1
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Marsool MDM, Prajjwal P, Reddy YB, Marsool ADM, Lam JR, Nandwana V. Newer modalities in the management of Alzheimer's dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis Mon 2023; 69:101547. [PMID: 36931947 DOI: 10.1016/j.disamonth.2023.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurological condition characterized by a gradual and progressive decline in memory, language, emotion, and cognition. It mainly affects elderly people. Due to the effects of AD, pharmaceutical medications and anticholinesterases have been vigorously promoted and approved by the FDA as a form of AD therapy. However, it was progressively found that these drugs did not address the underlying causes of AD pathogenesis; rather, they focused on the symptoms in order to enhance patients' cognitive outcomes. Consequently, a hunt for superior disease-modifying options is launched. Designing new therapeutic agents requires a thorough understanding of the neuroprotective processes and varied functions carried out by certain genes, and antibodies. In this comprehensive review article, we give an overview of the history of Alzheimer's disease, the significance of the blood-brain barrier in determining the scope of treatment options, as well as the advantages and disadvantages of the current therapeutic treatment options for stem cell therapy, immunotherapy, regenerative therapy, and improved Alzheimer's disease care and diagnosis. We have also included a discussion on the potential role of aducanumab and Lecanemab as a cutting-edge therapy in refractory Alzheimer's disease patients. Lecanemab has been recently approved by the FDA for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Justin Riley Lam
- Internal Medicine, Cebu Institute of Medicine, Cebu, Philippines
| | - Varsha Nandwana
- Neurology, Virginia Tech Carilion School of Medicine, Virginia, USA
| |
Collapse
|
3
|
Bao H, Shen Y. Unmasking BACE1 in aging and age-related diseases. Trends Mol Med 2023; 29:99-111. [PMID: 36509631 DOI: 10.1016/j.molmed.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer's disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new 'druggable' targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1's actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.
Collapse
Affiliation(s)
- Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
5
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
6
|
Impact of Gut Microbiome Lactobacillus spp. in Brain Function and its Medicament towards Alzheimer’s Disease Pathogenesis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease is neurodegenerative dementia which has significant health complications in the old age group. An imbalance in gut microbiota can influence to cause several diseases like chronic disorders, depression, type II diabetics, and neurological disorders like AD. Aging is one of the major causes of the development of neurodegenerative disease due to the decreasing levels of neurotransmitters, oxidative stress, chronic inflammation, and apoptosis. These harmful effects of aging can be prevented by probiotics usage. The gut-microbiota is capable to control the brain function through the gut-brain axis. Lactobacillus strains are considered as beneficial microorganism because of its importance of the maintenance in healthy intestinal microflora, immunomodulation, and intestinal pathogenic intervention. They have diverse applications in the medical field with properties like antioxidant, anticancer, anti-inflammatory, anti-proliferative, anti-obesity, and anti-diabetic activities. Probiotic supplementation with Lactobacillus strains shows an optimistic trend to use it as a significant therapy for cognitive symptoms. This review article put forwards the significance of the gut-brain axis and the contribution of Lactobacillus strains as a probiotic supplement and its therapeutic innovations for future aspects and the limitation to treat AD-related pathogenesis are briefly elucidated.
