1
|
Ahn S, Kaipparettu BA. G-protein coupled receptors in metabolic reprogramming and cancer. Pharmacol Ther 2025; 270:108849. [PMID: 40204142 DOI: 10.1016/j.pharmthera.2025.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/09/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
G-protein coupled receptors (GPCR) are one of the frequently investigated drug targets. GPCRs are involved in many human pathophysiologies that lead to various disease conditions, such as cancer, diabetes, and obesity. GPCR receptor activates multiple signaling pathways depending on the ligand and tissue type. However, this review will be limited to the GPCR-mediated metabolic modulations and the activation of relevant signaling pathways in cancer therapy. Cancer cells often have reprogrammed cell metabolism to support tumor growth and metastatic plasticity. Many aggressive cancer cells maintain a hybrid metabolic status, using both glycolysis and mitochondrial metabolism for better metabolic plasticity. In addition to glucose and glutamine pathways, fatty acid is a key mitochondrial energy source in some cancer subtypes. Recently, targeting alternative energy pathways like fatty acid beta-oxidation (FAO) has attracted great interest in cancer therapy. Several in vitro and in vivo experiments in different cancer models reported encouraging responses to FAO inhibitors. However, due to the potential liver toxicity of FAO inhibitors in clinical trials, new approaches to indirectly target metabolic reprogramming are necessary for in vivo targeting of cancer cells. This review specifically focused on free fatty acid receptors (FFAR) and β-adrenergic receptors (β-AR) because of their reported significance in mitochondrial metabolism and cancer. Further understanding the pharmacology of GPCRs and their role in cancer metabolism will help repurpose GPCR-targeting drugs for cancer therapy and develop novel drug discovery strategies to combine them with standard cancer therapy to increase anticancer potential and overcome drug resistance.
Collapse
Affiliation(s)
- Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Fontinha F, Martins N, Magalhães R, Peres H, Oliva-Teles A. Dietary short-chain fatty acid supplementation does not affect growth performance, metabolism, and oxidative status of European seabass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111096. [PMID: 40157714 DOI: 10.1016/j.cbpb.2025.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
This study investigated the effects of dietary short-chain fatty acid (SCFA) supplementation, on growth performance, metabolism, and antioxidant status of European seabass juveniles. Six isoproteic (43 % crude protein) and isolipidic (18 % crude lipid) diets were formulated to include 0.25 and 0.50 % Sodium acetate (SA), Sodium propionate (SP), or Sodium butyrate (SB). A diet without SCFA supplementation was used as a control. The diets were fed to triplicate groups of European seabass juveniles (initial body weight of 15 g) for 56 days. The supplementation of SCFA in the diet had no impact on the growth, feed utilization, or body composition of seabass. In the intestine, gene expression of pyruvate kinase (pk) and glucokinase (gk), phosphoenolpyruvate carboxykinase (pepck), glucose facilitative carrier type 2 (glut2), and citrate synthase (cs) was lower in fish fed the SP0.50 diet than in the other groups. Moreover, fatty acid synthase (fas) gene expression was lower in fish fed the SA0.25, SA0.50, and SB0.25 diets than in the other groups. Further, catalase (CAT) and glutathione reductase (GR) activity and lipid peroxidation (LPO) levels showed no differences between groups. In contrast, glutathione peroxidase (GPX) activity was higher in fish fed the SP0.50 diet. In the liver, GR activity and LPO levels showed no differences between groups. In contrast, CAT activity was lower in all dietary treatments than in control, and GPX and G6PDH activity was lower in fish fed with the SB (0.25 and 0.50 %) diet than in the other diets. Overall, SCFA supplementation did not affect growth performance and feed utilization and only had minor effects on metabolism and antioxidant defense mechanisms.
Collapse
Affiliation(s)
- F Fontinha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n., 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - N Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n., 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - R Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n., 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - H Peres
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n., 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - A Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n., 4450-208 Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Jiang M, Incarnato D, Modderman R, Lazaro AA, Jonkers IH, Bianchi F, van den Bogaart G. Low butyrate concentrations exert anti-inflammatory and high concentrations exert pro-inflammatory effects on macrophages. J Nutr Biochem 2025:109962. [PMID: 40381959 DOI: 10.1016/j.jnutbio.2025.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Butyrate is a four-carbon short-chain fatty acid produced from microbial fermentation of dietary fibers present at high millimolar concentrations in the colonic lumen. However, in an intact epithelium, macrophages residing in the lamina propria are exposed to only micromolar butyrate concentrations. Current studies show anti-inflammatory properties of butyrate and suggest that it might have therapeutic applications in inflammatory bowel disease and colonic cancer. We now show that the effect of butyrate on human macrophages is strongly concentration dependent: 0.1 mM butyrate suppresses LPS-induced production of the pro-inflammatory cytokine tumor necrosis factor (TNF)-α. Experiments with siRNA knockdown and small molecule inhibitors suggest that this is mediated by a mechanism involving PPAR-γ signaling, whereas we observed no or only a minor effect of histone acetylation. In contrast, 10 mM butyrate promotes macrophage cell death, does not inhibit LPS-induced production of TNF-α, and promotes production of IL-1β, while production of anti-inflammatory IL-10 is reduced in a mechanism involving G protein-coupled receptors, the lipid transporter CD36, and the kinase SRC. We propose that butyrate is a signaling molecule for intestinal integrity, since intestinal disruption exposes macrophages to high butyrate concentrations.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aina Altimira Lazaro
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Wilms JN, Hendriks S, Sugino T, Ghaffari MH, Steele MA, Sauerwein H, Martín-Tereso J, Leal LN. Inclusion of a spray-dried fat concentrate containing tributyrin and tricaproin in milk replacer enhanced increased feed intake, growth, and elicited metabolic and endocrine responses in ad libitum-fed calves. J Dairy Sci 2025:S0022-0302(25)00321-2. [PMID: 40349754 DOI: 10.3168/jds.2025-26331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Fat composition of milk replacer (MR) for calves differs from that of bovine milk fat, resulting in lower levels of butyric (C4:0) and caproic acid (C6:0). These fatty acids play a critical role in the gastrointestinal and metabolic development of calves by supporting rumen epithelial growth, enhancing energy metabolism, and promoting overall gut health. The objective of this study was to evaluate the effects of inclusion of a spray-dried fat concentrate containing tributyrin (TB) and tricaproin (TC) in a high-fat MR on growth, feed intake, and metabolic profiles of ad libitum-fed calves. Forty-eight newborn Holstein calves were blocked based on arrival sequence. Within each block of 2 calves, calves were randomly assigned to a control MR (CON, n = 24) including vegetable fats from palm, coconut, and linseed fats, or to an experimental MR including the same fat blend, to which TB and TC (TRI, n = 24) was added to the same levels found in milk fat. Both MR contained 23.7% crude protein, 27.7% fat, and 35.6% lactose (DM basis) and were fed at 13.5% solids. Calves were group housed and fed ad libitum MR with automated feeders. Weaning was gradual and induced between wk 7-10, after which calves were only fed solid feeds. Starter feed, chopped straw, and water were offered ad libitum throughout the whole study period. Calves were weighed and blood was collected once weekly at 1300h. Calves fed TRI showed a ∼50% reduction in therapeutic intervention days compared with CON. In addition, calves fed TRI consumed significantly more MR and starter feed, resulting in a greater growth. Serum NEFA and plasma total cholesterol were lower, whereas the enzymatic activity of serum ALP was higher in calves fed TRI than in CON. In addition, calves fed TRI had lower serum ghrelin and higher insulin-like growth factor-I concentrations. Incorporating TB and TC is a suitable strategy to increase solid feed intake upon weaning, resulting in better growth performance in ad libitum systems, and to improve health of dairy rearing calves.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada.
| | - S Hendriks
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands; Adaptation Physiology, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - T Sugino
- The Research Center for Animal Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
5
|
Yang T, Duan H, Li Y, Xu N, Wang Z, Li Z, Chen Y, Du Y, Zhang M, Yan J, Sun C, Wang G, Li W, Li X, Ma F, Huang G. β-hydroxybutyrate and mitochondria mediate the association between medium-chain fatty acids, DHA and mild cognitive impairment: a nested case-control study. Nutr Neurosci 2025; 28:573-582. [PMID: 39225171 DOI: 10.1080/1028415x.2024.2398364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Medium-chain fatty acids (MCFAs) and docosahexaenoic acid (DHA) could affect the occurrence of mild cognitive impairment (MCI). β-hydroxybutyrate (BHB), mitochondrial DNA copy number (mtDNAcn) and mitochondrial DNA (mtDNA) deletions might be their potential mechanisms. This study aimed to explore the relationship between MCFAs, DHA and MCI, and potential mechanisms. METHODS This study used data from Tianjin Elderly Nutrition and Cognition (TENC) cohort study, 120 individuals were identified with new onset MCI during follow-up, 120 individuals without MCI were selected by 1:1 matching sex, age, and education levels as the control group from TENC. Conditional logistic regression analysis and mediation effect analysis were used to explore their relationship. RESULTS Higher serum octanoic acid levels (OR: 0.633, 95% CI: 0.520, 0.769), higher serum DHA levels (OR: 0.962, 95% CI: 0.942, 0.981), and more mtDNAcn (OR: 0.436, 95% CI: 0.240, 0.794) were associated with lower MCI risk, while more mtDNA deletions was associated with higher MCI risk (OR: 8.833, 95% CI: 3.909, 19.960). Mediation analysis suggested that BHB and mtDNAcn, in series, have mediation roles in the association between octanoic acid and MCI risk, and mtDNA deletions have mediation roles in the association between DHA and MCI risk. CONCLUSION Higher serum octanoic acid and DHA levels were associated with lower MCI risk. Octanoic acid could affect the incidence of MCI through BHB, then mitochondria function, or through mitochondria function, or directly. Serum DHA level could affect the incidence of MCI through mitochondria function, or directly.
