1
|
Chua MT, Boon Y, Lee ZY, Kok JHJ, Lim CKW, Cheung NMT, Yong LPX, Kuan WS. The role of artificial intelligence in sepsis in the Emergency Department: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2025; 13:4. [PMID: 40115064 PMCID: PMC11921180 DOI: 10.21037/atm-24-150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/16/2024] [Indexed: 03/23/2025]
Abstract
Background and Objective Early recognition and treatment of sepsis in the emergency department (ED) is important. Traditional predictive analytics and clinical decision rules lack accuracy in identifying patients with sepsis. Artificial intelligence (AI) is increasingly prevalent in healthcare and offers application potential in the care of patients with sepsis. This review examines the evidence of AI in diagnosing, managing and prognosticating sepsis in the ED. Methods We performed literature search in PubMed, Embase, Google Scholar and Scopus databases for studies published between 1 January 2010 and 30 June 2024 that evaluated the use of AI in adult patients with sepsis in ED, using the following search terms: ("artificial intelligence" OR "machine learning" OR "neural networks, computer" OR "deep learning" OR "natural language processing"), AND ("sepsis" OR "septic shock", AND "emergency services" OR "emergency department"). Independent searches were conducted in duplicate with discrepancies adjudicated by a third member. Key Content and Findings Incorporating multiple variables such as vital signs, free text input, laboratory tests and electrocardiogram was possible with AI compared to traditional models leading to improvement in diagnostic performance. Machine learning (ML) models outperformed traditional scoring tools in both diagnosis and prognosis of sepsis. ML models were able to analyze trends over time and showed utility in predicting mortality, severe sepsis and septic shock. Additionally, real-time ML-assisted alert systems are effective in improving time-to-antibiotic administration and ML algorithms can differentiate sepsis patients into distinct phenotypes to tailor management (especially fluid therapy and critical care interventions), potentially improving outcomes. Existing AI tools for sepsis currently lack generalizability and user acceptance. This is risk of automation bias with loss of clinicians' skills if over-reliance develops. Conclusions Overall, AI holds great promise in revolutionizing management of patients with sepsis in the ED as a clinical support tool. However, its application is currently still constrained by inherent limitations. Balanced integration of AI technology with clinician input is essential to harness its full potential and ensure optimal patient outcomes.
Collapse
Affiliation(s)
- Mui Teng Chua
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Boon
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zi Yao Lee
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jian Hao Jaryl Kok
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clement Kee Woon Lim
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
| | - Nicole Mun Teng Cheung
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lorraine Pei Xian Yong
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Win Sen Kuan
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
2
|
Tarras E, Khosla A, Heerdt PM, Singh I. Right Heart Failure in the Intensive Care Unit: Etiology, Pathogenesis, Diagnosis, and Treatment. J Intensive Care Med 2025; 40:119-136. [PMID: 38031338 DOI: 10.1177/08850666231216889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Right heart (RH) failure carries a high rate of morbidity and mortality. Patients who present with RH failure often exhibit complex aberrant cardio-pulmonary physiology with varying presentations. The treatment of RH failure almost always requires care and management from an intensivist. Treatment options for RH failure patients continue to evolve rapidly with multiple options available, including different pharmacotherapies and mechanical circulatory support devices that target various components of the RH circulatory system. An understanding of the normal RH circulatory physiology, treatment, and support options for the RH failure patients is necessary for all intensivists to improve outcomes. The purpose of this review is to provide clinical guidance on the diagnosis and management of RH failure within the intensive care unit setting, and to highlight the different pathophysiological manifestations of RH failure, its hemodynamics, and treatment options available at the disposal of the intensivist.