Collapse
|
7
|
Koseoglu E. New treatment modalities in Alzheimer's disease. World J Clin Cases 2019; 7:1764-1774. [PMID: 31417922 PMCID: PMC6692264 DOI: 10.12998/wjcc.v7.i14.1764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is still a major public health challenge without an effective treatment to prevent or stop it. Routinely used acetylcholinesterase inhibitors and memantine seem to slow disease progression only to a limited extend. Therefore, many investigations on new drugs and other treatment modalities are ongoing in close association with increasing knowledge of the pathophysiology of the disease. Here, we review the studies about the new treatment modalities in AD with a classification based on their main targets, specifically pathologic structures of the disease, amyloid and tau, neural network dysfunction with special interest to the regulation of gamma oscillations, and attempts for the restoration of neural tissue via regenerative medicine. Additionally, we describe the evolving modalities related to gut microbiota, modulation, microglial function, and glucose metabolism.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
8
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
9
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
10
|
Devraj K, Poznanovic S, Spahn C, Schwall G, Harter PN, Mittelbronn M, Antoniello K, Paganetti P, Muhs A, Heilemann M, Hawkins RA, Schrattenholz A, Liebner S. BACE-1 is expressed in the blood-brain barrier endothelium and is upregulated in a murine model of Alzheimer's disease. J Cereb Blood Flow Metab 2016; 36:1281-94. [PMID: 26661166 PMCID: PMC4929696 DOI: 10.1177/0271678x15606463] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023]
Abstract
Endothelial cells of the blood-brain barrier form a structural and functional barrier maintaining brain homeostasis via paracellular tight junctions and specific transporters such as P-glycoprotein. The blood-brain barrier is responsible for negligible bioavailability of many neuroprotective drugs. In Alzheimer's disease, current treatment approaches include inhibitors of BACE-1 (β-site of amyloid precursor protein cleaving enzyme), a proteinase generating neurotoxic β-amyloid. It is known that BACE-1 is highly expressed in endosomes and membranes of neurons and glia. We now provide evidence that BACE-1 is expressed in blood-brain barrier endothelial cells of human, mouse, and bovine origin. We further show its predominant membrane localization by 3D-dSTORM super-resolution microscopy, and by biochemical fractionation that further shows an abluminal distribution of BACE-1 in brain microvessels. We confirm its functionality in processing APP in primary mouse brain endothelial cells. In an Alzheimer's disease mouse model we show that BACE-1 is upregulated at the blood-brain barrier compared to healthy controls. We therefore suggest a critical role for BACE-1 at the blood-brain barrier in β-amyloid generation and in vascular aspects of Alzheimer's disease, particularly in the development of cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Kavi Devraj
- Edinger Institute of Neurology, Goethe University Medical School, Frankfurt, Germany
| | | | - Christoph Spahn
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
| | | | - Patrick N Harter
- Edinger Institute of Neurology, Goethe University Medical School, Frankfurt, Germany
| | - Michel Mittelbronn
- Edinger Institute of Neurology, Goethe University Medical School, Frankfurt, Germany
| | | | | | | | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
| | - Richard A Hawkins
- Dept of Physiology/Biophysics, University of Health Sci./Chicago Medical School, Illinois, USA
| | | | - Stefan Liebner
- Edinger Institute of Neurology, Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
11
|
A Non-Canonical Role for β-Secretase in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:333-9. [PMID: 26427429 DOI: 10.1007/978-3-319-17121-0_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It has long been established that β-Secretase (BACE) plays a critical role in the formation of amyloid plaques in Alzheimer's Disease patients, but it is only recently that the importance of β-secretases in retinal pathophysiology has been recognized. BACE expression is elevated in response to stress, and downregulation results in lysosomal abnormalities and mitochondrial changes. Inhibition of BACE can lead to reduced retinal function, retinal thinning, lipofuscin accumulation and vascular dysfunction in mice. Furthermore, BACE inhibition accelerates choroidal neovascularization (CNV) in mice. We propose that BACE plays an important role in retinal homeostasis and that BACE upregulation in response to stress is a protective measure.
