1
|
Victor G, Shishani K, Vellone E, Froelicher ES. The Global Burden of Cardiovascular Disease in Adults: A Mapping Review. J Cardiovasc Nurs 2025:00005082-990000000-00284. [PMID: 40179360 DOI: 10.1097/jcn.0000000000001200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) persist as formidable contributors to global mortality and pose substantial challenges to public health. Most mortality estimates have been attributed to heart attack and stroke. Despite increased public awareness, the burden of CVDs continues to increase. OBJECTIVE This review describes the burden of CVDs and risk factors in adults, according to the World Health Organization's (WHO) defined regions. METHODS A mapping review methodology was used. PubMed, Scopus, Wiley, the WHO Global Health Observatory data repository, American Heart Association, National Forum for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention, European Commission, Eurostat, European Society of Cardiology, World Heart Federation, and Google Scholar were searched using free text search terms: cardiovascular diseases/CVDs, burden, incidence, prevalence, prevention, and risk factor. RESULTS Ischemic heart disease predominated in the Americas, Europe, and Eastern Mediterranean, whereas stroke was more common in Africa, Southeast Asia, and the Western Pacific. Premature deaths occur in populations with low socioeconomic status. Several well-known risk factors are preventable, including hypertension, dyslipidemia, diabetes, air pollution, obesity, smoking, lack of physical activity, and unhealthy dietary intake. Emerging risk factors include excessive or lack of sleep, depression, social isolation, air/noise pollution, and exposure to extreme sunshine, arsenic, lead, cadmium, and copper. CONCLUSIONS The burden of CVDs and its risk factors vary greatly according to demographics and geographical region. Addressing CVDs requires multifaceted strategies, including region-specific interventions, addressing socioeconomic inequalities, adopting life-course risk management, strengthening the healthcare workforce, and improving health literacy.
Collapse
|
2
|
Cai Q, Guo R, Chen D, Deng Z, Gao J. SynBioNanoDesign: pioneering targeted drug delivery with engineered nanomaterials. J Nanobiotechnology 2025; 23:178. [PMID: 40050980 PMCID: PMC11884119 DOI: 10.1186/s12951-025-03254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Synthetic biology and nanotechnology fusion represent a transformative approach promoting fundamental and clinical biomedical science development. In SynBioNanoDesign, biological systems are reimagined as dynamic and programmable materials to yield engineered nanomaterials with emerging and specific functionalities. This review elucidates a comprehensive examination of synthetic biology's pivotal role in advancing engineered nanomaterials for targeted drug delivery systems. It begins with exploring the fundamental synergy between synthetic biology and nanotechnology, then highlights the current landscape of nanomaterials in targeted drug delivery applications. Subsequently, the review discusses the design of novel nanomaterials informed by biological principles, focusing on expounding the synthetic biology tools and the potential for developing advanced nanomaterials. Afterward, the research advances of innovative materials design through synthetic biology were systematically summarized, emphasizing the integration of genetic circuitry to program nanomaterial responses. Furthermore, the challenges, current weaknesses and opportunities, prospective directions, and ethical and societal implications of SynBioNanoDesign in drug delivery are elucidated. Finally, the review summarizes the transformative impact that synthetic biology may have on drug-delivery technologies in the future.
