1
|
Isik FI, Thomson S, Cueto JF, Spathos J, Breit SN, Tsai VWW, Brown DA, Finney CA. A systematic review of the neuroprotective role and biomarker potential of GDF15 in neurodegeneration. Front Immunol 2024; 15:1514518. [PMID: 39737171 PMCID: PMC11682991 DOI: 10.3389/fimmu.2024.1514518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades. However, methodological challenges and the delayed identification of its specific receptor GFRAL have hindered research progress. This review systematically examines literature about GDF15 in neurodegenerative diseases and neurotrauma. The evidence collated in this review indicates that GDF15 expression is upregulated in response to neurodegenerative pathophysiology and increasing its levels in preclinical models typically improves outcomes. Key knowledge gaps are addressed for future investigations to foster a more comprehensive understanding of the neuroprotective effects elicited by GDF15.
Collapse
Affiliation(s)
- Finula I. Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - John F. Cueto
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Vicky W. W. Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Western Sydney Local Health District, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Shen M, Zhang M, Mao N, Lin Z. Batokine in Central Nervous System Diseases. Mol Neurobiol 2023; 60:7021-7031. [PMID: 37526894 DOI: 10.1007/s12035-023-03490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Brown adipose tissue (BAT) is a special type of fat tissue in mammals and is also a key endocrine organ in the human body. Batokine, the endocrine effector of BAT, plays a neuroprotective role and improves the prognosis by exerting anti-apoptotic and anti-inflammatory effects, as well as by improving vascular endothelial function and other mechanisms in nerve injury diseases. The present article briefly reviewed several types of batokines related to central nervous system (CNS) diseases. Following this, the potential therapeutic value and future research direction of batokines for CNS diseases were chiefly discussed from the aspects of protective mechanism and signaling pathway.
Collapse
Affiliation(s)
- Ming Shen
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zonneveld MH, Trompet S, Jukema JW, Noordam R. Exploring the possible causal effects of cardiac blood biomarkers in dementia and cognitive performance: a Mendelian randomization study. GeroScience 2023; 45:3165-3174. [PMID: 37178386 PMCID: PMC10643774 DOI: 10.1007/s11357-023-00814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Prospective cohort studies have implied associations between blood levels of troponin T, troponin I, NT-proBNP, GDF15, dementia, and cognitive function, without providing evidence favoring possible causality. We aimed to assess the causal associations of these cardiac blood biomarkers with dementia and cognition using two-sample Mendelian randomization (MR). Independent genetic instruments (p < 5e-7) for troponin T and I, N-terminal pro B-type natriuretic peptide (NT-proBNP) and growth-differentiation factor 15 (GDF15) were obtained from previously-performed genome-wide association studies of predominantly European ancestry. Summary statistics for gene-outcome associations in European-ancestry participants, for the two-sample MR analyses, were obtained for general cognitive performance (n = 257,842) and dementia (n = 111,326 clinically diagnosed and "proxy" AD cases, and 677,663 controls). Two-sample MR analyses were performed using inverse variance-weighted (IWV) analyses. Sensitivity analyses to evaluate horizontal pleiotropy included weighted median estimator, MR-Egger, and MR using cis-SNPs only. Using IVW, we did not find evidence for possible causal associations between genetically influenced cardiac biomarkers with cognition and dementia. For example, per standard deviation (SD) higher cardiac blood biomarker, the odds ratio for risk of dementia was 1.06 (95%CI 0.90; 1.21) for troponin T, 0.98 (95%CI 0.72; 1.23) for troponin I, 0.97 (95%CI 0.90; 1.06) for NT-proBNP and 1.07 (95%CI 0.93; 1.21) for GDF15. Sensitivity analyses showed higher GDF15 was significantly associated with higher dementia risk and worse cognitive function. We did not find strong evidence that cardiac biomarkers causally influence dementia risk. Future research should aim at elucidating the biological pathways through which cardiac blood biomarkers associate with dementia.
Collapse
Affiliation(s)
- Michelle H Zonneveld
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, the Netherlands.
