1
|
Hieshima K, Sugiyama S, Yoshida A, Kurinami N, Suzuki T, Miyamoto F, Kajiwara K, Jinnouchi K, Jinnouchi T, Jinnouchi H. High Frequency of Defecation under Metformin Use May Be a Potential Glucose-lowering Factor Independent of the Dose-dependent Effect of Metformin in Patients with Type 2 Diabetes Mellitus. Intern Med 2025; 64:1485-1495. [PMID: 39462598 DOI: 10.2169/internalmedicine.3982-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Objective Our previous study indicated that the efficacy of metformin in lowering glycated hemoglobin (HbA1c) levels may be influenced by the pretreatment frequency of defecation (FD) in patients with type 2 diabetes mellitus (T2DM). This study aimed to further examine how FD and the metformin dose may affect HbA1c changes (ΔHbA1c) in T2DM patients. Methods A retrospective analysis was conducted on inpatients who received antidiabetic treatment without altering dosages for six months post-discharge, except for minor insulin adjustments. For new patients, FD was assessed before (pretreatment FD) and after the initiation of antidiabetic therapy (posttreatment FD). For patients already on treatment, FD was evaluated during hospitalization (posttreatment FD). Patients were categorized based on their metformin use, and the relationship between FD and ΔHbA1c was assessed 1.5-6 months post-discharge. The impact of the metformin dose and posttreatment FD on the ΔHbA1c level was analyzed, along with other factors affecting posttreatment FD. Results The analysis included 89 patients (41 on metformin, 21 newly treated; 48 not on metformin, 17 newly treated). Both pre- and posttreatment FD were linked to ΔHbA1c levels in the metformin group. The metformin dose correlated with posttreatment FD but not with pretreatment FD. A significant relationship was observed between ΔHbA1c and the metformin dose. A multiple regression analysis identified posttreatment FD and metformin dose as significant independent factors influencing ΔHbA1c levels. Additionally, diabetic peripheral neuropathy and diabetes duration were found to diminish the effectiveness of metformin, likely due to decreased posttreatment FD. Conclusion FD may independently contribute to the dose-dependent HbA1c-lowering effects of metformin.
Collapse
Affiliation(s)
| | - Seigo Sugiyama
- Diabetes Care Center, Jinnouchi Hospital, Japan
- Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Japan
| | | | | | | | | | | | | | | | - Hideaki Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Japan
- Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Japan
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Kumamoto University Hospital, Japan
| |
Collapse
|
2
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kalkan AT, Yorulmaz G, Akalin A, Dinleyici EC. Intestinal Microbiota Composition in Patients with Type 2 Diabetes and Effects of Oral Antidiabetics. J Clin Med 2025; 14:2786. [PMID: 40283615 PMCID: PMC12027695 DOI: 10.3390/jcm14082786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Introduction: The cause-effect relationships between microbiota composition changes and type 2 diabetes (T2D) are complex, likely involving two-way interactions, and require further elucidation. Few studies have examined the interactions of antidiabetic drugs with the gut microbiota. This study's goal was to evaluate the gut microbiota of patients with type 2 diabetes at first diagnosis and again after 12 weeks of taking oral antidiabetic drugs. Methods: We performed a fecal microbiota analysis of adult patients who recently received a T2D diagnosis and healthy adults. We compared the microbiota compositions between the T2D patients and healthy controls; we also evaluated changes from baseline to 12 weeks of treatment in the total group receiving oral antidiabetics, as well as in the subgroups receiving metformin and linagliptin. Results: The alpha diversity and beta diversity indices were different at baseline between patients with type 2 diabetes and healthy controls. The LEfSe analysis showed that, at the genus level, the Lactobacillus, Rothia, Collinsella, and Eubacterium genera increased in relative abundance in the T2D group while, at the species level, the Rothia mucilaginosa, Collinsella aerofaciens, and Eubacterium bioforme strains were found to be dominant in the T2D group. Faecalibacterium at the genus level and Faecalibacterium prausnitzii at the strain level increased in relative abundance in the T2D group after 12 weeks. After 12 weeks of intervention, the alpha diversity indices were significantly lower in the T2D group compared to the control group. At the end of the 12th week, the Gemmiger and Collinsella genera were dominant in the T2D group, with Gemmiger formicilis and Collinsella aerofaciens being dominant at the species level; in the control group, Bacteroides and Alistipes were dominant at the genus level, and Prevotella stercorea and Alistipes finegoldii were dominant. There was no difference in the LEfSe analysis results between baseline and 12 weeks of linagliptin treatment. At the strain level, Gemmiger formicilis, Ruminococcus bromii, Rothia mucilaginosa, and Lactobacillus ruminis were predominant at the start of metformin treatment; however, after 12 weeks, Collinsella aerofaciens became predominant. Conclusions: We report that there is a substantial change in the composition of the gut microbiota in patients with T2D. Oral antidiabetic treatments, especially metformin, have some beneficial effects on microbiota composition. Few studies have explored the interaction of antidiabetic drugs with the gut microbiota; further research will elucidate the clinical impact of these changes in gut microbiota composition in diabetes.
Collapse
Affiliation(s)
- Ahmet Toygar Kalkan
- Faculty of Medicine, Department of Endocrinology, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Goknur Yorulmaz
- Faculty of Medicine, Department of Endocrinology, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Aysen Akalin
- Faculty of Medicine, Department of Endocrinology, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Ener Cagri Dinleyici
- Faculty of Medicine, Department of Pediatrics, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye;
| |
Collapse
|
4
|
Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. SCIENCE ADVANCES 2025; 11:eads5721. [PMID: 40173242 PMCID: PMC11964003 DOI: 10.1126/sciadv.ads5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Human dipeptidyl peptidase 4 (hDPP-4) has been a pharmacological target for metabolic diseases, particularly diabetes, since the early 2000s. As a ubiquitous enzyme found in both prokaryotic and eukaryotic organisms, hDPP-4 plays crucial roles in host homeostasis and disease progression. While many studies have explored hDPP-4's properties, research on gut microbially derived DPP-4 (mDPP-4) remains limited. This review discusses the significance of mDPP-4 and its health implications, analyzing crystal structures of mDPP-4 in comparison to human counterparts. We examine how hDPP-4 inhibitors could influence gut microbiome composition and mDPP-4 activity. Additionally, this review connects ongoing discussions regarding DPP-4 substrate specificity and potential access routes for mDPP-4, emphasizing the urgent need for further research on mDPP-4's role in health and improve the precision of DPP-4 inhibitor therapies.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Yunan Hu
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Abdullah AR, Seliem MA, Khidr EG, Sobhy AM, El-Shiekh RA, Hafeez MSAE, El-Husseiny AA. A comprehensive review on diabetic cardiomyopathy (DCM): histological spectrum, diagnosis, pathogenesis, and management with conventional treatments and natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03980-9. [PMID: 40100371 DOI: 10.1007/s00210-025-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Diabetic complications are among the most pressing health issues currently. Cardiovascular problems, particularly diabetic cardiomyopathy (DCM), are responsible for almost 80% of diabetic deaths. Because of the increasing prevalence of diabetes and the increased threat of death from its consequences, researchers are searching for new pharmaceutical targets to delay or cure it. Currently, there are a few medicines available for the treatment of DCM, some of which have serious side effects. To address this issue, researchers are focusing on natural products. Thus, in this review, we discuss the prevalence, incidence, risk factors, histological spectrum, diagnosis, pathogenic pathways of DCM, genetic and epigenetic mechanisms involved in DCM, the current treatments, and the beneficial effects of natural product-based therapeutics. Natural treatments range from single doses to continuous regimens lasting weeks or months. Flavonoids are the largest class of natural compounds reported for the treatment of DCM. Natural regimens may cover the way for new treatment strategies for DCM for being multi-target agents in the treatment of DCM, with the ability to play a variety of functions via distinct signaling pathways.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mahmoud A Seliem
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Ayah M Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
6
|
Chele D, Sirbu CA, Mitrica M, Toma M, Vasiliu O, Sirbu AM, Authier FJ, Mischianu D, Munteanu AE. Metformin's Effects on Cognitive Function from a Biovariance Perspective: A Narrative Review. Int J Mol Sci 2025; 26:1783. [PMID: 40004246 PMCID: PMC11855408 DOI: 10.3390/ijms26041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of metformin on brain functions focusing on the variability of the results reported in the literature. While some studies suggest that metformin may have neuroprotective effects in diabetic patients, others report an insignificant impact of metformin on cognitive function, or even a negative effect. We propose that this inconsistency may be due to intrinsic cellular-level variability among individuals, which we term "biovariance". Biovariance persists even in demographically homogeneous samples due to complex and stochastic biological processes. Additionally, the complex metabolic actions of metformin, including its influence on neuroenergetics and neuronal survival, may produce different effects depending on individual metabolic characteristics.