Collapse
Affiliation(s)
- Tong Yang
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Huilian Duan
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuan Li
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ning Xu
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zehao Wang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhenshu Li
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yongjie Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Yue Du
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Meilin Zhang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Yan
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Changqing Sun
- Neurosurgical Department of Baodi Clinical College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Guangshun Wang
- Department of Tumor, Baodi Clinical College of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wen Li
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Fei Ma
- Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
| | - Guowei Huang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Sivri D, Akdevelioğlu Y. Effect of Fatty Acids on Glucose Metabolism and Type 2 Diabetes. Nutr Rev 2025; 83:897-907. [PMID: 39530757 PMCID: PMC11986341 DOI: 10.1093/nutrit/nuae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes is an inflammatory, non-infectious disease characterized by dysfunctional pancreatic β-cells and insulin resistance. Although lifestyle, genetic, and environmental factors are associated with a high risk of type 2 diabetes, nutrition remains one of the most significant factors. Specific types and increased amounts of dietary fatty acids are associated with type 2 diabetes and its complications. Dietary recommendations for the prevention of type 2 diabetes advocate for a diet that is characterized by reduced saturated fatty acids and trans fatty acids alongside an increased consumption of monounsaturated fatty acids, polyunsaturated fatty acids, and omega-3 fatty acids. Although following the recommendations for dietary fatty acid intake is important for reducing type 2 diabetes and its related complications, the underlying mechanisms remain unclear. This review will provide an update on the mechanisms of action of fatty acids on glucose metabolism and type 2 diabetes, as well as dietary recommendations for the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Faculty of Health Science, Anadolu University, Eskişehir, Türkiye
| | - Yasemin Akdevelioğlu
- Department of Nutrition and Dietetics, Faculty of Health Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
7
|
Bui TNY, Paul A, Guleria S, O'Sullivan JM, Toldi G. Short-chain fatty acids-a key link between the gut microbiome and T-lymphocytes in neonates? Pediatr Res 2025:10.1038/s41390-025-04075-0. [PMID: 40307498 DOI: 10.1038/s41390-025-04075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Infancy is a vulnerable and critical phase in the acquisition of the gut microbiome and the establishment of immune function. Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate, are compounds mostly produced by the microbiome through various metabolic pathways and play an indispensable role in connecting the microbiome and the adaptive immune system. This review aims to summarise recent findings regarding the intricate relationship between SCFAs, the gut microbiome, and T lymphocytes with a focus on early life interactions. The paper discusses factors affecting the establishment of the neonatal microbiome, especially human milk versus formula milk, and how these influence SCFA concentrations in feces, which in turn directly impact T cell development and function. Despite recent advances in understanding the role of gut microbiome derived SCFAs in adults, a significant knowledge gap remains in translating these findings to neonates and exploring the utility of SCFAs as a potential therapeutic intervention in inflammatory complications of preterm and term neonates. IMPACT: This review highlights potential therapeutic applications of short-chain fatty acids (SCFAs) in neonatal care, particularly in preventing and treating inflammatory conditions. This could lead to new treatment strategies for conditions like NEC and other immune-mediated disorders in neonates. By identifying significant knowledge gaps in neonatal SCFA research, this review helps future investigations toward understanding SCFA mechanisms specifically in neonates, potentially leading to age-appropriate therapeutic interventions. Understanding the relationship between early-life factors (such as feeding methods and microbiome development) and immune system development through SCFAs could inform public health policies and recommendations for infant nutrition and care practices.
Collapse
Affiliation(s)
- Tram N Y Bui
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Ayamita Paul
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Shalini Guleria
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Gergely Toldi
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Zhang Z, Wu C, Wang S, Tong Y, Huang J, Xue C, Cao T, Suzuki K. Long-Term Moderate Increase in Medium-Chain Fatty Acids Intake Enhances Muscle Metabolism and Function in Mice. Int J Mol Sci 2025; 26:4126. [PMID: 40362366 PMCID: PMC12071283 DOI: 10.3390/ijms26094126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Medium-chain fatty acids (MCFAs) refer to a mixture of fatty acids typically composed of 6 to 12 carbon atoms. The unique transport and rapid metabolism of MCFAs provide more clinical benefits than other substrates, such as long-chain fatty acids. Although many studies have shown that MCFAs may improve exercise capacity and muscle strength, applications have mainly been limited to low doses. This study explores the effects of high-dose MCFA intake on muscle strength and exercise endurance. Mice were fed high-fat diets containing 30, 35, and 40% (w/w) MCFAs for 12 weeks, and measurements of grip strength and submaximal endurance exercise capacity were conducted to evaluate muscle function. Results showed that compared to the 30% MCFAs group, the absolute grip strength in the 35 and 40% MCFAs groups significantly increased; in terms of endurance performance, the 35% MCFAs group showed a significant increase compared to the 40% MCFAs group. These results were mainly achieved by promoting muscle regeneration and differentiation and inhibiting the expression of the ubiquitin-proteasome pathway. This study demonstrates that moderately increasing MCFA intake can improve the effects of obesity-induced muscle atrophy. However, excessive intake may reduce the impact of improvement.
Collapse
Affiliation(s)
- Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Chuwen Xue
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Tiehan Cao
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
9
|
Zhang L, Li H, Song Z, Gao Q, Bian C, Ma Q, Wei Y, Liang M, Xu H. Mixtures of Algal Oil and Terrestrial Oils in Diets of Tiger Puffer ( Takifugu rubripes). Animals (Basel) 2025; 15:1187. [PMID: 40362002 PMCID: PMC12071136 DOI: 10.3390/ani15091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have a key role in maintaining fish growth and health. However, fish oil (FO), the main source of n-3 LC-PUFAs, is in relative shortage due to the rapid development of the aquaculture industry. In this study, we investigated the efficacy of replacing fish oil with mixtures of algal oil (AO) from Schizochytrium sp. and terrestrially sourced oils (animal oil poultry oil (PO) or vegetable oil rapeseed oil (RO)) in the diets of juvenile tiger puffer (average initial body weight 23.8 ± 1.51 g). An 8-week feeding trial was conducted using three experimental diets: a control diet containing 6% added FO (control FO-C) and two diets with 3% AO + 3% PO or RO (groups AO+PO and AO+RO, respectively), replacing FO. Each diet was fed to triplicate tanks with 25 fish in each tank. The weight gain, feed conversion ratio, body composition, and serum biochemical parameters were not significantly different among the three groups, except that the AO+PO group had a significantly lower muscle lipid content than the other two groups. The AO-added diets significantly increased the DHA content in whole fish, muscle, and liver samples but significantly reduced the EPA content. The oil mixture treatments significantly increased the contents of monounsaturated fatty acid (MUFA) but significantly decreased the contents of saturated fatty acids (SFAs) in the liver and whole fish samples. However, the MUFA and SFA contents in the muscle samples were not significantly different among the dietary groups. The diets with oil mixtures did not affect the hepatic histology but tended to result in the atrophy of intestinal villi. The treatment diets downregulated the hepatic gene expression of proinflammatory cytokines (il-1β and tnf-α) and the fibrosis marker gene, acta2. However, the AO+PO diet inhibited the intestinal gene expression of the tight junction protein, claudin 18. In the muscle, the treatment diets upregulated the expression of genes related to cell differentiation and apoptosis (myod, myog, myf6, myf5, bcl-2, and bax). In conclusion, Schizochytrium sp. oil in combination with terrestrial oils (poultry oil or rapeseed oil) can be an effective alternative to fish oil in the diets of tiger puffer, but the mixing strategy may be better modified in consideration of intestinal health.
Collapse
Affiliation(s)
- Lu Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Haoxuan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Ziling Song
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qingyan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Chenchen Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
10
|
Chu CS, Chen YT, Sun WC, Liang WZ. Investigate the protective effects of eicosapentaenoic acid in human astrocytes of oxidative stress damage and explore its underlying mechanisms. Mol Biol Rep 2025; 52:391. [PMID: 40232525 DOI: 10.1007/s11033-025-10481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND The importance of fatty acids in human health and their potential in treating various brain diseases is increasingly acknowledged. Research indicates that ultra-long-chain fatty acids adversely affect dietary habits, while omega (ω)-3 polyunsaturated fatty acids confer health benefits. Eicosapentaenoic acid (EPA), an ω-3 polyunsaturated fatty acid, manifests diverse protective activities, including anti-oxidative effects and the attenuation of brain diseases. Previous studies have suggested that EPA can alleviate oxidative stress and forestall diseases stemming from oxidative damage. Nevertheless, EPA's precise antioxidant mechanism and signaling pathway in human astrocytes remain elusive. To address this knowledge gap, we established an H2O2-induced oxidative damage model in Gibco® Human Astrocytes (GHA cells) and elucidated the underlying mechanisms and signaling pathways. METHODS AND RESULTS Our assessments included cell viability through the CCK-8 assay, morphological examination via microscopy, ROS quantification using the DCFH-DA fluorescent probe, GSH content evaluation with the CMF-DA fluorescent probe, and protein expression analysis for antioxidant and apoptotic markers through Western blotting. The results showed that pretreatment with 3 µM of EPA countered the cytotoxicity, ROS production, and GSH depletion caused by H2O2 (250 µM) in GHA cells. Additionally, EPA pretreatment effectively reduced the cytotoxicity and oxidative stress resulting from H2O2 by modulating the Nrf2/HO-1/NQO1 and Bax/Bcl-2/caspase-9/caspase-3 signaling pathways in GHA cells. CONCLUSION These findings enhance our understanding of EPA's antioxidant mechanisms in the oxidative stress model of human astrocytes, illuminate the interplay between antioxidant and apoptotic signals, and offer promise for exploring potential preventive and therapeutic interventions for brain diseases.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Ying-Tso Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan.
