui
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
15
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Bazzano D, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. Proc Natl Acad Sci U S A 2024; 121:e2404775121. [PMID: 39471215 PMCID: PMC11551439 DOI: 10.1073/pnas.2404775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates every menstrual cycle or upon tissue damage. Here, we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of five healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells, representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and messenger Ribonucleic Acid (mRNA) patterns of literature-based markers as a shared community resource. We identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type and potential cross-lineage multipotent stromal progenitors that may replenish the epithelial, stromal, and endothelial compartments. Furthermore, many cell types and subtypes exhibit shifts in cell number and transcriptomes across different phases of the menstrual cycle. Finally, comparisons between premenopausal, postpartum, and postmenopausal samples revealed substantial alterations in tissue composition, particularly in the proportions of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders.
Collapse
Affiliation(s)
- Nicole D. Ulrich
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
| | - Alex Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Yu-chi Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - Dominic Bazzano
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - D. Ford Hannum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI48109
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI48109
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
| | - Richard Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Ariella Shikanov
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Erica E. Marsh
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI49503
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109
| | - Saher Sue Hammoud
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
16
|
Bagheri MJ, Valojerdi MR, Salehnia M. Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system. Cytotechnology 2024; 76:571-584. [PMID: 39188652 PMCID: PMC11344741 DOI: 10.1007/s10616-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 08/28/2024] Open
Abstract
The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P < 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00639-w.
Collapse
Affiliation(s)
- Mohammad Jafar Bagheri
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| |
Collapse
|
17
|
Qin X, Du J, He R, Li Y, Li H, Liang X. Potential mechanisms and therapeutic strategies for LPS-associated female fertility decline. J Assist Reprod Genet 2024; 41:2739-2758. [PMID: 39167249 PMCID: PMC11534943 DOI: 10.1007/s10815-024-03226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
As a major component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) can be recognized by toll-like receptors (TLRs) and induce inflammation through MyD88 or the TIR domain-containing adapter-inducing interferon-β (TRIF) pathway. Previous studies have found that LPS-associated inflammatory/immune challenges were associated with ovarian dysfunction and reduced female fertility. However, the etiology and pathogenesis of female fertility decline associated with LPS are currently complex and multifaceted. In this review, PubMed was used to search for references on LPS and fertility decline so as to elucidate the potential mechanisms of LPS-associated female fertility decline and summarize therapeutic strategies that may improve LPS-associated fertility decline.
Collapse
Affiliation(s)
- Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
19
|
Yuan L, Yao L, Ren X, Chen X, Li X, Xu Y, Jin T. Cartilage defect repair in a rat model via a nanocomposite hydrogel loaded with melatonin-loaded gelatin nanofibers and menstrual blood stem cells: an in vitro and in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:55. [PMID: 39347832 PMCID: PMC11442572 DOI: 10.1007/s10856-024-06820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
Cartilage damage caused by injuries or degenerative diseases remains a major challenge in the field of regenerative medicine. In this study, we developed a composite hydrogel system for the delivery of melatonin and menstrual blood stem cells (MenSCs) to treat a rat model of cartilage defect. The composite delivery system was produced by incorporation of melatonin into the gelatin fibers and dispersing these fibers into calcium alginate hydrogels. Various characterization methods including cell viability assay, microstructure studies, degradation rate measurement, drug release, anti-inflammatory assay, and radical scavenging assay were used to characterize the hydrogel system. MenSCs were encapsulated within the nanocomposite hydrogel and implanted into a rat model of full-thickness cartilage defect. A 1.3 mm diameter drilled in the femoral trochlea and used for the in vivo study. Results showed that the healing potential of nanocomposite hydrogels containing melatonin and MenSCs was significantly higher than polymer-only hydrogels. Our study introduces a novel composite hydrogel system, combining melatonin and MenSCs, demonstrating enhanced cartilage repair efficacy, offering a promising avenue for regenerative medicine.
Collapse
Affiliation(s)
- Libo Yuan
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Ling Yao
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xianzhen Ren
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xusheng Chen
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xu Li
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Yongqing Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China.
| | - Tao Jin
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China.