Collapse
Affiliation(s)
- Dimitrie Chele
- Department of Neurology, Elias Emergency University Hospital, 011461 Bucharest, Romania;
| | - Carmen-Adella Sirbu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
| | - Mihai Toma
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| | - Octavian Vasiliu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Department of Psychiatry, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Anca-Maria Sirbu
- National Institute of Medical Expertise and Recovery of Work Capacity, Panduri 22, 050659 Bucharest, Romania
| | - Francois Jerome Authier
- Neuromuscular Reference Center, Henri Mondor University Hospital, Assistance Publique–Hôpitaux de Paris, 94000 Créteil, France
- INSERM U955-Team Relaix, Faculty of Health, Paris Est-Creteil University, 94010 Créteil, France
| | - Dan Mischianu
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Department No. 3, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Alice Elena Munteanu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| |
Collapse
|
7
|
Shi L, Li Z, Ma X, Wang J, Wu Y, Zhu Y, Wang Y, Yang Y, Luo M, Li J, Sun X, He S. Effects of ultra-processed foods on the liver: insights from gut microbiome and metabolomics studies in rats. Front Nutr 2025; 11:1503879. [PMID: 39912061 PMCID: PMC11794082 DOI: 10.3389/fnut.2024.1503879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose High consumption of Ultra-processed foods (UPF) have been identified as a potential risk factor for Non-alcoholic fatty liver disease (NAFLD). Nevertheless, there is limited empirical evidence regarding the impact of UPF, which are typical combination of processed foods, on liver health through alterations in gut microbiota and metabolic processes. We aim to examine the potential impact of UPF on liver health and to explore the role of gut microbiota and metabolites. Methods This study used Sprague-Dawley rats to mimic modern UPF diets for 90 days. Some serum biochemical indices, inflammatory factors, oxidative stress markers, hematoxylin-eosin (HE) staining of the liver, 16S ribosomal RNA (rRNA) and Liquid chromatography-mass spectrometry (LC-MS) of rat feces were detected. Results The UPF diet-induced simple steatosis of the liver in rats without affecting the levels of IL-6, GSH, MDA, and SOD. Additionally, it modified the gut microbiota, increasing potentially harmful bacteria, such as norank_f__Desulfovibrionaceae and Staphylococcus, while also elevating the relative abundance of potentially beneficial bacteria, including Dubosiella and Allobaculum. Furthermore, the consumption of UPF led to a metabolomic disorder characterized by disruptions in the sphingolipid signaling pathway, sulfur relay system, and arachidonic acid metabolism. Conclusion In conclusion, the findings of this study indicate that the consumption of UPF influences the development of simple hepatic steatosis, potentially through alterations in gut microbiota and metabolomics.
Collapse
Affiliation(s)
- Liping Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Zhuoyuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xiaojun Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Junru Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Yueping Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Yongbin Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Yanrong Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Yue Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Minxiu Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xian Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Shulan He
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
10
|
He K, An F, Zhang H, Yan D, Li T, Wu J, Wu R. Akkermansia muciniphila: A Potential Target for the Prevention of Diabetes. Foods 2024; 14:23. [PMID: 39796314 PMCID: PMC11720440 DOI: 10.3390/foods14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Akkermansia muciniphila, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of A. muciniphila abundance. Thus, A. muciniphil and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus. Diabetes treatments that rely on altering changes in A. muciniphila abundance are also reviewed, including the identification of A. muciniphila active ingredients, and dietary and pharmacological interventions for A. mucinihila abundance. The potential and challenges of using A. muciniphila are also highlighted, and it is anticipated that this work will serve as a reference for more in-depth studies on A. muciniphila and diabetes development, as well as the creation of new therapeutic targets by colleagues domestically and internationally.
Collapse
Affiliation(s)
- Kairu He
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| |
Collapse
|
11
|
Yalçın Buğdaycı A, Akarca Dizakar SÖ, Demirel MA, Ömeroğlu S, Akar F, Uludağ MO. Investigation of the relationship between inflammation and microbiota in the intestinal tissue of female and male rats fed with fructose: Modulatory role of metformin. Daru 2024; 32:515-535. [PMID: 38884844 PMCID: PMC11554967 DOI: 10.1007/s40199-024-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND It has been reported that High-Fructose (HF) consumption, considered one of the etiological factors of Metabolic Syndrome (MetS), causes changes in the gut microbiota and metabolic disorders. There is limited knowledge on the effects of metformin in HF-induced intestinal irregularities in male and female rats with MetS. OBJECTIVES In this study, we investigated the sex-dependent effects of metformin treatment on the gut microbiota, intestinal Tight Junction (TJ) proteins, and inflammation parameters in HF-induced MetS. METHODS Fructose was given to the male and female rats as a 20% solution in drinking water for 15 weeks. Metformin (200 mg/kg) was administered by gastric tube once a day during the final seven weeks. Biochemical, histopathological, immunohistochemical, and bioinformatics analyses were performed. Differences were considered statistically significant at p < 0.05. RESULTS The metformin treatment in fructose-fed rats promoted glucose, insulin, Homeostasis Model Assessment of Insulin Resistance Index (HOMA-IR), and Triglyceride (TG) values in both sexes. The inflammation score was significantly decreased with metformin treatment in fructose-fed male and female rats (p < 0.05). Moreover, metformin treatment significantly decreased Interleukin-1 Beta (IL-1β) and Tumor Necrosis Factor-Alpha (TNF-α) in ileum tissue from fructose-fed males (p < 0.05). Intestinal immunoreactivity of Occludin and Claudin-1 was increased with metformin treatment in fructose-fed female rats. HF and metformin treatment changed the gut microbial composition. Firmicutes/Bacteroidetes (F/B) ratio increased with HF in females. In the disease group, Bifidobacterium pseudolongum; in the treatment group, Lactobacillus helveticus and Lactobacillus reuteri are the prominent species in both sexes. When the male and female groups were compared, Akkermansia muciniphila was prominent in the male treatment group. CONCLUSION In conclusion, metformin treatment promoted biochemical parameters in both sexes of fructose-fed rats. Metformin showed a sex-dependent effect on inflammation parameters, permeability factors, and gut microbiota. Metformin has partly modulatory effects on fructose-induced intestinal changes.
Collapse
Affiliation(s)
| | | | - Mürşide Ayşe Demirel
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Gazi University, Ankara, Turkey
| | - Suna Ömeroğlu
- Faculty of Medicine, Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - Fatma Akar
- Faculty of Pharmacy, Department of Pharmacology, Gazi University, Ankara, Turkey
| | - Mecit Orhan Uludağ
- Faculty of Pharmacy, Department of Clinical Pharmacy, Near East University, TRNC, Lefkosa, Turkey
| |
Collapse
|
12
|
Xu S, Zhang H, Zou H, Chen Z, Jiang T, Huang M. Correlation of Differentially Expressed lncRNAs with Intestinal Flora Imbalance, Small Intestinal Permeability, and Glucose Uptake in T2DM Mice. Appl Biochem Biotechnol 2024; 196:7703-7721. [PMID: 38538874 DOI: 10.1007/s12010-024-04935-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 12/14/2024]
Abstract
Diabetes is a major global health concern. This study aimed to investigate the correlation between differentially expressed lncRNAs in mice with type 2 diabetes mellitus (T2DM) and alterations in the intestinal flora and intestinal pathology. A T2DM mouse model was constructed by feeding mice a high-fat diet. Serum fat metabolism-related indices and insulin levels were biochemically detected. Serum inflammatory factors (IL-1β, IL-6, TNF-α, IL-10) and endotoxin (LPS) were measured by ELISA. Histopathological changes in the small intestines of mice were observed by HE. The short-chain fatty acid (SCFA) content was analyzed using GC-MS. Analysis of altered intestinal flora in T2DM mice was performed using a 16sRNA sequencing assay. Differences in lncRNA expression profiles in small intestinal tissues were analyzed using RNA-seq assays. Spearman's correlation analysis was used to correlate the expression of candidate lncRNAs with changes in differential gut flora. Spearman's correlation analysis was used to analyze the correlation between the expression of candidate differentially expressed lncRNAs, small intestinal permeability, and glucose absorption. We found that serum levels of LPS, BUN, Scr, TC, TG, LDL-C, IL-1β, IL-6, and TNF-α were elevated and levels of HDL-C, insulin, and IL-10 were decreased in T2DM mice. The ileal enterochromes of T2DM mice were disorganized and broken, the number of enterochromes was reduced, the local epithelial cells were necrotic, and the plasma membrane layer was locally absent. In addition, the protein expression of ZO-1 and occludin was decreased, and the protein expression of SGLT-1 and GLUT-2 was elevated in the model group compared to the control group. The levels of Acetic acid, Propionic acid and Butyric acid were decreased and the levels of Isobutyric acid and Isovaleric acid were increased, the abundance of beneficial bacteria was decreased and the abundance of harmful bacteria was increased in the feces of T2DM mice. RNA-seq identified nine differentially expressed lncRNAs (LINC00675, Gm33838, Gm11655, LOC6613926, LOC6613788, LOC6613791, LOC6613795, Arhgap27os3, and A330023F24Rik). In addition, we found significant correlations between differentially expressed lncRNAs and a variety of intestinal flora, as well as between small intestinal permeability and glucose absorption. A significant correlation was observed between differentially expressed lncRNAs in the intestinal tissues of T2DM mice and intestinal flora imbalance, small intestinal permeability, and glucose absorption.