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan.
| |
Collapse
|
11
|
Turk H, Genisel M, Dumlupinar R. The Regulatory Role of Exogenous Carnitine Applications in Lipid Metabolism, Mitochondrial Respiration, and Germination in Maize Seeds ( Zea mays L.). Life (Basel) 2025; 15:631. [PMID: 40283185 PMCID: PMC12028521 DOI: 10.3390/life15040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
The present study aimed to investigate the effects of exogenous carnitine treatments on maize seed germination by stimulating lipid metabolism and regulating the mitochondrial respiratory pathway. Maize seeds were grown as control, 5, 7.5, and 10 μM carnitine treatment groups in a germination chamber at 25 °C under dark conditions for 5 d. It was determined that carnitine treatments increased the germination rate (GR), germination index (GI), germination potential (GP), vigor index (VI), root and hypocotyl length, fresh weight (FW), and content of total soluble protein but decreased the total carbohydrate content. It was also found that it increased the activities of α-amylase, isocitrate lyase (ICL), and malate synthase (MS) enzymes, which are critical in the germination process, and upregulated the expression of ICL and MS genes. To clarify the potential of carnitine treatments to promote the participation of lipids in respiration in roots and hypocotyls, lipase, carnitine acyltransferases (CATI and CATII), and citrate synthase (CS) enzyme activities were examined, and significant increases in these activities were detected. It was also found that gene levels of respiratory enzymes cytochrome oxidase (COX), pyruvate dehydrogenase (PDH), and Atp synthase, lipase, and CS proteins were upregulated by carnitine treatment. In support of the enzyme and gene change findings, significant changes were determined in fatty acid contents, free carnitine, and long-chain acylcarnitine levels in seeds, roots, and hypocotyls depending on carnitine application. In roots and hypocotyls, carnitine treatments significantly increased glutamine synthase (GS) and glutamate dehydrogenase (NADH-GDH) activities and gene expression levels, which are closely related to the tricarboxylic acid cycle (TCA). It was also noted that all proteins analyzed at the gene expression level were upregulated by carnitine applications in seeds. In addition, significant increases were recorded in antioxidant enzyme ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities and total ascorbate (AsA) and glutathione (GSH) contents in roots and hypocotyls, while decreases were determined in guaiacol peroxidase (GPX) and catalase activities. Significant changes were recorded in all parameters examined, especially with 7.5 µM carnitine application. The findings suggest that carnitine may promote the transport of fatty acids to mitochondrial respiration by accelerating lipid catabolism in five-day-old maize and contribute to seed germination and growth and development processes by activating other metabolic pathways associated with respiration in this process.
Collapse
Affiliation(s)
- Hulya Turk
- Biology Department, Science Faculty, Ataturk University, 25240 Erzurum, Turkey;
| | - Mucip Genisel
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100 Agri, Turkey;
| | - Rahmi Dumlupinar
- Biology Department, Science Faculty, Ataturk University, 25240 Erzurum, Turkey;
| |
Collapse
|
12
|
Qin X, Chen M, He B, Chen Y, Zheng Y. Role of short-chain fatty acids in non-alcoholic fatty liver disease and potential therapeutic targets. Front Microbiol 2025; 16:1539972. [PMID: 40248431 PMCID: PMC12003400 DOI: 10.3389/fmicb.2025.1539972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and has become the greatest potential risk for cirrhosis and hepatocellular carcinoma. The metabolites produced by the gut microbiota act as signal molecules that mediate the interaction between microorganisms and the host and have biphasic effects on human health. The gut microbiota and its metabolites, short-chain fatty acids (SCFAs), have been discovered to ameliorate many prevalent liver diseases, including NAFLD. Currently, SCFAs have attracted widespread attention as potential therapeutic targets for NAFLD, but the mechanism of action has not been fully elucidated. This article summarizes the mechanisms of short-chain fatty acids of gut microbiota metabolites to regulate the metabolism of glucose and lipid, maintain the intestinal barrier, alleviate the inflammatory response, and improve the oxidative stress to improve NAFLD, in order to provide a reference for clinical application.
Collapse
Affiliation(s)
- Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuelin Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
13
|
Anas MA, Aprianto MA, Sapan Y, Almira FN, Aldis RE, Atapattu NSBM, Kidd MT, Akit H, Montha N. Black soldier fly larvae oil downregulated gene expression related to fat metabolism of broilers fed low protein diet. Poult Sci 2025; 104:104831. [PMID: 40101509 PMCID: PMC11964662 DOI: 10.1016/j.psj.2025.104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/20/2025] Open
Abstract
Feeding low crude protein (LCP) diets supplemented with crystalline amino acids improves environmental and welfare parameters of broilers. However, increased body fat contents in broilers fed LCP diets have become a concern. Black soldier fly larvae oil (BSFLO), rich in lauric acid, has been reported to inhibit lipogenesis and reduce body fat. A 3 × 2 factorial experiment was conducted to evaluate the effect of BSFLO on performance, blood biochemistry, carcass quality, fat metabolism gene expression, and litter quality in broilers fed protein-reduced diets. A total of 288 broilers were divided into 6 treatments: three CP levels (200, 185, or 170 g/kg; high [HCP], medium [MCP], or low [LCP]) and two oil sources (BSFLO and Crude Palm Oil [CPO]), with 6 replicate pens of 8 birds each. Results showed a 15 g/kg CP reduction had no effect on body weight and feed intake (P > 0.05) but increased FCR (P = 0.001). A 30 g/kg CP significantly reduced the body weight and feed intake with inferior FCR (P < 0.05). However, negative effect of low CP diets on FCR was mitigated by BSFLO (P = 0.008). Reducing CP by 30 g/kg increased fat pads (P = 0.033), whereas BSFLO reduced fat pads (P = 0.049) at all three CP levels. Protein-reduced diets increased blood cholesterol (P = 0.002), HDL (P < 0.001), and LDL (P = 0.002). BSFLO decreased blood triglyceride (P = 0.026) and cholesterol (P < 0.001). Reducing 30 g/kg CP increased meat cooking loss (P = 0.035), while BSFLO decreased cooking loss (P < 0.001). BSFLO increased meat protein (P < 0.001) and decreased cholesterol (P = 0.003). The inclusion of BSFLO in protein-reduced diet down-regulated the gene expression of FAS, ACC, SREBP-1, and HMGR in broilers (P < 0.001). Reducing CP levels decreased litter pH (P = 0.011), nitrogen (P < 0.001), ammonia (P < 0.001) and moisture (P = 0.018). The study concludes that BSFLO reduced body fat by down-regulating the lipogenesis gene expression. In addition, BSFLO enhanced feed efficiency in broilers fed protein-reduced diet.
Collapse
Affiliation(s)
- Muhsin Al Anas
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Muhammad Anang Aprianto
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yizrel Sapan
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fadella Nur Almira
- Department of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Animal Science, University of Debrecen, Debrecen 4032, Hungary
| | - Rinanti Eka Aldis
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - N S B M Atapattu
- Department of Animal Science, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Napatsorn Montha
- Department of Animal Science and Aquatic, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Moutinho S, Monroig Ó, Peres H, Villena-Rodríguez A, Magalhães R, Pulido-Rodríguez L, Parisi G, Oliva-Teles A. Effects of black soldier fly larvae oil on lipid metabolism, liver fatty acid composition, and plasma metabolite profiles in gilthead seabream juveniles. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111069. [PMID: 39743134 DOI: 10.1016/j.cbpb.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The potential of insects as alternative ingredients in animal feeds is well-established. However, limited information is available on the use of insect oils as alternative lipid sources in aquafeeds. To address this, a study was conducted on gilthead seabream (Sparus aurata) juveniles to evaluate the effects of including black soldier fly (Hermetia illucens) larvae oil (HIO). Diets were formulated to include 4, 7.9, and 9.5 % HIO, replacing a vegetable oil blend at 42, 84, or 100 %, respectively. After 70 days, the effects on liver fatty acid profiles, plasma metabolites, and lipid metabolism gene expression were assessed. The results showed that HIO inclusion led to a linear decrease in plasma lipids and triglycerides, while high-density lipoprotein levels increased. The experimental diets also altered the liver's fatty acid composition without affecting total lipid content. There was an increase in the liver's saturated fatty acid content, like lauric acid, and monounsaturated fatty acids, like oleic acid. In contrast, n-3 and n-6 polyunsaturated fatty acid content was reduced, although EPA and DHA levels remained unaffected. Additionally, the content of C16:0 and C18:0 (% of total fatty acids) was higher in the liver than in the corresponding diets. The inclusion of HIO had minimal impact on the expression of genes associated with fatty acid synthesis, transport, and β-oxidation. However, a downregulation of elongation of very long-chain fatty acids proteins 6 and 1b (elovl6 and elovl1b) was observed with increasing HIO levels. Overall, the study indicates that up to 9.5 % HIO inclusion in diets is well tolerated by gilthead seabream juveniles, with minimal effects on plasma metabolites and key gene expression related to fatty acid metabolism. These findings support the use of HIO as a viable alternative lipid source for juvenile gilthead seabream, contributing to the sustainable development of aquafeeds.
Collapse
Affiliation(s)
- Sara Moutinho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Andrea Villena-Rodríguez
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Rui Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Lina Pulido-Rodríguez
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via delle Cascine 5, 50144 Florence, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via delle Cascine 5, 50144 Florence, Italy
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Marino Y, Inferrera F, Genovese T, Cuzzocrea S, Fusco R, Di Paola R. Mitochondrial dynamics: Molecular mechanism and implications in endometriosis. Biochimie 2025; 231:163-175. [PMID: 39884375 DOI: 10.1016/j.biochi.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Endometriosis affects about 10 % of women of reproductive age, leading to a disabling gynecologic condition. Chronic pain, inflammation, and oxidative stress have been identified as the molecular pathways involved in the progression of this disease, although its precise etiology remains uncertain. Although mitochondria are considered crucial organelles for cellular activity, their dysfunction has been linked to the development of this disease. The purpose of this review is to examine the functioning of the mitochondrion in endometriosis: in particular, we focused on the mitochondrial dynamics of biogenesis, fusion, and fission. Since excessive mitochondrial activity is reported to affect cell proliferation, we also considered mitophagy as a mechanism involved in limiting disease development. To better understand mitochondrial activity, we also considered alterations in circadian rhythms, the gut microbiome, and estrogen receptors: indeed, these mechanisms are also involved in the development of endometriosis. In addition, we focused on recent research about the impact of numerous substances on mitochondrial activity; some of them may offer a future breakthrough in endometriosis treatment by acting on mitochondria and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy; Link Campus University, Via del Casale di San Pio V, 44, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, 98168, University of Messina, Messina, Italy.
