1
|
Li Q, Li B, Wang Q, Wang C, Yu M, Xu T. Marine-derived EGFR inhibitors: novel compounds targeting breast cancer growth and drug resistance. Front Pharmacol 2024; 15:1396605. [PMID: 38751788 PMCID: PMC11094307 DOI: 10.3389/fphar.2024.1396605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer (BC) continues to be a major health challenge globally, ranking as the fifth leading cause of cancer mortality among women, despite advancements in cancer detection and treatment. In this study, we identified four novel compounds from marine organisms that effectively target and inhibit the Epidermal Growth Factor Receptor (EGFR), crucial for BC cell growth and proliferation. These compounds not only induced early apoptosis through Caspase-3 activation but also showed significant inhibitory effects on EGFR mutations associated with drug resistance (T790M, L858R, and L858R/T790M), demonstrating high EGFR kinase selectivity. Cell Thermal Shift Assay (CETSA) experiments indicated that Tandyukisin stabilizes EGFR in a concentration-dependent manner. Furthermore, binding competition assays using surface plasmon resonance technology revealed that Tandyukisin and Trichoharzin bound to distinct sites on EGFR and that their combined use enhanced apoptosis in BC cells. This discovery may pave the way for developing new marine-derived EGFR inhibitors, offering a promising avenue for innovative cancer treatment strategies and addressing EGFR-mediated drug resistance.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chengen Wang
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Tianfu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
OSppc: A web server for online survival analysis using proteome of pan-cancers. J Proteomics 2023; 273:104810. [PMID: 36587732 DOI: 10.1016/j.jprot.2022.104810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Prognostic biomarker, as a feasible and objective indicator, is valuable in the assessment of cancer risk. With the development of high-throughput sequencing technology, the screening of prognostic biomarkers has become easy, but it is difficult to screen prognostic markers based on proteomic data. In this study we developed a tool named Online consensus Survival analysis web server based on Proteome of Pan-cancers, abbreviated as OSppc, to evaluate the prognostic values of protein biomarkers. >8000 cancer cases with proteomic data, transcriptomic data and clinical follow-up information were collected from TCGA and CPTAC. 14,038 proteins (including proteins and their phosphorylated forms) analyzed by reverse-phase protein arrays and mass spectrometry in 33 types of cancers were collected. In OSppc, three analysis modules are provided, including Survival Analysis, Differential Analysis and Correlation Analysis. Survival analysis module exhibits HR with 95% CI and KM curves with log-rank p value of protein and mRNA levels of input genes. Differential analysis module shows the box plots of protein expression levels in different tissues. Correlation analysis module provides scatter plot with pearson's and spearman's correlation coefficient of the protein and its corresponding mRNA. OSppc can be accessed at http://bioinfo.henu.edu.cn/Protein/OSppc.html. SIGNIFICANCE: OSppc can analyze the association between protein, mRNA and prognosis, the correlation between proteome data and gene expression profiles, the differential expression of proteome data between subgroups such as normal and cancer as well. OSppc is registration-free and very valuable to evaluate the prognostic potency of protein of interests. OSppc is very valuable for researchers and clinicians to screen, develop and validate potential protein prognostic biomarkers in pan-cancers, and offers the opportunities to investigate the clinical important functional genes and therapeutic targets of cancers.
Collapse
|
3
|
FOXD1 Regulates the Sensitivity of Cetuximab by Regulating the Expression of EGFR in Head and Neck Squamous Cell Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6108241. [PMID: 35126932 PMCID: PMC8808214 DOI: 10.1155/2022/6108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
Objectives Previous experiments have shown that growth factor receptors play important role in tumor proliferation, metastasis, and therapeutic effect of chemotherapeutic drugs. At the same time, forkhead box D1 (FOXD1) plays an important role in a variety of signal transmission, but its expression profile was known little about head and neck cancer. The purpose of this experiment was to explore the regulation of FOXD1 on the tumor progression of head and neck cancer and to explore the correlation of FOXD1 on the expression of growth factor receptors (EGFR). Methods The bioinformatics online database analyzed the expression of FOXD1 and EGFR in tumor tissues and nontumor tissues. Real-time quantitative PCR was used to detect the FOXD1 and EGFR expression in 45 tumor tissues and 15 nontumor tissues. The plasmid was used to construct FOXD1 overexpressing head and neck squamous cell cancer lines and observe the clonal formation and invasion of tumor cells under the intervention of EGFR-specific antibody—cetuximab. Results The expression of FOXD1 and EGFR in tumor tissues was higher than that in nontumor tissues. The higher expression of FOXD1 and EGFR was not conducive to the prognosis of patients. The expression of FOXD1 and EGFR was positively correlated, and immunohistochemical analysis showed the high expression of FOXD1 and EGFR has close relation to the advanced stage of the tumor. In vitro cell experiments proved that overexpression of FOXD1 can partially offset the cloning ability of cetuximab on head and neck tumor cells. Conclusion FOXD1 has an important regulatory role in the progression of head and neck cancer, and its abnormally high expression was not conducive to the prognosis of cancer patients. FOXD1 can regulate the expression of growth factor receptors in head and neck cancer, which provides a new idea for the better use of tumor growth factor receptor-specific antibodies for collaborative therapy.