Collapse
|
12
|
Lin N, Chen LM, Pan XD, Zhu YG, Zhang J, Shi YQ, Chen XC. Tripchlorolide Attenuates β-amyloid Generation via Suppressing PPARγ-Regulated BACE1 Activity in N2a/APP695 Cells. Mol Neurobiol 2015; 53:6397-6406. [PMID: 26582466 DOI: 10.1007/s12035-015-9542-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 12/28/2022]
Abstract
Due to its apparent rate-limiting function, BACE1 (β-secretase) appears to be a prime target for prevention of amyloid-β (Aβ) generation in brains with Alzheimer's disease (AD). The activity of BACE1 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor binding site of the BACE1 promoter, indicating that PPARγ may be a potential target for AD treatment. Several studies have demonstrated that PPARγ activation is involved in the immunostimulation of amyloid-β precursor protein processing by nonsteroidal anti-inflammatory drugs (NSAIDs). The present study found that tripchlorolide (T4), with a similar chemical structure to that of NSAIDs, decreased the levels of Aβ secreted in N2a-APP695 cells. T4 treatment reduced the mRNA and protein levels of BACE1 and the protein level of sAPPβ, a cleaved N-terminal fragment of APP by BACE1. The treatment also translocated PPARγ from cytoplasm to nuclear. Intriguingly, T4, like pioglitazone (a PPARγ agonist), suppressed the BACE1 activity in N2a-APP695 cells, which was attenuated by GW9662 (a PPARγ antagonist). These results indicate that T4 may be a PPARγ agonist to enhance the binding of nuclear PPARγ to the BACE1 promoter, which may in turn inhibit the transcription and translation of BACE1, suppress the activity of BACE1, and ultimately attenuate the generation of Aβ. Due to its capability to alter Aβ generation and to protect central neural system against the neurotoxicity of Aβ, T4 may serve as a promising agent in modulating Aβ-related pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Nan Lin
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Li-Min Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Dong Pan
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yuan-Gui Zhu
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jing Zhang
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yan-Qing Shi
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Chun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China. .,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
13
|
Kumalo HM, Bhakat S, Soliman ME. Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1064831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hezekiel M. Kumalo
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Soumendranath Bhakat
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE, 22100 Lund, Sweden
| | - Mahmoud E. Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
14
|
Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease. Curr Med Chem 2015; 22:373-404. [PMID: 25386820 PMCID: PMC4435057 DOI: 10.2174/0929867321666141106122628] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β antiaggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NOreleasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD.
Collapse
Affiliation(s)
| | | | | | - Barbara Malawska
- Jagiellonian University, Medical College, Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, 30-688 Krakow, Medyczna 9, Poland.
| |
Collapse
|
15
|
Yan XX, Ma C, Gai WP, Cai H, Luo XG. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J Alzheimers Dis 2014; 38:705-18. [PMID: 24081378 DOI: 10.3233/jad-131400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-Secretase-1 (BACE1) is the rate-limiting enzyme for the genesis of amyloid-β (Aβ) peptides, the main constituents of the amyloid plaques in the brains of Alzheimer's disease (AD) patients. BACE1 is being evaluated as an anti-Aβ target for AD therapy. Recent studies indicate that BACE1 elevation is associated with axonal and presynaptic pathology during plaque development. Evidence also points to a biological role for BACE1 in axonal outgrowth and synapse formation during development. Axonal, including presynaptic, pathology exists in AD as well as many other neurological disorders such as Parkinson's disease, epilepsy, stroke, and trauma. In this review, we discuss pharmaceutical BACE1 inhibition as a therapeutic option for axonal pathogenesis, in addition to amyloid pathology. We first introduce the amyloidogenic processing of amyloid-β protein precursor and describe the normal expression pattern of the amyloidogenic proteins in the brain, with an emphasis on BACE1. We then address BACE1 elevation relative to amyloid plaque development, followed by updating recent understanding of a neurotrophic role of BACE1 in axon and synapse development. We further elaborate the occurrence of axonal pathology in some other neurological conditions. Finally, we propose pharmacological inhibition of excessive BACE1 activity as an option to mitigate early axonal pathology occurring in AD and other neurological disorders.
Collapse
Affiliation(s)
- Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
16
|
Liu H, Wang L, Lv M, Pei R, Li P, Pei Z, Wang Y, Su W, Xie XQ. AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 2014; 54:1050-60. [PMID: 24597646 PMCID: PMC4010297 DOI: 10.1021/ci500004h] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Alzheimer’s
disease (AD) is one of the most complicated progressive neurodegeneration
diseases that involve many genes, proteins, and their complex interactions.
No effective medicines or treatments are available yet to stop or
reverse the progression of the disease due to its polygenic nature.
To facilitate discovery of new AD drugs and better understand the
AD neurosignaling pathways involved, we have constructed an Alzheimer’s
disease domain-specific chemogenomics knowledgebase, AlzPlatform (www.cbligand.org/AD/) with cloud computing and sourcing
functions. AlzPlatform is implemented with powerful computational
algorithms, including our established TargetHunter, HTDocking, and
BBB Predictor for target identification and polypharmacology analysis
for AD research. The platform has assembled various AD-related chemogenomics
data records, including 928 genes and 320 proteins related to AD,
194 AD drugs approved or in clinical trials, and 405 188 chemicals
associated with 1 023 137 records of reported bioactivities
from 38 284 corresponding bioassays and 10 050 references.