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Miyaue N, Yabe H, Nagai M. Serum GDF-15 Levels in Patients with Parkinson's Disease, Progressive Supranuclear Palsy, and Multiple System Atrophy. Neurol Int 2023; 15:1044-1051. [PMID: 37755357 PMCID: PMC10535128 DOI: 10.3390/neurolint15030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Serum growth differentiation factor 15 (GDF-15) levels are elevated in patients with Parkinson's disease (PD) and may help differentiate these patients from healthy individuals. We aimed to clarify whether serum GDF-15 levels can help differentiate PD from atypical parkinsonian syndromes and determine the association between serum GDF-15 levels and clinical parameters. We prospectively enrolled 46, 15, and 12 patients with PD, progressive supranuclear palsy (PSP), and multiple system atrophy (MSA), respectively. The serum GDF-15 level in patients with PD (1394.67 ± 558.46 pg/mL) did not differ significantly from that in patients with PSP (1491.27 ± 620.78 pg/mL; p = 0.573) but was significantly higher than that in patients with MSA (978.42 ± 334.66 pg/mL; p = 0.017). Serum GDF-15 levels were positively correlated with age in patients with PD (r = 0.458; p = 0.001); PSP (r = 0.565; p = 0.028); and MSA (r = 0.708; p = 0.010). After accounting for age differences, serum GDF-15 levels did not differ significantly between patients with PD and MSA (p = 0.114). Thus, age has a strong influence on serum GDF-15 levels, which may not differ significantly between patients with PD and atypical parkinsonian syndromes such as PSP and MSA.
Collapse
Affiliation(s)
- Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, Ehime University, Tohon 791-0295, Ehime, Japan;
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama 791-8026, Ehime, Japan;
| | - Hayato Yabe
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama 791-8026, Ehime, Japan;
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, Ehime University, Tohon 791-0295, Ehime, Japan;
| |
Collapse
|
5
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
6
|
Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P, Song C, Liu Y. Growth Differentiation Factor 15 Protects SH-SY5Y Cells From Rotenone-Induced Toxicity by Suppressing Mitochondrial Apoptosis. Front Aging Neurosci 2022; 14:869558. [PMID: 35721026 PMCID: PMC9201950 DOI: 10.3389/fnagi.2022.869558] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Objective Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide. Mitochondrial dysfunction is suspected as one of the pathogenic mechanisms of PD. Growth/differentiation Factor-15 (GDF15) has been reported to affect mitochondrial function in PD. However, the relationship between mitochondrial function and GDF15 induction has not been explained well. Hence, we aimed to reveal the effect of GDF15 induction on SH-SY5Y cells with rotenone toxicity, a cell model of PD. Methods SH-SY5Y cells were exposed to 1 μM rotenone as a PD model. Cells were transfected with a GDF15-overexpression plasmid and empty vector. We then analyzed the expression level of GDF15, BCL-2/BAX, P53, PGC1-α, α-syn, and TH in GDF15-overexpressing cells by western blotting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. The cytotoxicity of rotenone was measured by CCK-8 assays. Cell apoptosis was detected by flow cytometric and TUNEL assays. The effect of GDF15 on oxidative stress and mitochondrial function was revealed using DCFH-DA, mito-SOX, and JC-10 assays and a Seahorse XF Cell Mito Stress Test. Results GDF15 protected rotenone-treated SH-SY5Y cells from toxicity by preserving mitochondrial function and decreasing apoptosis, during which GDF15 might function by influencing PGC1α through the regulation of p53. In addition, GDF15 overexpression could improve Akt and mTOR phosphorylation, leading to PI3K/Akt/mTOR pathway activation. However, these protective effects were eliminated when cells were treated with the PI3K/Akt specific inhibitor LY294002. Conclusion Our findings suggest that GDF15 can protect mitochondrial function and inhibit apoptosis in SH-SY5Y cells after exposure to rotenone by upregulating PGC1α via p53. These properties might comprise its anti-apoptotic effects, mediated by the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Peizheng Li
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Hongbo Lv
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bohan Zhang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Ruonan Duan
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiufang Zhang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Chengyuan Song,
| | - Yiming Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
- Yiming Liu,
| |
Collapse
|
7
|
Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S. GDF15, an emerging key player in human aging. Ageing Res Rev 2022; 75:101569. [PMID: 35051643 DOI: 10.1016/j.arr.2022.101569] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 15 (GDF15) is recently emerging not only as a stress-related mitokine, but also as a key player in the aging process, being one of the most up-regulated protein with age and associated with a variety of age-related diseases (ARDs). Many data indicate that GDF15 has protective roles in several tissues during different stress and aging, thus playing a beneficial role in apparent contrast with the observed association with many ARDs. A possible detrimental role for this protein is then hypothesized to emerge with age. Therefore, GDF15 can be considered as a pleiotropic factor with beneficial activities that can turn detrimental in old age possibly when it is chronically elevated. In this review, we summarize the current knowledge on the biology of GDF15 during aging. We also propose GDF15 as a part of a dormancy program, where it may play a role as a mediator of defense processes aimed to protect from inflammatory damage and other stresses, according to the life history theory.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Cristina Giuliani
- Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy; Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Multiple Criteria Optimization (MCO): A gene selection deterministic tool in RStudio. PLoS One 2022; 17:e0262890. [PMID: 35085348 PMCID: PMC8794188 DOI: 10.1371/journal.pone.0262890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/09/2022] [Indexed: 11/19/2022] Open
Abstract
Identifying genes with the largest expression changes (gene selection) to characterize a given condition is a popular first step to drive exploration into molecular mechanisms and is, therefore, paramount for therapeutic development. Reproducibility in the sciences makes it necessary to emphasize objectivity and systematic repeatability in biological and informatics analyses, including gene selection. With these two characteristics in mind, in previous works our research team has proposed using multiple criteria optimization (MCO) in gene selection to analyze microarray datasets. The result of this effort is the MCO algorithm, which selects genes with the largest expression changes without user manipulation of neither informatics nor statistical parameters. Furthermore, the user is not required to choose either a preference structure among multiple measures or a predetermined quantity of genes to be deemed significant a priori. This implies that using the same datasets and performance measures (PMs), the method will converge to the same set of selected differentially expressed genes (repeatability) despite who carries out the analysis (objectivity). The present work describes the development of an open-source tool in RStudio to enable both: (1) individual analysis of single datasets with two or three PMs and (2) meta-analysis with up to five microarray datasets, using one PM from each dataset. The capabilities afforded by the code include license-free portability and the possibility to carry out analyses via modest computer hardware, such as personal laptops. The code provides affordable, repeatable, and objective detection of differentially expressed genes from microarrays. It can be used to analyze other experiments with similar experimental comparative layouts, such as microRNA arrays and protein arrays, among others. As a demonstration of the capabilities of the code, the analysis of four publicly-available microarray datasets related to Parkinson´s Disease (PD) is presented here, treating each dataset individually or as a four-way meta-analysis. These MCO-supported analyses made it possible to identify MMP9 and TUBB2A as potential PD genetic biomarkers based on their persistent appearance across each of the case studies. A literature search confirmed the importance of these genes in PD and indeed as PD biomarkers, which evidences the code´s potential.
Collapse
|
9
|
Xue XH, Tao LL, Su DQ, Guo CJ, Liu H. Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta-analysis. Brain Behav 2022; 12:e2502. [PMID: 35068064 PMCID: PMC8865151 DOI: 10.1002/brb3.2502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION GDF15 may be a potential biomarker for neurodegenerative diseases. In this analysis, we aimed to quantitative analysis the levels of GDF15 in patients with neurological diseases and in health control, and then to determine its potential diagnostic utility. METHODS Two researchers separately conducted a systematic search of the relevant studies up to January 2021 in Embase, PubMed, and Web of Science. Effect sizes were estimated to use the standardized mean difference (SMD) with 95% confidence interval (CI). Sensitivity and specificity were calculated by the summary receiver operating characteristics curve (SROC) method. The sensitivity analysis was performed by the "one-in/one-out" approach. Considering the considerable heterogeneity among studies, random-effects model was used for the meta-analysis investigation. RESULTS A total of eight articles were included in this meta-analysis and systematic review. The pooled results of the random effect model indicated GDF15 levels were significantly higher in patients with neurodegenerative disease than healthy people (SMD = 0.92, 95% CI: 0.44-1.40, Z = 3.75, p < 0.001). Sensitivity and specificity of biomarker of GDF15 were 0.90 (95% CI: 0.75-0.97), 0.77 (95% CI: 0.67-0.65), and AUC = 0.87 (95% CI: 0.84-0.90), respectively. CONCLUSIONS GDF15 levels were higher in patients with neurodegenerative disease than healthy people. And serum levels of GDF15 were a better marker for diagnostic utility of neurodegenerative disease.