Collapse
Affiliation(s)
- Shufang Xu
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Clinical Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zou
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopedic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhitao Chen
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Jiang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Huang
- Department of Clinical Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| |
Collapse
|
13
|
MORALES-CANO KL, RIVERA-ALAMILLO YC, OLIART-ROS RM, PEÑA-MONTES C. Modulation of the gut microbiota by dietary intervention with Acanthocereus tetragonus improves the health status of Wistar rats with metabolic syndrome. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 44:100-109. [PMID: 40171391 PMCID: PMC11957756 DOI: 10.12938/bmfh.2024-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 04/03/2025]
Abstract
The gastrointestinal tract is an ecosystem with heterogeneous patterns, distributions, and environments, resulting in different microbial compositions in each gut segment. The relationship between diet and microbiota determines this heterogeneity. Consumption of diets high in fat and carbohydrates (HLHC) is associated with gut dysbiosis, low microbial diversity, and metabolic syndrome (MetS). Functional fiber consumption improves the profile and diversity of the gut microbiota (GM); it stimulates the production of short-chain fatty acids (SCFAs), which act as signaling molecules that maintain the gut barrier integrity and induce hormone synthesis that regulates satiety and glucose metabolism, reducing some MetS parameters. The effect of a dietary intervention with Acanthocereus tetragonus (At), a cactus rich in fiber, antioxidants, amino acids, and minerals traditionally consumed by the Mexican population, is reported here. For this purpose, Wistar rats were randomly divided into three study groups: a control (C) group, a MetS group, and an At-supplemented group. In the MetS and At groups, an HLHC was administered for 12 weeks, inducing MetS. After 18 weeks, stool samples were collected for microbiota sequencing. HLHC administration favored Firmicutes and decreased the abundance of Bacteriodetes at the phylum level in the MetS group. At the genus level, the dietary intervention with At increased the presence of Roseburia, Ruminococcus, Blautia, Bacteroides, and Christensenella, reflecting the effect of A. tetragonus consumption on GM. At diet administration reduced body weight; the plasma glucose, insulin, and lipid levels; and insulin resistance.
Collapse
Affiliation(s)
- Karla Lizzeth MORALES-CANO
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| | - Yokebed Cecilia RIVERA-ALAMILLO
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| | - Rosa Maria OLIART-ROS
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| | - Carolina PEÑA-MONTES
- National Technological Institute of Mexico Campus Veracruz,
Miguel Ángel de Quevedo 2779, Formando Hogar, Veracruz, Ver. CP 91897, Mexico
| |
Collapse
|
14
|
Kim HB, Cho YJ, Choi SS. Metformin increases gut multidrug resistance genes in type 2 diabetes, potentially linked to Escherichia coli. Sci Rep 2024; 14:21480. [PMID: 39277620 PMCID: PMC11401871 DOI: 10.1038/s41598-024-72467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Metformin is the most commonly prescribed medication for treating type 2 diabetes (T2D). It is known that metformin can alter the gut microbiome, which influences the effectiveness of metformin treatment. We posited that if the gut microbiome, a reservoir of the resistome, is altered, then the resistome should change as well. To test this hypothesis, we reanalyzed microbiome data generated by Wu et al. (Nat Med 23(7):850-858, 2017), identifying antibiotic resistance genes (ARGs) and bacterial species. Through read-based analysis, we observed that the abundance of ARGs indeed changed in many samples treated with metformin. Moreover, the altered pattern was sufficiently heterogeneous across individual samples to allow subcategorization. We also found a strong correlation between the abundance of multidrug-resistant ARGs (MDR-ARGs) and the presence of E. coli. The contig-based analysis led to the same conclusion: an increase in MDR-ARGs due to metformin was associated with an increase in E. coli. In relation to this, we were able to confirm that the majority of MDR-ARGs are likely to originate from E. coli. These results suggest that metformin may have the potential side effect of increasing E. coli carrying ARGs, particularly MDR-ARGs, which could be a concern in T2D therapy that relies on metformin.
Collapse
Affiliation(s)
- Han-Bin Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Shokrgozar S, Momeni F, Zarabi H, Abdollahi E, Khalkhali M, Najafi K, Soleimani R, Pazhooman S, Zare R. Efficacy of metformin on the body mass index of patients under treatment with SSRI drugs referred to psychiatry clinics of Rasht. Heliyon 2024; 10:e34320. [PMID: 39145027 PMCID: PMC11320478 DOI: 10.1016/j.heliyon.2024.e34320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Objective Serotonin reuptake inhibitors cause weight gain, leading to drug discontinuation, relapse, and worsening of symptoms. This study aims to investigates the effect of metformin on weight loss, anthropometric indicators and laboratory assessments in patients of Rasht city. Methods This clinical trial study with parallel-group design was organized based on 60 patients in treatment group (undergoing metformin) and 60 patients in control group (undergoing routine treatment) in Shafa hospital during July 2019 to January 2020. First, we determined the overweight patients. After that, a psychiatric assistant randomly divides them into two groups, intervention and control. Both groups of patients will be explained in terms of how they were studied and whether or not they received metformin. In order to statistical analysis of collected data, we applied the Mann-Whitney U test and repeated measures ANOVA. For conducting all analysis, the IBM SPSS Statistics 28 software was used. Results The mean BMI and abdominal circumference decreased significantly in the intervention group. The wrist circumference in the intervention group decreased over time, but this difference was not statistically significant. There was no statistically significant difference between the average changes of the mean values of the laboratory assessment among the group. Conclusion Weight gain can cause problems related to compliance with treatment and anxiety and depression. On the other hand, in our study, metformin was not superior to lifestyle improvements and practicing preventive methods for weight control. Further research on SSRIs and monitoring of anthropometric indices is recommended.
Collapse
Affiliation(s)
- Somayeh Shokrgozar
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Momeni
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Homa Zarabi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elahe Abdollahi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadrasoul Khalkhali
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kiomars Najafi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Robabeh Soleimani
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sabra Pazhooman
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Roghayeh Zare
- Biostatistics Neuroscience Research Center, Guilan University of Medical Science, Rasht, Iran
| |
Collapse
|
16
|
Chatzianagnostou K, Gaggini M, Suman Florentin A, Simonini L, Vassalle C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int J Mol Sci 2024; 25:6218. [PMID: 38892417 PMCID: PMC11173177 DOI: 10.3390/ijms25116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Although good glycemic control in patients with type 2 diabetes (T2D) can prevent cardiovascular complications, many diabetic patients still have poor optimal control. A new class of antidiabetic drugs (e.g., glucagon-like peptide-1-GLP-1 receptor agonists, sodium-glucose co-transporters-SGLT2 inhibitors), in addition to the low hypoglycemic effect, exert multiple beneficial effects at a metabolic and cardiovascular level, through mechanisms other than antihyperglycemic agents. This review aims to discuss the effects of these new antidiabetic drugs, highlighting cardiovascular and metabolic benefits, through the description of their action mechanisms as well as available data by preclinical and clinical studies. Moreover, new innovative tools in the T2D field will be described which may help to advance towards a better targeted T2D personalized care in future.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Adrian Suman Florentin
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
17
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
18
|
Mo Z, Zhan M, Yang X, Xie P, Xiao J, Cao Y, Xiao H, Song M. Fermented dietary fiber from soy sauce residue exerts antidiabetic effects through regulating the PI3K/AKT signaling pathway and gut microbiota-SCFAs-GPRs axis in type 2 diabetic mellitus mice. Int J Biol Macromol 2024; 270:132251. [PMID: 38729488 DOI: 10.1016/j.ijbiomac.2024.132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.