Collapse
|
4
|
Hu WK, Liu J, Liu RX, Liu XW, Yin CH. Congenital bilateral cryptorchidism in an infant conceived after maternal breast cancer treatment: A case report. World J Clin Cases 2021; 9:2923-2929. [PMID: 33969078 PMCID: PMC8058667 DOI: 10.12998/wjcc.v9.i12.2923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence of breast cancer among women of reproductive age is increasing, as well as the desire for children at late childbearing age. Identifying factors that may be associated with fetal malformation and maternal and fetal prognosis has gained importance. We describe a 32-year-old woman with breast cancer who gave birth to a son with congenital bilateral cryptorchidism after treatment, with a literature review performed.
CASE SUMMARY A 32-year-old woman with breast cancer who had been treated by surgery and radiotherapy experienced recurrence and underwent a second surgery, adjuvant chemotherapy, and targeted therapy. Her tumor cells were negative for estrogen receptor (ER) α, progesterone receptor (PR), and p53; positive for ERβ, human epidermal growth factor receptor-2 (HER2), epidermal growth factor receptor (EGFR), and Ki67. She had pathogenic BRCA gene mutations. She became pregnant within 2 years and delivered a boy with congenital bilateral cryptorchidism. The boy underwent bilateral orchidopexy. As of this writing, the woman and her son are both healthy.
CONCLUSION HER2 overexpression, positivity for EGFR, Ki67, and ER, and PR negativity are associated with a poor prognosis in breast cancer. While no link has been established statistically between treatment for breast cancer and cryptorchidism in a subsequent pregnancy, this case suggests the possibility that ERβ and gene mutations may be contributing factors.
Collapse
Affiliation(s)
- Wei-Kai Hu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Jing Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Rui-Xia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Xiao-Wei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Cheng-Hong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| |
Collapse
|
5
|
Chen QF, Chang L, Su Q, Zhao Y, Kong B. Clinical importance of serum secreted clusterin in predicting invasive breast cancer and treatment responses. Bioengineered 2021; 12:278-285. [PMID: 33356806 PMCID: PMC8806267 DOI: 10.1080/21655979.2020.1868732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Enhanced serum secreted clusterin (sCLU) protein was associated with progression, poor prognosis and chemotherapy sensitivity evaluation in malignant patients. However, the clinical significance of serum sCLU protein levels in patients with invasive breast cancer (IBC) is unknown. In this study, the serum sCLU protein in 2648 patients with IBC was detected. The diagnostic value and treatment responses of serum sCLU protein in patients with IBC were also performed. The results showed that the serum sCLU protein level was significantly higher in IBC patients compared to the healthy controls (P < 0.0001), and strongly correlated with higher clinical tumor stage (P < 0.001), lymph node metastasis (P < 0.001), shorter overall survival (OS) (P = 0.032) and disease-free survival (DFS) (P = 0.029), respectively. Using the cutoff value of 18.46 μg/mL, the sensitivity and specificity were 86.26% and 73.46% to separate IBC patients from noncancerous and healthy controls. The postoperative patients showed lower serum sCLU levels compared to the preoperative patients (P = 0.003). The chemoresistant patients showed higher serum sCLU levels compared to the chemosensitive patients (P < 0.001). These data indicated that serum sCLU levels are effective indicators for diagnosis and chemotherapy sensitivity evaluation in patients with IBC.