Collapse
Affiliation(s)
- Xin-Hong Xue
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Lin-Lin Tao
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Dao-Qing Su
- Department of Neurosurgery, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Cun-Ju Guo
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Hong Liu
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
10
|
Tarabeih N, Kalinkovich A, Shalata A, Cherny SS, Livshits G. Deciphering the Causal Relationships Between Low Back Pain Complications, Metabolic Factors, and Comorbidities. J Pain Res 2022; 15:215-227. [PMID: 35125889 PMCID: PMC8809521 DOI: 10.2147/jpr.s349251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Nader Tarabeih
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Maale HaCarmel Mental Health Center, Affiliated to Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Stacey S Cherny
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Correspondence: Gregory Livshits, Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel, Tel +972-3-6409494, Fax +972-3-6408287, Email
| |
Collapse
|
11
|
Jiang WW, Zhang ZZ, He PP, Jiang LP, Chen JZ, Zhang XT, Hu M, Zhang YK, Ouyang XP. Emerging roles of growth differentiation factor-15 in brain disorders (Review). Exp Ther Med 2021; 22:1270. [PMID: 34594407 PMCID: PMC8456456 DOI: 10.3892/etm.2021.10705] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Brain disorders, such as Alzheimer's and Parkinson's disease and cerebral stroke, are an important contributor to mortality and disability worldwide, where their pathogenesis is currently a topic of intense research. The mechanisms underlying the development of brain disorders are complex and vary widely, including aberrant protein aggregation, ischemic cell necrosis and neuronal dysfunction. Previous studies have found that the expression and function of growth differentiation factor-15 (GDF15) is closely associated with the incidence of brain disorders. GDF15 is a member of the TGFβ superfamily, which is a dimer-structured stress-response protein. The expression of GDF15 is regulated by a number of proteins upstream, including p53, early growth response-1, non-coding RNAs and hormones. In particular, GDF15 has been reported to serve an important role in regulating angiogenesis, apoptosis, lipid metabolism and inflammation. For example, GDF15 can promote angiogenesis by promoting the proliferation of human umbilical vein endothelial cells, apoptosis of prostate cancer cells and fat metabolism in fasted mice, and GDF15 can decrease the inflammatory response of lipopolysaccharide-treated mice. The present article reviews the structure and biosynthesis of GDF15, in addition to the possible roles of GDF15 in Alzheimer's disease, cerebral stroke and Parkinson's disease. The purpose of the present review is to summarize the mechanism underlying the role of GDF15 in various brain disorders, which hopes to provide evidence and guide the prevention and treatment of these debilitating conditions.
Collapse
Affiliation(s)
- Wei-Wei Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zi-Zhen Zhang
- Department of Medical Humanities, School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Ping-Ping He
- Hunan Province Cooperative Innovation Centre for Molecular Target New Drug Study, Nursing School, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li-Ping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Critical Care Medicine, Hunan Taihe Hospital, Changsha, Hunan 410004, P.R. China
| | - Jin-Zhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xing-Ting Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang-Kai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
12
|
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021; 11:biom11091361. [PMID: 34572572 PMCID: PMC8468264 DOI: 10.3390/biom11091361] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.
Collapse
|
13
|
Andersson-Hall U, Svedin P, Mallard C, Blennow K, Zetterberg H, Holmäng A. Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during pregnancy. PLoS One 2021; 16:e0248980. [PMID: 34043633 PMCID: PMC8158880 DOI: 10.1371/journal.pone.0248980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Aim Growth differentiation factor 15 (GDF15) increases in serum during pregnancy to levels not seen in any other physiological state and is suggested to be involved in pregnancy-induced nausea, weight regulation and glucose metabolism. The main action of GDF15 is regulated through a receptor of the brainstem, i.e., through exposure of GDF15 in both blood and cerebrospinal fluid (CSF). The aim of the current study was to measure GDF15 in both CSF and serum during pregnancy, and to compare it longitudinally to non-pregnant levels. Methods Women were sampled at elective caesarean section (n = 45, BMI = 28.1±5.0) and were followed up 5 years after pregnancy (n = 25). GDF15, insulin and leptin were measured in CSF and serum. Additional measurements included plasma glucose, and serum adiponectin and Hs-CRP. Results GDF15 levels were higher during pregnancy compared with follow-up in both CSF (385±128 vs. 115±32 ng/l, P<0.001) and serum (73789±29198 vs. 404±102 ng/l, P<0.001). CSF levels correlated with serum levels during pregnancy (P<0.001), but not in the non-pregnant state (P = 0.98). Both CSF and serum GDF15 were highest in women carrying a female fetus (P<0.001). Serum GDF15 correlated with the homeostatic model assessment for beta-cell function and placental weight, and CSF GDF15 correlated inversely with CSF insulin levels. Conclusion This, the first study to measure CSF GDF15 during pregnancy, demonstrated increased GDF15 levels in both serum and CSF during pregnancy. The results suggest that effects of GDF15 during pregnancy can be mediated by increases in both CSF and serum levels.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Agneta Holmäng
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Peng R, Li Y. Associations Between Tenascin-C and Testosterone Deficiency in Men with Major Depressive Disorder: A Cross-Sectional Retrospective Study. J Inflamm Res 2021; 14:897-905. [PMID: 33758529 PMCID: PMC7981168 DOI: 10.2147/jir.s298270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Elevated levels of tenascin-C are linked to increased risk and severity of major depressive disorder (MDD), while testosterone shows a protective effect. The present study explored associations between serum levels of tenascin-C and testosterone in Chinese men with MDD. Methods Testosterone and tenascin-C levels were measured in sera of 412 men with MDD and 237 age- and sex-matched controls. Serum levels of thyroid hormone, lipids, and high-sensitivity C-reactive protein (hs-CRP) were also quantified. Potential associations were examined using covariance, subgroup analysis, and multivariate linear regression analyses. Results Significantly higher concentrations of tenascin-C were detected in sera of subjects with MDD than in controls. Among subjects with MDD, testosterone concentrations inversely correlated with tenascin-C levels. This relationship was observed when patients were stratified by age at onset; duration or severity of depression; or concentration of thyroid hormones, low- or high-density lipoprotein, or hs-CRP. The negative association remained even when the statistical model was adjusted for age, smoking status, alcohol use, and body mass index. Linear regression with bootstrap resampling confirmed that high tenascin-C levels inversely correlated with testosterone levels. Conclusion In men with MDD, high tenascin-C concentrations correlate with testosterone deficiency. The combination of elevated tenascin-C and testosterone deficiency may be associated with MDD progression.
