1
|
Sharma R, Komal K, Kumar S, Ghosh R, Pandey P, Gupta GD, Kumar M. Advances in pancreatic cancer diagnosis: from DNA methylation to AI-assisted imaging. Expert Rev Mol Diagn 2025:1-13. [PMID: 40388321 DOI: 10.1080/14737159.2025.2509022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/22/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
INTRODUCTION Pancreatic Cancer (PC) is a highly aggressive tumor that is mainly diagnosed at later stages. Various imaging technologies, such as CT, MRI, and EUS, possess limitations in early PC diagnosis. Therefore, this review article explores the various innovative biomarkers for PC detection, such as DNA methylation, Noncoding RNAs, and proteomic biomarkers, and the role of AI in PC detection at early stages. AREA COVERED Innovative biomarkers, such as DNA methylation genes, show higher specificity and sensitivity in PC diagnosis. Additionally, various non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs, show high diagnostic accuracy and serve as diagnostic and prognostic biomarkers. Additionally, proteomic biomarkers retain higher diagnostic accuracy in different body fluids. Apart from this, the utilization of AI showed that AI surpassed the radiologist's diagnostic performance in PC detection. EXPERT OPINION The combination of AI and advanced biomarkers can revolutionize early PC detection. However, large-scale, prospective studies are needed to validate its clinical utility. Further. standardization of biomarker panels and AI algorithms is a vital step toward their reliable applications in early PC detection, ultimately improving patient outcomes. [Figure: see text].
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Prachi Pandey
- Department of Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
2
|
Selvi S, Real CM, Gentiluomo M, Balounova K, Vokacova K, Cumova A, Mohlenikova-Duchonova B, Rizzato C, Halasova E, Vodickova L, Smolkova B, Hemminki K, Campa D, Vodicka P. Genomic instability, DNA damage response and telomere homeostasis in pancreatic cancer. Semin Cancer Biol 2025; 113:59-73. [PMID: 40378535 DOI: 10.1016/j.semcancer.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Pancreatic cancer (PC) is becoming one of the most serious health problems at present, but its causes and risk factors are still unclear. One of the drivers in pancreatic carcinogenesis is altered genomic (DNA) integrity with subsequent genomic instability in cancer cells. The latter comprises a) DNA damage response and DNA repair mechanisms, b) DNA replication and mitosis, c) epigenetic regulation, and d) telomere maintenance. In our review we addressed the above aspects in relation to the most abundant and severe form of PC, pancreatic ductal adenocarcinoma (PDAC). In summary, the interactions between the DNA damage response, telomere homeostasis and mitotic regulation are not comprehensively understood at present, including the epigenetic factors entering the trait of genomic stability maintenance. In addition, the complexity of telomere homeostasis in relation to PDAC risk, prognosis and prediction also warrants further investigations.
Collapse
Affiliation(s)
- Saba Selvi
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Carmen Macías Real
- Cancer Predisposition and Biomarkers Group, Instituto de Investigacion Sanitaria de Santiago, Santiago de Compostela, Spain
| | | | - Katerina Balounova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Vokacova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | | | - Cosmeri Rizzato
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia
| | - Ludmila Vodickova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, FRG 69120, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Pavel Vodicka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic.
| |
Collapse
|
3
|
Song TL, Zhang F, Zhang C, Cheng HJ, Maswikiti EP, Ji CY, Chen H, Tang FT, Guo WZ, Zhai WL, Li YM. Development and validation of a nomogram for a prognostic model for resected pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2025:S1499-3872(25)00062-1. [PMID: 40348634 DOI: 10.1016/j.hbpd.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor. Surgical resection is the most promising therapeutic strategy for PDAC, and how to improve the survival rate remains a vital key point. This study aimed to establish and validate a nomogram for predicting the prognosis of resected PDAC. METHODS A total of 174 patients with PDAC who underwent surgical resection at Lanzhou University Second Hospital and the First Affiliated Hospital of Zhengzhou University from January 2012 to July 2022 were enrolled. The clinicopathological characteristics and survival data were analyzed by R software (version 4.1.3). Univariate and multivariate Cox regression analyses were used to analyze the effects of clinicopathological characteristics on overall survival (OS). RESULTS Multivariate Cox regression showed that carbohydrate antigen 19-9 (CA19-9) ≥ 476 U/mL, carbohydrate antigen 125 (CA125) ≥ 32 U/mL, fasting blood glucose (FBG) < 6.86 mmol/L, aspartate aminotransferase (AST) ≥ 107 U/L, positive surgical margin, and more than 4 cycles of postoperative chemotherapy were independent prognostic factors for OS. Patients were divided into the high-risk and low-risk groups based on the median risk score calculated by multivariate Cox regression analysis. Kaplan-Meier survival curves revealed that the 5-year survival rates of the high-risk and low-risk groups in the training cohort were 5.79% and 24.3%, respectively, and those in the validation cohort were 0 and 19.0%, respectively (P < 0.05). Receiver operating characteristic (ROC) curve analysis revealed that area under the ROC curve (AUC) of the risk score in the training set and the validation set were 0.855 and 0.838, respectively. The C-indexes of the nomogram in the training set and validation set were 0.788 (95% CI: 0.745-0.831) and 0.773 (95% CI: 0.718-0.828), respectively. CONCLUSIONS We developed a nomogram that predicts OS in patients with resected PDAC, and the validation results showed that the nomogram model had a strong predictive ability. Particularly, FBG < 6.86 mmol/L and more than 4 cycles of postoperative chemotherapy can predict better OS of PDAC after surgery.
Collapse
Affiliation(s)
- Tian-Liang Song
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Fan Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Chong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui-Juan Cheng
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | | | - Cheng-Yang Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Fu-Tian Tang
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Long Zhai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yu-Min Li
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China; Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China.
| |
Collapse
|
4
|
Thiel V, Renders S, Panten J, Dross N, Bauer K, Azorin D, Henriques V, Vogel V, Klein C, Leppä AM, Barriuso Ortega I, Schwickert J, Ourailidis I, Mochayedi J, Mallm JP, Müller-Tidow C, Monyer H, Neoptolemos J, Hackert T, Stegle O, Odom DT, Offringa R, Stenzinger A, Winkler F, Sprick M, Trumpp A. Characterization of single neurons reprogrammed by pancreatic cancer. Nature 2025; 640:1042-1051. [PMID: 39961335 PMCID: PMC12018453 DOI: 10.1038/s41586-025-08735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
The peripheral nervous system (PNS) orchestrates organ function in health and disease. Most cancers, including pancreatic ductal adenocarcinoma (PDAC), are infiltrated by PNS neurons, and this contributes to the complex tumour microenvironment (TME)1,2. However, neuronal cell bodies reside in various PNS ganglia, far from the tumour mass. Thus, cancer-innervating or healthy-organ-innervating neurons are lacking in current tissue-sequencing datasets. To molecularly characterize pancreas- and PDAC-innervating neurons at single-cell resolution, we developed Trace-n-Seq. This method uses retrograde tracing of axons from tissues to their respective ganglia, followed by single-cell isolation and transcriptomic analysis. By characterizing more than 5,000 individual sympathetic and sensory neurons, with about 4,000 innervating PDAC or healthy pancreas, we reveal novel neuronal cell types and molecular networks that are distinct to the pancreas, pancreatitis, PDAC or melanoma metastasis. We integrate single-cell datasets of innervating neurons and the TME to establish a neuron-cancer-microenvironment interactome, delineate cancer-driven neuronal reprogramming and generate a pancreatic-cancer nerve signature. Pharmacological denervation induces a pro-inflammatory TME and increases the effectiveness of immune-checkpoint inhibitors. The taxane nab-paclitaxel causes intratumoral neuropathy, which attenuates PDAC growth and, in combination with sympathetic denervation, results in synergistic tumour regression. Our multi-dimensional data provide insights into the networks and functions of PDAC-innervating neurons, and support the inclusion of denervation in future therapies.
Collapse
Affiliation(s)
- Vera Thiel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Simon Renders
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Jasper Panten
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Dross
- Nikon Imaging Center, University of Heidelberg, Heidelberg, Germany
| | | | - Daniel Azorin
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa Henriques
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa Vogel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aino-Maija Leppä
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Isabel Barriuso Ortega
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Schwickert
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Iordanis Ourailidis
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Mochayedi
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Hannah Monyer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.
| |
Collapse
|
5
|
Renjifo-Correa ME, Fanni SC, Bustamante-Cristancho LA, Cuibari ME, Aghakhanyan G, Faggioni L, Neri E, Cioni D. Diagnostic Accuracy of Radiomics in the Early Detection of Pancreatic Cancer: A Systematic Review and Qualitative Assessment Using the Methodological Radiomics Score (METRICS). Cancers (Basel) 2025; 17:803. [PMID: 40075651 PMCID: PMC11898638 DOI: 10.3390/cancers17050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with increasing incidence and low survival rate, primarily due to the late detection of the disease. Radiomics has demonstrated its utility in recognizing patterns and anomalies not perceptible to the human eye. This systematic literature review aims to assess the application of radiomics in the analysis of pancreatic parenchyma images to identify early indicators predictive of PDAC. METHODS A systematic search of original research papers was performed on three databases: PubMed, Embase, and Scopus. Two reviewers applied the inclusion and exclusion criteria, and one expert solved conflicts for selecting the articles. After extraction and analysis of the data, there was a quality assessment of these articles using the Methodological Radiomics Score (METRICS) tool. The METRICS assessment was carried out by two raters, and conflicts were solved by a third reviewer. RESULTS Ten articles for analysis were retrieved. CT scan was the diagnostic imaging used in all the articles. All the studies were retrospective and published between 2019 and 2024. The main objective of the articles was to generate radiomics-based machine learning models able to differentiate pancreatic tumors from healthy tissue. The reported diagnostic performance of the model chosen yielded very high results, with a diagnostic accuracy between 86.5% and 99.2%. Texture and shape features were the most frequently implemented. The METRICS scoring assessment demonstrated that three articles obtained a moderate quality, five a good quality, and, finally, two articles yielded excellent quality. The lack of external validation and available model, code, and data were the major limitations according to the qualitative assessment. CONCLUSIONS There is high heterogeneity in the research question regarding radiomics and pancreatic cancer. The principal limitations of the studies were mainly due to the nature of the trials and the considerable heterogeneity of the radiomic features reported. Nonetheless, the work in this field is promising, and further studies are still required to adopt radiomics in the early detection of PDAC.
Collapse
Affiliation(s)
- María Estefanía Renjifo-Correa
- Radiology Department, Magnetic Resonance Service, Clínica de Occidente, Calle 18 Norte No. 5N 34, Cali 760045, Colombia;
| | - Salvatore Claudio Fanni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (M.E.C.); (G.A.); (L.F.); (E.N.); (D.C.)
| | | | - Maria Emanuela Cuibari
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (M.E.C.); (G.A.); (L.F.); (E.N.); (D.C.)
| | - Gayane Aghakhanyan
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (M.E.C.); (G.A.); (L.F.); (E.N.); (D.C.)