| |
Collapse
|
20
|
Zarnani K, Zarnani K, Maslehat-Lay N, Zeynali B, Vafaei S, Shokri MR, Vanaki N, Soltanghoraee H, Mirzadegan E, Edalatkhah H, Naderi MM, Sarvari A, Attari F, Jeddi-Tehrani M, Zarnani AH. In-utero transfer of decidualized endometrial stromal cells increases the frequency of regulatory T cells and normalizes the abortion rate in the CBA/J × DBA/2 abortion model. Front Immunol 2024; 15:1440388. [PMID: 39380998 PMCID: PMC11460546 DOI: 10.3389/fimmu.2024.1440388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Failure to adequate decidualization leads to adverse pregnancy outcomes including pregnancy loss. Although there are plenty of reports underscoring immune dysfunction as the main cause of abortion in CBA/J females mated with DBA/2 males (CBA/J × DBA/2), little is known about the potential role of impaired endometrial decidualization. Methods Endometrial stromal cells (ESCs) from CBA/J mice were in-vitro decidualized, and the proteome profile of the secretome was investigated by membrane-based array. CBA/J mice were perfused In-utero with either decidualized ESCs (C×D/D), undecidualized ESCs (C×D/ND), or PBS (C×D/P) 12 days before mating with DBA/2 males. Control mice were not manipulated and were mated with male DBA/2 (C×D) or Balb/c (C×B) mice. On day 13.5 of pregnancy, reproductive parameters were measured. In-vivo tracking of EdU-labeled ESCs was performed using fluorescence microscopy. The frequency of regulatory T cells (Tregs) in paraaortic/renal and inguinal lymph nodes was measured by flow cytometry. The proliferation of pregnant CBA/J splenocytes in response to stimulation with DBA/2 splenocytes was assessed by 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) flow cytometry. Results In C×D/D mice, the resorption rate was reduced to match that seen in the C×B group. Intrauterine perfused ESCs appeared in uterine stroma after 2 days, which remained there for at least 12 days. There was no difference in the number of implantation sites and embryo weight across all groups. The frequency of Tregs in the inguinal lymph nodes was similar across all groups, but it increased in the paraaortic/renal lymph nodes of C×D/D mice to the level found in C×B mice. No significant changes were observed in the proliferation of splenocytes from pregnant C×D/D compared to those of the C×D group in response to stimulation with DBA/2 splenocytes. Decidualization of ESCs was associated with a profound alteration in ESC secretome exemplified by alteration in proteins involved in extracellular matrix (ECM) remodeling, response to inflammation, senescence, and immune cell trafficking. Discussion Our results showed that the deficiency of Tregs is not the primary driver of abortion in the CBA/J × DBA/2 model and provided evidence that impaired endometrial decidualization probably triggers endometrial immune dysfunction and abortion in this model.
Collapse
Affiliation(s)
- Kayhan Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Nasim Maslehat-Lay
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Lab., School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ali Sarvari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Momeni J, Naserzadeh E, Sepehrinezhad A, Ahmadabad RA, Negah SS. Human Endometrial Regenerative Cells for Neurological Disorders: Hype or Hope? Int J Stem Cells 2024; 17:224-235. [PMID: 38185531 PMCID: PMC11361851 DOI: 10.15283/ijsc23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 01/09/2024] Open
Abstract
Despite enormous efforts, no effective medication has been found to significantly halt or even slow the progression of neurological diseases, such as acquired (e.g., traumatic brain injury, spinal cord injury, etc.) and chronic (e.g., Parkinson's disease, Alzheimer's disease, etc.) central nervous system disorders. So, researchers are looking for alternative therapeutic modalities to manage the disease's symptoms and stop it from worsening. Concerning disease-modifying capabilities, stem cell therapy has emerged as an expanding domain. Among different types of stem cells, human endometrial regenerative cells have excellent regenerative properties, making them suitable for regenerative medicine. They have the potential for self-renewal and differentiation into three types of stem cells: epithelial stem cells, endothelial side population stem cells, and mesenchymal stem cells (MSCs). ERCs can be isolated from endometrial biopsy and menstrual blood samples. However, there is no comprehensive evidence on the effects of ERCs on neurological disorders. Hence, we initially explore the traits of these specific stem cells in this analysis, followed by an emphasis on their therapeutic potential in treating neurological disorders.
Collapse
Affiliation(s)
- Javad Momeni
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Naserzadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| |
Collapse
|
23
|
Mansoori M, Solhjoo S, Palmerini MG, Nematollahi-Mahani SN, Ezzatabadipour M. Granulosa cell insight: unraveling the potential of menstrual blood-derived stem cells and their exosomes on mitochondrial mechanisms in polycystic ovary syndrome (PCOS). J Ovarian Res 2024; 17:167. [PMID: 39153978 PMCID: PMC11330151 DOI: 10.1186/s13048-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) presents a significant challenge in women's reproductive health, characterized by disrupted folliculogenesis and ovulatory dysfunction. Central to PCOS pathogenesis are granulosa cells, whose dysfunction contributes to aberrant steroid hormone production and oxidative stress. Mitochondrial dysfunction emerges as a key player, influencing cellular energetics, oxidative stress, and steroidogenesis. This study investigates the therapeutic potential of menstrual blood-derived stem cells (MenSCs) and their exosomes in mitigating mitochondrial dysfunction and oxidative stress in PCOS granulosa cells. METHODS Using a rat model of PCOS induced by letrozole, granulosa cells were harvested and cultured. MenSCs and their exosomes were employed to assess their effects on mitochondrial biogenesis, oxidative stress, and estrogen production in PCOS granulosa cells. RESULTS Results showed diminished mitochondrial biogenesis and increased oxidative stress in PCOS granulosa cells, alongside reduced estrogen production. Treatment with MenSCs and their exosomes demonstrated significant improvements in mitochondrial biogenesis, oxidative stress levels, and estrogen production in PCOS granulosa cells. Further analysis showed MenSCs' superior efficacy over exosomes, attributed to their sustained secretion of bioactive factors. Mechanistically, MenSCs and exosomes activated pathways related to mitochondrial biogenesis and antioxidative defense, highlighting their therapeutic potential for PCOS. CONCLUSIONS This study offers insights into granulosa cells mitochondria's role in PCOS pathogenesis and proposes MenSCs and exosomes as a potential strategy for mitigating mitochondrial dysfunction and oxidative stress in PCOS. Further research is needed to understand underlying mechanisms and validate clinical efficacy, presenting promising avenues for addressing PCOS complexity.
