1
|
Tortora M, Pacchiano F, Ferraciolli SF, Criscuolo S, Gagliardo C, Jaber K, Angelicchio M, Briganti F, Caranci F, Tortora F, Negro A. Medical Digital Twin: A Review on Technical Principles and Clinical Applications. J Clin Med 2025; 14:324. [PMID: 39860329 PMCID: PMC11765765 DOI: 10.3390/jcm14020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
The usage of digital twins (DTs) is growing across a wide range of businesses. The health sector is one area where DT use has recently increased. Ultimately, the concept of digital health twins holds the potential to enhance human existence by transforming disease prevention, health preservation, diagnosis, treatment, and management. Big data's explosive expansion, combined with ongoing developments in data science (DS) and artificial intelligence (AI), might greatly speed up research and development by supplying crucial data, a strong cyber technical infrastructure, and scientific know-how. The field of healthcare applications is still in its infancy, despite the fact that there are several DT programs in the military and industry. This review's aim is to present this cutting-edge technology, which focuses on neurology, as one of the most exciting new developments in the medical industry. Through innovative research and development in DT technology, we anticipate the formation of a global cooperative effort among stakeholders to improve health care and the standard of living for millions of people globally.
Collapse
Affiliation(s)
- Mario Tortora
- Department of Advanced Biomedical Sciences, University “Federico II”, Via Pansini, 5, 80131 Naples, Italy; (F.B.); (F.T.)
| | - Francesco Pacchiano
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80131 Caserta, Italy; (F.P.); (F.C.)
| | - Suely Fazio Ferraciolli
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA;
- Pediatric Imaging Research Center and Cardiac Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sabrina Criscuolo
- Pediatric University Department, Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Cristina Gagliardo
- Pediatric Department, Ospedale San Giuseppe Moscati, 83100 Aversa, Italy;
| | - Katya Jaber
- Department of Elektrotechnik und Informatik, Hochschule Bremen, 28199 Bremen, Germany;
| | - Manuel Angelicchio
- Biotechnology Department, University of Naples “Federico II”, 80138 Napoli, Italy;
| | - Francesco Briganti
- Department of Advanced Biomedical Sciences, University “Federico II”, Via Pansini, 5, 80131 Naples, Italy; (F.B.); (F.T.)
| | - Ferdinando Caranci
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80131 Caserta, Italy; (F.P.); (F.C.)
| | - Fabio Tortora
- Department of Advanced Biomedical Sciences, University “Federico II”, Via Pansini, 5, 80131 Naples, Italy; (F.B.); (F.T.)
| | - Alberto Negro
- Neuroradiology Unit, Ospedale del Mare ASL NA1 Centro, 80145 Naples, Italy;
| |
Collapse
|
2
|
Chumnanvej S, Chumnanvej S, Tripathi S. Assessing the benefits of digital twins in neurosurgery: a systematic review. Neurosurg Rev 2024; 47:52. [PMID: 38236336 DOI: 10.1007/s10143-023-02260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Digital twins are virtual replicas of their physical counterparts, and can assist in delivering personalized surgical care. This PRISMA guideline-based systematic review evaluates current literature addressing the effectiveness and role of digital twins in many stages of neurosurgical management. The aim of this review is to provide a high-quality analysis of relevant, randomized controlled trials and observational studies addressing the neurosurgical applicability of a variety of digital twin technologies. Using pre-specified criteria, we evaluated 25 randomized controlled trials and observational studies on the applications of digital twins, including navigation, robotics, and image-guided neurosurgeries. All 25 studies compared these technologies against usual surgical approaches. Risk of bias analyses using the Cochrane risk of bias tool for randomized trials (Rob 2) found "low" risk of bias in the majority of studies (23/25). Overall, this systematic review shows that digital twin applications have the potential to be more effective than conventional neurosurgical approaches when applied to brain and spinal surgery. Moreover, the application of these novel technologies may also lead to fewer post-operative complications.
Collapse
Affiliation(s)
- Sorayouth Chumnanvej
- Neurosurgery Division, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Siriluk Chumnanvej
- Department of Anesthesiology and Operating Room, Phramongkutklao Hospital, Bangkok, Thailand
| | - Susmit Tripathi
- Department of Neurology, New York Presbyterian-Weill Cornell Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Martínez Quiñones JV, Orduna Martínez J, Pinilla Arias D, Bernal Lecina M, Consolini Rossi F, Arregui Calvo R. Systematic review of the utility and limits of 3D printing in spine surgery. NEUROCIRUGIA (ENGLISH EDITION) 2024; 35:30-40. [PMID: 37473871 DOI: 10.1016/j.neucie.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/18/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE The main objective of this study has been to demonstrate why additive printing allows to make complex surgical pathological processes that affect the spine more visible and understandable, increasing precision, safety and reliability of the surgical procedure. METHODS A systematic review of the articles published in the last 10 years on 3D printing-assisted spinal surgery was carried out, in accordance with PRISMA 2020 declaration. Keywords "3D printing" and "spine surgery" were searched in Pubmed, Embase, Cochrane Database of Systematic Reviews, Google Scholar and Opengrey databases, which was completed with a manual search through the list of bibliographic references of the articles that were selected following the defined inclusion and exclusion criteria. RESULTS From the analysis of the 38 selected studies, it results that 3D printing is useful in surgical planning, medical teaching, doctor-patient relationship, design of navigation templates and spinal implants, and research, optimizing the surgical process by focusing on the patient, offering magnificent support during the surgical procedure. CONCLUSIONS The use of three-dimensional printing biomodels allows: making complex surgical pathological processes that affect the spine more visible and understandable; increase the accuracy, precision and safety of the surgical procedure, and open up the possibility of implementing personalized treatments, mainly in tumor surgery.