Collapse
Affiliation(s)
- Elizabeth Tarras
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Akhil Khosla
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Paul M Heerdt
- Department of Anesthesiology, Division of Applied Hemodynamics, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Inderjit Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Modin D, Claggett B, Johansen ND, Solomon SD, Trebbien R, Grove Krause T, Stæhr Jensen JU, Porsborg Andersen M, Gislason G, Biering-Sørensen T. Excess Mortality and Hospitalizations Associated With Seasonal Influenza in Patients With Heart Failure. J Am Coll Cardiol 2024; 84:2460-2467. [PMID: 39222895 DOI: 10.1016/j.jacc.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Influenza virus may cause severe infection in patients with heart failure. It is known that influenza infection is associated with increased morbidity and mortality in patients with heart failure. However, less is known about the excess burden of morbidity and mortality caused by influenza infection in patients with heart failure at a population level. OBJECTIVES The purpose of this study was to estimate the excess burden of morbidity and mortality as determined by annual excess number of deaths and hospitalizations associated with influenza infection in patients with heart failure in Denmark. METHODS We collected nationwide data on weekly number of deaths and hospitalizations among patients with heart failure in Denmark and weekly estimates of influenza circulation as determined by the proportion of positive influenza samples analyzed at all Danish Hospitals. These data were correlated in a time series linear regression model, and this model was used to estimate the annual excess number of deaths and hospitalizations attributable to influenza circulation among patients with heart failure in Denmark. The model also included data on weekly mean temperature and restricted cubic spline terms to account for seasonality and trends over time. RESULTS Data were available from 2010 to 2018 encompassing 8 influenza seasons with an annual mean of 25,180 samples tested for influenza at Danish hospitals. Among an annual mean of 70,570 patients with heart failure, our model estimated that influenza activity was associated with an annual excess of 250 all-cause deaths (95% CI: 144-489 deaths) corresponding to 2.6% of all all-cause deaths (95% CI: 1.5%-5.1%) in patients with heart failure. Similarly, influenza activity was associated with an annual excess of 115 cardiovascular deaths (95% CI: 62-244 deaths) corresponding to 2.9% of all cardiovascular deaths (95% CI: 1.5%-6.1%). Influenza activity was also associated with an annual excess of 251 hospitalizations for pneumonia or influenza (95% CI: 107-533 hospitalizations) corresponding to 5.0% of all hospitalizations for pneumonia or influenza. CONCLUSIONS Our results indicate that influenza activity likely causes substantial morbidity and mortality among patients with heart failure. Notably, our study suggests that approximately 2.6% of all deaths and 5.0% of all hospitalizations with influenza or pneumonia may be attributed to influenza in patients with heart failure.
Collapse
Affiliation(s)
- Daniel Modin
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Brian Claggett
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Niklas Dyrby Johansen
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Jens-Ulrik Stæhr Jensen
- Copenhagen Respiratory Research (COP:RESP), Herlev-Gentofte Hospital, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Mikkel Porsborg Andersen
- Department of Cardiology, Nordsjællands Hospital, Hillerød, Denmark; The Prehospital Center, Region Zealand, Næstved, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
4
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024; 16:2678-2698. [PMID: 39468303 PMCID: PMC11554794 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Pei H, Qu J, Chen J, Zhao G, Lu Z. S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. J Inflamm Res 2024; 17:4483-4503. [PMID: 39006491 PMCID: PMC11246037 DOI: 10.2147/jir.s457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jie Qu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Guangju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - ZhongQiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, People’s Republic of China
| |
Collapse
|
6
|