| |
Collapse
|
16
|
Jiang Y, Chen Y, Chen Y, Gong X, Chen Z, Zhang X. Ketogenic Diet and Gut Microbiota: Exploring New Perspectives on Cognition and Mood. Foods 2025; 14:1215. [PMID: 40238374 PMCID: PMC11988741 DOI: 10.3390/foods14071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The ketogenic diet (KD) is a dietary regimen characterized by low carbohydrate intake and moderate protein levels, designed to simulate a fasting state and induce ketosis for the production of ketone bodies from fat. Emerging research underscores KD's potential in improving cognitive functions and regulating mood. Investigations into its safety and efficacy have centered on its anti-inflammatory properties and its impact on neurological health and the gut-brain axis (GBA). This review delves into the relationship between the KD and gut microbiota, emphasizing its potential role in cognitive enhancement and mood stabilization, particularly for managing mood disorders and depression. The investigation of the KD's physiological effects and its role in promoting cognition and emotion through gut microbiota will pave the way for innovative approaches to personalized dietary interventions.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yili Chen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Youmeng Chen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xinrong Gong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyu Chen
- Ningbo Institute for Drug Control, Ningbo 315048, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Lu Y, Chen D, Wu J, Zheng J. Characteristics and clinical value of intestinal metabolites in 4 to 6-year-old children with OSAHS. BMC Pediatr 2025; 25:204. [PMID: 40091027 PMCID: PMC11912726 DOI: 10.1186/s12887-025-05561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/02/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE This study aims to explore the characteristics and functional changes of intestinal metabolites in children with obstructive sleep apnea hypopnea syndrome (OSAHS) aged 4-6 years old through metabolomic approaches, screen potential biomarkers and analyze their correlation with clinical indicators and preliminary discuss the roles of intestinal metabolites in the occurrence and development of OSAHS. METHODS We collected fecal samples from 40 OSAHS children and 40 healthy controls aged 4-6 years and recorded some OSAHS-related clinical indicators. Fecal specimens were used to detect all metabolites through untargeted metabolomics. RESULTS This study identified a total of 1164 intestinal metabolites and screened out 254 differential metabolites. In the OSAHS group, the relative content of 96 metabolites were higher than the control group, while the relative content of 158 metabolites were lower. The receiver operating characteristic curve analysis results showed that the area under the curve of 14 differential metabolites was greater than 0.8. The area under the curve of Formononetin is the highest, at 0.9100, with sensitivity and specificity of 82.5% and 90.0%, respectively, and is positively correlated with OAHI. The differential metabolite functions mainly include the metabolism of fatty acids and other lipid substances, cellular signaling, protein and amino acid related metabolism, disease-related functions, glucose metabolism, and vitamin metabolism. CONCLUSION The intestinal metabolites and metabolic function of 4-to-6-year-old children with OSAHS altered. There was a correlation between differential metabolites and clinical indicators such as uric acid, hemoglobin, and blood sugar, which has potential diagnostic value for OSAHS screening.
Collapse
Affiliation(s)
- Yanbo Lu
- The Affiliated Women and Children's Hospital of Ningbo University, Liuting Street 339, Ningbo City, Zhejiang Province, 315012, China
| | - Daina Chen
- The Affiliated Women and Children's Hospital of Ningbo University, Liuting Street 339, Ningbo City, Zhejiang Province, 315012, China
| | - Junhua Wu
- The Affiliated Women and Children's Hospital of Ningbo University, Liuting Street 339, Ningbo City, Zhejiang Province, 315012, China.
| | - Jishan Zheng
- The Affiliated Women and Children's Hospital of Ningbo University, Liuting Street 339, Ningbo City, Zhejiang Province, 315012, China.
| |
Collapse
|
18
|
Xiang F, Zhang Z, Xie J, Xiong S, Yang C, Liao D, Xia B, Lin L. Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: beyond fatty acid oxidation. J Transl Med 2025; 23:324. [PMID: 40087749 PMCID: PMC11907856 DOI: 10.1186/s12967-025-06341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
Traditionally, the carnitine pool is closely related to fatty acid metabolism. However, with increasing research, the pleiotropic effects of the carnitine pool have gradually emerged. The purpose of this review is to comprehensively investigate of the emerging understanding of the pleiotropic role of the carnitine pool, carnitine/acylcarnitines are not only auxiliaries or metabolites of fatty acid oxidation, but also play more complex and diverse roles, including energy metabolism, mitochondrial homeostasis, epigenetic regulation, regulation of inflammation and the immune system, tumor biology, signal transduction, and neuroprotection. This review provides an overview of the complex network of carnitine synthesis, transport, shuttle, and regulation, carnitine/acylcarnitines have the potential to be used as communication molecules, biomarkers and therapeutic targets for multiple diseases, with profound effects on intercellular communication, metabolic interactions between organs and overall metabolic health. The purpose of this review is to comprehensively summarize the multidimensional biological effects of the carnitine pool beyond its traditional role in fatty acid oxidation and to summarize the systemic effects mediated by carnitine/acylcarnitine to provide new perspectives for pharmacological research and treatment innovation and new strategies for the prevention and treatment of a variety of diseases.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
19
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD+ prevents chronic kidney disease by activating renal tubular metabolism. JCI Insight 2025; 10:e181443. [PMID: 40059824 PMCID: PMC11949063 DOI: 10.1172/jci.insight.181443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD+) is a small molecule that participates in hundreds of metabolism-related reactions. NAD+ levels are decreased in CKD, and NAD+ supplementation is protective. However, both the mechanism of how NAD+ supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD+ precursor, stimulated renal PPARα signaling and restored FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing showed that renal metabolic pathways were impaired in Alport mice and activated by NR in both sexes. These transcriptional changes were confirmed by orthogonal imaging techniques and biochemical assays. Single-nuclei RNA sequencing and spatial transcriptomics, both the first of their kind to our knowledge from Alport mice, showed that NAD+ supplementation restored FAO in proximal tubule cells. Finally, we also report, for the first time to our knowledge, sex differences at the transcriptional level in this Alport model. In summary, the data herein identify a nephroprotective mechanism of NAD+ supplementation in CKD, and they demonstrate that this benefit localizes to the proximal tubule cells.
Collapse
Affiliation(s)
- Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Debora L. Gisch
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Amber Sadiq
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, California, USA
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Kyle Korolowicz
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana A. Santo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine C. Allen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Teruhiko Yoshida
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael T. Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, USA
| |
Collapse
|
20
|
Xiong L, Zhang Z, Dong S, Lin T, Yue X, Chen F, Guan W, Zhang S. Maternal consumption of glycerol monolaurate optimizes milk fatty acid profile and enhances piglet gut health in association with G protein-coupled receptor 84 (GPR84) activation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:387-403. [PMID: 40034459 PMCID: PMC11872655 DOI: 10.1016/j.aninu.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study evaluated the effect of maternal glycerol monolaurate (GML) supplementation during late gestation and lactation on sow reproductive performance, transfer of immunity and redox status, milk fat and fatty acid profile, and fecal microbiota. Eighty multiparous sows (Landrace × Large white) were randomly allocated to two treatment groups (with or without 1000 mg/kg GML) with 40 replicates per treatment. The feeding experiment lasted from d 85 of gestation (G85) to d 23 of lactation (L23). The samples were collected on d 1 (L1) and 21 (L21) of lactation. Our results showed that maternal GML supplementation significantly increased litter weight (P = 0.002), average daily gain of piglets (P = 0.048), and sow average daily feed intake (P = 0.032). Compared with CON group, the concentrations of lauric acid (C12:0; P = 0.022), C16:0 (P = 0.001), and total saturated fatty acids (P = 0.006) in colostrum as well as C12:0 in L21 milk (P = 0.001) were higher in GML group. Besides, the concentrations of immunoglobulin A (IgA) and IgG in colostrum as well as sow and piglet plasma, the total antioxidant capacity and superoxide dismutase activity in sow colostrum were also significantly higher in the GML group (P < 0.05). Microbiome results showed that GML addition increased fecal microbial alpha diversity as well as the relative abundances of short chain fatty acids producing bacteria Ruminococcaceae and Parabacteroides; and decreased the harmful Proteobacteria of sows (P < 0.05). The Spearman analysis showed that the microbial biomarkers Prevotellaceae, Ruminococcaceae, and Parabacteroides were positively correlated with IgA and IgG of sow plasma and milk (P < 0.05). Besides, maternal GML addition up-regulated the relative protein expressions of proliferating cell nuclear antigen, cyclin D1, G protein-coupled receptor 84 (GPR84) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in the duodenum and jejunum of piglets. Collectively, current findings suggested that maternal GML supplementation enhanced piglet growth during lactation, which might be associated with improving milk fat and lauric acid contents, microbiota derived immunoglobulins transfer, and gut health through potential involvement of GPR84 and PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
21
|
Tsui Y, Wu X, Zhang X, Peng Y, Mok CKP, Chan FKL, Ng SC, Tun HM. Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Trends Microbiol 2025; 33:302-320. [PMID: 39505671 DOI: 10.1016/j.tim.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Viral infections can cause cellular pathway derangements, cell death, and immunopathological responses, leading to host inflammation. Short-chain fatty acids (SCFAs), produced by the microbiota, have emerged as a potential therapeutic for viral infections due to their ability to modulate these processes. However, SCFAs have been reported to have both beneficial and detrimental effects, necessitating a comprehensive understanding of the underlying mechanisms. This review highlights the complex mechanisms underlying SCFAs' effects on viral infection outcomes. We also emphasize the importance of considering how SCFAs' activities may differ under diverse contexts, including but not limited to target cells with different metabolic wiring, different viral causes of infection, the target organism/cell's nutrient availability and/or energy balance, and hosts with varying microbiome compositions.
Collapse
Affiliation(s)
- Yee Tsui
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqi Wu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hein Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC), Hong Kong, China.