Collapse
Affiliation(s)
- Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| |
Collapse
|
15
|
Lin JB, Sheybani A, Santeford A, Apte RS. Longitudinal Growth Differentiation Factor 15 (GDF15) and Long-term Intraocular Pressure Fluctuation in Glaucoma: A Pilot Study. J Ophthalmic Vis Res 2021; 16:21-27. [PMID: 33520124 PMCID: PMC7841272 DOI: 10.18502/jovr.v16i1.8245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022] Open
Abstract
Purpose Growth Differentiation Factor 15 (GDF15) was previously identified as a molecular marker of retinal ganglion cell stress in rodent models of glaucoma and was elevated in the aqueous humor (AH) of patients with primary open-angle glaucoma as a possible risk factor for glaucoma progression. The purpose of this study was to determine whether changes in the AH GDF15 levels were associated with intraocular pressure (IOP) changes in eyes undergoing glaucoma surgery. Methods Here, we performed a prospective, longitudinal pilot study in nine patients to determine whether changes in AH GDF15 levels from surgery to post-surgery follow-up were associated with IOP fluctuation. An initial AH sample was taken from the peripheral corneal paracentesis during planned glaucoma surgery, and a second sample was taken during an outpatient follow-up visit, approximately six months later. Results There was a statistically significant correlation between GDF15 fold change and IOP standard deviation (r = 0.87, P = 0.003), IOP range (r = 0.87, P = 0.003), and maximum IOP (r = 0.86, P = 0.003). There was no correlation between the GDF15 fold change and baseline IOP (r = 0.50, P = 0.17), final IOP (r = 0.038, P = 0.92), or mean IOP (r = 0.40, P = 0.28). Conclusion Our findings in this pilot study suggest that longitudinal changes in AH GDF15 may be associated with IOP fluctuation during the postoperative period. Further studies are necessary to corroborate these findings in a larger patient population and to explore the possibility that AH GDF15 may be used not only to improve treatment algorithms but also as a surrogate endpoint in clinical trials.
Collapse
Affiliation(s)
- Jonathan B Lin
- Departments of Ophthalmology and Vision Science, Washington University, USA
| | - Arsham Sheybani
- Departments of Ophthalmology and Vision Science, Washington University, USA
| | - Andrea Santeford
- Departments of Ophthalmology and Vision Science, Washington University, USA
| | - Rajendra S Apte
- Departments of Ophthalmology and Vision Science, Washington University, USA.,Departments of Developmental Biology, Washington University, USA.,Departments of Medicine, Washington University, USA
| |
Collapse
|
16
|
Conte M, Sabbatinelli J, Chiariello A, Martucci M, Santoro A, Monti D, Arcaro M, Galimberti D, Scarpini E, Bonfigli AR, Giuliani A, Olivieri F, Franceschi C, Salvioli S. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. GeroScience 2020; 43:985-1001. [PMID: 33131010 PMCID: PMC8110619 DOI: 10.1007/s11357-020-00287-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), Growth Differentiation Factor 15 (GDF15), and Humanin (HN) are mitochondrial stress-related mitokines, whose role in health and disease is still debated. In this study, we confirmed that their plasma levels are positively correlated with age in healthy subjects. However, when looking at patients with type 2 diabetes (T2D) or Alzheimer's disease (AD), two age-related diseases sharing a mitochondrial impairment, we found that GDF15 is elevated in T2D but not in AD and represents a risk factor for T2D complications, while FGF21 and HN are lower in AD but not in T2D. Moreover, FGF21 reaches the highest levels in centenarian' offspring, a model of successful aging. As a whole, these data indicate that (i) the adaptive mitokine response observed in healthy aging is lost in age-related diseases, (ii) a common expression pattern of mitokines does not emerge in T2D and AD, suggesting an unpredicted complexity and disease-specificity, and (iii) FGF21 emerges as a candidate marker of healthy aging.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Marina Arcaro
- Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, University of Milan, Milan, Italy
| | - Elio Scarpini
- Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, University of Milan, Milan, Italy
| | | | - Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch 2020; 472:1535-1546. [PMID: 32936319 DOI: 10.1007/s00424-020-02459-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a peptide hormone, and a divergent member of the transforming growth factor beta (TGFβ) superfamily. In normal physiology, GDF15 is expressed in multiple tissues at a low concentration. GDF15 is overexpressed during and following many pathological conditions such as tissue injury and inflammation in order to play a protective role. However, GDF15 appears to promote tumour growth in the later stages of malignant cancer. The recently identified endogenous receptor for GDF15, GDNF family receptor a-like (GFRAL), has allowed elucidation of a physiological pathway in which GDF15 regulates energy homeostasis and body weight, primarily via appetite suppression. The anorectic effect of GDF15 provides some therapeutic potential in management of cancer-related anorexia/cachexia and obesity. Despite the identification of GFRAL as a GDF15 receptor, there appears to be other signalling mechanisms utilized by GDF15 that further increase the possibility of development of therapeutic treatments, should these pathways be fully characterized. In this review, GDF15 function in both physiological and pathological conditions in various tissues will be discussed.
Collapse
|
18
|
Yue T, Lu H, Yao XM, Du X, Wang LL, Guo DD, Liu YM. Elevated serum growth differentiation factor 15 in multiple system atrophy patients: A case control study. World J Clin Cases 2020; 8:2473-2483. [PMID: 32607324 PMCID: PMC7322433 DOI: 10.12998/wjcc.v8.i12.2473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a serious progressive neurodegenerative disease. Early diagnosis of MSA is very difficult, and diagnostic biomarkers are limited. Growth differentiation factor 15 (GDF15) is involved in the differentiation and progression of the central nervous system, and is widely distributed in peripheral blood, which may be a novel biomarker for MSA.
AIM To determine serum GDF15 levels, related factors and their potential diagnostic value in MSA patients, compared with Parkinson’s disease (PD) patients and healthy controls.
METHODS A case-control study was conducted, including 49 MSA patients, 50 PD patients and 50 healthy controls. Serum GDF15 levels were measured by human enzyme-linked immunosorbent assay, and the differences between the MSA, PD and control groups were analyzed. Further investigations were performed in different MSA subgroups according to age of onset, sex, clinical subtypes, diagnostic criteria, and disease duration. Receiver-operating characteristic curve analysis was used to evaluate the diagnostic value of GDF15, especially for the differential diagnosis between MSA and PD.
RESULTS Serum GDF15 levels were significantly higher in MSA patients than in PD patients and healthy controls (P = 0.000). Males and those with a disease duration of more than three years showed higher serum GDF15 levels (P = 0.043 and 0.000; respectively). Serum GDF15 levels may be a potential diagnostic biomarker for MSA patients compared with healthy controls and PD patients (cutoff: 470.42 pg/mL, sensitivity: 85.7%, specificity: 88.0%; cutoff: 1075.91 pg/mL, sensitivity: 51.0%, specificity: 96.0%; respectively).
CONCLUSION Serum GDF15 levels are significantly higher in MSA patients and provide suggestions on the etiology of MSA.