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (M.E.C.); (G.A.); (L.F.); (E.N.); (D.C.)
| | - Emanuele Neri
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (M.E.C.); (G.A.); (L.F.); (E.N.); (D.C.)
| | - Dania Cioni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (M.E.C.); (G.A.); (L.F.); (E.N.); (D.C.)
| |
Collapse
|
6
|
Chen J, Zhang X, Zhang G, Zhu F, Liu W. Serum-derived exosomal miR-7977 combined with miR-451a as a potential biomarker for pancreatic ductal adenocarcinoma. BMC Cancer 2025; 25:295. [PMID: 39972247 PMCID: PMC11837301 DOI: 10.1186/s12885-025-13659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVES To explore the potential of serum exosomal miRNAs as novel biomarkers for pancreatic ductal adenocarcinoma (PDAC). METHODS Serum exosomal miRNAs were screened and verified by microarray analysis and quantitative real-time PCR (qRT-PCR) in patients with PDAC and healthy controls. The correlation between the clinical characteristics of PDAC and candidate exosomal miRNAs was analyzed, and the diagnostic performance of the candidate biomarkers was evaluated. RESULTS Serum exosomal miR-7977 and miR-451a were significantly upregulated in PDAC patients compared with healthy controls, and the levels of miR-7977 and miR-451a in serum exosomes were closely associated with the clinical stage and metastasis of PDAC patients. The area under curve (AUC) values of serum exosomal miR-7977 and miR-451a for PDAC were 0.825 and 0.804 in the training set and 0.796 and 0.830 in the validation set, respectively. A biomarker panel consisting of these two miRNAs resulted in a diagnostic power with an AUC of 0.901 in the training set and 0.918 in the validation set. CONCLUSIONS Serum exosomal miR-7977 and miR-451a might be diagnostic biomarkers for PDAC. These two miRNAs, when combined, exhibit optimal diagnostic performance.
Collapse
Affiliation(s)
- Jia Chen
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue Zhang
- Department of Pathology, Affiliated Hospital of Chengdu University, Chengdu, 610081, China
| | - Guanyi Zhang
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fan Zhu
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650000, China.
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
7
|
Zarei A, Moradi S, Hosseinzadeh L, Salavati MB, Jalilian F, Shahlaei M, Sadrjavadi K, Adibi H. Synthesis, characterization, cytotoxic investigation of curcumin-based chromene derivatives and study of DNA interaction via experimental and computational methods. J Mol Struct 2025; 1322:140331. [DOI: 10.1016/j.molstruc.2024.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
|
8
|
Nagarajan A, Varadhan V, Manikandan MS, Kaliaperumal K, Palaniyandi T, Kaliamoorthy S, Baskar G, Rab SO, Balaramnavar VM, Kumarasamy S. Signature of collagen alpha-1(x) gene expression in human cancers and their therapeutic implications. Pathol Res Pract 2025; 266:155811. [PMID: 39787688 DOI: 10.1016/j.prp.2025.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Cancers are a class of disorders that entail uncontrollably unwanted cell development with dissemination. One in six fatalities globally is attributed to cancer, a global health issue. The analysis of the entire DNA sequence and how it expresses itself in tumor cells is known as cancer genomics. The development of novel cancer treatments has been facilitated because of the genomics method. COL10A1 gene, a short chain collagen, and an interstitial matrix component, acts as a predictive biomarker for cancer prognosis. Recognizing the fundamental consequences of mutations in the COL10A1 gene and its expression in cancer is crucial. Analyzing the COL10A1 gene expression with a data set and gene expression patterns shows the level of display of the tumor. Examining the therapeutic techniques of COL10A1 gene expression leads to early detection, screening, radiation therapy, and advanced developments. This review highlights the value of the COL10A1 gene in breast, gastric, pancreatic, lung, and colorectal cancers, emphasizing its role in gene expression patterns and therapeutic techniques.
Collapse
Affiliation(s)
- Akshaya Nagarajan
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Varsha Varadhan
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Monica Shri Manikandan
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Kumaravel Kaliaperumal
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M. G. R Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Vishal M Balaramnavar
- School of Pharmacy and Research Centre, Sanskriti University, Chhata, Mathura, Uttar Pradesh 281401, India
| | - Saravanan Kumarasamy
- Department of Electric and Electronic Engineering, Dr. M.G.R Educational and Research Institute, Deemed to Be University, Chennai, Tamil Nadu 600 095, India
| |
Collapse
|
9
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Baghel K, Mehrotra S, Prajapati VK. Revolutionizing pancreatic cancer treatment with CAR-T therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:331-353. [PMID: 39978971 DOI: 10.1016/bs.apcsb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with a five-year survival rate among the lowest of all cancers. This poor prognosis is largely due to the aggressive nature of the disease and its resistance to conventional treatments such as surgery, chemotherapy, and radiation therapy. Chimeric antigen receptor (CAR) T-cell therapy, a novel immunotherapeutic approach leverages the patient's own immune system to specifically target and eliminate cancer cells by genetically engineering T cells to express CARs that recognize tumor-specific antigens. While CAR-T therapy has demonstrated remarkable success in treating hematologic malignancies, its application to solid tumors like pancreatic cancer presents significant challenges. Recent advancements in CAR-T cell design, like the addition of co-stimulatory domains and dual-targeting CARs, have enhanced their efficacy against solid tumors. Additionally, strategies to modify the tumor microenvironment (TME), such as combining CAR-T therapy with immune checkpoint inhibitors and cytokine modulation, are being investigated to boost CAR-T cell activity against pancreatic cancer. Early-phase clinical trials targeting antigens such as carcinoembryonic antigen (CEA) and mesothelin (MSLN) in pancreatic cancer have yielded encouraging results, though obstacles like antigen escape and limited T-cell persistence remain significant challenges. This chapter outlines the current state of CAR-T therapy for pancreatic cancer, focusing on the emerging approaches to address these obstacles and underscore the potential of CAR-T therapy to transform the future of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kirti Baghel
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
11
|
Birrer M, Saad B, Drews S, Pradella C, Flaifel M, Charitakis E, Ortlieb N, Haberstroh A, Ochs V, Taha-Mehlitz S, Burri E, Heigl A, Frey DM, Cattin PC, Honaker MD, Taha A, Rosenberg R. Radiofrequency ablation (RFA) in unresectable pancreatic adenocarcinoma: meta-analysis & systematic review. Surg Endosc 2025; 39:141-152. [PMID: 39658672 PMCID: PMC11666652 DOI: 10.1007/s00464-024-11450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Pancreatic adenocarcinoma remains a challenging malignancy with a poor prognosis. Radiofrequency ablation (RFA) has emerged as a potential treatment for unresectable pancreatic adenocarcinoma (UPAC) aimed at improving survival and quality of life. This meta-analysis and systematic review evaluates the outcomes of RFA in UPAC. METHODS A comprehensive search was conducted in MEDLINE, Embase, Scopus, and Cochrane Central databases from inception to October 2023. Studies included patients over 18 years with UAPC undergoing RFA. Survival rates and complication rates were assessed as primary outcomes. Data were pooled using random-effects models, and heterogeneity was assessed with I2 statistics. ROBINS-I tool was used for quality assessment. RESULTS Nine studies encompassing 265 patients met the inclusion criteria. The mean age was 64.5 years, with 42.5% female participants. Survival analysis showed that at 30 days post-RFA, the mortality rate was 3.3%. At 6 months, the mortality rate was 20.9%, increasing to 50.4% at 12 months. At 24 months, the mortality rate was 61.9%. The pooled mean survival period at 12 and 24 months was 9.18 months and 14.26 months, respectively. Overall, 78.4% of patients died during the follow-up period, with an overall mean survival period of 12.27 months. The most common were intra-abdominal (10.1%), pancreatic (9.8%), and hepatobiliary (6.7%) complications. CONCLUSIONS RFA shows potential in the management of unresectable pancreatic adenocarcinoma, with a manageable safety profile. However, the high heterogeneity and risk of bias in available studies highlight the need for well-designed randomized controlled trials to confirm these findings and establish standardized protocols.
Collapse
Affiliation(s)
- Mathias Birrer
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Baraa Saad
- School of Medicine, St George's University of London, London, UK
| | - Susanne Drews
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Charlotte Pradella
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Mariana Flaifel
- School of Medicine, St George's University of London, London, UK
| | | | | | - Amanda Haberstroh
- Laupus Health Sciences Library, East Carolina University, Greenville, NC, USA
| | - Vincent Ochs
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Stephanie Taha-Mehlitz
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, Medical University Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Andres Heigl
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Daniel M Frey
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Surgery, Klinik-Impuls, Zurich, Switzerland
| | - Philippe C Cattin
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Michael D Honaker
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Anas Taha
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland.
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland.
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Robert Rosenberg
- Department of Visceral Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
12
|
Abbas N, Zahreddine L, Tawil A, Natout M, Shamseddine A. An Atypical Case of Pancreatic Cancer with Mesenchymal Differentiation in a Patient with Primary Lung Adenocarcinoma: Insights into Tumor Biology and Novel Therapeutic Pathways. Diagnostics (Basel) 2024; 14:2512. [PMID: 39594178 PMCID: PMC11592984 DOI: 10.3390/diagnostics14222512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Pancreatic cancer is among the malignancies with the poorest prognosis, largely due to its aggressive nature and resistance to conventional therapies. Case Summary: This report describes the case of a 69-year-old male patient with stage IV primary lung adenocarcinoma presenting with high levels of programmed death-ligand 1 (PD-L1). Simultaneously, abdominal computed tomography (CT) showed a dilated pancreatic duct at the level of the pancreatic head and a hypodense lesion in the uncinate process involving the superior mesenteric artery. Fine-needle aspiration (FNA) of the pancreatic lesions was negative. After three cycles of chemoimmunotherapy, positron emission tomography-computed tomography (PET-CT) showed complete remission of the lung nodules, lymphadenopathy, and pleural thickening, as well as a decrease in the size of the pancreatic lesion. After another six months, a PET-CT scan showed a focal increased uptake in the pancreatic mass in the same location, indicating disease progression. A core biopsy of the pancreatic tumor showed atypical spindle cell morphology with positive staining for vimentin, characteristic of mesenchymal differentiation with no apparent epithelial features. Comprehensive molecular profiling through Caris Molecular Intelligence® revealed four genes with actionable mutations in the pancreatic tissue, including KRAS (p.G12D) and TP53 (p.R175H). These molecular findings suggested the diagnoses of sarcomatoid carcinoma and conventional pancreatic ductal adenocarcinoma with epithelial-mesenchymal transition. Primary mesenchymal tumors and neuroendocrine neoplasms were excluded because immunohistochemistry was negative for anaplastic lymphoma kinase (ALK), smooth muscle actin (SMA), desmin, CD34, signal transducer and activator of transcription 6 (STAT6), S100, HMB45, CD117, discovered on GIST-1 (DOG1), CD56, progesterone, and synaptophysin. However, despite multiple rounds of systemic chemotherapy, immunotherapy, and radiation, his pancreatic disease rapidly deteriorated and metastasized to the liver and bone. Conclusions: Despite multiple lines of treatment, the patient's condition worsened and he succumbed to his pancreatic malignancy. This study highlights the clinical characteristics, diagnosis, and treatment of rare pancreatic cancer, emphasizing the importance of molecular testing and histopathological biomarkers in personalizing treatment. It also provides insights into promising therapeutic approaches for similar cases with an unusual presentation.