Collapse
Affiliation(s)
- Qing-Feng Chen
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University , Qingdao, China
| | - Lei Chang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University , Qingdao, China
| | - Qun Su
- Department of Clinical Lab, The Affiliated Hospital of Guanxi Medical University , Nanning, China
| | - Ying Zhao
- Department of Clinical Lab, The Affiliated Hospital of Guanxi Medical University , Nanning, China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University , Qingdao, China
| |
Collapse
|
6
|
Prognostic impact of serum levels of EGFR and EGFR ligands in early-stage breast cancer. Sci Rep 2020; 10:16558. [PMID: 33024132 PMCID: PMC7538553 DOI: 10.1038/s41598-020-72944-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and its ligands are involved in cancer pathogenesis. The emerging role of treatments co-targeting the EGFR system in breast cancer has increased the need to identify companion biomarkers. The aim of this study is to investigate whether pretreatment serum levels of EGFR and EGFR ligands in early-stage breast cancer patients might provide prognostic information as a stepping stone for further investigation. The study, which included 311 early-stage breast cancer patients, investigated associations between preoperative serum levels of EGFR and EGFR ligands (epidermal growth factor, heparin-binding epidermal growth factor (HBEGF), amphiregulin, transforming growth factor-α and betacellulin) and survival. Cutoffs were determined using Youden’s method, and overall survival (OS) and invasive disease-free survival (IDFS) were evaluated using Cox regression. Preoperative S-EGFR < 60.3 ng/mL was associated with shorter OS and IDFS in both univariate analyses and when adjusting for standard prognostic factors (p < 0.05). Preoperative S-HBEGF < 21.4 pg/mL was associated with shorter OS in both univariate and multivariate analyses, whereas association with shorter IDFS could only be demonstrated in the univariate analysis. In conclusion, our study demonstrated shorter survival in early-stage breast cancer patients who had low pretreatment levels of either S-EGFR or S-HBEGF.
Collapse
|
7
|
Kjær IM, Olsen DA, Alnor A, Brandslund I, Bechmann T, Madsen JS. EGFR and EGFR ligands in serum in healthy women; reference intervals and age dependency. Clin Chem Lab Med 2020; 57:1948-1955. [PMID: 31323001 DOI: 10.1515/cclm-2019-0376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/17/2019] [Indexed: 11/15/2022]
Abstract
Background The epidermal growth factor receptor (EGFR) system is involved in cancer pathogenesis and serves as an important target for multiple cancer treatments. EGFR and its ligands epidermal growth factor (EGF), heparin-binding epidermal growth factor (HB-EGF), betacellulin (BTC), amphiregulin (AREG) and transforming growth factor α (TGF-α) have potential applications as prognostic or predictive serological biomarkers in cancer. The aim was to establish EGFR and EGFR ligand reference intervals in healthy women. Methods EGFR and EGFR ligands were measured in serum from 419 healthy women aged 26-78 years. The need for age partitioned reference intervals was evaluated using Lahti's method. EGFR and EGF were analyzed using ELISA assays, whereas HB-EGF, BTC, AREG and TGF-α were analyzed using the highly sensitive automated single molecule array (Simoa) enabling detection below the lower reference limit for all six biomarkers. Results Reference intervals for EGFR and the EGFR ligands were determined as the 2.5th and 97.5th percentiles. All six biomarkers were detectable in all serum samples. For EGFR, EGF, HB-EGF and TGF-α, reference intervals were established for women <55 years and for women >55 years, whilst common reference intervals were established for AREG and BTC including women aged 26-78 years. Conclusions Age specific reference intervals were determined for EGFR, EGF, HB-EGF, BTC, AREG and TGF-α.