Collapse
Affiliation(s)
- Mahna Mansoori
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
Robalo Cordeiro M, Roque R, Laranjeiro B, Carvalhos C, Figueiredo-Dias M. Menstrual Blood Stem Cells-Derived Exosomes as Promising Therapeutic Tools in Premature Ovarian Insufficiency Induced by Gonadotoxic Systemic Anticancer Treatment. Int J Mol Sci 2024; 25:8468. [PMID: 39126037 PMCID: PMC11312895 DOI: 10.3390/ijms25158468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Gonadotoxicity resulting from systemic and locoregional cancer treatments significantly threatens women's reproductive health, often culminating in premature ovarian insufficiency. These therapies, particularly alkylating agents and ionizing radiation, induce DNA damage and apoptosis in ovarian follicles, leading to infertility, amenorrhea, and estrogen deficiency, which exacerbate risks of osteoporosis and cardiovascular diseases. Existing fertility preservation methods do not prevent immediate ovarian damage, underscoring the need for innovative protective strategies. Menstrual blood-derived stem cells (MenSC) and their extracellular vesicles (EV) present promising regenerative potential due to their therapeutic cargo delivery and pathway modulation capabilities. Preclinical studies demonstrate that MenSC-derived EV ameliorate premature ovarian insufficiency by inhibiting granulosa cell apoptosis, promoting angiogenesis, and activating pivotal pathways such as SMAD3/AKT/MDM2/P53. However, comprehensive research is imperative to ensure the safety, efficacy, and long-term effects of MenSC-derived EV in clinical practice. In this review, we update the current knowledge and research regarding the use of MenSC-derived EV as a novel therapeutic weapon for ovarian regeneration in the context of gonadotoxicity induced by systemic anticancer treatment.
Collapse
Affiliation(s)
- Mariana Robalo Cordeiro
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (C.C.); (M.F.-D.)
| | - Ricardo Roque
- Portuguese Institute of Oncology of Coimbra, Medical Oncology Department, 3000-075 Coimbra, Portugal;
| | - Bárbara Laranjeiro
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (C.C.); (M.F.-D.)
| | - Carlota Carvalhos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (C.C.); (M.F.-D.)
| | - Margarida Figueiredo-Dias
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (B.L.); (C.C.); (M.F.-D.)
| |
Collapse
|
25
|
Hacimoto SYS, Cressoni ACL, da Silva LECM, Padovan CC, Ferriani RA, Rosa-e-Silva JC, Meola J. Selection of reference miRNAs for RT-qPCR assays in endometriosis menstrual blood-derived mesenchymal stem cells. PLoS One 2024; 19:e0306657. [PMID: 39078824 PMCID: PMC11288454 DOI: 10.1371/journal.pone.0306657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Choosing appropriate reference genes or internal controls to normalize RT-qPCR data is mandatory for the interexperimental reproducibility of gene expression data obtained by RT-qPCR in most studies, including those on endometriosis. Particularly for miRNAs, the choice for reference genes is challenging because of their physicochemical and biological characteristics. Moreover, the retrograde menstruation theory, mesenchymal stem cells in menstrual blood (MenSCs), and changes in post-transcriptional regulatory processes through miRNAs have gained prominence in the scientific community as important players in endometriosis. Therefore, we originally explored the stability of 10 miRNAs expressions as internal control candidates in conditions involving the two-dimensional culture of MenSCs from healthy women and patients with endometriosis. Here, we applied multiple algorithms (geNorm, NormFinder, Bestkeeper, and delta Ct) to screen reference genes and assessed the comprehensive stability classification of miRNAs using RefFinder. Pairwise variation calculated using geNorm identified three miRNAs as a sufficient number of reference genes for accurate normalization. MiR-191-5p, miR-24-3p, and miR-103a-3p were the best combination for suitable gene expression normalization. This study will benefit similar research, but is also attractive for regenerative medicine and clinics that use MenSCs, miRNA expression, and RT-qPCR.