Collapse
Affiliation(s)
- Noura Abbas
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Riad El Solh, Beirut 1107-2020, Lebanon; (N.A.); (L.Z.)
| | - Lama Zahreddine
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Riad El Solh, Beirut 1107-2020, Lebanon; (N.A.); (L.Z.)
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 1107-2020, Lebanon;
| | - Mustafa Natout
- Department of Radiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107-2020, Lebanon;
| | - Ali Shamseddine
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Riad El Solh, Beirut 1107-2020, Lebanon; (N.A.); (L.Z.)
| |
Collapse
|
13
|
Navez J, Pezzullo M, Bouchart C, Arsenijevic T, Demetter P, Closset J, Azurmendi Senar O, Racu ML, D’Haene N, Devière J, Verset L, Bali MA, van Laethem JL. Impact of the radiological morphology of the mesopancreas on the outcome after pancreatoduodenectomy for pancreatic ductal adenocarcinoma: retrospective study. BJS Open 2024; 8:zrae134. [PMID: 39601263 PMCID: PMC11599710 DOI: 10.1093/bjsopen/zrae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The most frequently invaded margins on pancreatoduodenectomy specimens for pancreatic ductal adenocarcinoma are vascular margins, particularly the superior mesenteric artery (or mesopancreatic) margin. Due to limited exploration of the radiological aspect of the mesopancreas, the aim of this study was to evaluate mesopancreatic infiltration through imaging of patients with pancreatic ductal adenocarcinoma who underwent pancreatoduodenectomy, to correlate these findings with histopathology and evaluate their impact on survival. METHODS Data for all patients who underwent pancreatoduodenectomy for pancreatic ductal adenocarcinoma from 2015 to 2021 were reviewed, including review of surgical margin histopathology and blinded review of preoperative diagnostic imaging. According to qualitative radiological assessment, the mesopancreas was characterized as having normal fat, fat stranding, or solid infiltration. Survival data were analysed using Cox regression. RESULTS A total of 149 patients were included. At baseline imaging, mesopancreatic fat stranding or solid infiltration was present in 47 patients (31.5%) and 20 patients (13.4%) respectively. Median overall survival and disease-free survival were significantly lower with mesopancreatic solid infiltration (17 and 8 months) compared with normal fat (30 and 14 months) and fat stranding (29 and 16 months) (P = 0.017 and 0.028 respectively). In multivariable analysis, pathological tumour size was an independent prognostic factor for overall survival, and tumour location in the uncinate process and pathological tumour size were independent prognostic factors for disease-free survival. CONCLUSION At diagnostic imaging, solid infiltration (but not fat stranding) of the mesopancreas is associated with a poor prognosis for pancreatic ductal adenocarcinoma patients who undergo pancreatoduodenectomy. Pathological tumour size significantly influences the prediction of overall survival, and tumour location in the uncinate process and pathological tumour size significantly influence the prediction of disease-free survival, suggesting further exploration of underlying mechanisms related to retroperitoneal tumoral invasion of vascular margins and the mesopancreas.
Collapse
Affiliation(s)
- Julie Navez
- Medico-Surgical Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Martina Pezzullo
- Department of Radiology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiotherapy, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Tatjana Arsenijevic
- Medico-Surgical Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pieter Demetter
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre de Morphologie Pathologique (CMP), Cerba Path, Brussels, Belgium
| | - Jean Closset
- Medico-Surgical Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Lucie Racu
- Department of Pathology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Nicky D’Haene
- Department of Pathology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Jacques Devière
- Medico-Surgical Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Maria A Bali
- Department of Radiology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Jean-Luc van Laethem
- Medico-Surgical Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
14
|
Bengtsson A, Andersson R, Ansari D. Histological variants of pancreatic ductal adenocarcinoma: a survival analysis. Langenbecks Arch Surg 2024; 409:312. [PMID: 39425752 PMCID: PMC11490420 DOI: 10.1007/s00423-024-03506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) can be classified into distinct histological subtypes based on the WHO nomenclature. The aim of this study was to compare the prognosis of conventional PDAC (cPDAC) against the other histological variants at the population level. METHODS The Surveillance, Epidemiology and End Results (SEER) database was used to identify patients with microscopically confirmed PDAC. These patients were divided into 9 histological subgroups. Overall survival was assessed using the Kaplan-Meier method and Cox regression models stratified by tumor histology. RESULTS A total of 159,548 patients with PDAC were identified, of whom 95.9% had cPDAC, followed by colloid carcinoma (CC) (2.6%), adenosquamous carcinoma (ASqC) (0.8%), signet ring cell carcinoma (SRCC) (0.5%), undifferentiated carcinoma (UC) (0.1%), undifferentiated carcinoma with osteoclast-like giant cells (UCOGC) (0.1%), hepatoid carcinoma (HC) (0.01%), medullary carcinoma of the pancreas (MCP) (0.006%) and pancreatic undifferentiated carcinoma with rhabdoid phenotype (PUCR) (0.003%). Kaplan-Meier curves showed that PUCR had the worst prognosis (median survival: 2 months; 5-year survival: 0%), while MCP had the best prognosis (median survival: 41 months; 5-year survival: 33.3%). In a multivariable Cox model, several histological subtypes (i.e. CC, ASqC, SRCC, UCOGC) were identified as independent predictors of overall survival when compared to cPDAC. CONCLUSION PDAC is a heterogenous disease and accurate identification of variant histology is important for risk stratification, as these variants may have different biological behavior.
Collapse
Affiliation(s)
- Axel Bengtsson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, SE-221 85, Sweden
- Department of Research and Development, Region Kronoberg, Växjö, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, SE-221 85, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, SE-221 85, Sweden.
| |
Collapse
|
15
|
Ferrara B, Dugnani E, Citro A, Schiavo Lena M, Marra P, Camisa PR, Policardi M, Canu T, Esposito A, Doglioni C, Piemonti L. ASO Author Reflections: Bridging the Gap in PDAC Research: The Intraportal Model as a Platform for Studying Preclinical Liver Metastasis. Ann Surg Oncol 2024; 31:7066-7067. [PMID: 38904860 DOI: 10.1245/s10434-024-15655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Schiavo Lena
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Marra
- Department of Radiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Riccardo Camisa
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Martina Policardi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
16
|
Sung YN, Stojanova M, Shin S, Cho H, Heaphy CM, Hong SM. Gradual telomere shortening in the tumorigenesis of pancreatic and hepatic mucinous cystic neoplasms. Hum Pathol 2024; 152:105653. [PMID: 39214240 DOI: 10.1016/j.humpath.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Mucinous cystic neoplasm (MCN) is one of the precursor lesions of pancreatic ductal adenocarcinoma and intrahepatic cholangiocarcinoma. The aim of this study is to examine the presence of short telomeres in promoting the tumorigenesis of MCN by measuring telomere lengths in distinct components of MCN, including the mucinous lining epithelium, non-mucinous lining epithelium, and ovarian-type stroma. A total of 45 patients with MCN (30 pancreatic and 15 hepatic cases) were obtained. Quantitative telomere-specific fluorescent in situ hybridization was performed to measure the telomere length of specific cell types within MCNs, including mucinous lining epithelium, non-mucinous lining epithelium, and ovarian-type stroma, as well as normal ductal epithelium and adenocarcinoma. Relative telomere lengths tended to decrease between normal ductal epithelium, ovarian-type stroma, non-mucinous lining epithelium, mucinous lining epithelium, and adenocarcinoma regardless of the involved organs. Among the analyzed cell types, relative telomere lengths were significantly different between normal ductal epithelium (3.31 ± 0.78), ovarian-type stroma (2.90 ± 0.93), non-mucinous lining epithelium (2.84 ± 0.79), mucinous lining epithelium (2.49 ± 0.93), and adenocarcinoma (1.19 ± 0.59), respectively (P < 0.001, mixed-effects model). As expected, no difference in relative telomere lengths was observed between normal ductal epithelium and ovarian-type stroma; however, significant differences were observed in pair-wise comparisons between ovarian-type stroma vs. non-mucinous lining epithelium (P = 0.001), non-mucinous lining epithelium vs. mucinous lining epithelium (P = 0.005), and mucinous lining epithelium vs. adenocarcinoma (P < 0.001). These findings suggest gradual telomere shortening occurs in the tumorigenesis of MCN, which may have important implications for the progression of this disease.
Collapse
Affiliation(s)
- You-Na Sung
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marija Stojanova
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seungbeom Shin
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - HyungJun Cho
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Taherian M, Katz MHG, Prakash LR, Wei D, Tong YT, Lai Z, Chatterjee D, Wang H, Kim M, Tzeng CWD, Ikoma N, Wolff RA, Zhao D, Koay EJ, Maitra A, Wang H. The Association between Sampling and Survival in Patients with Pancreatic Ductal Adenocarcinoma Who Received Neoadjuvant Therapy and Pancreaticoduodenectomy. Cancers (Basel) 2024; 16:3312. [PMID: 39409932 PMCID: PMC11476037 DOI: 10.3390/cancers16193312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Adequate sampling is essential to an accurate pathologic evaluation of pancreatectomy specimens resected for pancreatic ductal adenocarcinoma (PDAC) after neoadjuvant therapy (NAT). However, limited data are available for the association between the sampling and survival in these patients. We examined the association of the entire submission of the tumor (ESOT) and the entire submission of the pancreas (ESOP) with disease-free survival (DFS) and overall survival (OS), as well as their correlations with clinicopathologic features, for 627 patients with PDAC who received NAT and pancreaticoduodenectomy. We demonstrated that both ESOT and ESOP were associated with lower ypT, less frequent perineural invasion, and better tumor response (p < 0.05). ESOP was also associated with a smaller tumor size (p < 0.001), more lymph nodes (p < 0.001), a lower ypN stage (p < 0.001), better differentiation (p = 0.02), and less frequent lymphovascular invasion (p = 0.009). However, since ESOP and ESOT were primarily conducted for cases with no grossly identifiable tumor or minimal residual carcinoma in initial sections, potential bias cannot be excluded. Both ESOT and ESOP were associated with less frequent recurrence/metastasis and better DFS and OS (p < 0.05) in the overall study population. ESOP was associated with better DFS and better OS in patients with ypT0/ypT1 or ypN0 tumors and better OS in patients with complete or near-complete response (p < 0.05). ESOT was associated with better OS in patients with ypT0/ypT1 or ypN0 tumors (p < 0.05). Both ESOT and ESOP were independent prognostic factors for OS according to multivariate survival analyses. Therefore, accurate pathologic evaluation using ESOP and ESOT is associated with the prognosis in PDAC patients with complete or near-complete pathologic response and ypT0/ypT1 tumor after NAT.