Collapse
Affiliation(s)
- Qian Cai
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Rui Guo
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dafu Chen
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiangtao Gao
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Zhao H, Chen S, Lin S, Mei X. Biodegradable microspheres via orally deliver celastrol with ameliorated neuropathic pain in diabetes rats. Regen Biomater 2024; 11:rbae087. [PMID: 39055304 PMCID: PMC11272178 DOI: 10.1093/rb/rbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The treatment of peripheral neuropathy resulting from diabetes primarily emphasizes neurotrophic medications. However, a growing body of clinical studies indicates that neuroinflammation plays a significant role in the pathogenesis of neuropathic pain. This has spurred active exploration of treatment strategies leveraging nanomedicine for diseases, aiming for superior therapeutic outcomes. In this context, we have developed biodegradable nanoparticles made of polylactic-co-glycolic acid, loaded with triptolide (pCel), designed to alleviate somatic cell neuropathic pain induced by diabetes. Treatment with pCel notably reduced levels of reactive oxygen species and apoptosis in vitro. Furthermore, the progression of streptozotocin-induced diabetes, characterized by elevated renal function indices (blood urea nitrogen, creatinine), liver function indices (bilirubin, alkaline phosphatase) and decreased levels of albumin and globulin, was mitigated following pCel administration. Importantly, oral treatment with pCel significantly inhibited mechanical allodynia and the activation of the sciatic glial cells in diabetic rats. These findings indicate that this synthetic, biodegradable nanomedicine exhibits excellent stability, biocompatibility and catalytic activity, making it a promising and innovative approach for the management of chronic pain conditions associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Haosen Zhao
- Department of Orthopaedic Rehabilitation, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, P. R. China
| | - Shurui Chen
- Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, P. R. China
| | - Sen Lin
- Department of Orthopaedic Rehabilitation, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, P. R. China
| | - Xifan Mei
- Department of Orthopaedic Rehabilitation, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, P. R. China
| |
Collapse
|
4
|
Amaratunga SA, Hussein Tayeb T, Muhamad Sediq RN, Hama Salih FK, Dusatkova P, Wakeling MN, De Franco E, Pruhova S, Lebl J. Paediatric diabetes subtypes in a consanguineous population: a single-centre cohort study from Kurdistan, Iraq. Diabetologia 2024; 67:113-123. [PMID: 37897565 PMCID: PMC10709478 DOI: 10.1007/s00125-023-06030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023]
Abstract
AIMS/HYPOTHESIS Monogenic diabetes is estimated to account for 1-6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity. METHODS Data collection was carried out cross-sectionally in November 2021 at the paediatric diabetic clinic, Dr Jamal Ahmad Rashed Hospital, in Sulaimani, Kurdistan, Iraq. At the time of data collection, 754 individuals with diabetes (381 boys) aged up to 16 years were registered. Relevant participant data was obtained from patient files. Consanguinity status was known in 735 (97.5%) participants. Furthermore, 12 families of children with neonatal diabetes and seven families of children with syndromic diabetes consented to genetic testing by next-generation sequencing. Prioritised variants were evaluated using the American College of Medical Genetics and Genomics guidelines and confirmed by Sanger sequencing. RESULTS A total of 269 of 735 participants (36.5%) with known consanguinity status were offspring of consanguineous families. An overwhelming majority of participants (714/754, 94.7%) had clinically defined type 1 diabetes (35% of them were born to consanguineous parents), whereas only eight (1.1%) had type 2 diabetes (38% consanguineous). Fourteen (1.9%) had neonatal diabetes (50% consanguineous), seven (0.9%) had syndromic diabetes (100% consanguineous) and 11 (1.5%) had clinically defined MODY (18% consanguineous). We found that consanguinity was significantly associated with syndromic diabetes (p=0.0023) but not with any other diabetes subtype. The genetic cause was elucidated in ten of 12 participants with neonatal diabetes who consented to genetic testing (homozygous variants in GLIS3 [sibling pair], PTF1A and ZNF808 and heterozygous variants in ABCC8 and INS) and four of seven participants with syndromic diabetes (homozygous variants in INSR, SLC29A3 and WFS1 [sibling pair]). In addition, a participant referred as syndromic diabetes was diagnosed with mucolipidosis gamma and probably has type 2 diabetes. CONCLUSIONS/INTERPRETATION This unique single-centre study confirms that, even in a highly consanguineous population, clinically defined type 1 diabetes is the prevailing paediatric diabetes subtype. Furthermore, a pathogenic cause of monogenic diabetes was identified in 83% of tested participants with neonatal diabetes and 57% of participants with syndromic diabetes, with most variants being homozygous. Causative genes in our consanguineous participants were markedly different from genes reported from non-consanguineous populations and also from those reported in other consanguineous populations. To correctly diagnose syndromic diabetes in consanguineous populations, it may be necessary to re-evaluate diagnostic criteria and include additional phenotypic features such as short stature and hepatosplenomegaly.