Collapse
Affiliation(s)
- Ina Mathilde Kjær
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Anne Alnor
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Ivan Brandslund
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Troels Bechmann
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Falzone L, Grimaldi M, Celentano E, Augustin LSA, Libra M. Identification of Modulated MicroRNAs Associated with Breast Cancer, Diet, and Physical Activity. Cancers (Basel) 2020; 12:cancers12092555. [PMID: 32911851 PMCID: PMC7564431 DOI: 10.3390/cancers12092555] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Healthy diet and physical activity are able to induce beneficial molecular modifications that have been associated with a lower risk of breast cancer (BC) incidence and a better prognosis for BC patients. Although the beneficial effects of healthy lifestyle have been described, the beneficial epigenetic modifications induced by dietary and exercise intervention in BC patients have not been elucidated yet. On these bases, the aim of the present study was to computationally identify microRNAs (miRNAs) strictly associated with BC progression and with dietary and exercise interventions. Through several computational approaches, a set of miRNAs modulated by diet and exercise and useful as diagnostic and prognostic biomarkers for BC was identified. The results obtained represent the starting point for further validation analyses performed on BC patients undergoing lifestyle interventions to propose the miRNAs here identified as novel biomarkers for BC management. Abstract Background: Several studies have shown that healthy lifestyles prevent the risk of breast cancer (BC) and are associated with better prognosis. It was hypothesized that lifestyle strategies induce microRNA (miRNA) modulation that, in turn, may lead to important epigenetic modifications. The identification of miRNAs associated with BC, diet, and physical activity may give further insights into the role played by lifestyle interventions and their efficacy for BC patients. To predict which miRNAs may be modulated by diet and physical activity in BC patients, the analyses of different miRNA expression datasets were performed. Methods: The GEO DataSets database was used to select miRNA expression datasets related to BC patients, dietary interventions, and physical exercise. Further bioinformatic approaches were used to establish the value of selected miRNAs in BC development and prognosis. Results: The analysis of datasets allowed the selection of modulated miRNAs associated with BC development, diet, and physical exercise. Seven miRNAs were also associated with the overall survival of BC patients. Conclusions: The identified miRNAs may play a role in the development of BC and may have a prognostic value in patients treated with integrative interventions including diet and physical activity. Validation of such modulated miRNAs on BC patients undergoing lifestyle strategies will be mandatory.
Collapse
Affiliation(s)
- Luca Falzone
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| | - Maria Grimaldi
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Egidio Celentano
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Livia S. A. Augustin
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| |
Collapse
|
9
|
Dai Y, Qiang W, Yu X, Cai S, Lin K, Xie L, Lan X, Wang D. Guizhi Fuling Decoction inhibiting the PI3K and MAPK pathways in breast cancer cells revealed by HTS 2 technology and systems pharmacology. Comput Struct Biotechnol J 2020; 18:1121-1136. [PMID: 32489526 PMCID: PMC7260686 DOI: 10.1016/j.csbj.2020.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
As one of the classical traditional Chinese medicine (TCM) prescriptions in treating gynecological tumors, Guizhi Fuling Decoction (GFD) has been used to treat breast cancer (BRCA). Nonetheless, the potential molecular mechanism remains unclear so far. Therefore, systems pharmacology was used in combination with high throughput sequencing-based high throughput screening (HTS2) assay and bioinformatic technologies in this study to investigate the molecular mechanisms of GFD in treating BRCA. By computationally analyzing 76 active ingredients in GFD, 38 potential therapeutic targets were predicted and significantly enriched in the "pathways in cancer". Meanwhile, experimental analysis was carried out to examine changes in the expression levels of 308 genes involved in the "pathways in cancer" in BRCA cells treated by five herbs of GFD utilizing HTS2 platform, and 5 key therapeutic targets, including HRAS, EGFR, PTK2, SOS1, and ITGB1, were identified. The binding mode of active compounds to these five targets was analyzed by molecular docking and molecular dynamics simulation. It was found after integrating the computational and experimental data that, GFD possessed the anti-proliferation, pro-apoptosis, and anti-angiogenesis activities mainly through regulating the PI3K and the MAPK signaling pathways to inhibit BRCA. Besides, consistent with the TCM theory about the synergy of Cinnamomi Ramulus (Guizhi) by Cortex Moutan (Mudanpi) in GFD, both of these two herbs acted on the same targets and pathways. Taken together, the combined application of computational systems pharmacology techniques and experimental HTS2 platform provides a practical research strategy to investigate the functional and biological mechanisms of the complicated TCM prescriptions.
Collapse
Affiliation(s)
- Yifei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weijie Qiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiankuo Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siwei Cai
- Department of Electronic and Computer Engineering, College of Engineering, Drexel University, Philadelphia 19104, USA
| | - Kequan Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Liu J, Zhao SY, Jiang Q, Qu Y, Huang X, Du J, Sun W, Ye Q. Long noncoding RNA MYLK-AS1 promotes growth and invasion of hepatocellular carcinoma through the EGFR/HER2-ERK1/2 signaling pathway. Int J Biol Sci 2020; 16:1989-2000. [PMID: 32398965 PMCID: PMC7211179 DOI: 10.7150/ijbs.43062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family members EGFR and HER2 play pivotal roles in oncogenesis and tumor progression. Anticancer drugs targeting EGFR and HER2 have been developed. Long noncoding RNAs (lncRNAs) have been reported to regulate cancer development and progression through signaling pathways. However, lncRNAs that regulate EGFR and HER2 expression remain unknown. Here, we show that lncRNA myosin light chain kinase-antisense RNA 1 (MYLK-AS1) promotes EGFR and HER2 expression and activates their downstream signaling pathway. MYLK-AS1 increases hepatocellular carcinoma (HCC) cell proliferation, migration, and invasion in vitro. Consistently, MYLK-AS1 knockdown hinders tumor growth in vivo. Mechanistically, MYLK-AS1 enhances HCC cell proliferation, migration, and invasion through stimulating the EGFR/HER2-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. In addition, MYLK-AS1 is overexpressed in HCC patients and negatively correlated with HCC prognosis. Thus, MYLK-AS1 is an upstream regulator of EGFR/HER2, and acts as an oncogene, suggesting an additional target for cancer therapeutics.