Collapse
Affiliation(s)
- Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Tang Y, Yan M, Fang Z, Jin S, Xu T. Effects of metformin, saxagliptin and repaglinide on gut microbiota in high-fat diet/streptozocin-induced type 2 diabetic mice. BMJ Open Diabetes Res Care 2024; 12:e003837. [PMID: 38719505 PMCID: PMC11085777 DOI: 10.1136/bmjdrc-2023-003837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION There has been increasing evidence that the gut microbiota is closely related to type 2 diabetes (T2D). Metformin (Met) is often used in combination with saxagliptin (Sax) and repaglinide (Rep) for the treatment of T2D. However, little is known about the effects of these combination agents on gut microbiota in T2D. RESEARCH DESIGN AND METHODS A T2D mouse model induced by a high-fat diet (HFD) and streptozotocin (STZ) was employed. The T2D mice were randomly divided into six groups, including sham, Met, Sax, Rep, Met+Sax and Met+Rep, for 4 weeks. Fasting blood glucose level, serum biochemical index, H&E staining of liver, Oil red O staining of liver and microbiota analysis by 16s sequencing were used to access the microbiota in the fecal samples. RESULTS These antidiabetics effectively prevented the development of HFD/STZ-induced high blood glucose, and the combination treatment had a better effect in inhibiting lipid accumulation. All these dosing regimens restored the decreasing ratio of the phylum Bacteroidetes: Firmicutes, and increasing abundance of phylum Desulfobacterota, expect for Met. At the genus level, the antidiabetics restored the decreasing abundance of Muribaculaceae in T2D mice, but when Met was combined with Rep or Sax, the abundance of Muribaculaceae was decreased. The combined treatment could restore the reduced abundance of Prevotellaceae_UCG-001, while Met monotherapy had no such effect. In addition, the reduced Lachnospiraceae_NK4A136_group was well restored in the combination treatment groups, and the effect was much greater than that in the corresponding monotherapy group. Therefore, these dosing regimens exerted different effects on the composition of gut microbiota, which might be associated with the effect on T2D. CONCLUSIONS Supplementation with specific probiotics may further improve the hypoglycemic effects of antidiabetics and be helpful for the development of new therapeutic drugs for T2D.
Collapse
Affiliation(s)
- Yangchen Tang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mengli Yan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Song Jin
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tingjuan Xu
- Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunology and Nutrition Therapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
20
|
Martínez-López YE, Neri-Rosario D, Esquivel-Hernández DA, Padron-Manrique C, Vázquez-Jiménez A, Sánchez-Castañeda JP, Girón-Villalobos D, Mendoza-Ortíz C, Reyes-Escogido MDL, Evia-Viscarra ML, Aguilar-Garcia A, Resendis-Antonio O, Guardado-Mendoza R. Effect of metformin and metformin/linagliptin on gut microbiota in patients with prediabetes. Sci Rep 2024; 14:9678. [PMID: 38678119 PMCID: PMC11055900 DOI: 10.1038/s41598-024-60081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Lifestyle modifications, metformin, and linagliptin reduce the incidence of type 2 diabetes (T2D) in people with prediabetes. The gut microbiota (GM) may enhance such interventions' efficacy. We determined the effect of linagliptin/metformin (LM) vs metformin (M) on GM composition and its relationship to insulin sensitivity (IS) and pancreatic β-cell function (Pβf) in patients with prediabetes. A cross-sectional study was conducted at different times: basal, six, and twelve months in 167 Mexican adults with prediabetes. These treatments increased the abundance of GM SCFA-producing bacteria M (Fusicatenibacter and Blautia) and LM (Roseburia, Bifidobacterium, and [Eubacterium] hallii group). We performed a mediation analysis with structural equation models (SEM). In conclusion, M and LM therapies improve insulin sensitivity and Pβf in prediabetics. GM is partially associated with these improvements since the SEM models suggest a weak association between specific bacterial genera and improvements in IS and Pβf.
Collapse
Affiliation(s)
- Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Cristian Padron-Manrique
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Girón-Villalobos
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | | | | | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico.
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| | - Rodolfo Guardado-Mendoza
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico.
| |
Collapse
|
21
|
Dietsche KB, Magge SN, Dixon SA, Davis FS, Krenek A, Chowdhury A, Mabundo L, Stagliano M, Courville AB, Yang S, Turner S, Cai H, Kasturi K, Sherman AS, Ha J, Shouppe E, Walter M, Walter PJ, Chen KY, Brychta RJ, Peer C, Zeng Y, Figg W, Cogen F, Estrada DE, Chacko S, Chung ST. Glycemia and Gluconeogenesis With Metformin and Liraglutide: A Randomized Trial in Youth-onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:1361-1370. [PMID: 37967247 PMCID: PMC11031226 DOI: 10.1210/clinem/dgad669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Elevated rates of gluconeogenesis are an early pathogenic feature of youth-onset type 2 diabetes (Y-T2D), but targeted first-line therapies are suboptimal, especially in African American (AA) youth. We evaluated glucose-lowering mechanisms of metformin and liraglutide by measuring rates of gluconeogenesis and β-cell function after therapy in AA Y-T2D. METHODS In this parallel randomized clinical trial, 22 youth with Y-T2D-age 15.3 ± 2.1 years (mean ± SD), 68% female, body mass index (BMI) 40.1 ± 7.9 kg/m2, duration of diagnosis 1.8 ± 1.3 years-were randomized to metformin alone (Met) or metformin + liraglutide (Lira) (Met + Lira) and evaluated before and after 12 weeks. Stable isotope tracers were used to measure gluconeogenesis [2H2O] and glucose production [6,6-2H2]glucose after an overnight fast and during a continuous meal. β-cell function (sigma) and whole-body insulin sensitivity (mSI) were assessed during a frequently sampled 2-hour oral glucose tolerance test. RESULTS At baseline, gluconeogenesis, glucose production, and fasting and 2-hour glucose were comparable in both groups, though Met + Lira had higher hemoglobin A1C. Met + Lira had a greater decrease from baseline in fasting glucose (-2.0 ± 1.3 vs -0.6 ± 0.9 mmol/L, P = .008) and a greater increase in sigma (0.72 ± 0.68 vs -0.05 ± 0.71, P = .03). The change in fractional gluconeogenesis was similar between groups (Met + Lira: -0.36 ± 9.4 vs Met: 0.04 ± 12.3%, P = .9), and there were no changes in prandial gluconeogenesis or mSI. Increased glucose clearance in both groups was related to sigma (r = 0.63, P = .003) but not gluconeogenesis or mSI. CONCLUSION Among Y-T2D, metformin with or without liraglutide improved glycemia but did not suppress high rates of gluconeogenesis. Novel therapies that will enhance β-cell function and target the elevated rates of gluconeogenesis in Y-T2D are needed.