Collapse
Affiliation(s)
- Sabrina Yukari Santos Hacimoto
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Clara Lagazzi Cressoni
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Cristiana Carolina Padovan
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Women’s Health (Hormona), CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| | - Júlio César Rosa-e-Silva
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics of Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Women’s Health (Hormona), CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Starodubtseva N, Chagovets V, Tokareva A, Dumanovskaya M, Kukaev E, Novoselova A, Frankevich V, Pavlovich SV, Sukhikh G. Diagnostic Value of Menstrual Blood Lipidomics in Endometriosis: A Pilot Study. Biomolecules 2024; 14:899. [PMID: 39199287 PMCID: PMC11351896 DOI: 10.3390/biom14080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Endometriosis is a prevalent chronic inflammatory disease characterized by a considerable delay between initial symptoms and diagnosis through surgery. The pressing need for a timely, non-invasive diagnostic solution underscores the focus of current research efforts. This study examines the diagnostic potential of the menstrual blood lipidome. The lipid profile of 39 samples (23 women with endometriosis and 16 patients in a control group) was acquired using reverse-phase high-performance liquid chromatography-mass spectrometry with LipidMatch processing and identification. Profiles were normalized based on total ion counts. Significant differences in lipids were determined using the Mann-Whitney test. Lipids for the diagnostic model, based on logistic regression, were selected using a combination of variance importance projection filters and Akaike information criteria. Levels of ceramides, sphingomyelins, cardiolipins, triacylglycerols, acyl- and alkenyl-phosphatidylethanolamines, and alkenyl-phosphatidylcholines increased, while acyl- and alkyl-phosphatidylcholines decreased in cases of endometriosis. Plasmenylphosphatidylethanolamine PE P-16:0/18:1 and cardiolipin CL 16:0_18:0_22:5_22:6 serve as marker lipids in the diagnostic model, exhibiting a sensitivity of 81% and specificity of 85%. The diagnostic approach based on dried spots of menstrual blood holds promise as an alternative to traditional non-invasive methods for endometriosis screening.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Madina Dumanovskaya
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Eugenii Kukaev
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russia Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Stanislav V. Pavlovich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
28
|
Wang F, Zhang S, Xu Y, He W, Wang X, He Z, Shang J, Zhenyu Z. Mapping the landscape: A bibliometric perspective on autophagy in spinal cord injury. Medicine (Baltimore) 2024; 103:e38954. [PMID: 39029042 PMCID: PMC11398829 DOI: 10.1097/md.0000000000038954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition that often leads to persistent damage of nerve cells and motor dysfunction. Autophagy is an intracellular system that regulates the recycling and degradation of proteins and lipids, primarily through lysosomal-dependent organelle degradation. Numerous publications have highlighted the involvement of autophagy in the secondary injury of SCI. Therefore, gaining a comprehensive understanding of autophagy research is crucial for designing effective therapies for SCI. METHODS Dates were obtained from Web of Science, including articles and article reviews published from its inception to October 2023. VOSviewer, Citespace, and SCImago were used to visualized analysis. Bibliometric analysis was conducted using the Web of Science data, focusing on various categories such as publications, authors, journals, countries, organizations, and keywords. This analysis was aimed to summarize the knowledge map of autophagy and SCI. RESULTS From 2009 to 2023, the number of annual publications in this field exhibited wave-like growth, with the highest number of publications recorded in 2020 (44 publications). Our analysis identified Mei Xifan as the most prolific author, while Kanno H emerged as the most influential author based on co-citations. Neuroscience Letters was found to have published the largest number of papers in this field. China was the most productive country, contributing 232 publications, and Wenzhou Medical University was the most active organization, publishing 39 papers. CONCLUSION We demonstrated a comprehensive overview of the relationship between autophagy and SCI utilizing bibliometric tools. This article could help to enhance the understanding of the field about autophagy and SCI, foster collaboration among researchers and organizations, and identify potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic Surgery, Shaoxing People’s Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Songou Zhang
- Ningbo University, School of Medicine, Ningbo, Zhejiang Province, China
| | - Yangjun Xu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Wei He
- Department of Orthopedic Surgery, Shaoxing People’s Hospital, Zhejiang University, School of Medicine, Shaoxing, Zhejiang Province, China
| | - Xiang Wang
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Zhongwei He
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Jinxiang Shang
- Department of Orthopedic, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zhang Zhenyu
- School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
29
|
Dai W, Liang J, Guo R, Zhao Z, Na Z, Xu D, Li D. Bioengineering approaches for the endometrial research and application. Mater Today Bio 2024; 26:101045. [PMID: 38600921 PMCID: PMC11004221 DOI: 10.1016/j.mtbio.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Zhongyu Zhao
- Innovation Institute, China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
30
|
Cheng F, Ji L, Li P, Han Z, He Y, Yang F, Xu Z, Li Y, Ruan T, Zhu X, Lin J. Enhanced therapeutic potential of Flotillins-modified MenSCs by improve the survival, proliferation and migration. Mol Biol Rep 2024; 51:680. [PMID: 38796595 DOI: 10.1007/s11033-024-09624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Menstrual blood-derived endometrial stem cells (MenSCs) have attracted increasing interest due to their excellent safety, and lack of ethical dilemma as well as their ability to be periodically obtained in a noninvasive manner. However, although preclinical research as shown the therapeutic potential of MenSCs in several diseases, their poor cell survival and low engraftment at disease sites reduce their clinical efficacy. Flotillins (including Flot1 and Flot2) are implicated in various cellular processes, such as vesicular trafficking, signal transduction, cell proliferation, migration and apoptosis. In this study, we aimed to determine the effects of Flotillins on MenSCs survival, proliferation and migration. Our experimental results show that MenSCs were modified to overexpress Flot1 and/or Flot2 without altering their intrinsic characteristics. Flot1 and Flot2 co-overexpression promoted MenSC viability and proliferation capacity. Moreover, Flot1 or Flot2 overexpression significantly promoted the migration and inhibited the apoptosis of MenSCs compared with the negative control group, and these effects were stronger in the Flot1 and Flot2 gene co-overexpression group. However, these effects were significantly reversed after Flot1 and/or Flot2 knockdown. In conclusion, our results indicate that Flot1 and Flot2 overexpression in MenSCs improved their proliferation and migration and inhibited their apoptosis, and this might be an effective approach to improve the efficiency of cell-based therapies.