Rastegar-Moghaddam SH, Amirahmadi S, Akbarian M, Sharizina M, Beheshti F, Rajabian A, Eshaghi Ghalibaf MH, Azimi M, Mahmoudabady M, Hosseini M. Cardioprotective effect of cedrol in an inflammation systemic model induced by lipopolysaccharide: Biochemical and histological verification. J Cardiovasc Thorac Res 2024; 16:120-128. [PMID: 39253340 PMCID: PMC11380743 DOI: 10.34172/jcvtr.33112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION Evidence declared lipopolysaccharide (LPS) initiates inflammatory responses by stimulating the abandon of cytokines, which may perturb organ function. On the other side, it has been suggested Cedrol has potential properties, including anti-inflammatory and anti-oxidative activities. Herein, this study was done to assess the protective effect of Cedrol against LPS-associated heart damage. METHODS Thirty-five rats (200-250 g) were sorted into five groups, including control, LPS, LPS-Cedrol 7.5 mg/kg, LPS-Cedrol 15 mg/kg, and LPS-Cedrol 30 mg/kg groups. Cedrol was administrated through injected intra-peritoneally for two weeks. The heart tissues were removed and malondialdehyde (MDA) as a lipid peroxidation marker, superoxide dismutase (SOD), and catalase (CAT) as antioxidant markers were assessed. Furthermore, the interleukin (IL)-6 level in cardiac tissue was measured and Masson's trichrome methods were employed to appraise cardiac inflammation and fibrosis, respectively. RESULTS Inflammation induced by LPS was significantly accompanied by myocardial fibrosis which was shown by Masson's trichrome staining (P<0.001). In addition, LPS administration enhanced the MDA level while it diminished the activity of anti-oxidant markers such as CAT and SOD (P<0.001 for all cases). In the histological results, Cedrol improved LPS-induced inflammation and cardiac fibrosis (P<0.01 to P<0.001). Cedrol also enhanced CAT and SOD activities, whereas declined MDA level in the cardiac tissue (P<0.01 to P<0.001). CONCLUSION The current findings proposed that the administration of Cedrol exerted a protective role in LPS-associated heart damage by reducing inflammation, cardiac fibrosis, and oxidative stress.
Collapse
Affiliation(s)
| | - Sabiheh Amirahmadi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Sharizina
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohaddeseh Azimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
8
|
Rossi R, Jabrah D, Douglas A, Prendergast J, Pandit A, Gilvarry M, McCarthy R, Redfors P, Nordanstig A, Tatlisumak T, Ceder E, Dunker D, Carlqvist J, Szikora I, Tsivgoulis G, Psychogios K, Thornton J, Rentzos A, Jood K, Juega J, Doyle KM. Investigating the Role of Brain Natriuretic Peptide (BNP) and N-Terminal-proBNP in Thrombosis and Acute Ischemic Stroke Etiology. Int J Mol Sci 2024; 25:2999. [PMID: 38474245 DOI: 10.3390/ijms25052999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The need for biomarkers for acute ischemic stroke (AIS) to understand the mechanisms implicated in pathological clot formation is critical. The levels of the brain natriuretic peptides known as brain natriuretic peptide (BNP) and NT-proBNP have been shown to be increased in patients suffering from heart failure and other heart conditions. We measured their expression in AIS clots of cardioembolic (CE) and large artery atherosclerosis (LAA) etiology, evaluating their location inside the clots, aiming to uncover their possible role in thrombosis. We analyzed 80 thrombi from 80 AIS patients in the RESTORE registry of AIS clots, 40 of which were of CE and 40 of LAA etiology. The localization of BNP and NT-BNP, quantified using immunohistochemistry and immunofluorescence, in AIS-associated white blood cell subtypes was also investigated. We found a statistically significant positive correlation between BNP and NT-proBNP expression levels (Spearman's rho = 0.668 p < 0.0001 *). We did not observe any statistically significant difference between LAA and CE clots in BNP expression (0.66 [0.13-3.54]% vs. 0.53 [0.14-3.07]%, p = 0.923) or in NT-proBNP expression (0.29 [0.11-0.58]% vs. 0.18 [0.05-0.51]%, p = 0.119), although there was a trend of higher NT-proBNP expression in the LAA clots. It was noticeable that BNP was distributed throughout the thrombus and especially within platelet-rich regions. However, NT-proBNP colocalized with neutrophils, macrophages, and T-lymphocytes, suggesting its association with the thrombo-inflammatory process.