Collapse
Affiliation(s)
- Shenali A Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic.
| | - Tara Hussein Tayeb
- Diabetic Clinic, Dr Jamah Ahmad Rashed Hospital, Sulaimani, Kurdistan, Iraq
- Department of Paediatrics, College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
| | - Rozhan N Muhamad Sediq
- Diabetic Clinic, Dr Jamah Ahmad Rashed Hospital, Sulaimani, Kurdistan, Iraq
- Department of Paediatrics, College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
| | | | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Matthew N Wakeling
- Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Elisa De Franco
- Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
5
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
6
|
Eseadi C, Amedu AN, Aloh HE. Significance of fostering the mental health of patients with diabetes through critical time intervention. World J Clin Cases 2023; 11:8486-8497. [PMID: 38188207 PMCID: PMC10768517 DOI: 10.12998/wjcc.v11.i36.8486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Critical time intervention (CTI) is an evidence-based model of practice that is time-limited and aims to provide support for most susceptible individuals during a transition period. AIM To examine the significance of fostering the mental health of diabetes patients through CTI using the scoping review methodology. METHODS As part of the scoping review process, we followed the guidelines established by the Joanna Briggs Institute. The search databases were Google Scholar, PubMed, Scopus, PsycINFO, Reference Citation Analysis (https://www.referencecitationanalysis.com/), and Cochrane Library. From these databases, 77 articles were retrieved with the aid of carefully selected search terms. However, 19 studies were selected after two reviewers appraised the full texts to ensure that they are all eligible for inclusion, while 54 papers were excluded. RESULTS This study revealed that diabetic patients who had experienced homelessness were at higher risk of being diagnosed with mental illness and that social support services are impactful in the management of the comorbidity of diabetes and mental health problems. In addition, this review reveals that CTI is impactful in enhancing the mental health of homeless patients during the transitional period from the hospital through social support services. CONCLUSION CTI is a promising intervention for alleviating mental health symptoms in homeless patients. Empirical studies are needed across the globe, involving both hospitalized and community-based patients, to determine how clinically effectively CTI is in managing the mental health of diabetics.
Collapse
Affiliation(s)
- Chiedu Eseadi
- Department of Educational Psychology, Faculty of Education, University of Johannesburg, Johannesburg 2006, Gauteng, South Africa
| | - Amos Nnaemeka Amedu
- Department of Educational Psychology, Faculty of Education, University of Johannesburg, Johannesburg 2006, Gauteng, South Africa
| | - Henry Egi Aloh
- Department of Health Services, Alex Ekwueme Federal University, Ndufu-Alike Ikwo 482131, Ebonyi State, Nigeria
| |
Collapse
|
7
|
Hashemipour M, Mostofizadeh N, Ghasemi M, Behnam M, Rostampour N, Dehkordi EH, Hovsepian S. Molecular genetic analysis of the insulin gene variants in Iranian patients with permanent neonatal diabetes. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
8
|
Patel KA, Ozbek MN, Yildiz M, Guran T, Kocyigit C, Acar S, Siklar Z, Atar M, Colclough K, Houghton J, Johnson MB, Ellard S, Flanagan SE, Cizmecioglu F, Berberoglu M, Demir K, Catli G, Bas S, Akcay T, Demirbilek H, Weedon MN, Hattersley AT. Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics. Diabetologia 2022; 65:336-342. [PMID: 34686905 PMCID: PMC8741690 DOI: 10.1007/s00125-021-05597-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/02/2021] [Indexed: 11/04/2022]
Abstract
AIMS/HYPOTHESIS Current clinical guidelines for childhood-onset monogenic diabetes outside infancy are mainly focused on identifying and testing for dominantly inherited, predominantly MODY genes. There are no systematic studies of the recessively inherited causes of monogenic diabetes that are likely to be more common in populations with high rates of consanguinity. We aimed to determine the contribution of recessive causes of monogenic diabetes in paediatric diabetes clinics and to identify clinical criteria by which to select individuals for recessive monogenic diabetes testing. METHODS We conducted a cross-sectional study of 1093 children from seven paediatric diabetes clinics across Turkey (a population with high rates of consanguinity). We undertook genetic testing of 50 known dominant and recessive causes of monogenic diabetes for 236 children at low risk of type 1 diabetes. As a comparison, we used monogenic diabetes cases from UK paediatric diabetes clinics (a population with low rates of consanguinity). RESULTS Thirty-four children in the Turkish cohort had monogenic diabetes, equating to a minimal prevalence of 3.1%, similar to that in the UK cohort (p = 0.40). Forty-one per cent (14/34) had autosomal recessive causes in contrast to 1.6% (2/122) in the UK monogenic diabetes cohort (p < 0.0001). All conventional criteria for identifying monogenic diabetes (parental diabetes, not requiring insulin treatment, HbA1c ≤ 58 mmol/mol [≤7.5%] and a composite clinical probability of MODY >10%) assisted the identification of the dominant (all p ≤ 0.0003) but not recessive cases (all p ≥ 0.2) in Turkey. The presence of certain non-autoimmune extra-pancreatic features greatly assisted the identification of recessive (p < 0.0001, OR 66.9) but not dominant cases. CONCLUSIONS/INTERPRETATION Recessively inherited mutations are a common cause of monogenic diabetes in populations with high rates of consanguinity. Present MODY-focused genetic testing strategies do not identify affected individuals. To detect all cases of monogenic paediatric diabetes, it is crucial that recessive genes are included in genetic panels and that children are selected for testing if they have certain non-autoimmune extra-pancreatic features in addition to current criteria.