Collapse
Affiliation(s)
- Mehran Taherian
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| | - Matthew H. G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.G.K.); (L.R.P.); (M.K.); (C.-W.D.T.); (N.I.)
| | - Laura R. Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.G.K.); (L.R.P.); (M.K.); (C.-W.D.T.); (N.I.)
| | - Dongguang Wei
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| | - Yi Tat Tong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| | - Zongshan Lai
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.W.); (R.A.W.); (D.Z.)
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.G.K.); (L.R.P.); (M.K.); (C.-W.D.T.); (N.I.)
| | - Ching-Wei D. Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.G.K.); (L.R.P.); (M.K.); (C.-W.D.T.); (N.I.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.H.G.K.); (L.R.P.); (M.K.); (C.-W.D.T.); (N.I.)
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.W.); (R.A.W.); (D.Z.)
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.W.); (R.A.W.); (D.Z.)
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (D.W.); (Y.T.T.); (Z.L.); (D.C.)
| |
Collapse
|
18
|
Ferrara B, Dugnani E, Citro A, Schiavo Lena M, Marra P, Camisa PR, Policardi M, Canu T, Esposito A, Doglioni C, Piemonti L. Establishment of a Transplantation Model of PDAC-Derived Liver Metastases. Ann Surg Oncol 2024; 31:6138-6146. [PMID: 38869763 PMCID: PMC11300624 DOI: 10.1245/s10434-024-15514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The highly metastatic nature of pancreatic ductal adenocarcinoma (PDAC) and the difficulty to achieve favorable patient outcomes emphasize the need for novel therapeutic solutions. For preclinical evaluations, genetically engineered mouse models are often used to mimic human PDAC but frequently fail to replicate synchronous development and metastatic spread. This study aimed to develop a transplantation model to achieve synchronous and homogenous PDAC growth with controlled metastatic patterns in the liver. METHODS To generate an orthotopic PDAC model, the DT6606 cell line was injected into the pancreas head of C57BL/6 mice, and their survival was monitored over time. To generate a heterotopic transplantation model, growing doses of three PDAC cell lines (DT6606, DT6606lm, and K8484) were injected into the portal vein of mice. Magnetic resonance imaging (MRI) was used to monitor metastatic progression, and histologic analysis was performed. RESULTS Orthotopically injected mice succumbed to the tumor within an 11-week period (average survival time, 78.2 ± 4.45 days). Post-mortem examinations failed to identify liver metastasis. In the intraportal model, 2 × 105 DT6606 cells resulted in an absence of liver metastases by day 21, whereas 5 × 104 DT6606lm cells and 7 × 104 K8484 cells resulted in steady metastatic growth. Higher doses caused significant metastatic liver involvement. The use of K8484 cells ensured the growth of tumors closely resembling the histopathologic characteristics of human PDAC. CONCLUSIONS This report details the authors' efforts to establish an "optimal" murine model for inducing metastatic PDAC, which is critical for advancing our understanding of the disease and developing more effective treatments.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Schiavo Lena
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Marra
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, University of Milano Bicocca, Bergamo, Italy
| | - Paolo Riccardo Camisa
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Martina Policardi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
19
|
Tang H, Chen F, Gao W, Cai X, Lin Z, Kang R, Tang D, Liu J. Cetylpyridinium chloride triggers paraptosis to suppress pancreatic tumor growth via the ERN1-MAP3K5-p38 pathway. iScience 2024; 27:110598. [PMID: 39211547 PMCID: PMC11357866 DOI: 10.1016/j.isci.2024.110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid malignancy with low 5-year survival and limited treatment options. We conducted an unbiased screening using FDA-approved drug and demonstrated that cetylpyridinium chloride (CPC), a component commonly found in mouthwash and known for its robust bactericidal and antifungal attributes, exhibits anticancer activity against human PDAC cells. CPC inhibited PDAC cell growth and proliferation by inducing paraptosis, rather than apoptosis. Mechanistically, CPC induced paraptosis through the initiation of endoplasmic reticulum stress, leading to the accumulation of misfolded proteins. Subsequently, the endoplasmic reticulum stress to nucleus signaling 1 (ERN1)-mitogen-activated protein kinase kinase kinase 5 (MAP3K5)-p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated, ultimately culminating in the induction of paraptosis. In vivo experiments, including those involving patient-derived xenografts, orthotopic models, and genetically engineered mouse models of PDAC, provided further evidence of CPC's effectiveness in suppressing the growth of pancreatic tumors.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Wanli Gao
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| |
Collapse
|
20
|
Haller SD, Essani K. Oncolytic Tanapoxvirus Variants Expressing mIL-2 and mCCL-2 Regress Human Pancreatic Cancer Xenografts in Nude Mice. Biomedicines 2024; 12:1834. [PMID: 39200298 PMCID: PMC11351728 DOI: 10.3390/biomedicines12081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death and presents the lowest 5-year survival rate of any form of cancer in the US. Only 20% of PDAC patients are suitable for surgical resection and adjuvant chemotherapy, which remains the only curative treatment. Chemotherapeutic and gene therapy treatments are associated with adverse effects and lack specificity/efficacy. In this study, we assess the oncolytic potential of immuno-oncolytic tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP-1 or mCCL2) and mouse interleukin (mIL)-2 in human pancreatic BxPc-3 cells using immunocompromised and CD-3+ T-cell-reconstituted mice. Intratumoral treatment with TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 resulted in a regression in BxPc-3 xenograft volume compared to control in immunocompromised mice; mCCL-2 expressing TPV OV resulted in a significant difference from control at p < 0.05. Histological analysis of immunocompromised mice treated with TPV/∆66R/mCCL2 or TPV/∆66R/mIL-2 demonstrated multiple biomarkers indicative of increased severity of chronic, active inflammation compared to controls. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 demonstrated a therapeutic effect via regression in BxPc-3 tumor xenografts. Considering the enhanced oncolytic potency of TPV recombinants demonstrated against PDAC in this study, further investigation as an alternative or combination treatment option for human PDAC may be warranted.
Collapse
Affiliation(s)
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA;
| |
Collapse
|
21
|
Kaul M, Sanin AY, Shi W, Janiak C, Kahlert UD. Nanoformulation of dasatinib cannot overcome therapy resistance of pancreatic cancer cells with low LYN kinase expression. Pharmacol Rep 2024; 76:793-806. [PMID: 38739359 PMCID: PMC11294441 DOI: 10.1007/s43440-024-00600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most difficult to treat tumors. The Src (sarcoma) inhibitor dasatinib (DASA) has shown promising efficacy in preclinical studies of PDAC. However, clinical confirmation could not be achieved. Overall, our aim was to deliver arguments for the possible reinitiating clinical testing of this compound in a biomarker-stratifying therapy trial for PDAC patients. We tested if the nanofunctionalization of DASA can increase the drug efficacy and whether certain Src members can function as clinical predictive biomarkers. METHODS Methods include manufacturing of poly(vinyl alcohol) stabilized gold nanoparticles and their drug loading, dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Zeta potential measurement, sterile human cell culture, cell growth quantification, accessing and evaluating transcriptome and clinical data from molecular tumor dataset TCGA, as well as various statistical analyses. RESULTS We generated homo-dispersed nanofunctionalized DASA as an AuNP@PVA-DASA conjugate. The composite did not enhance the anti-growth effect of DASA on PDAC cell lines. The cell model with high LYN expression showed the strongest response to the therapy. We confirm deregulated Src kinetome activity as a prevalent feature of PDAC by revealing mRNA levels associated with higher malignancy grade of tumors. BLK (B lymphocyte kinase) expression predicts shorter overall survival of diabetic PDAC patients. CONCLUSIONS Nanofunctionalization of DASA needs further improvement to overcome the therapy resistance of PDAC. LYN mRNA is augmented in tumors with higher malignancy and can serve as a predictive biomarker for the therapy resistance of PDAC cells against DASA. Studying the biological roles of BLK might help to identify underlying molecular mechanisms associated with PDAC in diabetic patients.
Collapse
Affiliation(s)
- Marilyn Kaul
- Institute for Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, 40204, Düsseldorf, Germany
| | - Ahmed Y Sanin
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplant Surgery, Faculty of Medicine, Otto-Von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplant Surgery, Faculty of Medicine, Otto-Von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Christoph Janiak
- Institute for Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, 40204, Düsseldorf, Germany.
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplant Surgery, Faculty of Medicine, Otto-Von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
- Institute for Quality Assurance in Operative Medicine, Otto-Von-Guericke University at Magdeburg, Magdeburg, Germany.
| |
Collapse
|
22
|
Ma H, Esfahani SA, Krishna S, Ataeinia B, Zhou IY, Rotile NJ, Weigand-Whittier J, Boice AT, Liss AS, Tanabe KK, Caravan P. Allysine-Targeted Molecular MRI Enables Early Prediction of Chemotherapy Response in Pancreatic Cancer. Cancer Res 2024; 84:2549-2560. [PMID: 38759082 PMCID: PMC11293968 DOI: 10.1158/0008-5472.can-23-3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Neoadjuvant therapy is routinely used in pancreatic ductal adenocarcinoma (PDAC), but not all tumors respond to this treatment. Current clinical imaging techniques are not able to precisely evaluate and predict the response to neoadjuvant therapies over several weeks. A strong fibrotic reaction is a hallmark of a positive response, and during fibrogenesis, allysine residues are formed on collagen proteins by the action of lysyl oxidases. Here, we report the application of an allysine-targeted molecular MRI probe, MnL3, to provide an early, noninvasive assessment of treatment response in PDAC. Allysine increased 2- to 3-fold after one dose of neoadjuvant therapy with FOLFIRINOX in sensitive human PDAC xenografts in mice. Molecular MRI with MnL3 could specifically detect and quantify fibrogenesis in PDAC xenografts. Comparing the MnL3 signal before and 3 days after one dose of FOLFIRINOX predicted subsequent treatment response. The MnL3 tumor signal increased by 70% from day 0 to day 3 in mice that responded to subsequent doses of FOLFIRINOX, whereas no signal increase was observed in FOLFIRINOX-resistant tumors. This study indicates the promise of allysine-targeted molecular MRI as a noninvasive tool to predict chemotherapy outcomes. Significance: Allysine-targeted molecular MRI can quantify fibrogenesis in pancreatic tumors and predict response to chemotherapy, which could guide rapid clinical management decisions by differentiating responders from nonresponders after treatment initiation.