Collapse
|
4
|
Xiong X, Chen YL, Zhao L, Li H, Xu M, Shuang F. Individualized 3D-printed navigation template-assisted tension band wiring for olecranon fractures. J Orthop Surg Res 2023; 18:407. [PMID: 37271815 DOI: 10.1186/s13018-023-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
PURPOSE 3D printing techniques guide precision medicine and show great development potential in clinical applications. The purpose of this study was to compare the clinical outcomes of 3D-printed navigation templates versus free-hand in tension band wiring (TBW) procedures for olecranon fractures. METHODS Patients who underwent TBW due to Mayo type II olecranon fractures between January 2019 and December 2021 in our hospital were prospectively enrolled in the study. The patients were divided into the 3D printed navigation template guiding TBW group (3D printed group) and the free-hand TBW group (free-hand group). The primary endpoint of this study was the success rate of the bicortical placement of Kirschner wires (K-wires). Times of intraoperative fluoroscopy, operation times, complications, VAS scores, and Mayo Elbow Performance Scores (MEPS) were analyzed as the secondary outcomes measure. RESULTS The success rate of the bicortical placement of K-wires was 85.7% in the 3D Printed group was significantly higher than the free-hand group (60%). There were fewer times of intraoperative fluoroscopy in the 3D Printed group (1.43 ± 0.51) than that in the free-hand group (2.60 ± 1.00) with statistical significance (P < 0.05). At the date of the last follow-up, four patients suffer from pain and skin injury at the K-wires insertion site in the 3D Printed group and 14 patients in the free-hand group, a significant difference between the two groups (P < 0.05). No statistically significant differences were found in operation time, VAS scores, and MEPS between the two groups. CONCLUSIONS The individualized 3D-printed navigation template-assisted TBW demonstrated good accuracy and resulted in reduced times of intraoperative fluoroscopy and complication compared to the free-hand TBW for olecranon fractures.
Collapse
Affiliation(s)
- Xu Xiong
- Department of Orthopedic Surgery, The 908th Hospital of the Chinese People's Liberation Army Joint Logistics Support Forces, No.1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
- The First Clinical Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ya-Ling Chen
- Department of Neurology and Orthopedic Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lan Zhao
- Department of Orthopedic Surgery, The 908th Hospital of the Chinese People's Liberation Army Joint Logistics Support Forces, No.1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Hao Li
- Department of Orthopedic Surgery, The 908th Hospital of the Chinese People's Liberation Army Joint Logistics Support Forces, No.1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Min Xu
- Department of Orthopedic Surgery, The 908th Hospital of the Chinese People's Liberation Army Joint Logistics Support Forces, No.1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Feng Shuang
- Department of Orthopedic Surgery, The 908th Hospital of the Chinese People's Liberation Army Joint Logistics Support Forces, No.1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
5
|
Peng SB, Yuan XC, Lu WZ, Yu KX. Application of the cortical bone trajectory technique in posterior lumbar fixation. World J Clin Cases 2023; 11:255-267. [PMID: 36686364 PMCID: PMC9850973 DOI: 10.12998/wjcc.v11.i2.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The cortical bone trajectory (CBT) is a novel technique in lumbar fixation and fusion. The unique caudocephalad and medial-lateral screw trajectories endow it with excellent screw purchase for vertebral fixation via a minimally invasive method. The combined use of CBT screws with transforaminal or posterior lumbar interbody fusion can treat a variety of lumbar diseases, including spondylolisthesis or stenosis, and can also be used as a remedy for revision surgery when the pedicle screw fails. CBT has obvious advantages in terms of surgical trauma, postoperative recovery, prevention and treatment of adjacent vertebral disease, and the surgical treatment of obese and osteoporosis patients. However, the concept of CBT internal fixation technology appeared relatively recently; consequently, there are few relevant clinical studies, and the long-term clinical efficacy and related complications have not been reported. Therefore, large sample and prospective studies are needed to further reveal the long-term complications and fusion rate. As a supplement to the traditional pedicle trajectory fixation technique, the CBT technique is a good choice for the treatment of lumbar diseases with accurate screw placement and strict indications and is thus deserving of clinical recommendation.
Collapse
Affiliation(s)
- Shi-Bo Peng
- Department of Orthopedics, Chongqing Nanchuan Hospital of Traditional Chinese Medicine, Chongqing 408400, China
| | - Xi-Chuan Yuan
- Department of Orthopedics, Chongqing Nanchuan Hospital of Traditional Chinese Medicine, Chongqing 408400, China
| | - Wei-Zhong Lu
- Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Ke-Xiao Yu
- Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| |
Collapse
|