Collapse
Affiliation(s)
- Kashyap A Patel
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK.
| | - Mehmet N Ozbek
- Department of Paediatric Endocrinology, Gazi Yasargil Diyarbakir Training and Research Hospital, Diyarbakir, Turkey
| | - Melek Yildiz
- Department of Paediatric Endocrinology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
- Department of Paediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, Marmara University Hospital, Istanbul, Turkey
| | - Cemil Kocyigit
- Department of Paediatric Endocrinology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Sezer Acar
- Department of Paediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
- Division of Paediatric Endocrinology, Dr Behcet Uz Child Disease and Paediatric Surgery Training and Research Hospital, Izmir, Turkey
| | - Zeynep Siklar
- Department of Paediatric Endocrinology, Ankara University School of Medicine, Ankara, Turkey
| | - Muge Atar
- Department of Paediatric Endocrinology, Kocaeil University Hospital, Izmit, Turkey
- Department of Paediatric Endocrinology, Suleyman Demirel University, Isparta, Turkey
| | - Kevin Colclough
- Department of Molecular Genetics, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, UK
| | - Jayne Houghton
- Department of Molecular Genetics, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, UK
| | - Matthew B Johnson
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
- Department of Molecular Genetics, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Filiz Cizmecioglu
- Department of Paediatric Endocrinology, Kocaeil University Hospital, Izmit, Turkey
| | - Merih Berberoglu
- Department of Paediatric Endocrinology, Ankara University School of Medicine, Ankara, Turkey
| | - Korcan Demir
- Department of Paediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | - Gonul Catli
- Department of Paediatric Endocrinology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Serpil Bas
- Department of Paediatric Endocrinology and Diabetes, Marmara University Hospital, Istanbul, Turkey
| | - Teoman Akcay
- Department of Paediatric Endocrinology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
- Department of Paediatric Endocrinology, Istinye University, Gaziosmanpasa Medical Park Hospital, Istanbul, Turkey
| | - Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Dhayalan B, Weiss MA. Diabetes-Associated Mutations in Proinsulin Provide a "Molecular Rheostat" of Nascent Foldability. Curr Diab Rep 2022; 22:85-94. [PMID: 35119630 DOI: 10.1007/s11892-022-01447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) due to toxic misfolding of proinsulin variants provides a monogenic model of endoplasmic reticulum (ER) stress. The mutant proinsulin syndrome (also designated MIDY; Mutant INS-gene-induced Diabetes of Youth or Maturity-onset diabetes of the young 10 (MODY10)) ordinarily presents as permanent neonatal-onset DM, but specific amino-acid substitutions may also present later in childhood or adolescence. This review highlights structural mechanisms of proinsulin folding as inferred from phenotype-genotype relationships. RECENT FINDINGS MIDY mutations most commonly add or remove a cysteine, leading to a variant polypeptide containing an odd number of thiol groups. Such variants are associated with aberrant intermolecular disulfide pairing, ER stress, and neonatal β-cell dysfunction. Non-cysteine-related (NCR) mutations (occurring in both the B and A domains of proinsulin) define distinct determinants of foldability and vary in severity. The range of ages of onset, therefore, reflects a "molecular rheostat" connecting protein biophysics to quality-control ER checkpoints. Because in most mammalian cell lines even wild-type proinsulin exhibits limited folding efficiency, molecular barriers to folding uncovered by NCR MIDY mutations may pertain to β-cell dysfunction in non-syndromic type 2 DM due to INS-gene overexpression in the face of peripheral insulin resistance. Recent studies of MIDY mutations and related NCR variants, combining molecular and cell-based approaches, suggest that proinsulin has evolved at the edge of non-foldability. Chemical protein synthesis promises to enable comparative studies of "non-foldable" proinsulin variants to define key steps in wild-type biosynthesis. Such studies may create opportunities for novel therapeutic approaches to non-syndromic type 2 DM.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Bonetti S, Zusi C, Rinaldi E, Boselli ML, Csermely A, Malerba G, Trabetti E, Bonora E, Bonadonna R, Trombetta M. Role of monogenic diabetes genes on beta cell function in Italian patients with newly diagnosed type 2 diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 13. DIABETES & METABOLISM 2022; 48:101323. [DOI: 10.1016/j.diabet.2022.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
|
11
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed ASF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021; 142:112021. [PMID: 34463268 DOI: 10.1016/j.biopha.2021.112021] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022] Open
