1
|
Gu HL, Zheng XQ, Zhan SQ, Chang YB. Intravascular papillary endothelial hyperplasia as a rare cause of cervicothoracic spinal cord compression: A case report. World J Clin Cases 2021; 9:10681-10688. [PMID: 35005001 PMCID: PMC8686137 DOI: 10.12998/wjcc.v9.i34.10681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intravascular papillary endothelial hyperplasia (IPEH) is a rare benign reactive vascular lesion that grows into an expansile compressing mass. It most commonly involves the skin and subcutaneous tissue. Spinal involvement is rare, with only 11 reported cases in the literature. We report, to our knowledge, the first case of IPEH in the cervicothoracic spinal canal and present a literature review.
CASE SUMMARY A 27-year-old man presented with acute-onset neck pain, numbness, and weakness in his extremities. Magnetic resonance imaging showed an epidural mass in the cervicothoracic (C6-T1) spinal canal and vertebral hemangioma (VH) involving the C7 vertebral body. C6-T1 Laminectomy and radical excision of the mass were performed. Histopathological examinations revealed papillary proliferation of vascular endothelial cells with thrombus formation, and an IPEH diagnosis was made. By his 6-mo follow-up appointment, his symptoms were relieved without recurrence. The possible pathogenesis, clinical and imaging features, differential diagnosis, and management of IPEH were reviewed.
CONCLUSION We report, to our knowledge, the first case of IPEH in the cervicothoracic spinal canal, treated via complete resection, and showing a favorable outcome. We found a causal relationship between spinal IPEH and VH; this partly explains the mechanism of IPEH.
Collapse
Affiliation(s)
- Hong-Lin Gu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Xiao-Qing Zheng
- Department of Spine Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Shi-Qiang Zhan
- Department of Spine Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| | - Yun-Bing Chang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
2
|
Díaz-Flores L, Gutiérrez R, Gayoso S, García MP, González-Gómez M, Díaz-Flores L, Sánchez R, Carrasco JL, Madrid JF. Intussusceptive angiogenesis and its counterpart intussusceptive lymphangiogenesis. Histol Histopathol 2020; 35:1083-1103. [PMID: 32329808 DOI: 10.14670/hh-18-222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intussusceptive angiogenesis (IA) is currently considered an important alternative and complementary form of sprouting angiogenesis (SA). Conversely, intussusceptive lymphangiogenesis (IL) is in an initial phase of study. We compare their morphofunctional characteristics, since many can be shared by both processes. To that end, the following aspects are considered: A) The concept of IA and IL as the mechanism by which blood and lymphatic vessels split, expand and remodel through transluminal pillar formations (hallmarks of intussusception). B) Terminology and historical background, with particular reference to the group of Burri, including Djonov and Patan, who initiated and developed the vessel intussusceptive concept in blood vessels. C) Incidence in normal (e.g. in the sinuses of developing lymph nodes) and pathologic conditions, above all in vessel diseases, such as dilated veins in hemorrhoidal disease, intravascular papillary endothelial hyperplasia (IPEH), sinusoidal hemangioma, lobular capillary hemangioma, lymphangiomas/lymphatic malformations and vascular transformation of lymph nodes. D) Differences and complementarity between vessel sprouting and intussusception. E) Characteristics of the cover (endothelial cells) and core (connective tissue components) of pillars and requirements for pillar identification. F) Structures involved in pillar formation, including endothelial contacts of opposite vessel walls, interendothelial bridges, merged adjacent capillaries, vessel loops and spilt pillars. G) Structures resulting from pillars with intussusceptive microvascular growth, arborization, remodeling and segmentation (compartmentalization). H) Influence of intussusception in the morphogenesis of vessel tumors/ pseudotumors; and I) Hemodynamic and molecular control of vessel intussusception, including VEGF, PDGF BB, Hypoxia, Notch, Endoglobin and Nitric oxide.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - S Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M P García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, Tenerife, Spain
| | - M González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - R Sánchez