Collapse
Affiliation(s)
- Hua Ma
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shadi A. Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Shriya Krishna
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Bahar Ataeinia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Iris Y. Zhou
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Nicholas J. Rotile
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Avery T. Boice
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, Massachusetts, 02114, United States
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
23
|
Antonova L, Paramanthan P, Falls T, Wedge ME, Mayer J, Sekhon HS, McPherson J, Denroche RE, Gallinger S, Bell JC, Ilkow CS, Chatterjee A. Molecular Characterization and Xenotransplantation of Pancreatic Cancer Using Endoscopic Ultrasound-Guided Fine Needle Aspiration (EUS-FNA). Cancers (Basel) 2024; 16:2721. [PMID: 39123450 PMCID: PMC11311391 DOI: 10.3390/cancers16152721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Pancreatic cancer has one of the worst prognoses among all malignancies and few available treatment options. Patient-derived xenografts can be used to develop personalized therapy for pancreatic cancer. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) may provide a powerful alternative to surgery for obtaining sufficient tissue for the establishment of patient-derived xenografts. In this study, EUS-FNA samples were obtained for 30 patients referred to the Ottawa Hospital, Ottawa, Ontario, Canada. These samples were used for xenotransplantation in NOD-SCID mice and for genetic analyses. The gene expression of pancreatic-cancer-relevant genes in xenograft tumors was examined by immunohistochemistry. Targeted sequencing of both the patient-derived tumors and xenograft tumors was performed. The xenografts' susceptibility to oncolytic virus infection was studied by infecting xenograft-derived cells with VSV∆51-GFP. The xenograft take rate was found to be 75.9% for passage 1 and 100% for passage 2. Eighty percent of patient tumor samples were successfully sequenced to a high depth for 42 cancer genes. Xenograft histological characteristics and marker expression were maintained between passages. All tested xenograft samples were susceptible to oncoviral infection. We found that EUS-FNA is an accessible, minimally invasive technique that can be used to acquire adequate pancreatic cancer tissue for the generation of patient-derived xenografts and for genetic sequencing.
Collapse
Affiliation(s)
- Lilia Antonova
- Department of Otolaryngology-Head and Neck Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Piriya Paramanthan
- Division of Gastroenterology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Theresa Falls
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marie-Eve Wedge
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Justin Mayer
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Harman S. Sekhon
- Division of Anatomic Pathology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
| | - John McPherson
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - John Cameron Bell
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Carolina S. Ilkow
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Avijit Chatterjee
- Division of Gastroenterology, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
24
|
Yang Y, Gong Y, Ding Y, Sun S, Bai R, Zhuo S, Zhang Z. LINC01133 promotes pancreatic ductal adenocarcinoma epithelial-mesenchymal transition mediated by SPP1 through binding to Arp3. Cell Death Dis 2024; 15:492. [PMID: 38987572 PMCID: PMC11237081 DOI: 10.1038/s41419-024-06876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment methods. Long non-coding RNAs (lncRNAs) have been found involved in tumorigenic and progression. The present study revealed that LINC01133, a fewly reported lncRNA, was one of 16 hub genes that could predict PDAC patients' prognosis. LINC01133 was over-expressed in PDAC tumors compared to adjacent pancreas and could promote PDAC proliferation and metastasis in vitro and in vivo, as well as inhibit PDAC apoptosis. LINC01133 expression positively correlated to secreted phosphoprotein 1 (SPP1) expression, leading to an enhanced epithelial-mesenchymal transition (EMT) process. LINC01133 bound with actin-related protein 3 (Arp3), the complex reduced SPP1 mRNA degradation which increased SPP1 mRNA level, ultimately leading to PDAC proliferation. This research revealed a novel mechanism of PDAC development and provided a potential prognosis indicator that may benefit PDAC patients.
Collapse
Affiliation(s)
- Yefan Yang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuxi Gong
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuning Sun
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
25
|
Bugazia D, Al-Najjar E, Esmail A, Abdelrahim S, Abboud K, Abdelrahim A, Umoru G, Rayyan HA, Abudayyeh A, Al Moustafa AE, Abdelrahim M. Pancreatic ductal adenocarcinoma: the latest on diagnosis, molecular profiling, and systemic treatments. Front Oncol 2024; 14:1386699. [PMID: 39011469 PMCID: PMC11247645 DOI: 10.3389/fonc.2024.1386699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of death in the United States and is expected to be ranked second in the next 10 years due to poor prognosis and a rising incidence. Distant metastatic PDAC is associated with the worst prognosis among the different phases of PDAC. The diagnostic options for PDAC are convenient and available for staging, tumor response evaluation, and management of resectable or borderline resectable PDAC. However, imaging is crucial in PDAC diagnosis, monitoring, resectability appraisal, and response evaluation. The advancement of medical technologies is evolving, hence the use of imaging in PDAC treatment options has grown as well as the utilization of ctDNA as a tumor marker. Treatment options for metastatic PDAC are minimal with the primary goal of therapy limited to symptom relief or palliation, especially in patients with low functional capacity at the point of diagnosis. Molecular profiling has shown promising potential solutions that would push the treatment boundaries for patients with PDAC. In this review, we will discuss the latest updates from evidence-based guidelines regarding diagnosis, therapy response evaluation, prognosis, and surveillance, as well as illustrating novel therapies that have been recently investigated for PDAC, in addition to discussing the molecular profiling advances in PDAC.
Collapse
Affiliation(s)
- Doaa Bugazia
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Ebtesam Al-Najjar
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
| | - Abdullah Esmail
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
| | - Saifudeen Abdelrahim
- Challenge Early College HS, Houston Community College, Houston, TX, United States
| | - Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, United States
| | | | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, United States
| | - Hashem A Rayyan
- Department of Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Maen Abdelrahim
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
26
|
Kazemi-Harikandei SZ, Karimi A, Tavangar SM. Clinical Perspectives on the Histomolecular Features of the Pancreatic Precursor Lesions: A Narrative Review. Middle East J Dig Dis 2024; 16:136-146. [PMID: 39386334 PMCID: PMC11459284 DOI: 10.34172/mejdd.2024.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/07/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal cancer with poor prognoses. Identifying and characterizing pancreatic cystic lesions (PCLs) in the early detection and follow-up plans is thought to help detect pancreatic malignancy. Besides, the molecular features of PCLs are thought to unravel potentials for targeted therapies. We present a narrative review of the existing literature on the role of PCLs in the early detection, risk stratification, and medical management of PC. High-grade intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasia (PanIN) stage III are high-risk lesions for developing PC. These lesions often require thorough histomolecular characterization using endoscopic ultrasound (EUS), before a surgical decision is made. EUS is also useful in the risk assessment of PCLs with tentative plans-for instance, in branch-duct IPMNs (BD-IPMN)- where the final decision might change. Besides the operative decisions, recent improvements in the application of targeted therapies are expected to improve survival measures. Knowledge of molecular features has helped develop targeted therapies. In summary, the histomolecular characterization of PCLs is helpful in optimizing management plans in PC. Further improvements are still needed for the broad application of this knowledge in the clinical setting.
Collapse
Affiliation(s)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Sun H, Li H, Guan Y, Yuan Y, Xu C, Fu D, Xie P, Li J, Zhao T, Wang X, Feng Y, Wang H, Gao S, Yang S, Shi Y, Liu J, Chang A, Huang C, Hao J. BICC1 drives pancreatic cancer stemness and chemoresistance by facilitating tryptophan metabolism. SCIENCE ADVANCES 2024; 10:eadj8650. [PMID: 38896624 PMCID: PMC11186499 DOI: 10.1126/sciadv.adj8650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Pancreatic adenocarcinoma is the fourth leading cause of malignancy-related deaths, with rapid development of drug resistance driven by pancreatic cancer stem cells. However, the mechanisms sustaining stemness and chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Here, we demonstrate that Bicaudal C homolog 1 (BICC1), an RNA binding protein regulating numerous cytoplasmic mRNAs, facilitates chemoresistance and stemness in PDAC. Mechanistically, BICC1 activated tryptophan catabolism in PDAC by up-regulating indoleamine 2,3-dioxygenase-1 (IDO1) expression, a tryptophan-catabolizing enzyme. Increased levels of tryptophan metabolites contribute to NAD+ synthesis and oxidative phosphorylation, leading to a stem cell-like phenotype. Blocking BICC1/IDO1/tryptophan metabolism signaling greatly improves the gemcitabine (GEM) efficacy in several PDAC models with high BICC1 level. These findings indicate that BICC1 is a critical tryptophan metabolism regulator that drives the stemness and chemoresistance of PDAC and thus a potential target for combinatorial therapeutic strategy against chemoresistance.
Collapse
MESH Headings
- Tryptophan/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/drug therapy
- Cell Line, Tumor
- Animals
- Mice
- Gene Expression Regulation, Neoplastic
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
Collapse
Affiliation(s)
- Huizhi Sun
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Hui Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Yuqi Guan
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Yudong Yuan
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Chao Xu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Danqi Fu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Peng Xie
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Jianming Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Tiansuo Zhao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Xiuchao Wang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Yukuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Hongwei Wang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Song Gao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, P. R. China
| | - Jing Liu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Antao Chang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Chongbiao Huang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| | - Jihui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, P. R. China
| |
Collapse
|
28
|
Sharma B, Twelker K, Nguyen C, Ellis S, Bhatia ND, Kuschner Z, Agriantonis A, Agriantonis G, Arnold M, Dave J, Mestre J, Shafaee Z, Arora S, Ghanta H, Whittington J. Bile Acids in Pancreatic Carcinogenesis. Metabolites 2024; 14:348. [PMID: 39057671 PMCID: PMC11278541 DOI: 10.3390/metabo14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic β-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Scott Ellis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Andrew Agriantonis
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Monique Arnold
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jasmine Dave
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zahra Shafaee
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Shalini Arora
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Hima Ghanta
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| |
Collapse
|
29
|
Goetze TO, Reichart A, Bankstahl US, Pauligk C, Loose M, Kraus TW, Elshafei M, Bechstein WO, Trojan J, Behrend M, Homann N, Venerito M, Bohle W, Varvenne M, Bolling C, Behringer DM, Kratz-Albers K, Siegler GM, Hozaeel W, Al-Batran SE. Adjuvant Gemcitabine Versus Neoadjuvant/Adjuvant FOLFIRINOX in Resectable Pancreatic Cancer: The Randomized Multicenter Phase II NEPAFOX Trial. Ann Surg Oncol 2024; 31:4073-4083. [PMID: 38459418 PMCID: PMC11076394 DOI: 10.1245/s10434-024-15011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Although addition of adjuvant chemotherapy is the current standard, the prognosis of pancreatic cancers still remains poor. The NEPAFOX trial evaluated perioperative treatment with FOLFIRINOX in resectable pancreatic cancer. PATIENTS AND METHODS This multicenter phase II trial randomized patients with resectable or borderline resectable pancreatic cancer without metastases into arm (A,) upfront surgery plus adjuvant gemcitabine, or arm (B,) perioperative FOLFIRINOX. The primary endpoint was overall survival (OS). RESULTS Owing to poor accrual, recruitment was prematurely stopped after randomization of 40 of the planned 126 patients (A: 21, B: 19). Overall, approximately three-quarters were classified as primarily resectable (A: 16, B: 15), and the remaining patients were classified as borderline resectable (A: 5, B: 4). Of the 12 evaluable patients, 3 achieved partial response under neoadjuvant FOLFIRINOX. Of the 21 patients in arm A and 19 patients in arm B, 17 and 7 underwent curative surgery, and R0-resection was achieved in 77% and 71%, respectively. Perioperative morbidity occurred in 72% in arm A and 46% in arm B, whereas non-surgical toxicity was comparable in both arms. Median RFS/PFS was almost doubled in arm B (14.1 months) compared with arm A (8.4 months) in the population with surgical resection, whereas median OS was comparable between both arms. CONCLUSIONS Although the analysis was only descriptive owing to small patient numbers, no safety issues regarding surgical complications were observed in the perioperative FOLFIRINOX arm. Thus, considering the small number of patients, perioperative treatment approach appears feasible and potentially effective in well-selected cohorts of patients. In pancreatic cancer, patient selection before initiation of neoadjuvant therapy appears to be critical.