Collapse
Affiliation(s)
- Juan Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.,Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Si-Yuan Zhao
- Medical unit, 91638 Troops, PLA, Beijing 102202, China
| | - Qiwei Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yuanyuan Qu
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xiaomei Huang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Jundong Du
- Department of Surgery, Hebei Yanda Hospital, Hebei 065201, China
| | - Wanjun Sun
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|
11
|
Dysregulated EGFR pathway in serum in early-stage breast cancer patients: A case control study. Sci Rep 2020; 10:6714. [PMID: 32317675 PMCID: PMC7174424 DOI: 10.1038/s41598-020-63375-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and its ligands are involved in cancer pathogenesis and they might serve as circulating biomarkers. The current study aims to investigate if abnormal pre-treatment serum levels of EGFR and EGFR ligands are present in women with early-stage breast cancer and if up- or downregulation of EGFR and EGFR ligands occur in defined patient subgroups. Pre-treatment serum samples were obtained from 311 women with newly diagnosed early-stage breast cancer and from 419 healthy women and analysed for EGFR and the ligands: Epidermal growth factor (EGF), heparin-binding epidermal growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), and transforming growth factor α (TGF-α). Previously, age-dependent 95% reference intervals for EGFR and the EGFR ligands have been established based on the healthy women population. S-EGFR, S-EGF, S-HBEGF, S-AREG, and S-TGFα were all significantly different in women with breast cancer compared to healthy women (p < 0.05). Elevated S-EGFR, according to the reference intervals, was present in 11.3% of breast cancer patients, whereas decreased S-EGF was found in 11.6%. Elevated S-EGFR was associated with estrogen receptor positivity of tumor (ER+) and a subgroup of ER + breast cancer patients showed markedly elevated S-EGFR (>120 ng/mL).
Collapse
|
12
|
Han Q, Han C, Liao X, Huang K, Wang X, Yu T, Yang C, Li G, Han B, Zhu G, Liu Z, Zhou X, Liu J, Su H, Shang L, Peng T, Ye X. Prognostic value of Kinesin-4 family genes mRNA expression in early-stage pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy. Cancer Med 2019; 8:6487-6502. [PMID: 31489986 PMCID: PMC6826000 DOI: 10.1002/cam4.2524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/13/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the potential prognostic value of Kinesin-4 family genes mRNA expression in early-stage pancreatic ductal adenocarcinoma (PDAC) patients after pancreaticoduodenectomy. METHODS Kaplan-Meier survival analysis method with log-rank test and Cox proportional hazards regression analysis were performed to figure out the association between Kinesin-4 family genes expression and PDAC patients overall survival time. Joint-effect survival analysis and stratified survival analysis were carried out to assess the prognosis prediction value of prognosis-related gene. Nomogram was constructed for the individualized prognosis prediction. In addition, we had used the gene set enrichment analysis and genome-wide co-expression analysis to further explore the potential mechanism. RESULTS KIF21A expression level was significantly associated with PDAC patient clinical prognosis outcome and patient with a high expression of KIF21A would have a shorter overall survival time. The prognosis prediction significance of KIF21A was well validated by the joint-effect survival analysis, stratified survival analysis, and nomogram. Meanwhile, the gene set enrichment analysis and genome-wide co-expression analysis revealed that KIF21A might involve in DNA damage and repair, transcription and translation process, post-translation protein modification, cell cycle, carcinogensis genes and pathways. CONCLUSIONS Our current research demonstrated that KIF21A could serve as a potential prognostic biomarker for patient with early-stage PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Quanfa Han
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Guanghui Li
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Bowen Han
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Junqi Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Hao Su
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Liming Shang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Tao Peng