Abstract
Valproic acid (VPA) is an approved drug for managing epileptic seizures, bipolar disorders, and migraine. VPA has been shown to elevate the level of gamma-aminobutyric acid (GABA) in the brain through competitive inhibition of GABA transaminase, thus promoting the availability of synaptic GABA and facilitating GABA-mediated responses. VPA, which is a small chain of fatty acids, prevents histone deacetylases (HDACs). HDACs play a crucial role in chromatin remodeling and gene expression through posttranslational changes of chromatin-associated histones. Recent studies reported a possible effect of VPA against particular types of cancers. This effect was partially attributed to its role in regulating epigenetic modifications through the inhibition of HDACs, which affect the expression of genes associated with cell cycle control, cellular differentiation, and apoptosis. In this review, we summarize the current information on the actions of VPA in diseases such as diabetes mellitus, kidney disorders, neurodegenerative diseases, muscular dystrophy, and cardiovascular disorders.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Inderjeet Verma
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
13
|
Bonora E, Cataudella S, Marchesini G, Miccoli R, Vaccaro O, Fadini GP, Martini N, Rossi E. Incidence of diabetes mellitus in Italy in year 2018. A nationwide population-based study of the ARNO Diabetes Observatory. Nutr Metab Cardiovasc Dis 2021; 31:2338-2344. [PMID: 34074587 DOI: 10.1016/j.numecd.2021.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUNDS AND AIMS To assess incidence of diabetes in Italy in 2018 by the use of administrative claims from several million residents. Differences in rates in men and women across decades of age were investigated. Incident rates of insulin or noninsulin treated subjects were also examined. METHODS AND RESULTS We analyzed administrative healthcare claims of 11,300,750 subjects monitored by the ARNO Diabetes Observatory. Incident cases of diabetes were identified by glucose lowering drug prescriptions, disease-specific co-payment exemptions and hospital discharge codes related to diabetes occurring in 2018 but not in 2017. We identified 697,208 subjects with ascertained diabetes. Incident cases were 65,932, with a rate of 5.83 per 1000 person-years (p-y). Incidence of drug-treated diabetes (n = 60,271) was 5.33 per 1000 p-y. Subjects receiving only insulin prescriptions were 5652 (rate 0.50 per 1000 p-y) and those receiving only prescriptions of noninsulin medications were 51,085 (rate 4.52 per 1000 p-y). Incidence rates progressively increased across decades until age 80 and then dropped by 25-30%. Overall, incident rates were generally higher in women aged 11-40 and in men aged ≥51. CONCLUSIONS Recent cases represented ~10% of the population of diabetic subjects. Incidence of noninsulin-treated diabetes was almost 10-fold higher than incidence of insulin-treated diabetes. Substantial differences in incidence rates were observed in men and women of several decades of age: women more affected in adolescence and young adult age, men more affected in mature and advanced age. These data provide further understanding on the epidemiological burden of the disease in Italy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elisa Rossi
- CINECA - Interuniversity Consortium, Bologna, Italy
| |
Collapse
|
14
|
Elias-Assad G, Saab R, Molnes J, Hess O, Abu-Ras R, Darawshi H, Rasmus Njølstad P, Tenenbaum-Rakover Y. Maturity onset diabetes of the young type 2 (MODY2): Insight from an extended family. Diabetes Res Clin Pract 2021; 175:108791. [PMID: 33812904 DOI: 10.1016/j.diabres.2021.108791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
AIMS To assess long-term outcome of patients with maturity onset diabetes of the young, type 2 (MODY2) in a unique large cohort of patients with the same genetic and environmental background. METHODS We prospectively evaluated 162 patients aged 5 to 82 years, belonging to the same extended family living in the same village. All patients underwent molecular testing for the glucokinase (GCK) gene mutation identified in the proband, and were categorized into three groups (MODY2, type 2 diabetes and controls). RESULTS The 5.5-year-old proband had the c.1278_1286del mutation in the GCK and was diagnosed with MODY2. Forty-two out of 162 participants were positive for the mutation and 39 had type 2 diabetes. Patients were followed for a mean 10.2 ± 3.7 years (range 0-14). Mean fasting blood glucose and HbA1c increased significantly over the years in MODY2 patients (133 vs. 146 mg/dL; 6.9% vs. 8.2%, respectively). Increase in HbA1c occurred only in the obese/overweight subgroups. Twenty-five percent of MODY2 patients developed diabetes complications, all were above 40 years of age. CONCLUSIONS Although MODY2 commonly has a benign disease course, weight gain is a risk factor for diabetes complications, requiring life-long follow-up and in some patients, medical intervention.