Collapse
Affiliation(s)
- Thorsten O Goetze
- Krankenhaus Nordwest, Institut für Klinisch Onkologische Forschchung IKF, University Cancer Center (UCT) Frankfurt, Frankfurt, Germany.
- University Cancer Center (UCT) Frankfurt, Goethe Universität, Frankfurt, Germany.
- Frankfurter Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany.
| | - Alexander Reichart
- Krankenhaus Nordwest, Institut für Klinisch Onkologische Forschchung IKF, University Cancer Center (UCT) Frankfurt, Frankfurt, Germany
| | - Ulli S Bankstahl
- Krankenhaus Nordwest, Institut für Klinisch Onkologische Forschchung IKF, University Cancer Center (UCT) Frankfurt, Frankfurt, Germany
| | - Claudia Pauligk
- Frankfurter Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Maria Loose
- Frankfurter Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Thomas W Kraus
- Krankenhaus Nordwest, Allgemein-, Viszeral- und Minimal Invasive Chirurgie, Frankfurt, Germany
| | - Moustafa Elshafei
- Krankenhaus Nordwest, Allgemein-, Viszeral- und Minimal Invasive Chirurgie, Frankfurt, Germany
| | - Wolf O Bechstein
- Klinik für Allgemein-, Viszeral-, Transplantations- und Thoraxchirurgie, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Jörg Trojan
- Gastrointestinale Onkologie, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Matthias Behrend
- Viszeral-, Thorax- und Gefäßchirurgie, DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - Nils Homann
- Medizinische Klinik II, Klinikum Wolfsburg, Wolfsburg, Germany
| | - Marino Venerito
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Wolfram Bohle
- Klinik für Gastroenterologie, Gastroenterologische Onkologie, Klinikum Stuttgart, Stuttgart, Germany
- Hepatologie, Infektiologie und Pneumologie, Stuttgart, Germany
| | | | - Claus Bolling
- Hämatologie/Onkologie, Agaplesion Markus Krankenhaus, Frankfurt, Germany
| | - Dirk M Behringer
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Augusta-Kranken-Anstalt Bochum, Bochum, Germany
| | | | - Gabriele M Siegler
- Klinikum Nürnberg Nord/Paracelsus Medizinische Privatuniversität, Medizinische Klinik, Hämatologie/Onkologie, Nürnberg, Germany
| | - Wael Hozaeel
- Krankenhaus Nordwest, Institut für Klinisch Onkologische Forschchung IKF, University Cancer Center (UCT) Frankfurt, Frankfurt, Germany
| | - Salah-Eddin Al-Batran
- Krankenhaus Nordwest, Institut für Klinisch Onkologische Forschchung IKF, University Cancer Center (UCT) Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT) Frankfurt, Goethe Universität, Frankfurt, Germany
- Frankfurter Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
30
|
Dutta D, Ray P, De A, Ghosh A, Hazra RS, Ghosh P, Banerjee S, Diaz FJ, Upadhyay SP, Quadir M, Banerjee SK. pH-responsive targeted nanoparticles release ERK-inhibitor in the hypoxic zone and sensitize free gemcitabine in mutant K-Ras-addicted pancreatic cancer cells and mouse model. PLoS One 2024; 19:e0297749. [PMID: 38687749 PMCID: PMC11060587 DOI: 10.1371/journal.pone.0297749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated by us and others. This study used pH-responsive nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule, SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to significant synergistic treatment outcomes in vitro and in vivo. In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a single therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC cells and KPC mouse tumors. Therefore, 2nd generation ERKi (SCH 772984)-iRGD-pHNPs are vital for the cellular response to GEM and denote a promising therapeutic target in PDAC with mutant K-RAS.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Archana De
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Raj Shankar Hazra
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Pratyusha Ghosh
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Francisco J. Diaz
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Sunil P. Upadhyay
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| |
Collapse
|
31
|
Dong C, Yao J, Wu Z, Hu J, Sun L, Wu Z, Yan J, Yin X. PAFAH1B3 is a KLF9 target gene that promotes proliferation and metastasis in pancreatic cancer. Sci Rep 2024; 14:9196. [PMID: 38649699 PMCID: PMC11035664 DOI: 10.1038/s41598-024-59427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Uncontrolled cell proliferation, invasion and migration of pancreatic cancer cells are the fundamental causes of death in PDAC patients. Our previous studies showed that KLF9 inhibits the proliferation, invasion and migration of pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In this study, we found that platelet-activating factor acetylhydrolase IB3 (PAFAH1B3) is highly expressed in pancreatic cancer tissues and cells. In vitro and in vivo studies showed that overexpression of PAFAH1B3 promoted the proliferation and invasion of pancreatic cancer cells, while downregulation of PAFAH1B3 inhibited these processes. We found that KLF9 expression is negatively correlated with PAFAH1B3 expression in pancreatic cancer tissues and cells. Western blotting revealed that KLF9 negatively regulates the expression of PAFAH1B3 in pancreatic cancer tissues and cells. Rescue experiments showed that overexpression of PAFAH1B3 could partially attenuate the suppression of pancreatic cancer cell proliferation, invasion and migration induced by KLF9 overexpression. Finally, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out, and the results showed that KLF9 directly binds to the promoter of PAFAH1B3 and inhibits its transcriptional activity. In conclusion, our study indicated that KLF9 can inhibit the proliferation, invasion, migration and metastasis of pancreatic cancer cells by inhibiting PAFAH1B3.
Collapse
Affiliation(s)
- Cairong Dong
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jinping Yao
- Department of Endocrinology Department, The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhipeng Wu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Junwen Hu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhengyi Wu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Jinlong Yan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.
| | - Xiangbao Yin
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.
| |
Collapse
|
32
|
Balar PC, Apostolopoulos V, Chavda VP. A new era of immune therapeutics for pancreatic cancer: Monoclonal antibodies paving the way. Eur J Pharmacol 2024; 969:176451. [PMID: 38408598 DOI: 10.1016/j.ejphar.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.
Collapse
Affiliation(s)
- Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Werribee Campus, Melbourne, VIC, 3030, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| |
Collapse
|
33
|
Mezzacappa C, Larki NR, Skanderson M, Park LS, Brandt C, Hauser RG, Justice A, Yang YX, Wang L. Development and Validation of Case-Finding Algorithms to Identify Pancreatic Cancer in the Veterans Health Administration. Dig Dis Sci 2024; 69:1507-1513. [PMID: 38453743 DOI: 10.1007/s10620-024-08324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Survival in pancreatic ductal adenocarcinoma (PDAC) remains poor due to late diagnosis. Electronic Health Records (EHRs) can be used to study this rare disease, but validated algorithms to identify PDAC in the United States EHRs do not currently exist. AIMS To develop and validate an algorithm using Veterans Health Administration (VHA) EHR data for the identification of patients with PDAC. METHODS We developed two algorithms to identify patients with PDAC in the VHA from 2002 to 2023. The algorithms required diagnosis of exocrine pancreatic cancer in either ≥ 1 or ≥ 2 of the following domains: (i) the VA national cancer registry, (ii) an inpatient encounter, or (iii) an outpatient encounter in an oncology setting. Among individuals identified with ≥ 1 of the above criteria, a random sample of 100 were reviewed by three gastroenterologists to adjudicate PDAC status. We also adjudicated fifty patients not qualifying for either algorithm. These patients died as inpatients and had alkaline phosphatase values within the interquartile range of patients who met ≥ 2 of the above criteria for PDAC. These expert adjudications allowed us to calculate the positive and negative predictive value of the algorithms. RESULTS Of 10.8 million individuals, 25,533 met ≥ 1 criteria (PPV 83.0%, kappa statistic 0.93) and 13,693 individuals met ≥ 2 criteria (PPV 95.2%, kappa statistic 1.00). The NPV for PDAC was 100%. CONCLUSIONS An algorithm incorporating readily available EHR data elements to identify patients with PDAC achieved excellent PPV and NPV. This algorithm is likely to enable future epidemiologic studies of PDAC.
Collapse
Affiliation(s)
- Catherine Mezzacappa
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Navid Rahimi Larki
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Lesley S Park
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA, USA
| | - Cynthia Brandt
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald G Hauser
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Justice
- VA Connecticut Healthcare System, West Haven, CT, USA
- Section of General Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- School of Public Health, Yale University, New Haven, CT, USA
| | - Yu-Xiao Yang
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Louise Wang
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
35
|
Mallik MK, Qadan LR, Mohanty AK, Alali A, Kapila K. Grading pancreatic adenocarcinomas on fine needle aspiration cytology. The outstanding issues. Cytopathology 2024; 35:256-265. [PMID: 38050715 DOI: 10.1111/cyt.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE The three-tier grading scheme described in "The Papanicolaou Society of Cytopathology (PSC) System for reporting Pancreaticobiliary Cytopathology" (TPSCRPBC) which remained unchanged following the WHO Reporting System for Pancreaticobiliary Cytopathology (WRPBC) was evaluated on pancreatic adenocarcinomas (PACs) reported on endoscopic ultrasound-guided fine needle aspiration cytology (EUS-FNAC). METHODS The Papanicolaou and May Grunwald Giemsa-stained smears from 116 cases of PACs were graded using the three-tier grading scheme laid down by TPSCRPBC/WRPBC. Cases exhibiting multiple grades were assigned primary, secondary and tertiary grades. Each case was assigned a grade score, either by adding the primary and secondary grades, by adding the primary and tertiary grades when the tertiary grade was 3 or by doubling the grade when only one grade existed. Necrosis was estimated semi-quantitatively. The inter-observer reproducibility in grading was evaluated using Kappa and Kendall's tau-c. Correlations between the various grades, the stage of the tumour and the amount of necrosis were assessed using Spearman rho and Kendall's tau-b. RESULTS 31.89% of cases showed one grade, and 68.11% showed at least two grades. 16.38% showed three grades. The two commonest grade scores were 3 and 5. The inter-observer reproducibility for grading and grade scoring was satisfactory. A positive correlation was noted between the grades and the amount of necrosis. No significant correlation was found between the grades, grade scores and the stage of the tumours. CONCLUSIONS The TPSCRPBC/WRPBC grading scheme can be suitably applied to PACs with good inter-observer reproducibility. Cases often show multiple grades in the same tumour.