Collapse
Affiliation(s)
- Katrina B Dietsche
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheela N Magge
- Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sydney A Dixon
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Faith S Davis
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Krenek
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Aruba Chowdhury
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilian Mabundo
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Stagliano
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Amber B Courville
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Shanna Yang
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Turner
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongyi Cai
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Kasturi
- Division of Pediatric Endocrinology, Essentia Health, Duluth, MN 55805, USA
| | - Arthur S Sherman
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Joon Ha
- Department of Mathematics, Howard University, Washington, DC 20059, USA
| | - Eileen Shouppe
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Walter
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter J Walter
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Kong Y Chen
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert J Brychta
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zeng
- Clinical Pharmacology Laboratory, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fran Cogen
- Division of Endocrinology and Diabetes, Children's National Hospital, Washington, DC 20010, USA
| | - D Elizabeth Estrada
- Division of Endocrinology and Diabetes, Children's National Hospital, Washington, DC 20010, USA
| | - Shaji Chacko
- Department of Pediatrics, Children's Nutrition Research Center and Division of Pediatric Endocrinology and Metabolism, U.S. Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie T Chung
- National Institute of Diabetes, Digestive and Kidney Diseases/National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Martel J, Ojcius DM, Young JD. Lifestyle interventions to delay senescence. Biomed J 2024; 47:100676. [PMID: 37925155 PMCID: PMC10940141 DOI: 10.1016/j.bj.2023.100676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Senescence is a condition of cell cycle arrest that increases inflammation and contributes to the development of chronic diseases in the aging human body. While several compounds described as senolytics and senomorphics produce health benefits by reducing the burden of senescence, less attention has been devoted to lifestyle interventions that produce similar effects. We describe here the effects of exercise, nutrition, caloric restriction, intermittent fasting, phytochemicals from natural products, prebiotics and probiotics, and adequate sleep on senescence in model organisms and humans. These interventions can be integrated within a healthy lifestyle to reduce senescence and inflammation and delay the consequences of aging.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA; Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| |
Collapse
|
23
|
Cheng M, Ren L, Jia X, Wang J, Cong B. Understanding the action mechanisms of metformin in the gastrointestinal tract. Front Pharmacol 2024; 15:1347047. [PMID: 38617792 PMCID: PMC11010946 DOI: 10.3389/fphar.2024.1347047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Metformin is the initial medication recommended for the treatment of type 2 diabetes mellitus (T2DM). In addition to diabetes treatment, the function of metformin also can be anti-aging, antiviral, and anti-inflammatory. Nevertheless, further exploration is required to fully understand its mode of operation. Historically, the liver has been acknowledged as the main location where metformin reduces glucose levels, however, there is increasing evidence suggesting that the gastrointestinal tract also plays a significant role in its action. In the gastrointestinal tract, metformin effects glucose uptake and absorption, increases glucagon-like peptide-1 (GLP-1) secretion, alters the composition and structure of the gut microbiota, and modulates the immune response. However, the side effects of it cannot be ignored such as gastrointestinal distress in patients. This review outlines the impact of metformin on the digestive system and explores potential explanations for variations in metformin effectiveness and adverse effects like gastrointestinal discomfort.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Naja K, Anwardeen N, Malki AM, Elrayess MA. Metformin increases 3-hydroxy medium chain fatty acids in patients with type 2 diabetes: a cross-sectional pharmacometabolomic study. Front Endocrinol (Lausanne) 2024; 15:1313597. [PMID: 38370354 PMCID: PMC10869496 DOI: 10.3389/fendo.2024.1313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Metformin is a drug with a long history of providing benefits in diabetes management and beyond. The mechanisms of action of metformin are complex, and continue to be actively debated and investigated. The aim of this study is to identify metabolic signatures associated with metformin treatment, which may explain the pleiotropic mechanisms by which metformin works, and could lead to an improved treatment and expanded use. Methods This is a cross-sectional study, in which clinical and metabolomic data for 146 patients with type 2 diabetes were retrieved from Qatar Biobank. Patients were categorized into: Metformin-treated, treatment naïve, and non-metformin treated. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the metformin treated group with each of the other two groups. Results Patients on metformin therapy showed, among other metabolites, a significant increase in 3-hydroxyoctanoate and 3-hydroxydecanoate, which may have substantial effects on metabolism. Conclusions This is the first study to report an association between 3-hydroxy medium chain fatty acids with metformin therapy in patients with type 2 diabetes. This opens up new directions towards repurposing metformin by comprehensively understanding the role of these metabolites.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed M. Malki
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Moens de Hase E, Neyrinck AM, Rodriguez J, Cnop M, Paquot N, Thissen JP, Xu Y, Beloqui A, Bindels LB, Delzenne NM, Van Hul M, Cani PD. Impact of metformin and Dysosmobacter welbionis on diet-induced obesity and diabetes: from clinical observation to preclinical intervention. Diabetologia 2024; 67:333-345. [PMID: 37897566 PMCID: PMC10789671 DOI: 10.1007/s00125-023-06032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023]
Abstract
AIMS/HYPOTHESIS We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL NCT03852069.
Collapse
Affiliation(s)
- Emilie Moens de Hase
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Yining Xu
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Ana Beloqui
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO Department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain (Université catholique de Louvain), Brussels, Belgium.
| |
Collapse
|
26
|
Tian CY, Yang QH, Lv HZ, Yue F, Zhou FF. Combined untargeted and targeted lipidomics approaches reveal potential biomarkers in type 2 diabetes mellitus cynomolgus monkeys. J Med Primatol 2024; 53:e12688. [PMID: 38083989 DOI: 10.1111/jmp.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND The significantly increasing incidence of type 2 diabetes mellitus (T2DM) over the last few decades triggers the demands of T2DM animal models to explore the pathogenesis, prevention, and therapy of the disease. The altered lipid metabolism may play an important role in the pathogenesis and progression of T2DM. However, the characterization of molecular lipid species in fasting serum related to T2DM cynomolgus monkeys is still underrecognized. METHODS Untargeted and targeted LC-mass spectrometry (MS)/MS-based lipidomics approaches were applied to characterize and compare the fasting serum lipidomic profiles of T2DM cynomolgus monkeys and the healthy controls. RESULTS Multivariate analysis revealed that 196 and 64 lipid molecules differentially expressed in serum samples using untargeted and targeted lipidomics as the comparison between the disease group and healthy group, respectively. Furthermore, the comparative analysis of differential serum lipid metabolites obtained by untargeted and targeted lipidomics approaches, four common serum lipid species (phosphatidylcholine [18:0_22:4], lysophosphatidylcholine [14:0], phosphatidylethanolamine [PE] [16:1_18:2], and PE [18:0_22:4]) were identified as potential biomarkers and all of which were found to be downregulated. By analyzing the metabolic pathway, glycerophospholipid metabolism was associated with the pathogenesis of T2DM cynomolgus monkeys. CONCLUSION The study found that four downregulated serum lipid species could serve as novel potential biomarkers of T2DM cynomolgus monkeys. Glycerophospholipid metabolism was filtered out as the potential therapeutic target pathway of T2DM progression. Our results showed that the identified biomarkers may offer a novel tool for tracking disease progression and response to therapeutic interventions.
Collapse
Affiliation(s)
- Chao-Yang Tian
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | | | - Hai-Zhou Lv
- Hainan Jingang Biotech Co., Ltd, Haikou, China
| | - Feng Yue
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Fei-Fan Zhou
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
27
|
Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull 2024; 207:110883. [PMID: 38244807 DOI: 10.1016/j.brainresbull.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.
Collapse
Affiliation(s)
- Kirti Garg
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M Hasan Mohajeri
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.
| |
Collapse
|
28
|
Zhao X, Liu C, Peng L, Wang H. Metformin facilitates anti-PD-L1 efficacy through the regulation of intestinal microbiota. Genes Immun 2024; 25:7-13. [PMID: 38092885 DOI: 10.1038/s41435-023-00234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/18/2024]
Abstract
Metformin is a synthetic biguanide proven to have beneficial effects against various human diseases. Research has confirmed that metformin exerts its effects by regulating the composition of intestinal microbiota. The composition of intestinal microbiota influences the efficacy of anti-PD-L1 immunotherapy. We assume that the regulation of metformin on intestinal microbiota could enhance the therapeutic efficiency of anti-PD-L1 antibodies. In Lewis lung cancer-bearing C57BL/6J mice, we find that metformin enhances PD-L1 antibody efficacy mainly depending on the existence of gut microbiota, and metformin increases the anti-tumor immunity through modulation of intestinal microbiota and affects the integrity of the intestinal mucosa. Antibiotic depletion of gut microbiota abolished the combination efficacy of PD-L1 antibody and metformin, implying the significance of intestinal microbiota in metformin's antitumor action. Combining anti-PD-L1 antibody with metformin provoked tumor necrosis by causing increased CD8 T-cell infiltration and IFN-γ expression. In conclusion, metformin could be employed as a microecological controller to prompt antitumor immunity and increase the efficacy of anti-PD-L1 antibodies. Our study provided reliable evidence that metformin could be synergistically used with anti-PD-L1 antibody to enhance the anti-cancer effect.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, 050011, China
| | - Chuang Liu
- Department of Thoracic Surgery, the Fourth Central Hospital of Baoding City, Baoding, China
| | - Licheng Peng
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, 050011, China
| | - Hongyan Wang
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, 050011, China.
| |
Collapse
|
29
|
Niu X, Lu P, Huang L, Sun Y, Jin M, Liu J, Li X. The effect of metformin combined with liraglutide on gut microbiota of Chinese patients with type 2 diabetes. Int Microbiol 2024; 27:265-276. [PMID: 37316616 DOI: 10.1007/s10123-023-00380-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Metformin (MET) is a first-line therapy for type-2 diabetes mellitus (T2DM). Liraglutide (LRG) is a glucagon-like peptide-1 receptor agonist used as a second-line therapy in combination with MET. METHODS We performed a longitudinal analysis comparing the gut microbiota of overweight and/or pre-diabetic participants (NCP group) with that of each following their progression to T2DM diagnosis (UNT group) using 16S ribosomal RNA gene sequencing of fecal bacteria samples. We also examined the effects of MET (MET group) and MET plus LRG (MET+LRG group) on the gut microbiota of these participants following 60 days of anti-diabetic drug therapy in two parallel treatment arms. RESULTS In the UNT group, the relative abundances of Paraprevotella (P = 0.002) and Megamonas (P = 0.029) were greater, and that of Lachnospira (P = 0.003) was lower, compared with the NCP group. In the MET group, the relative abundance of Bacteroides (P = 0.039) was greater, and those of Paraprevotella (P = 0.018), Blautia (P = 0.001), and Faecalibacterium (P = 0.005) were lower, compared with the UNT group. In the MET+LRG group, the relative abundances of Blautia (P = 0.005) and Dialister (P = 0.045) were significantly lower than in the UNT group. The relative abundance of Megasphaera in the MET group was significantly greater than in the MET+LRG group (P = 0.041). CONCLUSIONS Treatment with MET and MET+LRG results in significant alterations in gut microbiota, compared with the profiles of patients at the time of T2DM diagnosis. These alterations differed significantly between the MET and MET+LRG groups, which suggests that LRG exerted an additive effect on the composition of gut microbiota.
