1
|
Role of the Ca2+ channel α2δ-1 auxiliary subunit in proliferation and migration of human glioblastoma cells. PLoS One 2022; 17:e0279186. [PMID: 36520928 PMCID: PMC9754164 DOI: 10.1371/journal.pone.0279186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The overexpression of α2δ-1 is related to the development and degree of malignancy of diverse types of cancer. This protein is an auxiliary subunit of voltage-gated Ca2+ (CaV) channels, whose expression favors the trafficking of the main pore-forming subunit of the channel complex (α1) to the plasma membrane, thereby generating an increase in Ca2+ entry. Interestingly, TLR-4, a protein belonging to the family of toll-like receptors that participate in the inflammatory response and the transcription factor Sp1, have been linked to the progression of glioblastoma multiforme (GBM). Therefore, this report aimed to evaluate the role of the α2δ-1 subunit in the progression of GBM and investigate whether Sp1 regulates its expression after the activation of TLR-4. To this end, the expression of α2δ-1, TLR-4, and Sp1 was assessed in the U87 human glioblastoma cell line, and proliferation and migration assays were conducted using different agonists and antagonists. The actions of α2δ-1 were also investigated using overexpression and knockdown strategies. Initial luciferase assays and Western blot analyses showed that the activation of TLR-4 favors the transcription and expression of α2δ-1, which promoted the proliferation and migration of the U87 cells. Consistent with this, overexpression of α2δ-1, Sp1, and TLR-4 increased cell proliferation and migration, while their knockdown with specific siRNAs abrogated these actions. Our data also suggest that TLR-4-mediated regulation of α2δ-1 expression occurs through the NF-kB signaling pathway. Together, these findings strongly suggest that the activation of TLR-4 increases the expression of α2δ-1 in U87 cells, favoring their proliferative and migratory potential, which might eventually provide a theoretical basis to examine novel biomarkers and molecular targets for the diagnosis and treatment of GBM.
Collapse
|
2
|
Lai HT, Canoy RJ, Campanella M, Vassetzky Y, Brenner C. Ca2+ Transportome and the Interorganelle Communication in Hepatocellular Carcinoma. Cells 2022; 11:cells11050815. [PMID: 35269437 PMCID: PMC8909868 DOI: 10.3390/cells11050815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with a poor prognosis for survival given the complications it bears on the patient. Though damages to the liver are acknowledged prodromic factors, the precise molecular aetiology remains ill-defined. However, many genes coding for proteins involved in calcium (Ca2+) homeostasis emerge as either mutated or deregulated. Ca2+ is a versatile signalling messenger that regulates functions that prime and drive oncogenesis, favouring metabolic reprogramming and gene expression. Ca2+ is present in cell compartments, between which it is trafficked through a network of transporters and exchangers, known as the Ca2+ transportome. The latter regulates and controls Ca2+ dynamics and tonicity. In HCC, the deregulation of the Ca2+ transportome contributes to tumorigenesis, the formation of metastasizing cells, and evasion of cell death. In this review, we reflect on these aspects by summarizing the current knowledge of the Ca2+ transportome and overviewing its composition in the plasma membrane, endoplasmic reticulum, and the mitochondria.
Collapse
Affiliation(s)
- Hong-Toan Lai
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
| | - Reynand Jay Canoy
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila 1000, Philippines
| | - Michelangelo Campanella
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London NW1 0TU, UK
- Consortium for Mitochondrial Research, University College London, London WC1 0TU, UK
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yegor Vassetzky
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Correspondence:
| |
Collapse
|
3
|
Cui W, Wu H, Yu X, Song T, Xu X, Xu F. The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. Front Cell Neurosci 2021; 15:699731. [PMID: 34658790 PMCID: PMC8514986 DOI: 10.3389/fncel.2021.699731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is mainly triggered after nerve injury and associated with plasticity of the nociceptive pathway in primary sensory neurons. Currently, the treatment remains a challenge. In order to identify specific therapeutic targets, it is necessary to clarify the underlying mechanisms of neuropathic pain. It is well established that primary sensory neuron sensitization (peripheral sensitization) is one of the main components of neuropathic pain. Calcium channels act as key mediators in peripheral sensitization. As the target of gabapentin, the calcium channel subunit α2δ1 (Cavα2δ1) is a potential entry point in neuropathic pain research. Numerous studies have demonstrated that the upstream and downstream targets of Cavα2δ1 of the peripheral primary neurons, including thrombospondins, N-methyl-D-aspartate receptors, transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid family 1 (TRPV1), and protein kinase C (PKC), are involved in neuropathic pain. Thus, we reviewed and discussed the role of Cavα2δ1 and the associated signaling axis in neuropathic pain conditions.