Collapse
Affiliation(s)
- Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Duaa Jabrah
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| | - James Prendergast
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Abhay Pandit
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| | - Michael Gilvarry
- Cerenovus, Block 3, Corporate House, Ballybrit Business Park, H91 K5YD Galway, Ireland
| | - Ray McCarthy
- Cerenovus, Block 3, Corporate House, Ballybrit Business Park, H91 K5YD Galway, Ireland
| | - Petra Redfors
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Annika Nordanstig
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Erik Ceder
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Dennis Dunker
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Jeanette Carlqvist
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, National & Kapodistrian University of Athens, 157 72 Athens, Greece
| | | | - John Thornton
- Department of Radiology, Beaumont Hospital, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Katarina Jood
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Jesus Juega
- Neurology Department, Val d'Hebron Hospital, 08035 Barcelona, Spain
| | - Karen M Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
9
|
Kim JH, Lee JH. Effect of miR-412-5p-loaded exosomes in H9c2 cardiomyocytes via the MAPK pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:755-760. [PMID: 38645496 PMCID: PMC11024402 DOI: 10.22038/ijbms.2024.75590.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Objectives MicroRNAs (miRNAs) are small non-coding RNAs that function in all biological processes. Recent findings suggest that exosomes, which are small vesicles abundantly secreted by various cell types, can transport miRNAs to target cells. Here, we elucidated the effect of miRNA-loaded exosomes on lipopolysaccharide (LPS)-induced inflammation in H9c2 cardiomyocytes. Materials and Methods Exosomes were isolated from mesenchymal stem cells (MSC) and loaded with miR-412-5p. Additionally, the effect of the miR-412-5p-loaded exosomes on LPS-induced inflammation in H9c2 cardiomyocytes was evaluated by assessing the levels of nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E2 (PGE2). The expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inflammatory cytokines, and mitogen-activated protein kinase (MAPK) signaling factors was evaluated using reverse transcription-quantitative PCR and western blotting. Results miR-412-5p-loaded exosomes inhibited LPS-induced secretion of inflammatory mediators (NO, PGE2, and ROS), pro-inflammatory cytokines (IL-1β and IL-6), and COX-2 and iNOS expression. Additionally, miR-412-5p-loaded exosomes significantly decreased the expression of MAPK signaling molecules, including p-extracellular signal-regulated kinase (ERK), p-p38, and p-Jun kinase (JNK), in H9c2 cardiomyocytes. Conclusion These findings showed that miR-412-5p-loaded exosomes ameliorated LPS-induced inflammation in H9c2 cardiomyocytes by inhibiting COX-2 and iNOS expression, inflammatory mediators, and pro-inflammatory cytokines via the MAPK pathway. The findings indicate that miR-412-5p-loaded exosomes may be effective for the prevention of myocardial injury.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Anesthesiology and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - June Hwan Lee
- Department of Energy Information Technology, Fareast University, 76-32, Daehak-gil, Gamgok-myeon, Eumseong-gun, Chungcheongbuk-do 27601, Republic of Korea
| |
Collapse
|
10
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
11
|
Chen Y, Cui M, Cui Y. Vagus nerve stimulation attenuates septic shock-induced cardiac injury in rats. Physiol Res 2023; 72:731-739. [PMID: 38215060 PMCID: PMC10805250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 01/14/2024] Open
Abstract
This research aimed to evaluate whether vagus nerve stimulation (VNS) could effectively prevent septic shock-induced cardiac injury in rats and investigate the potential mechanisms. Female Sprague-Dawley rats were divided into the Sham group (sham cecal ligation and puncture [CLP] plus vagal nerve trunk separation), the Vehicle group (CLP plus vagal nerve trunk separation), and the VNS groups (CLP plus vagal nerve trunk separation plus VNS). The left ventricular function was analyzed by echocardiography. Histologic examinations of the cardiac tissues were performed through hematoxylin and eosin staining and TUNEL staining. The Vehicle group had worse cardiac function, higher levels of cardiac injury markers, and enhanced myocardial apoptosis than the Sham group. The rats in the VNS groups had enhanced cardiac function, lower levels of cardiac injury markers, and inhibited myocardial apoptosis than those in the Vehicle group. Elevated interleukin-1beta and tumor necrosis factor-alpha-levels and activated nuclear factor kappa B (NF-kappa-B) signal in septic shock rats were inhibited by the performance of VNS. This study suggests that VNS contributes to the reduction of myocardial apoptosis and improvement of left ventricular function to attenuate septic shock-induced cardiac injury in rats. The performance of VNS inhibits the inflammatory responses in heart tissues via the regulation of NF-kappa-B signal.