Collapse
Affiliation(s)
- Xiaohong Niu
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, 046011, China
| | - Panpan Lu
- Department of Endocrinology, Changzhi Medical College, Changzhi, 046013, China
| | - Linqing Huang
- Department of Endocrinology, Changzhi Medical College, Changzhi, 046013, China
| | - Yan Sun
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, 046011, China
| | - Miaomiao Jin
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, 046011, China
| | - Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
30
|
Molteni L, Marelli G, Castagna G, Brambilla L, Acerbis M, Alberghina F, Carpani A, Chiavenna E, Ferlini MG, Impellizzeri C, Paredi R, Rigamonti A, Rivolta G, Disoteo OE. Improving Type 2 Diabetes Care with Extended-Release Metformin: Real-Life Insights from a Physician Educational Program. Endocr Metab Immune Disord Drug Targets 2024; 24:1422-1430. [PMID: 38425116 PMCID: PMC11348454 DOI: 10.2174/0118715303294909240221102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Compared to Immediate-Release (IR) metformin, Extended-Release (ER) metformin reduces side effects and pill burden while improving adherence; however, there is little real-life data on patient satisfaction with this innovative formulation to guide physicians toward a more holistic approach. OBJECTIVE Our goal is to train general practitioners on holistic patient management, with the aim of increasing patient satisfaction and treatment adherence, reducing side effects, and improving quality of life in patients with poor tolerance to metformin-IR. MATERIALS AND METHODS We designed an educational program for physicians called SlowDiab, aimed at establishing a holistic patient approach. In this context, adult patients with T2DM who experienced gastrointestinal discomfort with metformin-IR were enrolled and switched to metformin- ER. Data on glycemic control were collected at baseline and 2 months after switching. A survey was carried out on patients to assess their level of satisfaction. RESULTS In 69 enrolled patients (mean (min-max) age, 68.2 (41-90)), side effects decreased after switching from 61.8% to 16.2% (p < 0.01), and the mean perceived burden of adverse events on a scale of 1 to 10 also decreased (6.17 vs. 3.82; p < 0.05). Among patients previously intolerant to metformin-IR, 74.3% reported no longer experiencing any side effects after the switch. The mean number of tablets taken daily (2.28 vs. 1.66; p < 0.01) and mean plasma glycated hemoglobin (HbA1c) values (7.0% vs. 6.7%; p < 0.05) decreased, while 93.8% of patients were satisfied with the treatment change. Moreover, 84.2% reported an improvement in glycemic control after the switch. CONCLUSION In a real-life setting, an educational program for general practitioners confirmed that metformin ER reduces side effects and improves pill burden, therapeutic adherence, and patient satisfaction compared to metformin IR.
Collapse
Affiliation(s)
- Laura Molteni
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | - Giuseppe Marelli
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | - Giona Castagna
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
- University of Milano Bicocca, Milan, Italy
| | - Luciano Brambilla
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | | | | | - Antonio Carpani
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | - Erika Chiavenna
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | | | | | - Roberto Paredi
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | | | | | - Olga Eugenia Disoteo
- Division of Endocrinology and Diabetology, Sant’Anna Hospital - ASST Lariana, Como, Italy
| |
Collapse
|
31
|
Fang Y, Wang J, Cao Y, Liu W, Duan L, Hu J, Peng J. The Antiobesity Effects and Potential Mechanisms of Theaflavins. J Med Food 2024; 27:1-11. [PMID: 38060708 DOI: 10.1089/jmf.2023.k.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Theaflavins are the characteristic polyphenols in black tea which can be enzymatically synthesized. In this review, the effects and molecular mechanisms of theaflavins on obesity and its comorbidities, including dyslipidemia, insulin resistance, hepatic steatosis, and atherosclerosis, were summarized. Theaflavins ameliorate obesity potentially via reducing food intake, inhibiting pancreatic lipase to reduce lipid absorption, activating the adenosine monophosphate-activated protein kinase (AMPK), and regulating the gut microbiota. As to the comorbidities, theaflavins ameliorate hypercholesterolemia by inhibiting micelle formation to reduce cholesterol absorption. Theaflavins improve insulin sensitivity by increasing the signaling of protein kinase B, eliminating glucose toxicity, and inhibiting inflammation. Theaflavins ameliorate hepatic steatosis via activating AMPK. Theaflavins reduce atherosclerosis by upregulating nuclear factor erythropoietin-2-related factor 2 signaling and inhibiting plasminogen activator inhibitor 1. In randomized controlled trails, black tea extracts containing theaflavins reduced body weight in overweight people and improved glucose tolerance in healthy adults. The amelioration on the hyperlipidemia and the prevention of coronary artery disease by black tea extracts were supported by meta-analysis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cao
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenrui Liu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianxiang Duan
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education of China, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
32
|
Elbere I, Orlovskis Z, Ansone L, Silamikelis I, Jagare L, Birzniece L, Megnis K, Leskovskis K, Vaska A, Turks M, Klavins K, Pirags V, Briviba M, Klovins J. Gut microbiome encoded purine and amino acid pathways present prospective biomarkers for predicting metformin therapy efficacy in newly diagnosed T2D patients. Gut Microbes 2024; 16:2361491. [PMID: 38868903 PMCID: PMC11178274 DOI: 10.1080/19490976.2024.2361491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Metformin is widely used for treating type 2 diabetes mellitus (T2D). However, the efficacy of metformin monotherapy is highly variable within the human population. Understanding the potential indirect or synergistic effects of metformin on gut microbiota composition and encoded functions could potentially offer new insights into predicting treatment efficacy and designing more personalized treatments in the future. We combined targeted metabolomics and metagenomic profiling of gut microbiomes in newly diagnosed T2D patients before and after metformin therapy to identify potential pre-treatment biomarkers and functional signatures for metformin efficacy and induced changes in metformin therapy responders. Our sequencing data were largely corroborated by our metabolic profiling and identified that pre-treatment enrichment of gut microbial functions encoding purine degradation and glutamate biosynthesis was associated with good therapy response. Furthermore, we identified changes in glutamine-associated amino acid (arginine, ornithine, putrescine) metabolism that characterize differences in metformin efficacy before and after the therapy. Moreover, metformin Responders' microbiota displayed a shifted balance between bacterial lipidA synthesis and degradation as well as alterations in glutamate-dependent metabolism of N-acetyl-galactosamine and its derivatives (e.g. CMP-pseudaminate) which suggest potential modulation of bacterial cell walls and human gut barrier, thus mediating changes in microbiome composition. Together, our data suggest that glutamine and associated amino acid metabolism as well as purine degradation products may potentially condition metformin activity via its multiple effects on microbiome functional composition and therefore serve as important biomarkers for predicting metformin efficacy.