Furthermore, we have demonstrated the application of the AlzPlatform
in three case studies for identification of multitargets and polypharmacology
analysis of FDA-approved drugs and also for screening and prediction
of new AD active small chemical molecules and potential novel AD drug
targets by our established TargetHunter and/or HTDocking programs.
The predictions were confirmed by reported bioactivity data and our
in vitro experimental validation. Overall, AlzPlatform will enrich
our knowledge for AD target identification, drug discovery, and polypharmacology
analyses and, also, facilitate the chemogenomics data sharing and
information exchange/communications in aid of new anti-AD drug discovery
and development.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; Drug Discovery Institute; University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014; 129:756-69. [PMID: 24517464 PMCID: PMC4314671 DOI: 10.1111/jnc.12675] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.
Collapse
Affiliation(s)
- Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
18
|
Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance. J Neurosci 2013; 33:13138-49. [PMID: 23926267 DOI: 10.1523/jneurosci.4790-12.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.
Collapse
|
19
|
Fernández-Bachiller MI, Horatscheck A, Lisurek M, Rademann J. Alzheimer's disease: identification and development of β-secretase (BACE-1) binding fragments and inhibitors by dynamic ligation screening (DLS). ChemMedChem 2013; 8:1041-56. [PMID: 23757181 DOI: 10.1002/cmdc.201300078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/25/2013] [Indexed: 11/12/2022]
Abstract
The application of dynamic ligation screening (DLS), a methodology for fragment-based drug discovery (FBDD), to the aspartic protease β-secretase (BACE-1) is reported. For this purpose, three new fluorescence resonance energy transfer (FRET) substrates were designed and synthesized. Their kinetic parameters (Vmax , KM , and kcat ) were determined and compared with a commercial substrate. Secondly, a peptide aldehyde was designed as a chemically reactive inhibitor (CRI) based on the Swedish mutation substrate sequence. Incubation of this CRI with the protease, a FRET substrate, and one amine per well taken from an amine library, which was assembled by a maximum common substructure (MCS) approach, revealed the fragment 3-(3-aminophenyl)-2H-chromen-2-one (1) to be a competitive BACE-1 inhibitor that enhanced the activity of the CRI. Irreversibly formed fragment combination products of 1 with the initial peptide sequence were active and confirmed the targeting of the active site through the ethane-1,2-diamine isostere. Finally, structure-assisted combination of fragment 1 with secondary fragments that target the S1 site in hit optimization yielded novel, entirely fragment-based BACE-1 inhibitors with up to 30-fold improved binding affinity. Interactions with the protein were explained by molecular modeling studies, which indicate that the new fragment combinations interact with the catalytic aspartic acid dyad, as well as with the adjacent binding sites required for potency.
Collapse
Affiliation(s)
- María Isabel Fernández-Bachiller
- Medicinal Chemistry Department, Leibniz Institut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch, Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Parthsarathy V, McClean PL, Hölscher C, Taylor M, Tinker C, Jones G, Kolosov O, Salvati E, Gregori M, Masserini M, Allsop D. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. PLoS One 2013; 8:e54769. [PMID: 23382963 PMCID: PMC3561363 DOI: 10.1371/journal.pone.0054769] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/14/2012] [Indexed: 02/01/2023] Open
Abstract
Previously, we have developed a retro-inverso peptide inhibitor (RI-OR2, rGffvlkGr) that blocks the in vitro formation and toxicity of the Aβ oligomers which are thought to be a cause of neurodegeneration and memory loss in Alzheimer’s disease. We have now attached a retro-inverted version of the HIV protein transduction domain ‘TAT’ to RI-OR2 to target this new inhibitor (RI-OR2-TAT, Ac-rGffvlkGrrrrqrrkkrGy-NH2) into the brain. Following its peripheral injection, a fluorescein-labelled version of RI-OR2-TAT was found to cross the blood brain barrier and bind to the amyloid plaques and activated microglial cells present in the cerebral cortex of 17-months-old APPswe/PS1ΔE9 transgenic mice. Daily intraperitoneal injection of RI-OR2-TAT (at 100 nmol/kg) for 21 days into 10-months-old APPswe/PS1ΔE9 mice resulted in a 25% reduction (p<0.01) in the cerebral cortex of Aβ oligomer levels, a 32% reduction (p<0.0001) of β-amyloid plaque count, a 44% reduction (p<0.0001) in the numbers of activated microglial cells, and a 25% reduction (p<0.0001) in oxidative damage, while the number of young neurons in the dentate gyrus was increased by 210% (p<0.0001), all compared to control APPswe/PS1ΔE9 mice injected with vehicle (saline) alone. Our data suggest that oxidative damage, inflammation, and inhibition of neurogenesis are all a downstream consequence of Aβ aggregation, and identify a novel brain-penetrant retro-inverso peptide inhibitor of Aβ oligomer formation for further testing in humans as a potential disease-modifying treatment for Alzheimer’s disease.