Collapse
Affiliation(s)
- Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Calcium Channel Subunit α2δ-1 as a Potential Biomarker Reflecting Illness Severity and Neuroinflammation in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2021; 30:105874. [PMID: 34049015 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Voltage-gated calcium channels (VGCCs) dysfunction is involved in the development of acute ischemic stroke (AIS). As a subunit of VGCC complexes, we detected the levels of α2δ-1 subunit in serum and cerebrospinal fluid (CSF) specimens from AIS patients. METHODS The study included 105 patients with first-ever AIS, who were admitted within 48 hours after stroke onset. The serum and CSF levels of α2δ-1 were measured with ELISA and the severity of AIS patients was evaluated according to the National Institutes of Health Stroke Scale (NIHSS) score. The cerebral infarct volume was calculated through the Pullicino formula based on the cranial CT or MRI scan. C-reactive protein (CRP) and serum amyloid A (SAA) were measured using the latex-enhanced immunoturbidimetric assay. RESULTS Compared to the control subjects, the serum α2δ-1 level was significantly increased in AIS patients with large infarct volume and in severe AIS cases with high NIHSS score, which correlated positively with the inflammatory markers CRP and SAA. Furthermore, the concentration of α2δ-1 in CSF was elevated with the infarct volume, which was higher in severe AIS patients. CONCLUSION Our study suggests that the increased α2δ-1 levels in serum and CSF specimens may be used as a potential marker for reflecting VGCCs dysfunction, illness severity and neuroinflammation in AIS patients.
Collapse
|
5
|
Evaluation of diagnostic accuracy of serum calcium channel α2δ1 subunit in hepatocellular carcinoma-related cirrhosis. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the commonest malignancies worldwide that carries a bad prognosis particularly in Egypt due to the high prevalence of HCV burden. Late diagnosis of HCC especially in cirrhosis suffering-liver is one of the causes that worsen HCC outcome. Identification of molecular pathways of HCC will open the gate for early diagnosis and effective management. Oscillation of calcium controlled by the α2δ1 subunit has been proposed as one of the mechanisms in tumor-initiating cell properties of HCC. In this study, we aim to evaluate the serum α2δ1 subunit level as a biological marker for HCC. A total of 90 participants were enrolled, 40 patients with HCC, 40 patients with cirrhosis, and 10 healthy volunteers; serum level of α2δ1 was assessed in all participants with ELISA
Results
The mean serum levels of α2δ1 were significantly higher in HCC group (19.53 ± 6.87 ng/dL) than cirrhotic (6.24 ± 2.64 ng/dL) and control groups (0.67 ± 0.48 ng/dL) (P = 0.001). There was no significance between α2δ1 and etiology of liver disease as viral (HCV, HBV) or non-viral (P = 0.14).
Conclusion
α2δ1 subunit may serve as a potential non-invasive marker with excellent sensitivity for diagnosis of HCC regardless of the etiology of liver disease.