Collapse
Affiliation(s)
- Fangfang Cheng
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Pan Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhisheng Han
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhihao Xu
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yonghai Li
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tao Ruan
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, Henan Province, China.
| |
Collapse
|
31
|
Habiba M, Guo SW, Benagiano G. Is Neonatal Uterine Bleeding Involved in Early-Onset Endometriosis? Biomolecules 2024; 14:549. [PMID: 38785956 PMCID: PMC11117669 DOI: 10.3390/biom14050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND There has been considerable progress in our understanding of endometriosis, but its pathophysiology remains uncertain. Uncovering the underlying mechanism of the rare instances of endometriosis reported in early postmenarcheal years and in girls before menarche can have wide implications. METHODS We conducted a literature review of all relevant articles on Medline. RESULTS In the review, we explore the pathogenetic theories of premenarcheal endometriosis, the role of retrograde menstruation in the adult and its potential role in early-onset disease, as well as the factors that argue against the existence of a link between early-onset endometriosis (EOE) and neonatal uterine bleeding (NUB). CONCLUSIONS As with endometriosis in adult women, the pathogenesis of early-onset disease remains unclear. A link between NUB and EOE is plausible, but there are considerable challenges to collating supporting evidence. The state of our understanding of early uterine development and of the pathophysiology of NUB leaves many unknowns that need exploration. These include proof of the existence of viable endometrial cells or endometrial mesenchymal stem cells in NUB, their passage to the pelvic cavity, their possible response to steroids, and whether they can reside within the pelvic cavity and remain dormant till menarche.
Collapse
Affiliation(s)
- Marwan Habiba
- Department of Health Sciences, University of Leicester and University Hospitals of Leicester, Leicester LE1 5WW, UK
| | - Sun-Wei Guo
- Department of Biochemistry and Molecular Biology, Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China;
| | - Giuseppe Benagiano
- Faculty of Medicine and Surgery, “Sapienza” University of Rome, 00161 Rome, Italy;
- Geneva Foundation for Medical Education and Research, 1202 Geneva, Switzerland
| |
Collapse
|
32
|
Henderson T, Christman KL, Alperin M. Regenerative Medicine in Urogynecology: Where We Are and Where We Want to Be. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:519-527. [PMID: 38683203 PMCID: PMC11342648 DOI: 10.1097/spv.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
ABSTRACT Pelvic floor disorders (PFDs) constitute a major public health issue given their negative effect on quality of life for millions of women worldwide and the associated economic burden. As the prevalence of PFDs continues to increase, novel therapeutic approaches for the effective treatment of these disorders are urgently needed. Regenerative medicine techniques, including cellular therapies, extracellular vesicles, secretomes, platelet-rich plasma, laser therapy, and bioinductive acellular biomaterial scaffolds, are emerging as viable clinical options to counteract urinary and fecal incontinence, as well as pelvic organ prolapse. This brief expert review explores the current state-of-science regarding application of these therapies for the treatment of PFDs. Although regenerative approaches have not been widely deployed in clinical care to date, these innovative techniques show a promising safety profile and potential to positively affect the quality of life of patients with PFDs. Furthermore, investigations focused on regeneration of the main constituents of the pelvic floor and lower urinary tract improve our understanding of the underlying pathophysiology of PFDs. Regenerative medicine techniques have a high potential not only to revolutionize treatment of PFDs but also to prevent these complex conditions.
Collapse
Affiliation(s)
- Tatyanna Henderson
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| |
Collapse
|
33
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Yu L, Wu H, Zeng S, Hu X, Wu Y, Zhou J, Yuan L, Zhang Q, Xiang C, Feng Z. Menstrual blood-derived mesenchymal stem cells combined with collagen I gel as a regenerative therapeutic strategy for degenerated disc after discectomy in rats. Stem Cell Res Ther 2024; 15:75. [PMID: 38475906 DOI: 10.1186/s13287-024-03680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-β and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-β and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-β and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-β and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.
Collapse
Affiliation(s)
- Li Yu
- Department of Operating room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Honghao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shumei Zeng
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojian Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinhong Zhou
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, China
| | - Qingqing Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhiyun Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- , Building 8-2, 58#, Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
35
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583985. [PMID: 38559249 PMCID: PMC10979868 DOI: 10.1101/2024.03.07.583985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.
Collapse
|
36
|
Kang QM, Wang J, Chen SM, Song SR, Yu SC. Glioma-associated mesenchymal stem cells. Brain 2024; 147:755-765. [PMID: 37850820 DOI: 10.1093/brain/awad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have revealed that glioma-associated mesenchymal stem cells play instrumental roles in tumorigenesis and tumour progression and cannot be ignored as a cellular component of the glioma microenvironment. Nevertheless, the origin of these cells and their roles are poorly understood. The only relevant studies have shown that glioma-associated mesenchymal stem cells play a large role in promoting tumour proliferation, invasion and angiogenesis. This review provides a comprehensive summary of their discovery and definition, origin, differences from other tissue-derived mesenchymal stem cells, spatial distribution, functions and prognostic and therapeutic opportunities to deepen the understanding of these cells and provide new insight into the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Man Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| |
Collapse
|
37
|
Qin Y, Shao B, Ren SH, Ye K, Qin H, Wang HD, Sun C, Zhu Y, Wang Z, Zhang J, Li X, Wang H. Interleukin-37 contributes to endometrial regenerative cell-mediated immunotherapeutic effect on chronic allograft vasculopathy. Cytotherapy 2024; 26:299-310. [PMID: 38159090 DOI: 10.1016/j.jcyt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AIMS Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1β, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.