Collapse
Affiliation(s)
- Tao Yue
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Department of Gerontology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Hui Lu
- Department of Ophthalmology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Xiao-Mei Yao
- Department of Gerontology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong Province, China
| | - Xia Du
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Ling-Ling Wang
- Department of Neurology, Yantaishan Hospital, Yantai 264001, Shandong Province, China
| | - Dan-Dan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ming Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
19
|
Miyaue N, Yabe H, Nagai M. Serum growth differentiation factor 15, but not lactate, is elevated in patients with Parkinson's disease. J Neurol Sci 2020; 409:116616. [DOI: 10.1016/j.jns.2019.116616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
|
20
|
Kuznik BI, Guseva ES, Davydov SO, Smolyakov YN, Tsybikov NN. The effects of the “youth protein” GDF11 and “aging proteins” ccL11, GDF15, JAM-A on cardiohemodynamics in women with essential hypertension. ACTA ACUST UNITED AC 2020. [DOI: 10.18705/1607-419x-2019-25-5-527-539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
21
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
22
|
Davis RL, Wong SL, Carling PJ, Payne T, Sue CM, Bandmann O. Serum FGF-21, GDF-15, and blood mtDNA copy number are not biomarkers of Parkinson disease. Neurol Clin Pract 2019; 10:40-46. [PMID: 32190419 DOI: 10.1212/cpj.0000000000000702] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/29/2019] [Indexed: 11/15/2022]
Abstract
Background Strong evidence of mitochondrial dysfunction exists for both familial and sporadic Parkinson disease (PD). A simple test, reliably identifying mitochondrial dysfunction, could be important for future stratified medicine trials in PD. We previously undertook a comparison of serum biomarkers in classic mitochondrial diseases and established that serum growth differentiation factor 15 (GDF-15) outperforms fibroblast growth factor 21 (FGF-21) when distinguishing patients with mitochondrial diseases from healthy controls. This study aimed to systematically assess serum FGF-21 and GDF-15, together with mitochondrial DNA (mtDNA) copy number levels in peripheral blood cells from patients with PD and healthy controls, to determine whether these measures could act as a biomarker of PD. Methods One hundred twenty-one patients with PD and 103 age-matched healthy controls were recruited from a single center. Serum FGF-21 and GDF-15, along with blood mtDNA copy number, were quantified using established assays. Results There were no meaningful differences identified for any of the measures when comparing patients with PD with healthy controls. This highlights a lack of diagnostic sensitivity that is incompatible with these measures being used as biomarkers for PD. Conclusion In this study, serum FGF-21, serum GDF-15, and blood mtDNA levels were similar in patients with PD and healthy controls and therefore unlikely to be satisfactory indicators of mitochondrial dysfunction in patients with PD. Classification of evidence This study provides Class III evidence that serum FGF-21, serum GDF-15, and blood mtDNA copy number levels do not distinguish patients with PD from healthy controls. There was no diagnostic uncertainty between patients with PD and healthy controls.
Collapse
Affiliation(s)
- Ryan L Davis
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Siew L Wong
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Phillippa J Carling
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Thomas Payne
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Carolyn M Sue
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Oliver Bandmann
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Kostuk EW, Cai J, Iacovitti L. Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia 2019; 67:1542-1557. [PMID: 31025779 DOI: 10.1002/glia.23627] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/20/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SN), while the neighboring ventral tegmental area (VTA) is relatively spared. The mechanisms underlying this selectivity are not fully understood. Here, we demonstrate a vital role for subregional astrocytes in the protection of VTA DA neurons. We found that elimination of astrocytes in vitro exposes a novel vulnerability of presumably protected VTA DA neurons to the PD mimetic toxin MPP+ , as well as exacerbation of SN DA neuron vulnerability. Conversely, VTA astrocytes protected both VTA and SN DA neurons from MPP+ toxicity in a dose dependent manner, and this protection was mediated via a secreted molecule. RNAseq analysis of isolated VTA and SN astrocytes demonstrated a vast array of transcriptional differences between these two closely related populations demonstrating regional heterogeneity of midbrain astrocytes. We found that GDF15, a member of the TGFβ superfamily which is expressed 230-fold higher in VTA astrocytes than SN, recapitulates neuroprotection of both rat midbrain and iPSC-derived DA neurons, whereas its knockdown conversely diminished this effect. Neuroprotection was likely mediated through the GRFAL receptor expressed on DA neurons. Together; these results suggest that subregional differences in astrocytes underlie the selective degeneration or protection of DA neurons in PD.
Collapse
Affiliation(s)
- Eric Wildon Kostuk
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| | - Jingli Cai
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| | - Lorraine Iacovitti
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania.,Department of Neurology, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania.,Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Liu H, Liu J, Si L, Guo C, Liu W, Liu Y. GDF-15 promotes mitochondrial function and proliferation in neuronal HT22 cells. J Cell Biochem 2019; 120:10530-10547. [PMID: 30635935 DOI: 10.1002/jcb.28339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/11/2018] [Indexed: 01/21/2023]
Abstract
The neuronal cell line HT22 is an excellent model for studying Parkinson's disease. Growth differentiation factor 15 (GDF15) plays a critical role in Parkinson's disease, but the molecular mechanism involved are not well understood. We constructed the GDF15 overexpression HT22 cells and detected the effects of overexpression of GDF15 on the viability, oxygen consumption, mitochondrial membrane potential of oligomycin-treated HT22 cells. In addition, we used a high-throughput RNA-sequencing to study the lncRNA and mRNA expression profiling and obtained key lncRNAs, mRNA, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The expression of selected DElncRNAs was validated by quantitative real-time PCR (qRT-PCR). Our results showed that overexpression of GDF15 significantly reversed the cells viability, oxygen consumption, and mitochondrial membrane potential effect caused by oligomycin in HT22 cells. The 1093 DEmRNAs and 395 DElncRNAs in HT22 cells between GDF15-oligomycin non-intervention group and a normal control-oligomycin un-intervention group were obtained, and 394 DEmRNAs and 271 DElncRNAs in HT22 cells between GDF15-oligomycin intervention group and normal control-oligomycin intervention group were identified. Base on the GO and KEGG enrichment analysis of between GDF15-oligomycin intervention group and normal control-oligomycin intervention group, positive regulation of cell proliferation was most significantly enriched GO terms, and Cav1 was enriched in positive regulation of cell proliferation pathway. PI3K-Akt signaling pathway was one significantly enriched pathway in GDF15-oligomycin intervention group. The qRT-PCR results were consistent with RNA-sequencing, generally. GDF15 might promote mitochondrial function and proliferation of HT22 cells by regulating PI3K/Akt signaling pathway. Our study may be helpful in understanding the potential molecular mechanism of GDF15 in Parkinson's disease.