Collapse
Affiliation(s)
- Vadivel Parthsarathy
- School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, United Kingdom
| | - Paula L. McClean
- School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, United Kingdom
| | - Christian Hölscher
- School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, United Kingdom
| | - Mark Taylor
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Claire Tinker
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Glynn Jones
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Oleg Kolosov
- Department of Physics, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Elisa Salvati
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Milan, Italy
| | - Maria Gregori
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Milan, Italy
| | - Massimo Masserini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Milan, Italy
| | - David Allsop
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Nastase AF, Boyd DB. Simple structure-based approach for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer's disease. J Chem Inf Model 2012. [PMID: 23198745 DOI: 10.1021/ci300331d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) is a target of interest for treating patients with Alzheimer's disease (AD). Inhibition of BACE1 may prevent amyloid-ß (Aß) plaque formation and the development or progression of Alzheimer's disease. Known BACE1 inhibitors were analyzed using computational chemistry and cheminformatics techniques to search for quantitative structure-activity relationships (QSAR). A remarkable relationship was found with only two simple descriptors. The square of the linear correlation coefficient r(2) is 0.75. The main descriptor is the number of hydrophobic contacts in the range 4-5 Å between the atoms of the ligand and active site. The other descriptor is the number of short (<2.8 Å) hydrogen bonds. Our approach uses readily available structural data on protein-inhibitor complexes in the Protein Data Bank (PDB) but would be equally applicable to proprietary structural biology data. The findings can aid structure-based design of improved BACE-1 inhibitors. If an inhibitor has less observed activity than predicted by our correlation, the compound should be retested because the first assay may have underestimated the compound's true activity.
Collapse
Affiliation(s)
- Anthony F Nastase
- Department of Chemistry and Chemical Biology, School of Science, Indiana University-Purdue University-Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
22
|
Cai J, Qi X, Kociok N, Skosyrski S, Emilio A, Ruan Q, Han S, Liu L, Chen Z, Bowes Rickman C, Golde T, Grant MB, Saftig P, Serneels L, de Strooper B, Joussen AM, Boulton ME. β-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med 2012; 4:980-991. [PMID: 22903875 PMCID: PMC3491829 DOI: 10.1002/emmm.201101084] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/23/2012] [Accepted: 06/28/2012] [Indexed: 01/18/2023] Open
Abstract
β-Secretase (BACE1) is a major drug target for combating Alzheimer's disease (AD). Here we show that BACE1(-/-) mice develop significant retinal pathology including retinal thinning, apoptosis, reduced retinal vascular density and an increase in the age pigment, lipofuscin. BACE1 expression is highest in the neural retina while BACE2 was greatest in the retinal pigment epithelium (RPE)/choroid. Pigment epithelial-derived factor, a known regulator of γ-secretase, inhibits vascular endothelial growth factor (VEGF)-induced in vitro and in vivo angiogenesis and this is abolished by BACE1 inhibition. Moreover, intravitreal administration of BACE1 inhibitor or BACE1 small interfering RNA (siRNA) increases choroidal neovascularization in mice. BACE1 induces ectodomain shedding of vascular endothelial growth factor receptor 1 (VEGFR1) which is a prerequisite for γ-secretase release of a 100 kDa intracellular domain. The increase in lipofuscin following BACE1 inhibition and RNAI knockdown is associated with lysosomal perturbations. Taken together, our data show that BACE1 plays a critical role in retinal homeostasis and that the use of BACE inhibitors for AD should be viewed with extreme caution as they could lead to retinal pathology and exacerbate conditions such as age-related macular degeneration.