Collapse
Affiliation(s)
- Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, PR China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, PR China.
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China.
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
38
|
Park MK, Song KH. Isolation and characterization of feline endometrial mesenchymal stem cells. J Vet Sci 2024; 25:e31. [PMID: 38568832 PMCID: PMC10990916 DOI: 10.4142/jvs.23267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Recently, there has been a growing interest in stem cells for human medicine. Limited feline endometrial mesenchymal stem cell (fEM-MSC) research in veterinary medicine necessitates reporting for future feline disease research and therapy. OBJECTIVES This study aimed to isolate fEM-MSCs from feline endometrial tissues and evaluate their morphology, proliferative ability, differentiation ability, and immunophenotype. METHODS Feline endometrial tissues were obtained from the ovariohysterectomies of healthy cats and isolated using an enzymatic method. The morphology and proliferative ability of the isolated cells were assessed using a doubling time (DT) assay from passages 3 to 6 (P3 - P6). We measured pluripotency gene expressions of cells in P2 using quantitative real-time polymerase chain reaction (qRT-PCR). To investigate MSC characteristics, a trilineage differentiation assay was conducted in P4, and cells in P4 were immunophenotyped using flow cytometry. RESULTS fEM-MSCs showed a typical spindle-shaped morphology under a microscope, and the DT was maintained from P3 to P6. fEM-MSCs could differentiate into adipocytes, osteoblasts, and chondrocytes, and expressed three pluripotency markers (OCT4, SOX2, and NANOG) by qRT-PCR. Immunophenotypic analysis showed that the fEM-MSCs were CD14 -, CD34 -, CD45 -, CD9+, and CD44+. CONCLUSIONS In this study, the feline endometrium was a novel source of MSCs, and to the best of our knowledge, this is the first report on the isolation method and characteristics of fEM-MSCs.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- CM Animal Hospital, Jincheon 27802, Korea
| | - Kun-Ho Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
39
|
Chemerinski A, Garcia de Paredes J, Blackledge K, Douglas NC, Morelli SS. Mechanisms of endometrial aging: lessons from natural conceptions and assisted reproductive technology cycles. Front Physiol 2024; 15:1332946. [PMID: 38482194 PMCID: PMC10933110 DOI: 10.3389/fphys.2024.1332946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 01/02/2025] Open
Abstract
Until recently, the study of age-related decline in fertility has focused primarily on the ovary; depletion of the finite pool of oocytes and increases in meiotic errors leading to oocyte aneuploidy are well-established mechanisms by which fertility declines with advancing age. Comparatively little is known about the impact of age on endometrial function. The endometrium is a complex tissue comprised of many cell types, including epithelial, stromal, vascular, immune and stem cells. The capacity of this tissue for rapid, cyclic regeneration is unique to this tissue, undergoing repeated cycles of growth and shedding (in the absence of an embryo) in response to ovarian hormones. Furthermore, the endometrium has been shown to be capable of supporting pregnancies beyond the established boundaries of the reproductive lifespan. Despite its longevity, molecular studies have established age-related changes in individual cell populations within the endometrium. Human clinical studies have attempted to isolate the effect of aging on the endometrium by analyzing pregnancies conceived with euploid, high quality embryos. In this review, we explore the existing literature on endometrial aging and its impact on pregnancy outcomes. We begin with an overview of the principles of endometrial physiology and function. We then explore the mechanisms behind endometrial aging in its individual cellular compartments. Finally, we highlight lessons about endometrial aging gleaned from rodent and human clinical studies and propose opportunities for future study to better understand the contribution of the endometrium to age-related decline in fertility.
Collapse
Affiliation(s)
- Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | | | | | | |
Collapse
|
40
|
Li T, Chan RWS, Li RHW, Ng EHY, Zhang S, Yeung WSB. Endometrial mesenchymal stromal/stem cells improve regeneration of injured endometrium in mice. Biol Res 2024; 57:6. [PMID: 38347646 PMCID: PMC10863157 DOI: 10.1186/s40659-024-00484-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown. METHODS Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test. RESULTS Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining. CONCLUSIONS Our findings suggest eMSC improves regeneration of injured endometrium in mice.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Pokfulam, China
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China.
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Pokfulam, China.