| |
Collapse
|
22
|
Xie C, Qi C, Zhang J, Wang W, Meng X, Aikepaer A, Lin Y, Su C, Liu Y, Feng X, Gao H. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem Pharmacol 2025; 233:116791. [PMID: 39894305 DOI: 10.1016/j.bcp.2025.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Evidence is accumulating that short-chain fatty acids (SCFAs) produced by the gut microbiota play pivotal roles in host metabolism. They contribute to the metabolic regulation and energy homeostasis of the host not only by preserving intestinal health and serving as energy substrates but also by entering the systemic circulation as signaling molecules, affecting the gut-brain axis and neuroendocrine-immune network. This review critically summarizes the current knowledge regarding the effects of SCFAs in the fine-tuning of the pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance, with an emphasis on the complex relationships among diet, microbiota-derived metabolites, T2DM inflammation, glucose metabolism, and the underlying mechanisms involved. We hold an optimistic view that elucidating how diet can influence gut bacterial composition and activity, SCFA production, and metabolic functions in the host will advance our understanding of the mutual interactions of the intestinal microbiota with other metabolically active organs, and may pave the way for harnessing these pathways to develop novel personalized therapeutics for glucometabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Cong Qi
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Jianwen Zhang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Wei Wang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Xing Meng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Aifeila Aikepaer
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Yuhan Lin
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Chang Su
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124 China
| | - Yunlu Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Xingzhong Feng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| | - Huijuan Gao
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| |
Collapse
|
23
|
Ameen AO, Nielsen SW, Kjær MW, Andersen JV, Westi EW, Freude KK, Aldana BI. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate. J Cereb Blood Flow Metab 2025; 45:528-541. [PMID: 39340267 PMCID: PMC11563520 DOI: 10.1177/0271678x241270457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 09/30/2024]
Abstract
Disruptions to the gut-brain-axis have been linked to neurodegenerative disorders. Of these disruptions, reductions in the levels of short-chain fatty acids (SCFAs), like butyrate, have been observed in mouse models of Alzheimer's disease (AD). Butyrate supplementation in mice has shown promise in reducing neuroinflammation, amyloid-β accumulation, and enhancing memory. However, the underlying mechanisms remain unclear. To address this, we investigated the impact of butyrate on energy metabolism in mouse brain slices, primary cultures of astrocytes and neurons and in-vivo by dynamic isotope labelling with [U-13C]butyrate and [1,2-13C]acetate to map metabolism via mass spectrometry. Metabolic competition assays in cerebral cortical slices revealed no competition between butyrate and the ketone body, β-hydroxybutyrate, but competition with acetate. Astrocytes favoured butyrate metabolism compared to neurons, suggesting that the astrocytic compartment is the primary site of butyrate metabolism. In-vivo metabolism investigated in the 5xFAD mouse, an AD pathology model, showed no difference in 13C-labelling of TCA cycle metabolites between wild-type and 5xFAD brains, but butyrate metabolism remained elevated compared to acetate in both groups, indicating sustained uptake and metabolism in 5xFAD mice. Overall, these findings highlight the role of astrocytes in butyrate metabolism and the potential use of butyrate as an alternative brain fuel source.
Collapse
Affiliation(s)
- Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian W Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin W Kjær
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Wada T, Senokuchi T, Shi Y, Furusho T, Morita Y, Sarie M, Hanatani S, Fukuda K, Ishii N, Matsumura T, Fujiwara Y, Komohara Y, Araki E, Kubota N. Orally administrated acetate inhibits atherosclerosis progression through AMPK activation via GPR43 in plaque macrophages. Atherosclerosis 2025; 401:119088. [PMID: 39705906 DOI: 10.1016/j.atherosclerosis.2024.119088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND AND AIMS Oral administration of acetic acid, a short-chain fatty acid, has been shown to efficiently reduce obesity and insulin resistance in both experimental animals and humans. The anti-atherosclerotic effect of acetate is expected owing to its anti-inflammatory and anti-oxidative stress characteristics; however, this remains to be fully understood. METHODS For 12 weeks, apolipoprotein E-deficient mice were administered 0.6 % sodium acetate water or vehicle water. Plaque formation and progression were investigated using histological analysis of dissected aortic root sections. Flow cytometry and gene expression analyses were employed to assess plaque macrophage characteristics and functional states. In vitro tests were performed on mouse peritoneal primary macrophages and bone marrow-derived macrophages isolated from wild-type or GPR43-deficient mice. RESULTS Atherosclerotic plaque formation was inhibited in acetate-treated ApoE-deficient mice, and AMPK activation was directly validated in plaque macrophages. Acetate inhibited macrophage proliferation, reactive oxygen species production, and pro-inflammatory molecule expression, all of which were reversed by AMPK inhibition. Bone marrow transplantation study revealed the role of GPR43-mediated AMPK activation by acetic acid in anti-atherosclerotic effect. CONCLUSIONS Oral acetate administration suppressed arteriosclerosis formation and progression in ApoE-deficient mice. Acetate inhibited macrophage proliferation, inflammatory cytokine release, and reactive oxygen species production via GPR43-mediated AMPK activation in macrophages, ameliorating plaque formation and progression.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/prevention & control
- Atherosclerosis/genetics
- Plaque, Atherosclerotic
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Administration, Oral
- Mice, Knockout, ApoE
- AMP-Activated Protein Kinases/metabolism
- Disease Progression
- Mice, Inbred C57BL
- Disease Models, Animal
- Male
- Reactive Oxygen Species/metabolism
- Cell Proliferation/drug effects
- Aortic Diseases/enzymology
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Mice
- Signal Transduction/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/pathology
- Macrophages/drug effects
- Macrophages/enzymology
- Cells, Cultured
- Aorta/pathology
- Aorta/enzymology
- Aorta/drug effects
- Enzyme Activation
- Anti-Inflammatory Agents/administration & dosage
- Bone Marrow Transplantation
Collapse
Affiliation(s)
- Toshiaki Wada
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yudan Shi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Furusho
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaro Morita
- Department of Metabolism, Amakusa Medical Center, Kumamoto, Japan
| | - Maeda Sarie
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Fukuda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Ishii
- Department of Metabolism, Kumamoto City Hospital, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Research Center for Health and Sports Science, Kumamoto Health Science University, Kumamoto, Japan; Kikuchi Medical Association Hospital, Kumamoto, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Park HJ, Kim JS, Kim ER, Gu MB, Lee SJ. Nonanoic acid and cholecystokinin induce beige adipogenesis. Food Sci Biotechnol 2025; 34:709-720. [PMID: 39958186 PMCID: PMC11822144 DOI: 10.1007/s10068-024-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 02/18/2025] Open
Abstract
Beige adipocytes, crucial for thermogenesis, offer a potential therapeutic strategy for obesity. This study investigated the anti-obesity effects of nonanoic acid (NoA), medium-chain fatty acids, and cholecystokinin-8 (CCK-8) on beige adipogenesis in C3H10T1/2 mesenchymal stem cells (C3H10T1/2 MSCs). We observed a significant increase in cholecystokinin B receptor expression in beige adipocytes compared to preadipocytes. The co-treatment with NoA and CCK-8 enhanced beige adipocyte differentiation and lipid accumulation. Moreover, the co-treatment with NoA and CCK-8 upregulated the mRNA expression of thermogenic genes and increased mitochondrial activity more effectively than individual treatment. Specifically, NoA and CCK-8 co-treatment also elevated the protein expression of uncoupling protein 1 and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha. These findings suggest that the additive effect of NoA and CCK-8 promotes the beiging/browning of body fat in beige adipogenesis, potentially serving as an effective approach in the prevention and treatment of obesity and insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01699-6.
Collapse
Affiliation(s)
- Hyun Ji Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ji-Sun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four, Institute of Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
| | - Eun Ryung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung-Joon Lee
- Interdisciplinary Program in Precision Public Health, BK21 Four, Institute of Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
27
|
Azcona JA, Wacker AS, Lee CH, Fung EK, Jeitner TM, Manzo OL, Di Lorenzo A, Babich JW, Amor-Coarasa A, Kelly JM. 2-[ 18F]Fluoropropionic Acid PET Imaging of Doxorubicin-Induced Cardiotoxicity. Mol Imaging Biol 2025; 27:109-119. [PMID: 39810069 PMCID: PMC11805620 DOI: 10.1007/s11307-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[18F]fluoropropionic acid ([18F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. PROCEDURES Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [18F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. RESULTS Significantly higher cardiac [18F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [18F]FPA in tissues other than the heart. Co-administration of [18F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. CONCLUSIONS [18F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.
Collapse
Affiliation(s)
- Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Anja S Wacker
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Chul-Hee Lee
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Onorina L Manzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - John W Babich
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Ratio Therapeutics, Boston, MA, USA
| | - Alejandro Amor-Coarasa
- Department of Radiology, Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
- Ratio Therapeutics, Boston, MA, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA.
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Mak IEK, Yao Y, Ng MTT, Kim JE. Influence of dietary protein and fiber intake interactions on the human gut microbiota composition and function: a systematic review and network meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 39815995 DOI: 10.1080/10408398.2025.2452362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Quantity and source of dietary protein intakes impact the gut microbiota differently. However, these effects have not been systematically studied. This review aimed to investigate these effects whilst controlling for fiber intake. Seven databases were searched, with 50 and 15 randomized controlled trials selected for the systematic review and network meta-analysis respectively. Most gut microbiota-related outcomes showed no significant differences between different protein and fiber intake combinations. Compared to Normal Protein, High Fiber intakes, High Protein, Low Fiber (HPLF) intakes showed greater fecal valerate (SMD = 0.79, 95% CrI: 0.35, 1.24) and plasma trimethylamine N-oxide (TMAO) (SMD = 2.90, 95% CrI: 0.16, 5.65) levels. HPLF intakes also showed greater fecal propionate (SMD = 0.49, 95% CrI: 0.02, 1.07) and valerate (SMD = 0.79, 95% CrI: 0.31, 1.28) levels compared to High Protein, High Fiber intakes. Greater plasma TMAO levels were observed with greater animal protein intakes. Overall, protein quantity and source do not generally alter the gut microbiota composition, although protein quantity can influence microbiota function via modulations in proteolytic fermentation. Both protein and fiber intake should be considered when assessing the impact of dietary protein on the gut microbiota. This trial was registered at PROSPERO (CRD42023391270).
Collapse
Affiliation(s)
- Ian En Kai Mak
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yueying Yao
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Magdeline Tao Tao Ng
- National University of Singapore Libraries, National University of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- National University of Singapore Libraries, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Ying J, Zhang MW, Wei KC, Wong SH, Subramaniam M. Influential articles in autism and gut microbiota: bibliometric profile and research trends. Front Microbiol 2025; 15:1401597. [PMID: 39850141 PMCID: PMC11755156 DOI: 10.3389/fmicb.2024.1401597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Increasing evidence suggests that it is potentially related to gut microbiota, but no prior bibliometric analysis has been performed to explore the most influential works in the relationships between ASD and gut microbiota. In this study, we conducted an in-depth analysis of the most-cited articles in this field, aiming to provide insights to the existing body of research and guide future directions. Methods A search strategy was constructed and conducted in the Web of Science database to identify the 100 most-cited papers in ASD and gut microbiota. The Biblioshiny package in R was used to analyze and visualize the relevant information, including citation counts, country distributions, authors, journals, and thematic analysis. Correlation and comparison analyses were performed using SPSS software. Results The top 100 influential manuscripts were published between 2000 and 2021, with a total citation of 40,662. The average number of citations annually increased over the years and was significantly correlated to the year of publication (r = 0.481, p < 0.01, Spearman's rho test). The United States was involved in the highest number of publications (n = 42). The number of publications in the journal was not significantly related to the journal's latest impact factor (r = 0.016, p > 0.05, Spearman's rho test). Co-occurrence network and thematic analysis identified several important areas, such as microbial metabolites of short-chain fatty acids and overlaps with irritable bowel syndrome. Conclusion This bibliometric analysis provides the key information of the most influential studies in the area of ASD and gut microbiota, and suggests the hot topics and future directions. The findings of this study can serve as a valuable reference for researchers and policymakers, guiding the development and implementation of the scientific research strategies in this area.