Collapse
Affiliation(s)
- Mrinmay Kumar Mallik
- Cytopathology Unit, Department of Laboratory Medicine, Mubarak Al Kabeer Hospital, Safat, Kuwait
| | - Laila Rafiq Qadan
- Department of Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Asit Kumar Mohanty
- Department of Medical Oncology, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Ali Alali
- Department of Gastroenterology and Hepatology, Mubarak Al Kabeer Hospital, Safat, Kuwait
| | - Kusum Kapila
- Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
36
|
Feng L, Tang X, You Z. Undifferentiated sarcomatoid carcinoma of the pancreas-a single-institution experience with 23 cases. BMC Cancer 2024; 24:250. [PMID: 38389041 PMCID: PMC10885366 DOI: 10.1186/s12885-024-11988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The clinical course and surgical outcomes of undifferentiated sarcomatoid carcinoma of the pancreas (USCP) remain poorly characterized owing to its rarity. This study aimed to describe the histology, clinicopathologic features, perioperative outcomes, and overall survival (OS) of 23 resected USCP patients. METHODS We retrospectively described the histology, clinicopathologic features, perioperative outcomes and OS of patients who underwent pancreatectomy with a final diagnosis of USCP in a single institution. RESULTS A total of 23 patients were included in this study. Twelve patients were male, the median age at diagnosis was 61.5 ± 13.0 years (range: 35-89). Patients with USCP had no specific symptoms and characteristic imaging findings. The R0 resection was achieved in 21 cases. The En bloc resection and reconstruction of mesenteric-portal axis was undertaken in 9 patients. There were no deaths attributed to perioperative complications in this study. The intraoperative tumor-draining lymph nodes (TDLNs) dissection was undergone in 14 patients. The 1-, 3- and 5-year survival rates were 43.5%, 4.8% and 4.8% in the whole study, the median survival was 9.0 months. Only 1 patient had survived more than 5 years and was still alive at last follow-up. The presence of distant metastasis (p = 0.004) and the presence of pathologically confirmed mesenteric-portal axis invasion (p = 0.007) was independently associated with poor OS. CONCLUSIONS USCP was a rare subgroup of pancreatic malignancies with a bleak prognosis. To make a diagnose of USCP by imaging was quite difficult because of the absence of specific manifestations. Accurate diagnosis depended on pathological biopsy, and the IHC profile of USCP was mainly characterized by co-expression of epithelial and mesenchymal markers. A large proportion of patients have an early demise, especially for patients with distant metastasis and pathologically confirmed mesenteric-portal axis invasion. Long-term survival after radical resection of USCPs remains rare.
Collapse
Affiliation(s)
- Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Xiaojuan Tang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Kast RE. IPIAD- an augmentation regimen added to standard treatment of pancreatic ductal adenocarcinoma using already-marketed repurposed drugs irbesartan, pyrimethamine, itraconazole, azithromycin, and dapsone. Oncoscience 2024; 11:15-31. [PMID: 38524376 PMCID: PMC10959018 DOI: 10.18632/oncoscience.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/01/2024] [Indexed: 03/26/2024] Open
Abstract
This short note presents the data and rationale for adding five generic non-oncology drugs from general medical practice to gemcitabine, nab-paclitaxel, a current standard cytotoxic chemotherapy of pancreatic ductal adenocarcinoma. The regimen, called IPIAD, uses an angiotensin receptor blocker (ARB) irbesartan indicated for treating hypertension, an old antimicrobial drug pyrimethamine indicated for treating toxoplasmosis or malaria, an old antifungal drug itraconazole, an old broad spectrum antibiotic azithromycin and an old antibiotic dapsone. In reviewing selected growth driving systems active in pancreatic ductal adenocarcinoma then comparing these with detailed data on ancillary attributes of the IPIAD drugs, one can predict clinical benefit and slowing growth of pancreatic ductal adenocarcinoma by this augmentation regimen.
Collapse
|
38
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
39
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
40
|
Leonhardt CS, Hank T, Pils D, Gustorff C, Sahora K, Schindl M, Verbeke CS, Strobel O, Klaiber U. Prognostic impact of resection margin status on survival after neoadjuvant treatment for pancreatic cancer: systematic review and meta-analysis. Int J Surg 2024; 110:453-463. [PMID: 38315795 PMCID: PMC10793837 DOI: 10.1097/js9.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/10/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND A greater than 1 mm tumour-free resection margin (R0 >1 mm) is a prognostic factor in upfront-resected pancreatic ductal adenocarcinoma. After neoadjuvant treatment (NAT); however, the prognostic impact of resection margin (R) status remains controversial. METHODS Randomised and non-randomised studies assessing the association of R status and survival in resected pancreatic ductal adenocarcinoma after NAT were sought by systematic searches of MEDLINE, Web of Science and CENTRAL. Hazard ratios (HR) and their corresponding 95% CI were collected to generate log HR using the inverse-variance method. Random-effects meta-analyses were performed and the results presented as weighted HR. Sensitivity and meta-regression analyses were conducted to account for different surgical procedures and varying length of follow-up, respectively. RESULTS Twenty-two studies with a total of 4929 patients were included. Based on univariable data, R0 greater than 1 mm was significantly associated with prolonged overall survival (OS) (HR 1.76, 95% CI 1.57-1.97; P<0.00001) and disease-free survival (DFS) (HR 1.66, 95% CI 1.39-1.97; P<0.00001). Using adjusted data, R0 greater than 1 mm was significantly associated with prolonged OS (HR 1.65, 95% CI 1.39-1.97; P<0.00001) and DFS (HR 1.76, 95% CI 1.30-2.39; P=0.0003). Results for R1 direct were comparable in the entire cohort; however, no prognostic impact was detected in sensitivity analysis including only partial pancreatoduodenectomies. CONCLUSION After NAT, a tumour-free margin greater than 1 mm is independently associated with improved OS as well as DFS in patients undergoing surgical resection for pancreatic cancer.
Collapse
Affiliation(s)
- Carl-Stephan Leonhardt
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Hank
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Charlotte Gustorff
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Klaus Sahora
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Schindl
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Caroline S. Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Strobel
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulla Klaiber
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
D'Angelo A, Catalano M, Conca R, Petrioli R, Siminonato F, Cappetta A, Roviello G, Ramello M. Clinical outcome and safety profile of metastatic pancreatic cancer patients treated with more than six cycles of nab-paclitaxel plus gemcitabine. J Chemother 2023; 35:753-759. [PMID: 37167100 DOI: 10.1080/1120009x.2023.2190712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
The phase III MPACT trial demonstrated the superiority of gemcitabine plus nab-paclitaxel (NABGEM) versus gemcitabine alone in previously untreated patients with metastatic pancreatic cancer (mPC). The aim of this study was to evaluate the responses in terms of efficacy and safety in patients treated with more than 6 cycles of chemotherapy. From January 2015 to December 2018, patients with mPC receiving first-line treatment with NABGEM were included in a multicentre retrospective observational study. Exploratory analyses of efficacy and safety were performed. The cohort included 153 patients with performance status of 1. The median overall survival and progression-free survival were 20 months (hazard ratio [HR] 0.28, 95% confidence interval [CI]: 0.17-0.44) and 10 months (HR 0.24 95% CI: 0.16-0.38) respectively, in patients who received >6 cycles compared to 9 and 5 months in those treated with ≤6 cycles (p < 0.001). The disease control rate was 100% versus 56% in patients receiving >6 and ≤6 cycles, respectively. No progression of disease was recorded in patients who received >6 cycles. Grade 1 neuropathy and grade 3 neutropenia were more frequent in patients treated with >6 cycles compared to patients receiving ≤6 cycles (p = 0.01; p = 0.03, respectively). Dose reduction was necessary for 70.1% and 53.4% of patients treated with >6 or ≤6 cycles, whereas treatment interruption occurred in 37.1% and 21.6%, respectively. Our results confirmed the efficacy and safety of NABGEM in untreated mPC. In particular, we highlighted significant clinical efficacy in patients who received >6 cycles of chemotherapy compared to those who received ≤6 cycles, with manageable toxicity profile.
Collapse
Affiliation(s)
- Alberto D'Angelo
- Department of Life Sciences, University of Bath, Bath, UK
- Department of Oncology, Royal United Hospital, Bath, UK
| | - Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Raffaele Conca
- Division of Medical Oncology, Department of Onco-Hematology, IRCCS-CROB, Referral Cancer Center of Basilicata, Vulture, Potenza, Italy
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Roberto Petrioli
- Department of Medicine, Surgery and Neurosciences, Medical Oncology Unit, University of Siena, Siena, Italy
| | | | | | | | - Monica Ramello
- Oncology Unit, Department of Medical, Surgical, & Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
42
|
Fernandez JL, Årbogen S, Sadeghinia MJ, Haram M, Snipstad S, Torp SH, Einen C, Mühlenpfordt M, Maardalen M, Vikedal K, Davies CDL. A Comparative Analysis of Orthotopic and Subcutaneous Pancreatic Tumour Models: Tumour Microenvironment and Drug Delivery. Cancers (Basel) 2023; 15:5415. [PMID: 38001675 PMCID: PMC10670202 DOI: 10.3390/cancers15225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging malignancy, mainly due to its resistance to chemotherapy and its complex tumour microenvironment characterised by stromal desmoplasia. There is a need for new strategies to improve the delivery of drugs and therapeutic response. Relevant preclinical tumour models are needed to test potential treatments. This paper compared orthotopic and subcutaneous PDAC tumour models and their suitability for drug delivery studies. A novel aspect was the broad range of tumour properties that were studied, including tumour growth, histopathology, functional vasculature, perfusion, immune cell infiltration, biomechanical characteristics, and especially the extensive analysis of the structure and the orientation of the collagen fibres in the two tumour models. The study unveiled new insights into how these factors impact the uptake of a fluorescent model drug, the macromolecule called 800CW. While the orthotopic model offered a more clinically relevant microenvironment, the subcutaneous model offered advantages for drug delivery studies, primarily due to its reproducibility, and it was characterised by a more efficient drug uptake facilitated by its collagen organisation and well-perfused vasculature. The tumour uptake seemed to be influenced mainly by the structural organisation and the alignment of the collagen fibres and perfusion. Recognising the diverse characteristics of these models and their multifaceted impacts on drug delivery is crucial for designing clinically relevant experiments and improving our understanding of pancreatic cancer biology.
Collapse
Affiliation(s)
- Jessica Lage Fernandez
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| | - Sara Årbogen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Margrete Haram
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.H.); (S.H.T.)
- Cancer Clinic, St. Olavs Hospital, 7006 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- Cancer Clinic, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Sverre Helge Torp
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.H.); (S.H.T.)