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Xinping Ye
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| |
Collapse
|
13
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Plasma cell-free DNA chromosomal instability analysis by low-pass whole-genome sequencing to monitor breast cancer relapse. Breast Cancer Res Treat 2019; 178:63-73. [PMID: 31364001 DOI: 10.1007/s10549-019-05375-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chromosomal instabilities (CIN) of plasma cell-free DNA (cfDNA) are common in breast cancer. We aimed to investigate the value of cfDNA CIN in monitoring the breast cancer relapse and additionally to compare it with the traditional biomarkers (CA15-3 and CEA). METHODS Overall 62 recurrent breast cancer patients and 20 healthy controls were recruited. Low-pass whole-genome sequencing (LPWGS) was performed to detect cfDNA CIN. A CIN score was calculated. The performance of CA15-3, CEA, and CIN score in monitoring the recurrence was investigated with receiver operating characteristic (ROC) curve and the area under curve (AUC). Multivariable Cox proportional hazard model was established to analyze the correlations between copy number gain/loss and disease-free survival (DFS). RESULTS cfDNA CIN achieved the positive rate of 77.6% [(95% confidence interval (CI) 73.4-95.3%)] among recurrent breast cancer patients, with an AUC value of 0.933, superior to CA15-3 (positive rate: 38.7%; AUC: 0.864) and CEA (positive rate: 41.93%; AUC: 0.878) (P < 0.01). The combination of cfDNA CIN with two biomarkers further increased the positive rate to 88.7% (95% confidence interval 77.5-95.0%). cfDNA CIN achieved better performance in patients with shorter DFS (≤ 41 months), with an AUC value of 0.975. CONCLUSIONS cfDNA CIN yields a higher accuracy in monitoring breast cancer recurrence compared to traditional biomarkers (CA15-3 and CEA), especially for biomarker-negative patients. The combination of cfDNA CIN to traditional biomarkers further improved the detection rate of recurrence, which may provide a new method for monitoring the early relapse of breast cancer, though further investigations are warranted.
Collapse
|
15
|
Miret NV, Pontillo CA, Zárate LV, Kleiman de Pisarev D, Cocca C, Randi AS. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. ENVIRONMENTAL RESEARCH 2019; 173:330-341. [PMID: 30951959 DOI: 10.1016/j.envres.2019.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Breast cancer incidence is increasing globally and exposure to endocrine disruptors has gained importance as a potential risk factor. Hexachlorobenzene (HCB) was once used as a fungicide and, despite being banned, considerable amounts are still released into the environment. HCB acts as an endocrine disruptor in thyroid, uterus and mammary gland and was classified as possibly carcinogenic to human. This review provides a thorough analysis of results obtained in the last 15 years of research and evaluates data from assays in mammary gland and breast cancer in diverse animal models. We discuss the effects of environmentally relevant HCB concentrations on the normal mammary gland and different stages of carcinogenesis, and attempt to elucidate its mechanisms of action at molecular level. HCB weakly binds to the aryl hydrocarbon receptor (AhR), activating both membrane (c-Src) and nuclear pathways. Through c-Src stimulation, AhR signaling interacts with other membrane receptors including estrogen receptor-α, insulin-like growth factor-1 receptor, epidermal growth factor receptor and transforming growth factor beta 1 receptors. In this way, several pathways involved in mammary morphogenesis and breast cancer development are modified, inducing tumor progression. HCB thus stimulates epithelial cell proliferation, preneoplastic lesions and alterations in mammary gland development as well as neoplastic cell migration and invasion, metastasis and angiogenesis in breast cancer. In conclusion, our findings support the hypothesis that the presence and bioaccumulation of HCB in high-fat tissues and during highly sensitive time windows such as pregnancy, childhood and adolescence make exposure a risk factor for breast tumor development.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, CP1113, Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2373. [PMID: 31126047 PMCID: PMC6566681 DOI: 10.3390/s19102373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.