Collapse
|
6
|
Ali ES, Rychkov GY, Barritt GJ. Targeting Ca 2+ Signaling in the Initiation, Promotion and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12102755. [PMID: 32987945 PMCID: PMC7600741 DOI: 10.3390/cancers12102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Liver cancer (hepatocellular carcinoma) is a significant health burden worldwide. It is often not detected until at an advanced stage when there are few treatment options available. Changes in calcium concentrations within liver cancer cells are essential for regulating their growth, death, and migration (metastasis). Our aim was to review published papers which have identified proteins involved in calcium signaling as potential drug targets for the treatment of liver cancer. About twenty calcium signaling proteins were identified, including those involved in regulating calcium concentrations in the cytoplasm, endoplasmic reticulum and mitochondria. A few of these have turned out to be sites of action of natural products previously known to inhibit liver cancer. More systematic studies are now needed to determine which calcium signaling proteins might be used clinically for treatment of liver cancer, especially advanced stage cancers and those resistant to inhibition by current drugs. Abstract Hepatocellular carcinoma (HCC) is a considerable health burden worldwide and a major contributor to cancer-related deaths. HCC is often not noticed until at an advanced stage where treatment options are limited and current systemic drugs can usually only prolong survival for a short time. Understanding the biology and pathology of HCC is a challenge, due to the cellular and anatomic complexities of the liver. While not yet fully understood, liver cancer stem cells play a central role in the initiation and progression of HCC and in resistance to drugs. There are approximately twenty Ca2+-signaling proteins identified as potential targets for therapeutic treatment at different stages of HCC. These potential targets include inhibition of the self-renewal properties of liver cancer stem cells; HCC initiation and promotion by hepatitis B and C and non-alcoholic fatty liver disease (principally involving reduction of reactive oxygen species); and cell proliferation, tumor growth, migration and metastasis. A few of these Ca2+-signaling pathways have been identified as targets for natural products previously known to reduce HCC. Promising Ca2+-signaling targets include voltage-operated Ca2+ channel proteins (liver cancer stem cells), inositol trisphosphate receptors, store-operated Ca2+ entry, TRP channels, sarco/endoplasmic reticulum (Ca2++Mg2+) ATP-ase and Ca2+/calmodulin-dependent protein kinases. However, none of these Ca2+-signaling targets has been seriously studied any further than laboratory research experiments. The future application of more systematic studies, including genomics, gene expression (RNA-seq), and improved knowledge of the fundamental biology and pathology of HCC will likely reveal new Ca2+-signaling protein targets and consolidate priorities for those already identified.
Collapse
Affiliation(s)
- Eunus S. Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide 5001, South Australia, Australia;
| | - Grigori Y. Rychkov
- School of Medicine, The University of Adelaide, Adelaide 5005, South Australia, Australia;
- South Australian Health and Medical Research Institute, Adelaide 5005, South Australia, Australia
| | - Greg J. Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide 5001, South Australia, Australia;
- Correspondence: ; Tel.: +61-438-204-426
| |
Collapse
|
7
|
Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol 2020; 11:968. [PMID: 32733237 PMCID: PMC7358640 DOI: 10.3389/fphar.2020.00968] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer, the second cause of death worldwide, is characterized by several common criteria, known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance, angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in external and internal biological membranes, diffusing Ca2+ ions down their electrochemical gradient. Numerous physiological functions are mediated by calcium channels, ranging from intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels play important roles in human physiology and it is not a surprise the increasing number of evidences connecting calcium channels disorders with tumor cells growth, survival and migration. Multiple studies suggest that calcium signals are augmented in various cancer cell types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable channels signaling in cancer with special attention to the mechanisms behind the remodeling of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular calcium homeostasis and signaling, contributing to the transformation of normal cells into their tumor counterparts. Several compounds reported to counteract several cancer hallmarks also modulate the activity and/or the expression of these channels including non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium permeable channels targeted by these compounds in cancer and their action mechanism will be discussed also in the review.