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Caroline Einen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| | - Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- EXACT Therapeutics, 0581 Oslo, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- Department of Engineering Science, University of Oxford, Oxford OX1 3NP, UK
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| |
Collapse
|
43
|
Rusu A, Caruntu ID, Lozneanu L, Ciobanu DG, Amalinei C, Giusca SE. Galectin-8 Immunohistochemical Profile in Pancreatic Ductal Adenocarcinoma: Emerging Evidence for Its Prognostic Role. Diagnostics (Basel) 2023; 13:3215. [PMID: 37892036 PMCID: PMC10606265 DOI: 10.3390/diagnostics13203215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most frequent pancreatic malignancy, with stromal and epithelial heterogeneity reflected in outcome variability. Therefore, a molecular classification is promoted based on the validation of new diagnostic and prognostic markers. Galectin-8 (Gal8) has been pointed out as a prognostic factor for survival in several types of tumors. Due to limited existing data on PDAC, our study aimed to evaluate the Gal8 profile in PDAC alongside its prognostic status. A total of 87 cases of PDAC were immunohistochemically investigated, and Gal8 immunoexpression was qualitatively and semi-quantitatively assessed and correlated with classical clinicopathological parameters and survival. Gal8 immunoexpression was identified to be mostly nuclear and cytoplasmic, followed by exclusively cytoplasmic and exclusively nuclear. A statistical analysis between Gal8 profiles defined by negative, low, or high scores and clinicopathological characteristics showed significant differences in tumor size, pN stage, and lympho-vascular invasion. Although a Cox regression analysis did not support the prognostic status of Gal8, and we did not confirm its relationship with OS, our results show that exclusively nuclear labeling was associated with an increased mean OS compared with cytoplasmic and nuclear labeling (29.37 vs. 17.93 months). To the best of our knowledge, this is the first study to report a detailed pattern of Gal8 immunostaining in PDAC and to correlate this pattern with clinicopathological characteristics and survival. Our results show that Gal8 immunoexpression is associated with a more aggressive phenotype, thus opening perspectives for larger studies to validate Gal8 as a prognostic factor.
Collapse
Affiliation(s)
- Andreea Rusu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
| | - Irina-Draga Caruntu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
- Department of Pathology, “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 700111 Iasi, Romania;
| | - Delia Gabriela Ciobanu
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 700111 Iasi, Romania;
- Department of Morpho-Functional Sciences I—Morphopathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Cornelia Amalinei
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
| | - Simona-Eliza Giusca
- Department of Pathology, “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania
- Department of Morpho-Functional Sciences I—Morphopathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
44
|
Azzawri AA, Yildirim IH, Yegin Z, Dusak A. Expression of GRP78 and its copartners in HEK293 and pancreatic cancer cell lines (BxPC-3/PANC-1) exposed to MRI and CT contrast agents. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:391-416. [PMID: 37787049 DOI: 10.1080/15257770.2023.2263496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Endoplasmic reticulum (ER) stress-associated chaperones trigger a defense mechanism called as unfolded protein response (UPR) which can manage apoptosis and be determinative in cell fate. Both anticancer drug effects and potential toxicity effects of magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were aimed to be evaluated. For this purpose, we investigated expression profiles of endoplasmic reticulum stress-associated chaperone molecules in human pancreatic tumor lines BxPC-3 and PANC-1 and control human embryonic kidney cells 293 (HEK293) induced with a variety of gadolinium and iohexol contrast agents. Protein expression levels of ER stress-associated chaperones (master regulator: GRP78/Bip and its copartners: Calnexin, Ero1, PDI, CHOP, IRE1α and PERK) were evaluated with Western blotting. Expression levels at mRNA level were also assessed for GRP78/Bip and CHOP with real-time PCR. Induction of cells was carried out with four different Gd-based contrast agents (GBCAs): (Dotarem, Optimark, Primovist and Gadovist) and two different iohexol agents (Omnipol, Omnipaque). CT contrast agents tested in the study did not result in significant ER stress in HEK293 cells. However, they do not seem to have theranostic potential in pancreas cancer through ER pathway. The potential efficiency of macrocyclic MRI contrast agents to provoke apoptosis via ER stress-associated chaperones in BxPC-3 cells lends credibility for their future theranostic use in pancreas cancer as long as undesired toxicity effects were carefully considered. ER stress markers and/or contrast agents seem to have promising potential to be translated into the clinical practice to manage pancreas cancer progression.
Collapse
Affiliation(s)
| | | | - Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Sinop, Turkey
| | | |
Collapse
|
45
|
Koltai T. Earlier Diagnosis of Pancreatic Cancer: Is It Possible? Cancers (Basel) 2023; 15:4430. [PMID: 37760400 PMCID: PMC10526520 DOI: 10.3390/cancers15184430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a very high mortality rate which has been only minimally improved in the last 30 years. This high mortality is closely related to late diagnosis, which is usually made when the tumor is large and has extensively infiltrated neighboring tissues or distant metastases are already present. This is a paradoxical situation for a tumor that requires nearly 15 years to develop since the first founding mutation. Response to chemotherapy under such late circumstances is poor, resistance is frequent, and prolongation of survival is almost negligible. Early surgery has been, and still is, the only approach with a slightly better outcome. Unfortunately, the relapse percentage after surgery is still very high. In fact, early surgery clearly requires early diagnosis. Despite all the advances in diagnostic methods, the available tools for improving these results are scarce. Serum tumor markers permit a late diagnosis, but their contribution to an improved therapeutic result is very limited. On the other hand, effective screening methods for high-risk populations have not been fully developed as yet. This paper discusses the difficulties of early diagnosis, evaluates whether the available diagnostic tools are adequate, and proposes some simple and not-so-simple measures to improve it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires C1094, Argentina
| |
Collapse
|
46
|
Jafari S, Ravan M, Karimi-Sani I, Aria H, Hasan-Abad AM, Banasaz B, Atapour A, Sarab GA. Screening and identification of potential biomarkers for pancreatic cancer: An integrated bioinformatics analysis. Pathol Res Pract 2023; 249:154726. [PMID: 37591067 DOI: 10.1016/j.prp.2023.154726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Pancreatic cancer is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify essential genes and the involved mechanisms in pancreatic cancer, we used bioinformatics analysis to identify potential biomarkers for pancreatic cancer management. Gene expression profiles of pancreatic cancer patients and normal tissues were screened and downloaded from The Cancer Genome Atlas (TCGA) bioinformatics database. The Differentially expressed genes (DEGs) were identified among gene expression signatures of normal and pancreatic cancer, using R software. Then, enrichment analysis of the DEGs, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, was performed by an interactive and collaborative HTML5 gene list enrichment analysis tool (enrichr) and ToppGene. The protein-protein interaction (PPI) network was also constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and ToppGenet web based tool followed by identifying hub genes of the top 100 DEGs in pancreatic cancer using Cytoscape software. Over 2000 DEGs with variable log2 fold (LFC) were identified among 34,706 genes. Principal component analysis showed that the top 20 DEGs, including H1-4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 might distinguish pancreatic cancer from normal tissue. GO analysis showed that the top DEGs have more enriched in the negative regulation of gene silencing, negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, and nucleosomal DNA binding. KEGG analysis identified an association between pancreatic cancer and systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis. In PPI network analysis, we found that the different types of histone-encoding genes are involved as hub genes in the carcinogenesis of pancreatic cancer. In conclusion, our bioinformatics analysis identified genes that were significantly related to the prognosis of pancreatic cancer patients. These genes and pathways could serve as new potential prognostic markers and be used to develop treatments for pancreatic cancer patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ravan
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahar Banasaz
- Internal Medicine Department, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
47
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
48
|
Wang J, Wong CH, Zhu Y, Yao X, Ng KKC, Zhou C, To KF, Chen Y. Identification of GRIN2D as a novel therapeutic target in pancreatic ductal adenocarcinoma. Biomark Res 2023; 11:74. [PMID: 37553583 PMCID: PMC10410818 DOI: 10.1186/s40364-023-00514-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jiatong Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Yinxin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
49
|
Reyes-Castellanos G, Abdel Hadi N, Gallardo-Arriaga S, Masoud R, Garcia J, Lac S, El Kaoutari A, Gicquel T, Planque M, Fendt SM, Linares LK, Gayet O, Guillaumond F, Dusetti N, Iovanna J, Carrier A. Combining the antianginal drug perhexiline with chemotherapy induces complete pancreatic cancer regression in vivo. iScience 2023; 26:106899. [PMID: 37305702 PMCID: PMC10250830 DOI: 10.1016/j.isci.2023.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the human cancers with the poorest prognosis. Interestingly, we found that mitochondrial respiration in primary human PDAC cells depends mainly on the fatty acid oxidation (FAO) to meet basic energy requirements. Therefore, we treated PDAC cells with perhexiline, a well-recognized FAO inhibitor used in cardiac diseases. Some PDAC cells respond efficiently to perhexiline, which acts synergistically with chemotherapy (gemcitabine) in vitro and in two xenografts in vivo. Importantly, perhexiline in combination with gemcitabine induces complete tumor regression in one PDAC xenograft. Mechanistically, this co-treatment causes energy and oxidative stress promoting apoptosis but does not exert inhibition of FAO. Yet, our molecular analysis indicates that the carnitine palmitoyltransferase 1C (CPT1C) isoform is a key player in the response to perhexiline and that patients with high CPT1C expression have better prognosis. Our study reveals that repurposing perhexiline in combination with chemotherapy is a promising approach to treat PDAC.
Collapse
Affiliation(s)
| | - Nadine Abdel Hadi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Rawand Masoud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Julie Garcia
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sophie Lac
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Tristan Gicquel
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laetitia Karine Linares
- INSERM, Université de Montpellier, IRCM, Institut Régional Du Cancer de Montpellier, Montpellier, France
| | - Odile Gayet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fabienne Guillaumond
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nelson Dusetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Juan Iovanna
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
50
|
Pinkert-Leetsch D, Frohn J, Ströbel P, Alves F, Salditt T, Missbach-Guentner J. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 2023; 23:43. [PMID: 37131262 PMCID: PMC10152799 DOI: 10.1186/s40644-023-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The worldwide increase of pancreatic ductal adenocarcinoma (PDAC), which still has one of the lowest survival rates, requires novel imaging tools to improve early detection and to refine diagnosis. Therefore, the aim of this study was to assess the feasibility of propagation-based phase-contrast X-ray computed tomography of already paraffin-embedded and unlabeled human pancreatic tumor tissue to achieve a detailed three-dimensional (3D) view of the tumor sample in its entirety. METHODS Punch biopsies of areas of particular interest were taken from paraffin blocks after initial histological analysis of hematoxylin and eosin stained tumor sections. To cover the entire 3.5 mm diameter of the punch biopsy, nine individual tomograms with overlapping regions were acquired in a synchrotron parallel beam configuration and stitched together after data reconstruction. Due to the intrinsic contrast based on electron density differences of tissue components and a voxel size of 1.3 μm achieved PDAC and its precursors were clearly identified. RESULTS Characteristic tissue structures for PDAC and its precursors, such as dilated pancreatic ducts, altered ductal epithelium, diffuse immune cell infiltrations, increased occurrence of tumor stroma and perineural invasion were clearly identified. Certain structures of interest were visualized in three dimensions throughout the tissue punch. Pancreatic duct ectasia of different caliber and atypical shape as well as perineural infiltration could be contiguously traced by viewing serial tomographic slices and by applying semi-automatic segmentation. Histological validation of corresponding sections confirmed the former identified PDAC features. CONCLUSION In conclusion, virtual 3D histology via phase-contrast X-ray tomography visualizes diagnostically relevant tissue structures of PDAC in their entirety, preserving tissue integrity in label-free, paraffin embedded tissue biopsies. In the future, this will not only enable a more comprehensive diagnosis but also a possible identification of new 3D imaging tumor markers.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany.
| | - Jasper Frohn
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center, Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | | |
Collapse
|