Collapse
Affiliation(s)
- Imad Abrao Nemeir
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Joseph Saab
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Walid Hleihel
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nicole Jafferzic-Renault
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
17
|
Hindy JR, Souaid T, Kourie HR, Kattan J. Targeted therapies in urothelial bladder cancer: a disappointing past preceding a bright future? Future Oncol 2019; 15:1505-1524. [PMID: 30977669 DOI: 10.2217/fon-2018-0459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bladder cancer (BC) is the most frequent cancer affecting the urinary tract. With the growing era of targeted therapies around the 2000s, many trials evaluated the efficacy of targeted therapy in advanced BC. However, no approval was given yet to any form of targeted therapy when it comes to BC. The aim of this paper was to report the most pivotal trials that evaluated different families of targeted therapy in the treatment of BC, according to their biomarkers (FGFR3, EGFR, HER2, VEGF and PI3K/AKT/mTOR). The ongoing trials testing targeted therapies in advanced BC were then summarized. Finally, the different immunotherapies approved for this disease and their potential combination with targeted therapy were addressed.
Collapse
Affiliation(s)
- Joya-Rita Hindy
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Tarek Souaid
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Oncology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Kattan
- Department of Oncology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
18
|
Nadeem Abbas M, Kausar S, Wang F, Zhao Y, Cui H. Advances in Targeting the Epidermal Growth Factor Receptor Pathway by Synthetic Products and Its Regulation by Epigenetic Modulators As a Therapy for Glioblastoma. Cells 2019; 8:cells8040350. [PMID: 31013819 PMCID: PMC6523687 DOI: 10.3390/cells8040350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary tumor of the nervous system, and approximately 50% of patients exhibit the most aggressive form of the cancer, glioblastoma. The biological function of epidermal growth factor receptor (EGFR) in tumorigenesis and progression has been established in various types of cancers, since it is overexpressed, mutated, or dysregulated. Its overexpression has been shown to be associated with enhanced metastatic potential in glioblastoma, with EGFR at the top of a downstream signaling cascade that controls basic functional properties of glioblastoma cells such as survival, cell proliferation, and migration. Thus, EGFR is considered as an important therapeutic target in glioblastoma. Many anti-EGFR therapies have been investigated both in vivo and in vitro, making their way to clinical studies. However, in clinical trials, the potential efficacy of anti-EGFR therapies is low, primarily because of chemoresistance. Currently, a range of epigenetic drugs including histone deacetylase (HDAC) inhibitors, DNA methylation and histone inhibitors, microRNA, and different types of EGFR inhibitor molecules are being actively investigated in glioblastoma patients as therapeutic strategies. Here, we describe recent knowledge on the signaling pathways mediated by EGFR/EGFR variant III (EGFRvIII) with regard to current therapeutic strategies to target EGFR/EGFRvIII amplified glioblastoma.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Yongju Zhao
- College of Animal and Technology, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
20
|
Han L, Li L, Wang N, Xiong Y, Li Y, Gu Y. Relationship of Epidermal Growth Factor Receptor Expression with Clinical Symptoms and Metastasis of Invasive Breast Cancer. J Interferon Cytokine Res 2018; 38:578-582. [PMID: 30431376 DOI: 10.1089/jir.2018.0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This research explores the role of epidermal growth factor receptor (EGFR) in the clinical symptoms and metastasis of patients with invasive breast cancer (IBC). A total of 189 patients with IBC were selected in this research. Immunohistochemical staining and Western blot were performed to detect EGFR in IBC and paratumor breast tissues. The results of statistical analysis showed that the positive expression of EGFR in IBC (140/189 = 74.07%) was significantly higher than that of paratumor breast tissues (23/189 = 12.16%) (P < 0.01). There was no significant correlation between the expression of EGFR and patients' onset age as well as menopausal status (P > 0.05), but it was significantly correlated with the diameter of tumor mass, lymph node metastasis, TNM staging, and histological gradation (P < 0.05). The positive expression of EGFR in estrogen receptor (ER)-negative group (64 tissues, 84.2%) was significantly higher than that in ER-positive group (76 tissues, 67.3%) (P < 0.05). There was no significant difference in the positive expression of EGFR between progesterone receptor (PR)-positive group (73 tissues, 73.0%) and PR-negative group (67 tissues, 75.3%) (P > 0.05). The positive expression of EGFR in human epidermal growth factor receptor 2 (HER2)-positive group (67 tissues, 84.8%) was significantly higher than that in HER2-negative group (73 tissues, 66.4%), with a significant difference (P < 0.05). The high expression of EGFR can be used to predict the severity of IBC, as well as the candidate biomarkers of metastasis, and it may also be associated with poor prognosis of IBC patients.