Collapse
Affiliation(s)
- Jun Cai
- Department of Anatomy & Cell Biology, University of FloridaGainesville, FL, USA
| | - Xiaoping Qi
- Department of Anatomy & Cell Biology, University of FloridaGainesville, FL, USA
| | - Norbert Kociok
- Department of Ophthalmology, Charité Universitätsmedizin BerlinBerlin, Germany
| | - Sergej Skosyrski
- Department of Ophthalmology, Charité Universitätsmedizin BerlinBerlin, Germany
| | - Alonso Emilio
- Department of Anatomy & Cell Biology, University of FloridaGainesville, FL, USA
| | - Qing Ruan
- Department of Anatomy & Cell Biology, University of FloridaGainesville, FL, USA
| | - Song Han
- Department of Surgery, University of FloridaGainesville, FL, USA
| | - Li Liu
- Department of Pharmacology & Therapeutics, University of FloridaGainesville, FL, USA
| | - Zhijuan Chen
- Department of Anatomy & Cell Biology, University of FloridaGainesville, FL, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology & of Cell Biology, Duke University Medical CenterDurham, NC, USA
| | - Todd Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of FloridaGainesville, FL, USA
| | - Maria B Grant
- Department of Pharmacology & Therapeutics, University of FloridaGainesville, FL, USA
| | - Paul Saftig
- Biochemical Institute, Christian-Albrecht's UniversityKiel, Germany
| | - Lutgarde Serneels
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND)KU Leuven, Leuven, Belgium
- VIB Center for the Biology of Disease, Vlaams Instituut voor BiotechnologieLeuven, Belgium
| | - Bart de Strooper
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND)KU Leuven, Leuven, Belgium
- VIB Center for the Biology of Disease, Vlaams Instituut voor BiotechnologieLeuven, Belgium
| | - Antonia M Joussen
- Department of Ophthalmology, Charité Universitätsmedizin BerlinBerlin, Germany
| | - Michael E Boulton
- Department of Anatomy & Cell Biology, University of FloridaGainesville, FL, USA
| |
Collapse
|
23
|
Abstract
Although the precise cause of Alzheimer's disease is not known, the β-amyloid peptide chains of 40-42 amino acids are suspected to contribute to the disease. The β-amyloid precursor protein is found on many types of cell membranes, and the action of secretases (β and γ) on this precursor protein normally releases the β-amyloids at a high rate into the plasma and the cerebrospinal fluid. However, the concentrations of the β-amyloids in the plasma and the spinal fluid vary considerably between laboratories. The β-amyloids adsorb in the nanomolar concentration range to receptors on neuronal and glial cells. The β-amyloids are internalized, become folded in the β-folded or β-pleated shape, and then stack on each other to form long fibrils and aggregates known as plaques. The β-amyloids likely act as monomers, dimers, or multimers on cell membranes to interfere with neurotransmission and memory before the plaques build up. Treatment strategies include inhibitors of β- and γ-secretase, as well as drugs and physiological compounds to prevent aggregation of the amyloids. Several immune approaches and a cholesterol-lowering strategy are also being tested to remove the β-amyloids.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
24
|
Small DH, Aguilar MI. Targeting pre-mRNA splicing: a BACE-ic strategy for AD drug development? J Neurochem 2012; 121:695-6. [DOI: 10.1111/j.1471-4159.2012.07679.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Galvin JE. OPTIMIZING DIAGNOSIS AND MANANGEMENT IN MILD-TO-MODERATE ALZHEIMER'S DISEASE. Neurodegener Dis Manag 2012; 2:291-304. [PMID: 22973426 DOI: 10.2217/nmt.12.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive declines in cognitive function and ability to carry out activities of daily living; and the emergence and worsening of behavioral/neuropsychiatric symptoms. While there is no cure for AD, non-pharmacologic interventions and medications that modulate neurotransmission can slow symptomatic progression. Medical foods may also be useful as adjuncts to pharmacologic agents in AD. Medium chain triglycerides aimed at improving cerebral metabolism significantly improve Alzheimer's Disease Assessment Scale-Cognitive scores when added to ongoing pharmacotherapy in patients with mild-to-moderate AD. Combination of interventions, such as non-pharmacologic treatments, pharmacotherapy, and medical foods, with complementary mechanisms of action may provide a rational approach that may result in maximum preservation of cognitive function in patients with AD.