Collapse
Affiliation(s)
- Y Chen
- Department of Emergency Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China.
| | | | | |
Collapse
|
12
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Zhang S, Yang Y, Lv X, Liu W, Zhu S, Wang Y, Xu H. Unraveling the Intricate Roles of Exosomes in Cardiovascular Diseases: A Comprehensive Review of Physiological Significance and Pathological Implications. Int J Mol Sci 2023; 24:15677. [PMID: 37958661 PMCID: PMC10650316 DOI: 10.3390/ijms242115677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Exosomes, as potent intercellular communication tools, have garnered significant attention due to their unique cargo-carrying capabilities, which enable them to influence diverse physiological and pathological functions. Extensive research has illuminated the biogenesis, secretion, and functions of exosomes. These vesicles are secreted by cells in different states, exerting either protective or harmful biological functions. Emerging evidence highlights their role in cardiovascular disease (CVD) by mediating comprehensive interactions among diverse cell types. This review delves into the significant impacts of exosomes on CVD under stress and disease conditions, including coronary artery disease (CAD), myocardial infarction, heart failure, and other cardiomyopathies. Focusing on the cellular signaling and mechanisms, we explore how exosomes mediate multifaceted interactions, particularly contributing to endothelial dysfunction, oxidative stress, and apoptosis in CVD pathogenesis. Additionally, exosomes show great promise as biomarkers, reflecting differential expressions of NcRNAs (miRNAs, lncRNAs, and circRNAs), and as therapeutic carriers for targeted CVD treatment. However, the specific regulatory mechanisms governing exosomes in CVD remain incomplete, necessitating further exploration of their characteristics and roles in various CVD-related contexts. This comprehensive review aims to provide novel insights into the biological implications of exosomes in CVD and offer innovative perspectives on the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (Y.Y.); (X.L.); (W.L.); (S.Z.)
| | - Hongfei Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (Y.Y.); (X.L.); (W.L.); (S.Z.)
| |
Collapse
|
14
|
Pugliese M, Napoli E, La Maestra R, Or ME, Bilgiç B, Previti A, Biondi V, Passantino A. Cardiac Troponin I and Electrocardiographic Evaluation in Hospitalized Cats with Systemic Inflammatory Response Syndrome. Vet Sci 2023; 10:570. [PMID: 37756092 PMCID: PMC10538112 DOI: 10.3390/vetsci10090570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Several studies conducted on humans demonstrate the increase in cardiac troponins and the onset of arrhythmias in the course of systemic inflammatory response syndrome (SIRS). The aim of the current study was to assess the blood concentration of cardiac troponin I (cTnI) and electrocardiographic findings in SIRS-affected cats. Seventeen shorthair cats hospitalized with SIRS were enrolled (Group 1). SIRS diagnosis was performed based on the detection of at least two of the four criteria such as abnormal body temperature, abnormal heart rate (i.e., tachycardia or bradycardia), abnormal respiratory rate (i.e., tachypnea or bradypnea), and alterations of white blood cell number (i.e., leukocytes or band neutrophils). Ten cats screened for elective surgery such as neutering or dental procedures were evaluated as a control population (Group 2). They were considered healthy based on history, physical examination, hematological and biochemical profile, urinalysis, coprological exam, thyroxine assay, blood pressure measurement, and echocardiography. A physical examination, complete blood cell count, biochemistry test (including an electrolyte panel), electrocardiographic examination, and cTnI assay were carried out in each cat enrolled. Traumatic events, gastrointestinal, neoplastic, respiratory, and neurological disorders were identified as causes of SIRS in Group 1. In Group 1, a significantly higher concentration of cTnI than that in Group 2 was recorded (p = 0.004). In 37.5% of cats with SIRS, ventricular premature complexes occurring in couplets with multiform configuration were detected. Similarly, to humans, data herein reported would indicate possible cardiac damage present in cats with SIRS diagnosis.