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Pokfulam, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Pokfulam, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Pokfulam, China
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Pokfulam, China
| |
Collapse
|
41
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
42
|
Ding X, Zhang L, Zhou D, Tang X, He X, Rohani S. The effects of propolis-loaded chitosan nanoparticles and menstrual blood stem cells on LPS-induced ovarian inflammation in the murine ovary in vivo: An in vitro and in vivo study. Reprod Toxicol 2024; 123:108514. [PMID: 38000645 DOI: 10.1016/j.reprotox.2023.108514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Mammary glands infection via Gram-negative bacteria may cause infertility or reduced ovarian function. In the current study, a potential treatment for LPS-induced ovarian inflammation was developed. Propolis was loaded into chitosan nanoparticles and co-administered with menstrual blood stem cells (MenSCs) in mice infused with LPS. Various properties of propolis-loaded chitosan nanoparticles were evaluated using scanning electron microscopy, drug release assay, antibacterial assay, and radical scavenging assay. In vitro studies showed biocompatibility, anti-oxidative, and antibacterial properties of the developed propolis nanoformulation. In vivo study showed that mice treated with co-administration of propolis-loaded chitosan nanoparticles and MenSCs significantly increased the total ovarian follicle reserve in mice infused with LPS. Percentage of mature follicles in co-administration method was around 13.89 ± 1.72 %. Gene expression studies showed that the expression levels of inflammation related cytokines including IL6, IL8, IL-1β, and TNF-α were downregulated in this group compared with other groups. However, the expression levels of PTEN, AKT, FOXO3 did not show a significant difference between groups. The developed treatment may potentially considered as an approach for treating ovarian infection with gram-negative bacteria.
Collapse
Affiliation(s)
- Xu Ding
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710100, China
| | - Lili Zhang
- Department of Obstetrics, The People's Hospital of Leling, Dezhou, 253600, China
| | - Dongmei Zhou
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710100, China
| | - Xueyuan Tang
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710100, China
| | - Xiao He
- Department of Gynecology and Obstetrics, XD Group Hospital, Xi'an 710077, China.
| | - Saeed Rohani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Hong IS. Endometrial Stem Cells: Orchestrating Dynamic Regeneration of Endometrium and Their Implications in Diverse Endometrial Disorders. Int J Biol Sci 2024; 20:864-879. [PMID: 38250149 PMCID: PMC10797688 DOI: 10.7150/ijbs.89795] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
The human endometrium, a vital component of the uterus, undergoes dynamic changes during the menstrual cycle to create a receptive environment for embryo implantation. Its remarkable regenerative capacity can be attributed to the presence of tissue-resident stem cell populations within the endometrium. Despite variations in characteristics among different subtypes, endometrial stem cells exhibit notably robust self-renewal capacity and the ability to differentiate into multiple lineages. This review offers a comprehensive insight into the current literature and recent advancements regarding the roles of various endometrial stem cell types during dynamic regeneration of the endometrium during the menstrual cycle. In addition, emerging evidence suggests that dysfunction or depletion of endometrial stem cells may play critical roles in the development and progression of various endometrial disorders, such as endometriosis, uterine fibroids, adenomyosis, infertility, and endometrial cancer. Therefore, we also highlight potential roles of endometrial stem cells in the development and progression of these endometrial diseases, including their ability to accumulate genetic mutations and express genes associated with endometrial diseases. Understanding the dynamic properties of the endometrium and the roles of endometrial stem cells in various endometrial disorders will shed light on potential therapeutic strategies for managing these conditions and improving women's fertility outcomes.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
44
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
45
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
46
|
Zafardoust S, Kazemnejad S, Fathi-Kazerooni M, Darzi M, Sadeghi MR, Sadeghi Tabar A, Sehat Z. The effects of intraovarian injection of autologous menstrual blood-derived mesenchymal stromal cells on pregnancy outcomes in women with poor ovarian response. Stem Cell Res Ther 2023; 14:332. [PMID: 37968668 PMCID: PMC10647057 DOI: 10.1186/s13287-023-03568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Assisted reproduction faces a significant obstacle in the form of poor ovarian response (POR) to controlled ovarian stimulation. To address this challenge, mesenchymal stem cell therapy has been proposed as a potential treatment for female infertility and/or restoration of ovarian function in POR women. Our previous research has demonstrated that menstrual blood-derived-mesenchymal stromal cells (MenSCs) injected into the ovaries of women with POR can increase pregnancy rates. The objective of this study was to examine whether MenSC therapy could enhance ovarian reserve parameters and pregnancy outcomes in a larger population of individuals with POR. METHOD This study consisted of 180 infertile individuals with POR who declined oocyte donation. Participants were divided into two groups: those who received bilateral MenSCs intraovarian injection and those who received no intervention. Our primary aim was to compare the rates of spontaneous pregnancy between the two groups, followed by an investigation of any alterations in the ovarian reserve parameters, such as serum FSH, AMH, and AFC levels, as well as the ICSI/IVF outcomes, in both groups of participants. RESULTS The MenSC therapy exhibited a favourable tolerability profile and did not raise any safety concerns. Following the 2-month follow-up period, women who received MenSC treatment demonstrated a significantly higher rate of spontaneous pregnancy (P < 0.005) and an improvement in anti-Müllerian hormone (AMH) levels (P = 0.0007) and antral follicle count (AFC) (P < 0.001), whereas the control group demonstrated a considerable decline in these parameters (Both P < 0.001). The MenSC therapy led to a greater number of mature oocytes and embryos among women who underwent ICSI/IVF. Our age subgroup analysis demonstrated a significant difference in the number of spontaneous pregnancies and ICSI/IVF outcomes between the treatment and control groups only among individuals below 40 years of age. CONCLUSION The results of our study indicate that MenSCs treatment may be a viable option for treating women experiencing POR. However, in order to be widely implemented in clinical practice, the clinical effectiveness of MenSCs therapy will need to be established through rigorous prospective randomized clinical trials. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05703308. Registered 01/26/2023, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05703308 . IRCT, IRCT20180619040147N4. Registered 08/01/2020.