Collapse
Affiliation(s)
- James E Galvin
- Professor of Neurology and Psychiatry, Director of the Pearl S. Barlow Center for Memory Evaluation and Treatment; and Director of Clinical Operations at the Center of Excellence on Brain Aging, New York University Langone Medical Center, New York
| |
Collapse
|
26
|
Kacker P, Masetti M, Mangold M, Bottegoni G, Cavalli A. Combining dyad protonation and active site plasticity in BACE-1 structure-based drug design. J Chem Inf Model 2012; 52:1079-85. [PMID: 22313091 DOI: 10.1021/ci200366z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of the BACE-1 catalytic dyad to adopt multiple protonation states and the conformational flexibility of the active site have hampered the reliability of computational screening campaigns carried out on this drug target for Alzheimer's disease. Here, we propose a protocol that, for the first time, combining quantum mechanical calculations, molecular dynamics, and conformational ensemble virtual ligand screening addresses these issues simultaneously. The encouraging results prefigure this approach as a valuable tool for future drug discovery campaigns.
Collapse
|
27
|
Silencing of amyloid precursor protein expression using a new engineered delta ribozyme. Int J Alzheimers Dis 2012; 2012:947147. [PMID: 22482079 PMCID: PMC3296272 DOI: 10.1155/2012/947147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD.
Collapse
|
28
|
Physiological functions of the amyloid precursor protein secretases ADAM10, BACE1, and Presenilin. Exp Brain Res 2011; 217:331-41. [DOI: 10.1007/s00221-011-2952-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/07/2011] [Indexed: 12/16/2022]
|
29
|
Decourt B, Sabbagh MN. BACE1 as a potential biomarker for Alzheimer's disease. J Alzheimers Dis 2011; 24 Suppl 2:53-9. [PMID: 21403391 DOI: 10.3233/jad-2011-110017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The diagnosis of Alzheimer's disease (AD) relies principally on clinical criteria for probable and possible AD as defined by the NINCDS-ADRDRA. The field is desperately lacking of biological markers to assist with AD diagnosis and verification of treatment efficacy. According to the Consensus Report of the Working Group on Molecular and Biochemical Markers of Alzheimer's Disease, in order to qualify as a biomarker the sample in question must adhere to certain basic requirements, including the ability to: reflect AD pathology and differentiate it from other dementia with an 80% sensitivity; be reliable and reproducible; be easy to perform and analyze; remain relatively inexpensive. Beta secretases are crucial enzymes in the pathogenesis of AD. Given its primary role in brain amyloidogenesis and its ubiquitous expression, one may consider measuring peripheral BACE1 levels and activity as biomarkers of AD, like performed in the brain and cerebrospinal fluid. However, very little is known about the periphery and whether peripheral BACE1 is involved in AD pathogenesis or mirrors AD progression. Moreover, no investigation has focused on the possibility of monitoring peripheral BACE1 to assess the efficiency of BACE1 inhibitors during the course of clinical trials. Part of the problem may be attributed to the lack of sensitive molecular tools which are absolutely necessary to use BACE1 as a biomarker. In this review we evaluate the progress and feasibility of developing BACE1 as a biomarker for AD in different tissues.