Collapse
Affiliation(s)
- Michela Pugliese
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy; (E.N.); (R.L.M.); (A.P.); (V.B.); (A.P.)
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy; (E.N.); (R.L.M.); (A.P.); (V.B.); (A.P.)
| | - Rocky La Maestra
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy; (E.N.); (R.L.M.); (A.P.); (V.B.); (A.P.)
| | - Mehmet Erman Or
- Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, 34098 Istanbul, Turkey; (M.E.O.); (B.B.)
| | - Bengü Bilgiç
- Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, 34098 Istanbul, Turkey; (M.E.O.); (B.B.)
| | - Annalisa Previti
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy; (E.N.); (R.L.M.); (A.P.); (V.B.); (A.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy; (E.N.); (R.L.M.); (A.P.); (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy; (E.N.); (R.L.M.); (A.P.); (V.B.); (A.P.)
| |
Collapse
|
15
|
Casipit BA, Al-Sudani H, Khan A, Akuna E, Amanullah A. Retrospective analyses of the outcomes among hospitalized liver cirrhosis patients with heart failure and COVID-19 infection: Insight from the National Inpatient Sample. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 27:100271. [PMID: 36817018 PMCID: PMC9916131 DOI: 10.1016/j.ahjo.2023.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Background There is paucity of data regarding the impact of Coronavirus Disease 2019 (COVID-19) infection on the outcomes of hospitalized liver cirrhosis (LC) patients with heart failure (HF). Methods Utilizing the 2020 National Inpatient Sample (NIS) Database, we conducted a retrospective cohort study to investigate the outcomes of hospitalized LC patients with HF and COVID-19 infection, looking at its impact on in-hospital mortality, risk for acute kidney injury (AKI) and length of stay (LOS). Results We identified a total of 10,810 hospitalized LC patients with HF, of which 1.39 % (n = 150/10,810) had COVID-19 infection. Using a stepwise survey multivariable logistic regression model that adjusted for patient and hospital level confounders, COVID-19 infection among hospitalized LC patients with HF was found to be an independent predictor of overall in-hospital mortality (aOR 3.73; 95 % CI, 1.58-8.79; p = 0.00) and risk for AKI (aOR 3.06; 95 % CI, 1.27-7.37; p = 0.01) compared to those without COVID-19 infection. However, there were comparable rates of LOS among LC patients with HF regardless of COVID-19 infection status. Moreover, AKI was found to be an independent predictor of longer LOS (coefficient 4.40, 95 % CI 3.26-5.38; p = 0.00). On subgroup analysis, diastolic HF was found to be associated with increased risk for in-hospital mortality (aOR 6.54; 95 % CI, 2.02-21.20; p = 0.00), development of AKI (aOR 3.33; 95 % CI, 1.12-9.91; p = 0.03) and longer LOS (coefficient 4.30, 95 % CI 0.79-9.45; p = 0.03). Conclusion Concomitant COVID-19 infection among hospitalized LC patients with HF was associated with higher risk for in-hospital mortality and AKI but did not significantly affect hospital LOS.