Collapse
Affiliation(s)
- Jiangbo Ying
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | | | - Ker-Chiah Wei
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | | |
Collapse
|
30
|
Xu K, Motiwala Z, Corona-Avila I, Makhanasa D, Alkahalifeh L, Khan MW. The Gut Microbiome and Its Multifaceted Role in Cancer Metabolism, Initiation, and Progression: Insights and Therapeutic Implications. Technol Cancer Res Treat 2025; 24:15330338251331960. [PMID: 40208053 PMCID: PMC12032467 DOI: 10.1177/15330338251331960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
This review summarizes the intricate relationship between the microbiome and cancer initiation and development. Microbiome alterations impact metabolic pathways, immune responses, and gene expression, which can accelerate or mitigate cancer progression. We examine how dysbiosis affects tumor growth, metastasis, and treatment resistance. Additionally, we discuss the potential of microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, to modulate cancer metabolism. These interventions offer the possibility of reversing or controlling cancer progression, enhancing the efficacy of traditional treatments like chemotherapy and immunotherapy. Despite promising developments, challenges remain in identifying key microbial species and pathways and validating microbiome-targeted therapies through large-scale clinical trials. Nonetheless, the intersection of microbiome research and cancer initiation and development presents an exciting frontier for innovative therapies. This review offers a fresh perspective on cancer initiation and development by integrating microbiome insights, highlighting the potential for interdisciplinary research to enhance our understanding of cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Zainab Motiwala
- Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Makhanasa
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Md. Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Cardoso LHD, Cecatto C, Ozola M, Korzh S, Zvejniece L, Gukalova B, Doerrier C, Dambrova M, Makrecka-Kuka M, Gnaiger E, Liepinsh E. Fatty acid β-oxidation in brain mitochondria: Insights from high-resolution respirometry in mouse, rat and Drosophila brain, ischemia and aging models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167544. [PMID: 39424161 DOI: 10.1016/j.bbadis.2024.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 μM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 μM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.
Collapse
Affiliation(s)
| | | | - Melita Ozola
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Gukalova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Marina Makrecka-Kuka
- Oroboros Instruments, Innsbruck, Austria; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
32
|
Yang BSK, Blackburn SL, Lorenzi PL, Choi HA, Gusdon AM. Metabolomic and lipidomic pathways in aneurysmal subarachnoid hemorrhage. Neurotherapeutics 2025; 22:e00504. [PMID: 39701893 PMCID: PMC11840353 DOI: 10.1016/j.neurot.2024.e00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) results in a complex systemic response that is critical to the pathophysiology of late complications and has important effects on outcomes. Omics techniques have expanded our investigational scope and depth into this phenomenon. In particular, metabolomics-the study of small molecules, such as blood products, carbohydrates, amino acids, and lipids-can provide a snapshot of dynamic subcellular processes and thus broaden our understanding of molecular-level pathologic changes that lead to the systemic response after aSAH. Lipids are especially important due to their abundance in the circulating blood and numerous physiological roles. They are comprised of a wide variety of subspecies and are critical for cellular energy metabolism, the integrity of the blood-brain barrier, the formation of cell membranes, and intercellular signaling including neuroinflammation and ferroptosis. In this review, metabolomic and lipidomic pathways associated with aSAH are summarized, centering on key metabolites from each metabolomic domain.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Spiros L Blackburn
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center (MDACC), United States
| | - Huimahn A Choi
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States.
| |
Collapse
|
33
|
Mancell S, Dhawan A, Geaney G, Ayis S, Whelan K. Medium-chain triglyceride supplementation and the association with growth, nutritional status and clinical outcomes in infants with biliary atresia. Clin Nutr 2025; 44:134-146. [PMID: 39667195 DOI: 10.1016/j.clnu.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND AND AIMS Infants with biliary atresia experience gastrointestinal malabsorption of long-chain triglycerides and are commonly supplemented with medium-chain triglyceride (MCTs) that can be passively absorbed. The aim was to investigate the association of MCT supplementation with growth, nutritional status and clinical outcomes in infants with biliary atresia. METHODS Infants who underwent Kasai portoenterostomy and were followed up for at least two years or until death or transplantation were reviewed. Infants with comorbidities affecting growth or outcome were excluded. Data were extracted from medical records from more than a decade in relation to MCT supplementation, growth, nutritional status and clinical outcome at baseline, 6-weeks, 3-, 6-, 12- and 24-months. Mixed-effects modelling was used to test associations of MCT in the first six months with these outcomes. RESULTS Of 200 infants (108 male), 108 (54 %) were alive with native liver at two years, 84 (42 %) underwent liver transplantation and eight (4 %) died. MCT percentage prescribed was mean 57.3 % (SD 11.2) while MCT intake was median 2.7 (IQR 2.2, 3.8) g/kg/d. For every g/kg/d MCT consumed, the rate of change in z-score for weight was -0.27 (95 % CI -0.37 to -0.17) and length was -0.31 (-0.42 to -0.17) (both p < 0.001). Compared to the low MCT group (<2.7 g/kg/d), the high group (≥2.7 g/kg/d) consumed more energy (118 vs. 108 kcal/kg; p < 0.001), however, at 3-months they had lower weight (-1.7 (1.2) v. -1.0 (1.2) and length (-1.3 (1.1) v. -0.6 (1.4) z-scores (both p < 0.001) but no differences in growth at later time points. There was no overall association between MCT and nutritional status or clinical outcomes. CONCLUSIONS This is the first study to investigate the association of MCT with growth, nutritional status and clinical outcomes in biliary atresia. No association was found between MCT with growth beyond 3-months, overall nutritional status or clinical outcomes. The association between MCT (g/kg/d) and poorer growth in the first 3-months may be explained by infants with poorer growth drinking more or being prescribed more MCT formula milk. A randomised controlled trial could help to better understand this association.
Collapse
Affiliation(s)
- Sara Mancell
- Department of Nutritional Sciences, King's College London, London, UK; Department of Nutrition & Dietetics, King's College Hospital NHS Foundation Trust, London, UK.
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition, King's College Hospital NHS Foundation Trust, London, UK
| | - Gillian Geaney
- Department of Nutrition & Dietetics, King's College Hospital NHS Foundation Trust, London, UK
| | - Salma Ayis
- School of Life Course and Population Sciences, King's College London, UK
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
34
|
Connolly KR, Sweeney T, O’Doherty JV. Sustainable Nutritional Strategies for Gut Health in Weaned Pigs: The Role of Reduced Dietary Crude Protein, Organic Acids and Butyrate Production. Animals (Basel) 2024; 15:66. [PMID: 39795009 PMCID: PMC11718951 DOI: 10.3390/ani15010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Weaning in piglets presents significant physiological and immunological challenges, including gut dysbiosis and increased susceptibility to post-weaning diarrhoea (PWD). Abrupt dietary, environmental, and social changes during this period disrupt the intestinal barrier and microbiota, often necessitating antimicrobial use. Sustainable dietary strategies are critical to addressing these issues while reducing reliance on antimicrobials. Reducing dietary crude protein mitigates the availability of undigested proteins for pathogenic bacteria, lowering harmful by-products like ammonia and branched-chain fatty acids, which exacerbate dysbiosis. Organic acid supplementation improves gastric acidification, nutrient absorption, and microbial balance, while also serving as an energy-efficient alternative to traditional grain preservation methods. Increasing intestinal butyrate, a key short-chain fatty acid with anti-inflammatory and gut-protective properties, is particularly promising. Butyrate strengthens intestinal barrier integrity by upregulating tight junction proteins, reduces inflammation by modulating cytokine responses, and promotes anaerobic microbial stability. Exogenous butyrate supplementation via salts provides immediate benefits, while endogenous stimulation through prebiotics (e.g., resistant starch) and probiotics promotes sustained butyrate production. These interventions selectively enhance butyrate-producing bacteria such as Roseburia and Faecalibacterium prausnitzii, further stabilising the gut microbiota. Integrating these strategies can enhance gut integrity, microbial resilience, and immune responses in weaned piglets. Their combination offers a sustainable, antimicrobial-free approach to improving health and productivity in modern pig production systems.
Collapse
Affiliation(s)
- Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
35
|
Villagómez-Estrada S, Melo-Durán D, van Kuijk S, Pérez JF, Solà-Oriol D. Specialized Feed-Additive Blends of Short- and Medium-Chain Fatty Acids Improve Sow and Pig Performance During Nursery and Post-Weaning Phase. Animals (Basel) 2024; 14:3692. [PMID: 39765595 PMCID: PMC11672445 DOI: 10.3390/ani14243692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The present study investigates the impact of supplementing diets with a synergistic blend of short- and medium-chain fatty acids (SCFAs-MCFAs) during the peripartum and lactation phases on early microbial colonization and the subsequent growth performance of newborn pigs. The experiment involved 72 sows and their litters, with a follow-up on 528 weaned pigs. Sows were fed either a control diet or a diet supplemented with SCFAs-MCFAs and the pigs were monitored for their growth performance and microbial populations. Subsequently, selected weaned pigs were allotted to an SCFAs-MCFAs diet according to the maternal diet. Results showed that SCFAs-MCFAs supplementation led to reduced backfat loss in sows and improved pig weight and uniformity at weaning (p < 0.05). Additionally, suckling pigs exhibited significant shifts in gut microbiota, including increased lactic acid bacteria and reduced Streptococcus suis populations (p < 0.05). Although there was no influence of maternal diet on pig growth after weaning, there was a modulation on bacterial populations at 7 and 35 days post-weaning. Pigs fed SCFAs-MCFAs demonstrated improved feed efficiency with notable reductions in E. coli and Streptococcus suis counts. The findings suggest that maternal dietary supplementation with SCFAs-MCFAs can positively influence both sow and pig performance, offering a potential strategy to enhance productivity and health in the commercial swine production.