Collapse
Affiliation(s)
- Sendoa Tajada
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
8
|
Li XC, Dong YY, Cheng Y, Zhou JY, Yang X, Shen BQ, Wu XT, Li XP, Wang JL. Increased Serum Calcium Level Promotes the Risk of Lymph Node Metastasis in Endometrial Cancer. Cancer Manag Res 2020; 12:5023-5030. [PMID: 32612389 PMCID: PMC7323808 DOI: 10.2147/cmar.s253914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The early predictive values of diagnostic markers for lymph node metastasis (LNM) in endometrial cancer (EC) are still unclear at present. The purpose of this study is to explore the relationship between serum calcium and LNM in EC. Methods We identified all patients with EC who underwent surgery between January 2012 and December 2016. Patient characteristics and various preoperative clinicopathologic data were obtained from medical records and were reviewed retrospectively. These patients were divided into two groups according to the pathology of their lymph node. Logistic regression models analyzed the relationship between the ionized calcium and LNM of EC patients, while adjusting for the potential confounders. Results A total of 448 patients were assessed. Univariate analysis showed that ionized calcium, CA125 level, tumor grade, peritoneal cytology, FIGO stage, histological type, LVSI, and myometrial invasion were positively correlated with LNM (all P<0.05). The risk of LNM increased with the promotion of serum ionized calcium (P for trend <0.01). Ionized calcium level was significant before and after the adjustment of cofounders (unadjusted: OR=11.9, 95% CI: 4.8-29.6, P< 0.01; model I: OR=11.3, 95% CI: 4.5-28.8, P< 0.01; model II: OR=5.2, 95% CI: 1.6-17.2, P< 0.05). Additionally, the risk of ionized calcium was especially evident in patients whose age was older than 60, BMI<28 kg/m2, grade 3, negative peritoneal cytology and endometrioid endometrial adenocarcinoma. Conclusion Ionized calcium level was highly associated with LNM in EC and acted as a potential biomarker in predicting the risk of LNM in EC.
Collapse
Affiliation(s)
- Xing-Chen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yang-Yang Dong
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yuan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Jing-Yi Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing 100044, People's Republic of China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Bo-Qiang Shen
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Xiao-Tong Wu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing 100044, People's Republic of China
| | - Xiao-Ping Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Jian-Liu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing 100044, People's Republic of China
| |
Collapse
|
9
|
Balaceanu LA. Biomarkers vs imaging in the early detection of hepatocellular carcinoma and prognosis. World J Clin Cases 2019; 7:1367-1382. [PMID: 31363465 PMCID: PMC6656675 DOI: 10.12998/wjcc.v7.i12.1367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/07/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 5th most frequently diagnosed cancer in the world, according to the World Health Organization. The incidence of HCC is between 3/100000 and 78.1/100000, with a high incidence reported in areas with viral hepatitis B and hepatitis C, thus affecting Asia and Africa predominantly. Several international clinical guidelines address HCC diagnosis and are structured according to the geographical area involved. All of these clinical guidelines, however, share a foundation of diagnosis by ultrasound surveillance and contrast imaging techniques, particularly computed tomography, magnetic resonance imaging, and sometimes contrast-enhanced ultrasound. The primary objective of this review was to systematically summarize the recent published studies on the clinical utility of serum biomarkers in the early diagnosis of HCC and for the prognosis of this disease.
Collapse
Affiliation(s)
- Lavinia Alice Balaceanu
- Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Sf. Ioan Clinical Emergency Hospital, Bucharest 42122, Romania
| |
Collapse
|
10
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
11
|
Role of the calcium toolkit in cancer stem cells. Cell Calcium 2019; 80:141-151. [PMID: 31103948 DOI: 10.1016/j.ceca.2019.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells are a subpopulation of tumor cells that proliferate, self-renew and produce more differentiated tumoral cells building-up the tumor. Responsible for the sustained growth of malignant tumors, cancer stem cells are proposed to play significant roles in cancer resistance to standard treatment and in tumor recurrence. Among the mechanisms dysregulated in neoplasms, those related to Ca2+ play significant roles in various aspects of cancers. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are tightly controlled by channels, pumps, exchangers and Ca2+ binding proteins. These components support the genesis of Ca2+ signals with specific spatio-temporal characteristics that define the cell response. Being involved in the coupling of extracellular events with intracellular responses, the Ca2+ toolkit is often hijacked by cancer cells to promote notably their proliferation and invasion. Growing evidence obtained during the last decade pointed to a role of Ca2+ handling and mishandling in cancer stem cells. In this review, after a general overview of the concept of cancer stem cells we analyse and discuss the studies and current knowledge regarding the complex roles of Ca2+ toolkit and signaling in these cells. We highlight that numbers of Ca2+ signaling actors promote cancer stem cell state and are associated with cell resistance to current cancer treatments and thus may represent promising targets for potential clinical applications.
Collapse
|