Collapse
Affiliation(s)
- Ilze Elbere
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Zigmunds Orlovskis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Ansone
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ivars Silamikelis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Lauma Jagare
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Liga Birzniece
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kristaps Leskovskis
- Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Annija Vaska
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Maris Turks
- Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Kristaps Klavins
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Valdis Pirags
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Monta Briviba
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Klovins
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
33
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
34
|
Steinbach E, Masi D, Ribeiro A, Serradas P, Le Roy T, Clément K. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism 2024; 150:155712. [PMID: 37884078 DOI: 10.1016/j.metabol.2023.155712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The study of the gut microbiome holds great promise for understanding and treating metabolic diseases, as its functions and derived metabolites can influence the metabolic status of the host. While research on the fecal microbiome has provided valuable insights, it tells us only part of the story. This limitation arises from the substantial variations in microorganism distribution throughout the gastrointestinal tract due to changes in physicochemical conditions. Thus, relying solely on the fecal microbiome may not be sufficient to draw comprehensive conclusions about metabolic diseases. The proximal part of the small intestine, particularly the jejunum, indeed, serves as the crucial site for digestion and absorption of nutrients, suggesting a potential role of its microbiome in metabolic regulation. Unfortunately, it remains relatively underexplored due to limited accessibility. This review presents current evidence regarding the relationships between the microbiome in the upper small intestine and various phenotypes, focusing on obesity and type 2 diabetes, in both humans and rodents. Research on humans is still limited with variability in the population and methods used. Accordingly, to better understand the role of the whole gut microbiome in metabolic diseases, studies exploring the human microbiome in different niches are needed.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Sapienza University of Rome, Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, 00161 Rome, Italy
| | - Agnès Ribeiro
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Patricia Serradas
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France.
| |
Collapse
|
35
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
36
|
Kueck PJ, Morris JK, Stanford JA. Current Perspectives: Obesity and Neurodegeneration - Links and Risks. Degener Neurol Neuromuscul Dis 2023; 13:111-129. [PMID: 38196559 PMCID: PMC10774290 DOI: 10.2147/dnnd.s388579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Obesity is increasing in prevalence across all age groups. Long-term obesity can lead to the development of metabolic and cardiovascular diseases through its effects on adipose, skeletal muscle, and liver tissue. Pathological mechanisms associated with obesity include immune response and inflammation as well as oxidative stress and consequent endothelial and mitochondrial dysfunction. Recent evidence links obesity to diminished brain health and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Both AD and PD are associated with insulin resistance, an underlying syndrome of obesity. Despite these links, causative mechanism(s) resulting in neurodegenerative disease remain unclear. This review discusses relationships between obesity, AD, and PD, including clinical and preclinical findings. The review then briefly explores nonpharmacological directions for intervention.
Collapse
Affiliation(s)
- Paul J Kueck
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jill K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John A Stanford
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
37
|
Shu Y, Li W, Hu Q, Xiong D. Bibliometrics and visual analysis of metformin and gut microbiota from 2012 to 2022: A systematic review. Medicine (Baltimore) 2023; 102:e36478. [PMID: 38115325 PMCID: PMC10727597 DOI: 10.1097/md.0000000000036478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metformin is an old drug used for the treatment of type 2 diabetes mellitus and can play a variety of roles by regulating the gut microbiota. The number of research articles on metformin in the gut microbiota has increased annually; however, no bibliometric tools have been used to analyze the research status and hot trends in this field. This study presents a bibliometric analysis of publications on metformin and gut microbiota. METHODS We searched the Web of Science core collection database on June 8, 2023, for papers related to metformin and gut microbiota from 2012 to 2022. We used Microsoft Excel 2021, VOSviewer1.6.19, CiteSpace 6.2.4, and R software package "bibliometrix" 4.0.0 to analyze the countries, institutions, authors, journals, citations, and keywords of the included publications. RESULTS We included 517 papers, and the trend in publications increased over the last 11 years. The 517 articles were from 57 countries, including 991 institutions and 3316 authors, and were published in 259 journals. China led all countries (233 papers) and the most influential institution was the Chinese Academy of Sciences (16 papers). PLOS ONE (19 papers) was the most popular journal, and Nature (1598 citations) was the most cited journal. Li and Kim were the 2 most published authors (six papers each), and Cani (272 co-citations) was the most co-cited author. "Metabolites," "aging," and "intestinal barrier" were emerging topics in this field. CONCLUSIONS This bibliometric study comprehensively summarizes the research trends and progress of metformin and gut microbiota, and provides new research topics and trends for studying the effects of metformin on gut microbiota in different diseases.
Collapse
Affiliation(s)
- Yang Shu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Weidong Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daqian Xiong
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
39
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
40
|
Kumbhare SV, Pedroso I, Ugalde JA, Márquez-Miranda V, Sinha R, Almonacid DE. Drug and gut microbe relationships: Moving beyond antibiotics. Drug Discov Today 2023; 28:103797. [PMID: 37806386 DOI: 10.1016/j.drudis.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.
Collapse
Affiliation(s)
| | | | - Juan A Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | | |
Collapse
|
41
|
Xiao Y, Li K, Bian J, Zhang Y, Li J, Liu H, Ye Y, Han L, Gong L, Wang M. Urolithin A Protects Neuronal Cells against Stress Damage and Apoptosis by Atp2a3 Inhibition. Mol Nutr Food Res 2023; 67:e2300146. [PMID: 37667442 DOI: 10.1002/mnfr.202300146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Indexed: 09/06/2023]
Abstract
SCOPE This study aims to investigate the effect and mechanism of Urolithin A (UA) on neuronal stress damage on cognitive impairment in type 2 diabetes mellitus (T2DM) mouse model induced by high-fat diet (HFD) and streptozotocin (STZ). METHODS AND RESULTS T2DM mice fed with UA display an attenuated cognitive impairment along with suppressed endoplasmic reticulum (ER) stress and Tau hyperphosphorylation in brain. Similar restraint effect of UA on Tau hyperphosphorylation and ER stress is also observed in high glucose-treated primary hippocampal neurons. Moreover, UA ameliorates oxidative stress, ER stress, aberrant energy metabolism, and apoptosis in 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) induced HT22 cells. Atp2a3 is identified as a potential target gene of UA which is closely related to intracellular calcium homeostasis, ER stress, and apoptosis, so that UA significantly down-regulated Atp2a3 expression in DMNQ-induced cells. Furthermore, the protection effect of UA against ER stress and apoptosis is abolished by Atp2a3 over-expression in HT22 cells. Taken together, these data suggest that UA performs anti-stress effect by suppressing the expression of Atp2a3 in damaged neuronal cells and thus attenuates diabetes-associated cognitive impairment in T2DM mice. CONCLUSION The study implies UA as a potential novel pharmaceutic target for neurodegeneration and stress damage through regulating the expression of Atp2a3.
Collapse
Affiliation(s)
- Yao Xiao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Kailin Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Jia Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, P. R. China
| | - Yingzhi Ye
- Zhejiang Conba Pharmaceutical Co., Ltd, No. 1 Conba Avenue, Lanxi, Zhejiang, 321109, P. R. China
| | - Lin Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
42
|
Pavlo Petakh, Kamyshna I, Kamyshnyi A. Effects of metformin on the gut microbiota: A systematic review. Mol Metab 2023; 77:101805. [PMID: 37696355 PMCID: PMC10518565 DOI: 10.1016/j.molmet.2023.101805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The gut microbiota is increasingly recognized as a crucial factor in human health and disease. Metformin, a commonly prescribed medication for type 2 diabetes, has been studied for its potential impact on the gut microbiota in preclinical models. However, the effects of metformin on the gut microbiota in humans remain uncertain. SCOPE OF REVIEW We conducted a systematic review of clinical trials and observational studies to assess the existing knowledge on the impact of metformin on the gut microbiota in humans. The review focused on changes in bacterial composition and diversity following metformin treatment. MAJOR CONCLUSIONS Thirteen studies were included in the analysis. The results revealed alterations in the abundance of bacterial genera from various phyla, suggesting that metformin may selectively influence certain groups of bacteria in the gut microbiota. However, the effects on gut microbiota diversity were inconsistent across populations, with conflicting findings on changes in alpha and beta diversity measures. Overall, the use of metformin was associated with changes in the abundance of specific bacterial genera within the gut microbiota of human populations. However, the effects on gut microbiota diversity were not consistent, highlighting the need for further research to understand the underlying mechanisms and clinical significance of these changes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine; Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| |
Collapse
|
43
|
Tang X, Yang L, Miao Y, Ha W, Li Z, Mi D. Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: an integrated gut microbiota and metabolism analysis. BMC Microbiol 2023; 23:281. [PMID: 37784018 PMCID: PMC10546737 DOI: 10.1186/s12866-023-03029-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Angelica polysaccharides (AP) have numerous benefits in relieving type 2 diabetes (T2D). However, the underlying mechanisms have yet to be fully understood. Recent many reports have suggested that altering gut microbiota can have adverse effects on the host metabolism and contribute to the development of T2D. Here, we successfully established the T2D model using the male KKAy mice with high-fat and high-sugar feed. Meanwhile, the male C57BL/6 mice were fed with a normal feed. T2D KKAy mice were fed either with or without AP supplementation. In each group, we measured the mice's fasting blood glucose, weight, and fasting serum insulin levels. We collected the cecum content of mice, the gut microbiota was analyzed by targeted full-length 16S rRNA metagenomic sequencing and metabolites were analyzed by untargeted-metabolomics. RESULTS We found AP effectively alleviated glycemic disorders of T2D KKAy mice, with the changes in gut microbiota composition and function. Many bacteria species and metabolites were markedly changed in T2D KKAy mice and reversed by AP. Additionally, 16 altered metabolic pathways affected by AP were figured out by combining metagenomic pathway enrichment analysis and metabolic pathway enrichment analysis. The key metabolites in 16 metabolic pathways were significantly associated with the gut microbial alteration. Together, our findings showed that AP supplementation could attenuate the diabetic phenotype. Significant gut microbiota and gut metabolite changes were observed in the T2D KKAy mice and AP intervention. CONCLUSIONS Administration of AP has been shown to improve the composition of intestinal microbiota in T2D KKAy mice, thus providing further evidence for the potential therapeutic application of AP in the treatment of T2D.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong City, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Yandong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai City, Shandong Province, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zheng Li
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China.