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J L Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence "Campus Mare Nostrum", IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Participation of Intussusceptive Angiogenesis in the Morphogenesis of Lobular Capillary Hemangioma. Sci Rep 2020; 10:4987. [PMID: 32193418 PMCID: PMC7081232 DOI: 10.1038/s41598-020-61921-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 11/08/2022] Open
Abstract
In lobular capillary hemangioma (LCH), misnamed pyogenic granuloma, only sprouting angiogenesis (SA) has been considered. We assess the occurrence of intussusceptive angiogenesis (IA) in LCH and whether IA determines the specific and other focal patterns in the lesion. For this purpose, we study specimens of 120 cases of LCH, using semithin sections (in 10), immunohistochemistry, and confocal microscopy (in 20). In addition to SA, the results in LCH showed (1) intussusceptive phenomena, including pillars/folds and associated vessel loops, which encircled interstitial tissue structures (ITSs). (2) Two types of evolved loops depending on interendothelial contacts from opposite walls: (a) numerous interendothelial contacts, alternating with capillary-sized lumens (main capillary pattern of the lesion) and (b) few interendothelial contacts, wide open lumens, and intravascular transport of pillars/folds, which were arranged linearly, forming septa (focal sinusoidal-like pattern) or were irregularly grouped (focal intravascular papillary endothelial hyperplasia, IPEH-like pattern). In conclusion, we demonstrate that IA participates in synergistic interaction with SA in LCH development and that the prevalence of specific intussusceptive phenomena determines the predominant capillary pattern and associated sinusoidal hemangioma-like and IPEH-like patterns in the lesion, which suggest a role of IA as conditioner of vessel tumour/pseudo-tumour morphology.
Collapse
|
4
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García P, Sáez FJ, Díaz-Flores L, Carrasco JL, Madrid JF. Segmentation of Dilated Hemorrhoidal Veins in Hemorrhoidal Disease. Cells Tissues Organs 2018; 205:120-128. [PMID: 29913446 DOI: 10.1159/000489250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Vein segmentation is a vascular remodeling process mainly studied in experimental conditions and linked to hemodynamic factors, with clinical implications. The aim of this work is to assess the morphologic characteristics, associated findings, and mechanisms that participate in vein segmentation in humans. To this end, we examined 156 surgically obtained cases of hemorrhoidal disease. Segmentation occurred in 65 and was most prominent in 15, which were selected for serial sections, immunohistochemistry, and immunofluorescence procedures. The dilated veins showed differently sized spaces, separated by thin septa. Findings associated with vein segmentation were: (a) vascular channels formed from the vein intima endothelial cells (ECs) and located in the vein wall and/or intraluminal fibrin, (b) vascular loops formed by interconnected vascular channels (venous-venous connections), which encircled vein wall components or fibrin and formed folds/pillars/papillae (FPPs; the encircling ECs formed the FPP cover and the encircled components formed the core), and (c) FPP splitting, remodeling, alignment, and fusion, originating septa. Thrombosis was observed in some nonsegmented veins, while the segmented veins only occasionally contained thrombi. Dense microvasculature was also present in the interstitium and around veins. In conclusion, the findings suggest that hemorrhoidal vein segmentation is an adaptive process in which a piecemeal angiogenic mechanism participates, predominantly by intussusception, giving rise to intravascular FPPs, followed by linear rearrangement, remodeling and fusion of FPPs, and septa formation. Identification of other markers, as well as the molecular bases, hemodynamic relevance, and possible therapeutic implications of vein segmentation in dilated hemorrhoidal veins require further studies.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, La Laguna, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, La Laguna, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, La Laguna, Spain
| | - Pino García
- Department of Pathology, Hospiten, Santa Cruz, Spain
| | - Francisco J Sáez
- Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, La Laguna, Spain
| | - José Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, La Laguna, Spain
| | - Juan F Madrid
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|