Collapse
Affiliation(s)
- Simin Zafardoust
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Maryam Darzi
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Sadeghi Tabar
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Sehat
- Avicenna Fertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
47
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
48
|
Cavaleiro C, Afonso GJM, Oliveira PJ, Valero J, Mota SI, Ferreiro E. Urine-derived stem cells in neurological diseases: current state-of-the-art and future directions. Front Mol Neurosci 2023; 16:1229728. [PMID: 37965041 PMCID: PMC10642248 DOI: 10.3389/fnmol.2023.1229728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.
Collapse
Affiliation(s)
- Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Ji S, Liu Y, Yan L, Zhang Y, Li Y, Zhu Q, Xia W, Ge S, Zhang J. DIA-based analysis of the menstrual blood proteome identifies association between CXCL5 and IL1RN and endometriosis. J Proteomics 2023; 289:104995. [PMID: 37657716 DOI: 10.1016/j.jprot.2023.104995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Endometriosis is a gynecological disease related to menstruation that affects nearly 10% of reproductive-age women. However, so far, there are no reliable diagnostic biomarkers for endometriosis, causing a delay in diagnosis of 6.7 ± 6.2 years. Menstrual blood is a non-invasive source of endometrial tissue that can be analyzed for biomarkers of endometriosis. In this study, menstrual blood samples were collected from women with (n = 8) and without (n = 8) endometriosis. Data Independent Acquisition (DIA)-based mass spectrometry and bioinformatic analysis were used to quantify and identify differentially expressed proteins (DEPs) using the thresholds of fold change >1.5 and P value <0.05. A total of 95 DEPs were identified in menstrual blood from women with endometriosis compared to women without endometriosis, of which 64 were up-regulated and 31 were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to functionally annotate DEPs. Protein-protein interaction (PPI) network analysis was then conducted to identify hub genes and the MCODE plugin placed CXCL1, CXCL3, CXCL5, CCL18, and IL1RN in the most significant cluster network. The expression of the above candidate proteins was confirmed by enzyme-linked immunosorbent assay (ELISA), among which CXCL5 and IL1RN protein expression was increased in patients with endometriosis, indicating that CXCL5 and IL1RN in menstrual blood may be useful biomarkers to diagnose endometriosis from non-invasive samples. SIGNIFICANCE: Endometriosis is a common gynecological disease that causes discomfort in many women. Unfortunately, the diagnosis of endometriosis is frequently delayed due to a lack of reliable non-invasive biomarkers. To our knowledge, this is the first time that DIA-MS was used to characterize the proteome and identify the differentially expressed proteins in menstrual blood from women with endometriosis. The results, as confirmed by ELISA, showed that CXCL5 and IL1RN protein expression is significantly increased in patients with endometriosis, indicating that these proteins can be used as biomarkers for endometriosis. This study contributes to the identification of putative endometriosis biomarkers from non-invasive samples and lays the groundwork for future research into the roles of CXCL5 and IL1RN in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Sifan Ji
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China
| | - Yuan Liu
- Department of Pathology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China
| | - Li Yan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China
| | - Yamei Li
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China
| | - Shunna Ge
- Department of Central Laboratory, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| |
Collapse
|
50
|
Hosoya S, Yokomizo R, Kishigami H, Fujiki Y, Kaneko E, Amita M, Saito T, Kishi H, Sago H, Okamoto A, Umezawa A. Novel therapeutic strategies for injured endometrium: intrauterine transplantation of menstrual blood‑derived cells from infertile patients. Stem Cell Res Ther 2023; 14:297. [PMID: 37840125 PMCID: PMC10577920 DOI: 10.1186/s13287-023-03524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Menstrual blood-derived cells show regenerative potential as a mesenchymal stem cell and may therefore be a novel stem cell source of treatment for refractory infertility with injured endometrium. However, there have been few pre-clinical studies using cells from infertile patients, which need to be addressed before establishing an autologous transplantation. Herein, we aimed to investigate the therapeutic capacity of menstrual blood-derived cells from infertile patients on endometrial infertility. METHODS We collected menstrual blood-derived cells from volunteers and infertile patients and confirmed their mesenchymal stem cell phenotype by flow cytometry and induction of tri-lineage differentiation. We compared the proliferative and paracrine capacities of these cells. Furthermore, we also investigated the regenerative potential and safety concerns of the intrauterine transplantation of infertile patient-derived cells using a mouse model with mechanically injured endometrium. RESULTS Menstrual blood-derived cells from both infertile patients and volunteers showed phenotypic characteristics of mesenchymal stem cells. In vitro proliferative and paracrine capacities for wound healing and angiogenesis were equal for both samples. Furthermore, the transplantation of infertile patient-derived cells into uterine horns of the mouse model ameliorated endometrial thickness, prevented fibrosis, and improved fertility outcomes without any apparent complications. CONCLUSIONS In our pre-clinical study, intrauterine transplantation of menstrual blood-derived cells may be a novel and attractive stem cell source for the curative and prophylactic therapy for injured endometrium. Further studies will be warranted for future clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoya
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Ryo Yokomizo
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Harue Kishigami
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Yukiko Fujiki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Erika Kaneko
- Division of Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Mitsuyoshi Amita
- Division of Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Takakazu Saito
- Division of Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|