Collapse
Affiliation(s)
- Sandra Villagómez-Estrada
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
- Faculty of Veterinary Medicine and Agronomy, Universidad UTE, Quito 17012764, Ecuador
| | - Diego Melo-Durán
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
- Faculty of Veterinary Medicine and Agronomy, Universidad UTE, Quito 17012764, Ecuador
| | - Sandra van Kuijk
- Trouw Nutrition, Research and Development Department, Stationsstraat 77, 3811 MH Amersfoort, The Netherlands;
| | - José F. Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (D.M.-D.); (J.F.P.); (D.S.-O.)
| |
Collapse
|
36
|
Qin X, Zhang M, Chen S, Tang Y, Cui J, Ding G. Short-chain fatty acids in fetal development and metabolism. Trends Mol Med 2024:S1471-4914(24)00329-0. [PMID: 39694776 DOI: 10.1016/j.molmed.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Short-chain fatty acids (SCFAs), primarily derived from gut microbiota, play a role in regulating fetal development; however, the mechanism remains unclear. Fetal SCFAs levels depends on maternal SCFAs transported via the placenta. Metabolic stress, particularly from diabetes and obesity, can disrupt maternal SCFAs levels, impairing fetal metabolic reprogramming. Dysregulated SCFAs may negatively impact the development of the fetal cardiovascular, nervous, and immune systems, potentially contributing to adverse outcomes in adulthood. This review focuses on recent advances regarding the role of maternal SCFAs in shaping the metabolic profile of offspring, especially in the context of various maternal metabolic disorders. Given that SCFAs may influence fetal development through the placenta-embryo axis, targeted SCFAs supplementation could be a promising strategy against developmental diseases associated with intrauterine risk factors.
Collapse
Affiliation(s)
- Xueyun Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Mo Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Shiting Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
37
|
Jadallah R, Hammad SS. Comparison of the effect of medium-chain fatty acids and long-chain fatty acids on postprandial appetite and lipemia: a randomised crossover trial. BMJ Nutr Prev Health 2024; 7:e001029. [PMID: 39882282 PMCID: PMC11773652 DOI: 10.1136/bmjnph-2024-001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025] Open
Abstract
Background Postprandial lipemia (PPL) has been recognised as a cardiovascular disease risk factor. Appetite and PPL can be influenced by the length of saturated fatty acids (FAs). Thus, this study aims to investigate if different FA chain lengths have different impacts on appetite and PPL in healthy volunteers. Methods This is a randomised crossover single-blinded intervention study of 20 healthy adults. Coconut oil and palm oil were consumed in the form of biscuits. Blood serum samples were withdrawn after an overnight fast and 1, 2, 4 and 6 hours after eating the test meals and examined for blood lipid profile (total cholesterol (TC), high-density lipoprotein (HDL) and triglycerides (TG)), while Friedewald's equation was used to calculate low-density lipoprotein (LDL). Visual analogue scales were used by participants to rate their appetites, and an ad libitum meal was weighed to determine the energy intake. Results The net area under the curve of TG and TC following the coconut oil were significantly lower than following the palm oil (P value ≤0.05). In the mean of the change in TC, LDL and HDL from the baseline, a significant difference was found after 6 hours of eating the biscuits (P value ≤0.05). The perceptions of hunger and fullness did not significantly differ between the two types of FAs. Also, the energy and macronutrient intakes were not significantly different after the two types of oil, neither at the ad libitum meal nor on the day following the treatments. Conclusion The selection of FA chain length may influence PPL, and thus cardiovascular disease risk in a way that is functionally significant. However, this study detected no influence of FA chain length on appetite up to 40 hours post-treatment. Trial registration number NCT05539742.
Collapse
Affiliation(s)
- Ruaa Jadallah
- Department of Nutrition and Food Technology, The University of Jordan, Amman, Jordan
| | - Shatha S Hammad
- Department of Nutrition and Food Technology, The University of Jordan, Amman, Jordan
| |
Collapse
|
38
|
Xiong S, Zhang K, Wang J, Bai S, Zeng Q, Liu Y, Peng H, Xuan Y, Mu Y, Tang X, Ding X. Effects of xylo-oligosaccharide supplementation on the production performance, intestinal morphology, cecal short-chain fatty acid levels, and gut microbiota of laying hens. Poult Sci 2024; 103:104371. [PMID: 39405830 PMCID: PMC11525217 DOI: 10.1016/j.psj.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
This study investigated the effects of xylo-oligosaccharide supplementation on the production performance, intestinal morphology, cecal short-chain fatty acid levels, and gut microbiota of laying hens. A total of 800 Lohmann pink layers, each 48 wk old, were randomly divided into 5 dietary treatment groups, namely XOS at 0 (CON), 100 (XOS1), 200 (XOS2), 300 (XOS3) and 400 (X0S4) mg/kg. The experimental period was 24 wk. The results revealed that the egg production rate and the number of eggs laid by each layer between 1 to 12 wk increased as the XOS concentration increased (Plinear < 0.05). The sand-shell egg percentage decreased significantly from 1 to 12 wk in the XOS1, XOS2, and XOS3 groups (PANOVA < 0.05). Compared with the CON group, the 4 XOS dosage groups presented significant increases in the villus height and the ratio of villus height to crypt depth in the jejunum (PANOVA < 0.05), whereas a linear decrease in jejunal crypt depth (Plinear < 0.05) was noted. In addition, XOS supplementation significantly increased the concentrations of butyric acid and isovaleric acid in the caeca (PANOVA < 0.05). High-throughput sequencing analysis of bacterial 16S rRNA revealed that dietary XOS supplementation influenced the cecal microbiota. The alpha diversity analysis indicated that the richness of cecal bacteria was greater in the laying hens fed XOS. The modulation of the cecal microbiota composition upon the addition of XOS was characterized by an increased abundance of Firmicutes and Bifidobacteriaceae, and decreased abundance of Bacteroidetes. At the genus level, dietary XOS supplementation resulted in decreases in the abundances of Bacteroides and Rikenellaceae_RC9_gut_group and an increase in the abundance of Lactobacillus. In conclusion, dietary XOS supplementation improved the production performance of laying hens by increasing the production of short-chain fatty acids and improving their intestinal morphology, which was achieved mainly through changes in the composition of the intestinal microbiota. The recommended level of XOS in the diet of laying hens is 200 mg/kg.
Collapse
Affiliation(s)
- Siyu Xiong
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yan Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xiaobing Tang
- Yibin Yatai Biotechnology Co., Ltd, Yibin 644000, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
39
|
Panov AV, Mayorov VI, Dikalov SI. Role of Fatty Acids β-Oxidation in the Metabolic Interactions Between Organs. Int J Mol Sci 2024; 25:12740. [PMID: 39684455 DOI: 10.3390/ijms252312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, several discoveries have been made that force us to reconsider old ideas about mitochondria and energy metabolism in the light of these discoveries. In this review, we discuss metabolic interaction between various organs, the metabolic significance of the primary substrates and their metabolic pathways, namely aerobic glycolysis, lactate shuttling, and fatty acids β-oxidation. We rely on the new ideas about the supramolecular structure of the mitochondrial respiratory chain (respirasome), the necessity of supporting substrates for fatty acids β-oxidation, and the reverse electron transfer via succinate dehydrogenase during β-oxidation. We conclude that ATP production during fatty acid β-oxidation has its upper limits and thus cannot support high energy demands alone. Meanwhile, β-oxidation creates conditions that significantly accelerate the cycle: glucose-aerobic glycolysis-lactate-gluconeogenesis-glucose. Therefore, glycolytic ATP production becomes an important energy source in high energy demand. In addition, lactate serves as a mitochondrial substrate after converting to pyruvate + H+ by the mitochondrial lactate dehydrogenase. All coupled metabolic pathways are irreversible, and the enzymes are organized into multienzyme structures.
Collapse
Affiliation(s)
- Alexander V Panov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | - Vladimir I Mayorov
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31201, USA
| | | |
Collapse
|
40
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
41
|
Baldi S, Pagliai G, Di Gloria L, Pallecchi M, Barca F, Pieri B, Bartolucci G, Ramazzotti M, Amedei A, Palendri G, Sofi F. Beneficial Effects of Micronutrient Supplementation in Restoring the Altered Microbiota and Gut-Retina Axis in Patients with Neovascular Age-Related Macular Degeneration-A Randomized Clinical Trial. Nutrients 2024; 16:3971. [PMID: 39599758 PMCID: PMC11597754 DOI: 10.3390/nu16223971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) is a leading cause of visual impairment in the elderly and is characterized by a multifactorial etiology. Emerging evidence points to the potential involvement of the gut-retina axis in AMD pathogenesis, prompting exploration into novel therapeutic strategies. This study aims to investigate the effects of some micronutrients (such as lutein and zeaxanthin) and saffron (as a supplement)-known for their anti-inflammatory properties-on ophthalmological and microbial parameters in neovascular AMD (nAMD) patients. Methods: Thirty naive nAMD patients were randomized to receive daily micronutrient supplementation alongside anti-VEGF (vascular endothelial growth factor) therapy, or anti-VEGF treatment alone, over a 6-month period, with comparisons made to a healthy control (HC) group (N = 15). Ophthalmological assessments, biochemical measurements, and stool samples were obtained before and after treatment. Gut microbiota (GM) characterization was performed using 16S rRNA sequencing, while short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), and long-chain fatty acids (LCFAs) were analyzed with a gas chromatography-mass spectrometry protocol. Results: Compared to HC, nAMD patients exhibited reduced GM alpha diversity, altered taxonomic composition, and decreased total SCFA levels, in addition to elevated levels of proinflammatory octanoic and nonanoic acids. Micronutrient supplementation was associated with improved visual acuity relative to the group treated with anti-VEGF alone, along with a decrease in the total amount of MCFAs, which are metabolites known to have adverse ocular effects. Conclusions: In conclusion, despite certain limitations-such as the limited sample size and the low taxonomic resolution of 16S rRNA sequencing-this study highlights compositional and functional imbalances in the GM of nAMD patients and demonstrates that micronutrient supplementation may help restore the gut-retina axis. These findings suggest the therapeutic potential of micronutrients in enhancing ocular outcomes for nAMD patients, underscoring the complex interaction between GM and ocular health.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.B.); (G.P.)
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.B.); (G.P.)
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (L.D.G.); (M.R.)
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy; (M.P.); (G.B.)
| | - Francesco Barca
- Complex Operative Unit of Ophthalmology, Palagi Hospital, USL Toscana Centro, 50122 Florence, Italy; (F.B.); (B.P.); (G.P.)
| | - Benedetta Pieri
- Complex Operative Unit of Ophthalmology, Palagi Hospital, USL Toscana Centro, 50122 Florence, Italy; (F.B.); (B.P.); (G.P.)