Collapse
Affiliation(s)
- Hong Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Neurology, People's Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, China
| | - Jiahui Liu
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Lei Si
- Department of Precision, People's Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, China
| | - Cunju Guo
- Department of Neurology, People's Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, China
| | - Wei Liu
- Department of Central Laboratory, People's Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
26
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
27
|
Kumar P, Millischer V, Villaescusa JC, Nilsson IAK, Östenson CG, Schalling M, Ösby U, Lavebratt C. Plasma GDF15 level is elevated in psychosis and inversely correlated with severity. Sci Rep 2017; 7:7906. [PMID: 28801589 PMCID: PMC5554200 DOI: 10.1038/s41598-017-07503-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that GDF15 is a biomarker for ageing and morbidity of many somatic disorders such as cancer and inflammatory disorders. Recently, elevated serum GDF15 level was proposed as a marker for mood disorder. However, psychosis severity was not investigated in relation to plasma GDF15 levels. In the present study we measured GDF15 levels in plasma of 120 psychosis patients compared to 120 age and gender matched healthy controls. Within the patient cohort GDF15 levels were evaluated for association with age, gender, lifestyle factors, C-reactive protein levels, psychosis severity and metabolic disorder. Psychosis patients had elevated GDF15 levels compared to controls (medianPsychosis = 744 ng/mL, mediancontrols = 516 ng/mL, p < 0.001). Within the psychosis cohort, GDF15 levels, when corrected for age, metabolic health and lifestyle factors, were negatively correlated with psychosis severity (β = −0.218, p = 0.012). While GDF15 levels were elevated in patients versus healthy controls, the negative correlation between psychosis severity and GDF15 suggests a loss of anti-inflammatory GDF15 mediated functionality in severe psychosis. Study replication in larger cohorts will be necessary to assess the potential of GDF15 as a prognostic biomarker in psychosis.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - J Carlos Villaescusa
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Urban Ösby
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Adult Psychiatry, PRIMA Barn och Vuxenpsykiatri AB, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
28
|
Yao X, Wang D, Zhang L, Wang L, Zhao Z, Chen S, Wang X, Yue T, Liu Y. Serum Growth Differentiation Factor 15 in Parkinson Disease. NEURODEGENER DIS 2017; 17:251-260. [PMID: 28787735 DOI: 10.1159/000477349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) has been shown to be protective for dopaminergic neurons in animal and ex vivo experiments. However, little is known about its effect on the human body. OBJECTIVE This study investigated associations between serum GDF15 levels and clinical parameters in patients with Parkinson disease (PD). METHODS Idiopathic PD patients (n = 104) and age-matched controls (n = 88) were enrolled. Serum GDF15 levels were measured by human enzyme-linked immunosorbent assay. Univariate and multivariate analyses investigated correlations between GDF15 and clinical characteristics, including disease severity by the Unified PD Rating Scale (UPDRS)-III. The diagnostic value of GDF15 was evaluated by receiver-operating characteristic curve (ROC) analysis. RESULTS The serum GDF15 levels of the PD patients were significantly higher than those of the healthy controls. In PD patients, serum GDF15 levels in men were significantly higher than in women. GDF15 levels correlated with age, gender, disease duration, and UPDRS-III score. After adjusting for confounding factors, multiple linear regression analysis showed that the serum GDF15 level (β = 0.015, p = 0.001) was an independent risk factor for UPDRS-III score. In ROC analysis, GDF15 achieved an area under the curve of 0.86 for the identification of PD, with a sensitivity of 71.15% and a specificity of 87.50%. CONCLUSION GDF15 may be a potential biomarker for the diagnosis and monitoring of motor severity in PD.
Collapse
Affiliation(s)
- Xiaomei Yao
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|