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China.
| |
Collapse
|
44
|
Ma Z, Sun W, Wang L, Wang Y, Pan B, Su X, Li H, Zhang H, Lv S, Wang H. Integrated 16S rRNA sequencing and nontargeted metabolomics analysis to reveal the mechanisms of Yu-Ye Tang on type 2 diabetes mellitus rats. Front Endocrinol (Lausanne) 2023; 14:1159707. [PMID: 37732114 PMCID: PMC10507721 DOI: 10.3389/fendo.2023.1159707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
INTRODUCTION Yu-Ye Tang (YYT) is a classical formula widely used in treatment of type 2 diabetes mellitus (T2DM). However, the specific mechanism of YYT in treating T2DM is not clear. METHODS The aim of this study was to investigate the therapeutic effect of YYT on T2DM by establishing a rat model of T2DM. The mechanism of action of YYT was also explored through investigating gut microbiota and serum metabolites. RESULTS The results indicated YYT had significant therapeutic effects on T2DM. Moreover, YYT could increase the abundance of Lactobacillus, Candidatus_Saccharimonas, UCG-005, Bacteroides and Blautia while decrease the abundance of and Allobaculum and Desulfovibrio in gut microbiota of T2DM rats. Nontargeted metabolomics analysis showed YYT treatment could regulate arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine metabolism, steroid hormone biosynthesis, terpenoid backbone biosynthesis, tryptophan metabolism, and tyrosine metabolism in T2DM rats. DISCUSSION In conclusion, our research showed that YYT has a wide range of therapeutic effects on T2DM rats, including antioxidative and anti-inflammatory effects. Furthermore, YYT corrected the altered gut microbiota and serum metabolites in T2DM rats. This study suggests that YYT may have a therapeutic impact on T2DM by regulating gut microbiota and modulating tryptophan and glycerophospholipid metabolism, which are potential key pathways in treating T2DM.
Collapse
Affiliation(s)
- Ziang Ma
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenjuan Sun
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Baochao Pan
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hanzhou Li
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
45
|
Chen D, Xiong J, Chen G, Zhang Z, Liu Y, Xu J, Xu H. Comparing the Influences of Metformin and Berberine on the Intestinal Microbiota of Rats With Nonalcoholic Steatohepatitis. In Vivo 2023; 37:2105-2127. [PMID: 37652508 PMCID: PMC10500488 DOI: 10.21873/invivo.13308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM High-fat diets induce shifts in the gut microbial community structure in patients or animals with non-alcoholic steatohepatitis (NASH). The objective of this study was to investigate the influence of metformin (MET) and berberine (BER) on the intestinal microbiota of rats with NASH. MATERIALS AND METHODS Forty specific pathogen-free male Sprague-Dawley rats were randomized into 4 groups. Model rats were fed high-fat diets to create NASH models. MET or BER rats were administrated MET or BER, respectively, at the onset of induction of NASH. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides were examined. Plasma endotoxin levels were measured using the turbidimetric endotoxin assay. The incidence of bacterial translocation describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. Hematoxylin and eosin and oil red O staining were used for histopathological analysis. High throughput 16S rRNA sequencing was carried out for analyzing the composition of intestinal microbiota. RESULTS High-fat diets caused NASH after 16-week induction. Administration of MET and BER ameliorated NASH by attenuating hepatic steatosis and inflammation and decreasing the plasma levels of endotoxin. MET and BER restored the composition of the intestinal microbiota disrupted by NASH. Both MET and BER altered the abundance of Atopobiaceae, Brevibacterium, Christensenellaceae, Coriobacteriales, Papillibacter, Pygmaiobacter, and Rikenellaceae RC9 in rats with NASH. The screened intestinal microbiota may be responsible for the improvement in fat accumulation and glucose metabolism. CONCLUSION MET and BER demonstrated beneficial effects on the intestinal microbiota, which was disturbed in NASH. This finding may explain the functional mechanism of MET and BER in NASH.
Collapse
Affiliation(s)
- Dongya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jianjun Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China;
| |
Collapse
|
46
|
Taher I, El-Masry E, Abouelkheir M, Taha AE. Anti‑inflammatory effect of metformin against an experimental model of LPS‑induced cytokine storm. Exp Ther Med 2023; 26:415. [PMID: 37559933 PMCID: PMC10407980 DOI: 10.3892/etm.2023.12114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Cytokine storm is one of the leading causes of death in patients with COVID-19. Metformin has been shown to inhibit the action of a wide range of proinflammatory cytokines such as IL-6, and TNF-α which may ultimately affect cytokine storm due to Covid-19. The present study analyzed the anti-inflammatory effect of oral and intraperitoneal (IP) metformin administration routes in a mouse model of lipopolysaccharide (LPS)-induced cytokine storm. A total of 60 female BALB/c mice were randomly assigned to one of six groups: i) Control; ii) LPS model; iii) oral saline + LPS; iv) oral metformin + LPS; v) IP saline + LPS; and vi) IP metformin + LPS. Metformin or saline were administered to the mice for 30 days, after which an IP injection of 0.5 mg/kg LPS induced a cytokine storm in the five treatment groups. Mice were sacrificed and serum cytokine levels were measured. Pretreatment of mice with either oral or IP metformin significantly reduced the increase in IL-1, IL-6 and TNF-α following LPS injection. Both metformin administration routes significantly reduced IL-1 and TNF-α levels, although IP metformin appeared to be significantly more effective at reducing IL-6 levels compared with oral metformin. Neither the oral or IP route of administration of metformin demonstrated a significant effect on IL-17 levels. Based on its ability to suppress the proinflammatory LPS-induced cytokine storm, metformin may have future potential benefits in ameliorating human diseases caused by elevated cytokine levels.
Collapse
Affiliation(s)
- Ibrahim Taher
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Eman El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Shebin El Koum 32511, Egypt
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
47
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
48
|
Schweighofer N, Strasser M, Obermayer A, Trummer O, Sourij H, Sourij C, Obermayer-Pietsch B. Identification of Novel Intronic SNPs in Transporter Genes Associated with Metformin Side Effects. Genes (Basel) 2023; 14:1609. [PMID: 37628660 PMCID: PMC10454417 DOI: 10.3390/genes14081609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin is a widely used and effective medication in type 2 diabetes (T2DM) as well as in polycystic ovary syndrome (PCOS). Single nucleotide polymorphisms (SNPs) contribute to the occurrence of metformin side effects. The aim of the present study was to identify intronic genetic variants modifying the occurrence of metformin side effects and to replicate them in individuals with T2DM and in women with PCOS. We performed Next Generation Sequencing (Illumina Next Seq) of 115 SNPs in a discovery cohort of 120 metformin users and conducted a systematic literature review. Selected SNPs were analysed in two independent cohorts of individuals with either T2DM or PCOS, using 5'-3'exonucleaseassay. A total of 14 SNPs in the organic cation transporters (OCTs) showed associations with side effects in an unadjusted binary logistic regression model, with eight SNPs remaining significantly associated after appropriate adjustment in the discovery cohort. Five SNPs were confirmed in a combined analysis of both replication cohorts but showed different association patterns in subgroup analyses. In an unweighted polygenic risk score (PRS), the risk for metformin side effects increased with the number of risk alleles. Intronic SNPs in the OCT cluster contribute to the development of metformin side effects in individuals with T2DM and in women with PCOS and are therefore of interest for personalized therapy options.
Collapse
Affiliation(s)
- Natascha Schweighofer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Center for Biomarker Research in Medicine, CBmed, 8010 Graz, Austria
| | - Moritz Strasser
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Department of Health Studies, Institute of Biomedical, FH Joanneum University of Applied Sciences, 8020 Graz, Austria
| | - Anna Obermayer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8036 Graz, Austria
| | - Olivia Trummer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8036 Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
| |
Collapse
|
49
|
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
50
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|