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy; (M.P.); (G.B.)
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (L.D.G.); (M.R.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.B.); (G.P.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Florence, Italy
| | - Gianna Palendri
- Complex Operative Unit of Ophthalmology, Palagi Hospital, USL Toscana Centro, 50122 Florence, Italy; (F.B.); (B.P.); (G.P.)
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.B.); (G.P.)
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
42
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD + activates renal metabolism and protects from chronic kidney disease in a model of Alport syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.580911. [PMID: 38464264 PMCID: PMC10925224 DOI: 10.1101/2024.02.26.580911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor alpha signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in proximal tubule cells. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. In summary, we identify a nephroprotective mechanism of NAD + supplementation in CKD, and we demonstrate that the proximal tubule cells substantially contribute to this benefit.
Collapse
|
43
|
Chou X, Fang M, Shen Y, Jiang C, Miao L, Yang L, Wu Z, Yao X, Ma K, Qiao K, Lin Z. Ambient PMs pollution, blood pressure, potential mediation by short-chain fatty acids: A prospective panel study of young adults in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117316. [PMID: 39520747 DOI: 10.1016/j.ecoenv.2024.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The concurrent effects of particulate matter (PM) on both blood pressure (BP) and short-chain fatty acids (SCFAs) are insufficiently explored, with limited research on the potential mediating roles of SCFAs. METHODS In this prospective panel study with 4 follow-ups, we recruited 40 college students in Hefei, China, to assess the impacts of short-term exposure to PM (aerodynamic diameter ≤10 μm (PM10), ≤2.5 μm (PM2.5), and ≤1 μm (PM1)) on BP and SCFAs, along with potential mechanisms. Real-time PM data, urinary SCFAs levels, and BP indicators were systematically collected. Linear mixed-effects models assessed the relationships between PM, SCFAs, and BP. Mediation analyses explored SCFAs' mediating role in the PM-BP association. RESULTS PM exposure was positively linked to BP and negatively associated with SCFAs. For a 10 μg/m3 rise in PM10 at lag 0-72 h, there were notable reductions of 0.0019 % (95 %CI: -0.0028, -0.0010) in Acetic acid, 0.0262 % (-0.0369, -0.0155) in Propionic acid, and 0.0702 % (-0.1025, -0.0378) in Butyric acid. Systolic BP, diastolic BP, and mean arterial pressure (MAP) increased by 2.60 mmHg (0.96, 4.25), 2.24 mmHg (1.18, 3.31), and 2.36 mmHg (1.20, 3.53), respectively, per 10-μg/m3 rise in PM1 at lag 0-24 h. Decreased SCFAs levels explained significant portions (24.69-31.80 %) of the elevated MAP due to PM10. Stronger associations were found in females and individuals with abnormal BMI. CONCLUSIONS Our study shows that PM exposure decreases urinary SCFAs levels, which partially mediate the impact of PM on elevated BP. These findings enhance our comprehension of the pathways linking PM exposure to BP changes.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Miao Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Cunzhong Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zexi Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiangyu Yao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Kun Qiao
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
44
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
45
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 PMCID: PMC11784870 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
46
|
Durmaz Celik N, Ozben S, Ozben T. Unveiling Parkinson's disease through biomarker research: current insights and future prospects. Crit Rev Clin Lab Sci 2024; 61:529-545. [PMID: 38529882 DOI: 10.1080/10408363.2024.2331471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by the gradual depletion of dopaminergic neurons in the substantia nigra. Despite substantial strides in comprehending potential causative mechanisms, the validation of biomarkers with unequivocal evidence for routine clinical application remains elusive. Consequently, the diagnosis heavily relies on patients' clinical assessments and medical backgrounds. The imperative need for diagnostic and prognostic biomarkers arises due to the prevailing limitations of treatments, which predominantly address symptoms without modifying the disease course. This comprehensive review aims to elucidate the existing landscape of diagnostic and prognostic biomarkers for PD, drawing insights from contemporary literature.
Collapse
Affiliation(s)
- Nazlı Durmaz Celik
- Department of Neurology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Serkan Ozben
- Department of Neurology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
47
|
Söth R, Hoffmann ALC, Deeg CA. Enhanced ROS Production and Mitochondrial Metabolic Shifts in CD4 + T Cells of an Autoimmune Uveitis Model. Int J Mol Sci 2024; 25:11513. [PMID: 39519064 PMCID: PMC11545935 DOI: 10.3390/ijms252111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Equine recurrent uveitis (ERU) is a spontaneously occurring autoimmune disease and one of the leading causes of blindness in horses worldwide. Its similarities to autoimmune-mediated uveitis in humans make it a unique spontaneous animal model for this disease. Although many aspects of ERU pathogenesis have been elucidated, it remains not fully understood and requires further research. CD4+ T cells have been a particular focus of research. In a previous study, we showed metabolic alterations in CD4+ T cells from ERU cases, including an increased basal oxygen consumption rate (OCR) and elevated compensatory glycolysis. To further investigate the underlying reasons for and consequences of these metabolic changes, we quantified reactive oxygen species (ROS) production in CD4+ T cells from ERU cases and compared it to healthy controls, revealing significantly higher ROS production in ERU-affected horses. Additionally, we aimed to define mitochondrial fuel oxidation of glucose, glutamine, and long-chain fatty acids (LCFAs) and identified significant differences between CD4+ T cells from ERU cases and controls. CD4+ T cells from ERU cases showed a lower dependency on mitochondrial glucose oxidation and greater metabolic flexibility for the mitochondrial oxidation of glucose and LCFAs, indicating an enhanced ability to switch to alternative fuels when necessary.
Collapse
Affiliation(s)
| | | | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
48
|
Yamauchi S, Sugiura Y, Yamaguchi J, Zhou X, Takenaka S, Odawara T, Fukaya S, Fujisawa T, Naguro I, Uchiyama Y, Takahashi A, Ichijo H. Mitochondrial fatty acid oxidation drives senescence. SCIENCE ADVANCES 2024; 10:eado5887. [PMID: 39454000 PMCID: PMC11506141 DOI: 10.1126/sciadv.ado5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cellular senescence is a stress-induced irreversible cell cycle arrest involved in tumor suppression and aging. Many stresses, such as telomere shortening and oncogene activation, induce senescence by damaging nuclear DNA. However, the mechanisms linking DNA damage to senescence remain unclear. Here, we show that DNA damage response (DDR) signaling to mitochondria triggers senescence. A genome-wide small interfering RNA screen implicated the outer mitochondrial transmembrane protein BNIP3 in senescence induction. We found that BNIP3 is phosphorylated by the DDR kinase ataxia telangiectasia mutated (ATM) and contributes to an increase in the number of mitochondrial cristae. Stable isotope labeling metabolomics indicated that the increase in cristae enhances fatty acid oxidation (FAO) to acetyl-coenzyme A (acetyl-CoA). This promotes histone acetylation and expression of the cyclin-dependent kinase inhibitor p16INK4a. Notably, pharmacological activation of FAO alone induced senescence both in vitro and in vivo. Thus, mitochondrial energy metabolism plays a critical role in senescence induction and is a potential intervention target to control senescence.
Collapse
Affiliation(s)
- Shota Yamauchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8507, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Satoshi Takenaka
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeru Odawara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shunsuke Fukaya
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
49
|
Fu L, Zhang H, Dai Y, Zhang H, Pan X, Chen S, Tan L. Revealing metabolic alterations in brucellosis patients by targeted metabolomics. J Pharm Biomed Anal 2024; 249:116370. [PMID: 39047467 DOI: 10.1016/j.jpba.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Brucellosis, a zoonotic disease caused by brucella infection, presents metabolic profile changes in patients that have not been extensively explored. This study utilized an ultra-high performance liquid chromatography tandem mass spectrometry based targeted metabolomic approach to comprehensively investigated metabolic changes in Brucella patients. Serum samples of brucellosis 50 patients and 50 well-matched healthy controls were analyzed for 228 metabolites, revealing significant alterations in 83 metabolites in brucellosis patients. Notably, disruptions were observed in key metabolite pathways, such as amino acid metabolism, urea cycle, tricarboxylic acid cycle (TCA), and fatty acid metabolism. Patients diagnosed with Brucellosis exhibited distinct differences in the levels of aspartate, glutamate, β-alanine, and asparagine when compared to controls. Within the urea cycle, a significant downregulation of arginine was observed, whereas ornithine levels were considerably upregulated. In the TCA cycle, concentrations of 2-oxoglutarate, succinate, and malate were significantly elevated, while citrate levels demonstrated a notable decrease. Due to the interruption of the TCA cycle, glycolysis was accelerated to compensate for the resultant energy deficit in Brucella patients. Concurrently, there was a significant increase in the levels of short and medium-chain fatty acids, while long-chain fatty acids showed a marked decrease. The study systematically revealed significant metabolic alterations in Brucellosis patients and further explored the potential correlation between these changes and clinic symptoms, including fatigue, muscle soreness and prolonged fever. The results enhanced our understanding of Brucellosis, offering valuable insights potentially beneficial in formulating more effective treatment strategies and improving prognostic approaches.
Collapse
Affiliation(s)
- Lei Fu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Hao Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongfeng Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
50
|
Zhao K, Zhang Q, Cong R, Xu Z, Xu Y, Han J. Metabolomic profiling of human semen in patients with oligospermia using high performance liquid chromatography-tandem mass spectrometry. Sci Rep 2024; 14:23739. [PMID: 39390238 PMCID: PMC11467319 DOI: 10.1038/s41598-024-74658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Male infertility is one of the most common reproductive dysfunctions. Despite oligospermia being a cause of infertility, few studies have been conducted on it. This study aimed to investigate differences in semen metabolic patterns in patients with oligospermia and to identify potential biomarkers associated with oligospermia. Semen samples from oligospermia patients (20 cases) and healthy controls (20 cases) were detected by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and 72 and 89 metabolites were identified as potential markers in positive and negative ion modes, respectively. In addition, the results identified multiple metabolic pathways in patients with oligospermia, such as glycine serine and threonine metabolism, Synthesis and degradation of ketone bodies, Valine, leucine, and isoleucine degradation. These results described unique metabolic characteristics of semen in patients with oligospermia and provided novel insights into the mechanism of the semen disorder.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Qingling Zhang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Rong Cong
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Zhen Xu
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 366 Taihu Road, Taizhou, 225300, People's Republic of China.
| | - Yan Xu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| | - Jie Han
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|