Collapse
Affiliation(s)
- Boris Decourt
- Banner Sun Health Research Institute, Haldeman Laboratory of Molecular Diagnostics and Therapeutics, Sun City, AZ 85351, USA.
| | | |
Collapse
|
30
|
Mungenast AE, Tsai LH. Addressing the complex etiology of Alzheimer’s disease: the role of p25/Cdk5. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by the progressive loss of forebrain neurons and the deterioration of learning and memory. Therapies for AD have primarily focused upon either the inhibition of amyloid synthesis or its deposition in the brain, but clinical testing to date has not yet found an effective amelioration of cognitive symptoms. Synaptic loss closely correlates with the degree of dementia in AD patients. However, mouse AD models that target the amyloid-β pathway generally do not exhibit a profound loss of synapses, despite extensive synaptic dysfunction. The increased generation of p25, an activator of the cyclin-dependent kinase 5 (Cdk5) has been found in both human patients and mouse models of neurodegeneration. The current work reviews our knowledge, to date, on the role of p25/Cdk5 in Alzheimer’s disease, with a focus upon the interaction of amyloid-β and p25/Cdk5 in synaptic dysfunction and neuronal loss.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Tsai SJ, Chiu CP, Yang HT, Yin MC. s-Allyl cysteine, s-ethyl cysteine, and s-propyl cysteine alleviate β-amyloid, glycative, and oxidative injury in brain of mice treated by D-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6319-6326. [PMID: 21548553 DOI: 10.1021/jf201160a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The neuroprotective effects of s-allyl cysteine, s-ethyl cysteine, and s-propyl cysteine in D-galactose (DG)-treated mice were examined. DG treatment increased the formation of Aβ(1-40) and Aβ(1-42), enhanced mRNA expression of β-amyloid precursor protein (APP) and β-site APP cleavage enzyme 1 (BACE1), and reduced neprilysin expression in brain (P < 0.05); however, the intake of three test compounds significantly decreased the production of Aβ(1-40) and Aβ(1-42) and suppressed the expression of APP and BACE1 (P < 0.05). DG treatments declined brain protein kinase C (PKC) activity and mRNA expression (P < 0.05). Intake of test compounds significantly retained PKC activity, and the expression of PKC-α and PKC-γ (P < 0.05). DG treatments elevated brain activity and mRNA expression of aldose reductase (AR) and sorbitol dehydrogenase as well as increased brain levels of carboxymethyllysine (CML), pentosidine, sorbitol, and fructose (P < 0.05). Test compounds significantly lowered AR activity, AR expression, and CML and pentosidine levels (P < 0.05). DG treatments also significantly increased the formation of reactive oxygen species (ROS) and protein carbonyl and decreased the activity of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (P < 0.05); however, the intake of test compounds in DG-treated mice significantly decreased ROS and protein carbonyl levels and restored brain GPX, SOD, and catalase activities (P < 0.05). These findings support that these compounds via their anti-Aβ, antiglycative, and antioxidative effects were potent agents against the progression of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Shih-Jei Tsai
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | | | | | | |
Collapse
|
32
|
Kayed R, Jackson GR, Estes DM, Barrett ADT. Alzheimers disease: review of emerging treatment role for intravenous immunoglobulins. J Cent Nerv Syst Dis 2011; 3:67-73. [PMID: 23861639 PMCID: PMC3663607 DOI: 10.4137/jcnsd.s5018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Currently available therapies are symptomatic but do not alter underlying disease progression. Immunotherapeutic approaches such as anti Aβ peptide active vaccination trials have had limited success to date. Intravenous immunoblobulin (IVIg) is widely used in immune-mediated neurological disorders such myasthenia gravis and Guillain-Barre syndrome. These preparations have been obtained from the pooled plasma of healthy human donors and contain natural anti-amyloid antibodies and are well tolerated. A small pilot study of passive immunotherapy using IVIg has suggested cognitive improvement. A multicenter phase III trial is ongoing and will determine whether or not this treatment can ameliorate cognitive deficits in mild-to-moderate AD. Here, we briefly review the pathogenic role of amyloid and tau in AD, as well as immunotherapeutic efforts to date. We also summarize what is known about naturally occurring anti-Aβ and tau antibodies in IVIg with a view toward explaining potential mechanisms underlying their therapeutic effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA. ; Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA. ; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|