Collapse
Affiliation(s)
- Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel; The Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel.
| | | | - Janne Molnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ora Hess
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Rasmi Abu-Ras
- Faculty of Medicine, Bar-Ilan University, Zefat, Israel
| | | | - Pal Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel; The Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
16
|
Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL, Kelli HM, Ferdinand KC, Echols MR, Weintraub H, Bostrom J, Johnson HM, Hoppe KK, Shapiro MD, German CA, Virani SS, Hussain A, Ballantyne CM, Agha AM, Toth PP. Ten things to know about ten cardiovascular disease risk factors. Am J Prev Cardiol 2021; 5:100149. [PMID: 34327491 PMCID: PMC8315386 DOI: 10.1016/j.ajpc.2021.100149] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Given rapid advancements in medical science, it is often challenging for the busy clinician to remain up-to-date on the fundamental and multifaceted aspects of preventive cardiology and maintain awareness of the latest guidelines applicable to cardiovascular disease (CVD) risk factors. The "American Society for Preventive Cardiology (ASPC) Top Ten CVD Risk Factors 2021 Update" is a summary document (updated yearly) regarding CVD risk factors. This "ASPC Top Ten CVD Risk Factors 2021 Update" summary document reflects the perspective of the section authors regarding ten things to know about ten sentinel CVD risk factors. It also includes quick access to sentinel references (applicable guidelines and select reviews) for each CVD risk factor section. The ten CVD risk factors include unhealthful nutrition, physical inactivity, dyslipidemia, hyperglycemia, high blood pressure, obesity, considerations of select populations (older age, race/ethnicity, and sex differences), thrombosis/smoking, kidney dysfunction and genetics/familial hypercholesterolemia. For the individual patient, other CVD risk factors may be relevant, beyond the CVD risk factors discussed here. However, it is the intent of the "ASPC Top Ten CVD Risk Factors 2021 Update" to provide a succinct overview of things to know about ten common CVD risk factors applicable to preventive cardiology.
Collapse
Affiliation(s)
- Harold E. Bays
- Medical Director / President, Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY USA
| | - Pam R. Taub
- University of California San Diego Health, San Diego, CA USA
| | | | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A. Ferraro
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison L. Bailey
- Chief, Cardiology, Centennial Heart at Parkridge, Chattanooga, TN USA
| | - Heval M. Kelli
- Northside Hospital Cardiovascular Institute, Lawrenceville, GA USA
| | - Keith C. Ferdinand
- Professor of Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Melvin R. Echols
- Assistant Professor of Medicine, Department of Medicine, Cardiology Division, Morehouse School of Medicine, New Orleans, LA USA
| | - Howard Weintraub
- NYU Grossman School of Medicine, NYU Center for the Prevention of Cardiovascular Disease, New York, NY USA
| | - John Bostrom
- NYU Grossman School of Medicine, NYU Center for the Prevention of Cardiovascular Disease, New York, NY USA
| | - Heather M. Johnson
- Christine E. Lynn Women's Health & Wellness Institute, Boca Raton Regional Hospital/Baptist Health South Florida, Clinical Affiliate Associate Professor, Florida Atlantic University, Boca Raton, FL USA
| | - Kara K. Hoppe
- Assistant Professor, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Michael D. Shapiro
- Center for Prevention of Cardiovascular Disease, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Charles A. German
- Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Salim S. Virani
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center and Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Aliza Hussain
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Christie M. Ballantyne
- Department of Medicine and Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, TX USA
| | - Ali M. Agha
- Department of Medicine and Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, TX USA
| | - Peter P. Toth
- CGH Medical Center, Sterling, IL USA
- Cicarrone center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|