Collapse
Affiliation(s)
- Luhong Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Yin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| |
Collapse
|
21
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
22
|
Development of a three-plex single molecule immunoassay enabling measurement of the EGFR ligands amphiregulin, betacellulin and transforming growth factor α simultaneously in human serum samples. J Immunol Methods 2018; 459:63-69. [PMID: 29803775 DOI: 10.1016/j.jim.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prior to large studies in breast cancer patients and healthy individuals we established a sensitive three-plex immunoassay to measure the EGFR ligands amphiregulin (AR), betacellulin (BTC) and transforming growth factor α (TGF-α) simultaneously in human serum samples. METHOD The three-plex immunoassay was developed using single molecule array (Simoa) technology and requires only 20 μL of serum. RESULTS AR, BTC and TGF-α were first established as three single-plex assays. Multiplexing the three single-plex assays showed no significant cross reactivity between the reagents. The concentrations of the ligands in serum samples showed correlations r2 ≥ 0.84 between the single-plex and three-plex methods. The three-plex assay demonstrated limit of detection levels at 0.16 ng/L for AR, 0.23 ng/L for BTC and 0.22 ng/L for TGF-α. Total coefficients of variations were 8.5%-31% for AR, 11%-21.8% for BTC and 12.4%-16.2% for TGF-α. Spiking experiments showed a mean recovery of 97% for AR, 86% for BTC and 81% for TGF-α. The concentrations of the EGFR ligands did not change significantly after series of freeze thaw cycles or incubation at 22 °C for up to 24 h. CONCLUSION This robust three-plex assay with up to 40-fold increase in sensitivity relative to conventional ELISA is the first published method that has the required sensitivity to measure AR, BTC and TGF-α simultaneously in human blood samples.
Collapse
|
23
|
Drukker K, Li H, Antropova N, Edwards A, Papaioannou J, Giger ML. Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival "early on" in neoadjuvant treatment of breast cancer. Cancer Imaging 2018; 18:12. [PMID: 29653585 PMCID: PMC5899353 DOI: 10.1186/s40644-018-0145-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
Background The hypothesis of this study was that MRI-based radiomics has the ability to predict recurrence-free survival “early on” in breast cancer neoadjuvant chemotherapy. Methods A subset, based on availability, of the ACRIN 6657 dynamic contrast-enhanced MR images was used in which we analyzed images of all women imaged at pre-treatment baseline (141 women: 40 with a recurrence, 101 without) and all those imaged after completion of the first cycle of chemotherapy, i.e., at early treatment (143 women: 37 with a recurrence vs. 105 without). Our method was completely automated apart from manual localization of the approximate tumor center. The most enhancing tumor volume (METV) was automatically calculated for the pre-treatment and early treatment exams. Performance of METV in the task of predicting a recurrence was evaluated using ROC analysis. The association of recurrence-free survival with METV was assessed using a Cox regression model controlling for patient age, race, and hormone receptor status and evaluated by C-statistics. Kaplan-Meier analysis was used to estimate survival functions. Results The C-statistics for the association of METV with recurrence-free survival were 0.69 with 95% confidence interval of [0.58; 0.80] at pre-treatment and 0.72 [0.60; 0.84] at early treatment. The hazard ratios calculated from Kaplan-Meier curves were 2.28 [1.08; 4.61], 3.43 [1.83; 6.75], and 4.81 [2.16; 10.72] for the lowest quartile, median quartile, and upper quartile cut-points for METV at early treatment, respectively. Conclusion The performance of the automatically-calculated METV rivaled that of a semi-manual model described for the ACRIN 6657 study (published C-statistic 0.72 [0.60; 0.84]), which involved the same dataset but required semi-manual delineation of the functional tumor volume (FTV) and knowledge of the pre-surgical residual cancer burden.
Collapse
Affiliation(s)
- Karen Drukker
- Department of Radiology, MC2026, 5841 S Maryland Ave, Chicago, IL, USA.
| | - Hui Li
- Department of Radiology, MC2026, 5841 S Maryland Ave, Chicago, IL, USA
| | - Natalia Antropova
- Department of Radiology, MC2026, 5841 S Maryland Ave, Chicago, IL, USA
| | - Alexandra Edwards
- Department of Radiology, MC2026, 5841 S Maryland Ave, Chicago, IL, USA
| | - John Papaioannou
- Department of Radiology, MC2026, 5841 S Maryland Ave, Chicago, IL, USA
| | - Maryellen L Giger
- Department of Radiology, MC2026, 5841 S Maryland Ave, Chicago, IL, USA
| |
Collapse
|