Collapse
Affiliation(s)
- Bruce Adrian Casipit
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hussein Al-Sudani
- Department of Medicine, Einstein Medical Center Montgomery, East Norriton, PA, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ahmer Khan
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emmanuel Akuna
- Department of Cardiovascular Diseases, Einstein Medical Center Philadelphia, Philadelphia, PA, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aman Amanullah
- Department of Cardiovascular Diseases, Einstein Medical Center Philadelphia, Philadelphia, PA, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Owen JC, Garrick SP, Peterson BM, Berger PJ, Nold MF, Sehgal A, Nold-Petry CA. The role of interleukin-1 in perinatal inflammation and its impact on transitional circulation. Front Pediatr 2023; 11:1130013. [PMID: 36994431 PMCID: PMC10040554 DOI: 10.3389/fped.2023.1130013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023] Open
Abstract
Preterm birth is defined as delivery at <37 weeks of gestational age (GA) and exposes 15 million infants worldwide to serious early life diseases. Lowering the age of viability to 22 weeks GA entailed provision of intensive care to a greater number of extremely premature infants. Moreover, improved survival, especially at extremes of prematurity, comes with a rising incidence of early life diseases with short- and long-term sequelae. The transition from fetal to neonatal circulation is a substantial and complex physiologic adaptation, which normally happens rapidly and in an orderly sequence. Maternal chorioamnionitis or fetal growth restriction (FGR) are two common causes of preterm birth that are associated with impaired circulatory transition. Among many cytokines contributing to the pathogenesis of chorioamnionitis-related perinatal inflammatory diseases, the potent pro-inflammatory interleukin (IL)-1 has been shown to play a central role. The effects of utero-placental insufficiency-related FGR and in-utero hypoxia may also be mediated, in part, via the inflammatory cascade. In preclinical studies, blocking such inflammation, early and effectively, holds great promise for improving the transition of circulation. In this mini-review, we outline the mechanistic pathways leading to abnormalities in transitional circulation in chorioamnionitis and FGR. In addition, we explore the therapeutic potential of targeting IL-1 and its influence on perinatal transition in the context of chorioamnionitis and FGR.
Collapse
Affiliation(s)
- Josephine C. Owen
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Briana M. Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Arvind Sehgal
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Correspondence: Claudia A. Nold-Petry
| |
Collapse
|
17
|
Pugliese M, La Maestra R, Ragusa M, Or ME, Merola G, Napoli E, Passantino A. Electrocardiographic Findings and Cardiac Troponin I Assay in Dogs with SIRS Diagnosis. Vet Sci 2022; 9:vetsci9120655. [PMID: 36548816 PMCID: PMC9781203 DOI: 10.3390/vetsci9120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Several studies performed in humans have demonstrated that the onset of systemic inflammatory response syndrome (SIRS) represents a high risk condition to develop myocardial damage and arrhythmias. Therefore, we also hypothesized cardiac involment for dogs affected by SIRS. To assess this hypothesis, 24 dogs with a diagnosis of SIRS (13 entire males, 7 entire females, and 4 spayed females) with an age ranging from 4 to 11 years (mean 5.6 years) and an average weight of 24 kg (range from 5 to 47 kg) were enrolled. The dogs were divided into two groups according to their prognosis: Survivors (G1) and not survivors (G2), composed by 13 and 11 dogs, respectively. Moreover, healthy dogs were included as the control group (CTR). All the dogs with a history of cardiac or renal disease were excluded. At the inclusion, each patient underwent a physical examination and a complete cell count, and a biochemistry panel (including electrolyte profile) was performed; moreover, the blood cardiac Troponin I (cTnI) was measured. For each clinical variable indicative of SIRS, a score between 0 (absence) and 1 (presence) was applied. Furthermore, an electrocardiographic examination was recorded. Seventeen out of 24 (70.8%) dogs with SIRS showed arrhythmias, of which n. 6 belonged to the G1, while n. 11 belonged to the G2. Most represented findings were sinus tachycardia (7/17; 41.1%), followed by monomorphic premature ventricular beats (6/17; 35.3%), less common were first-degree atrioventricular block (2/17; 11.7%) and sinus bradycardia 1/17; 5.8%). Notably, in G1 dogs, only sinus tachycardia and premature ventricular beats were observed. G2 dogs presented a number of total and banded leukocytes significantly higher than those of G1 (p = 0.002 and 0.049), in the same manner, the clinical score suggestive of SIRS (3 vs. 2.1) was significantly higher in G2 than in G1 dogs (p = 0.01). Moreover, a significantly higher value of cTnI was observed in the G2 group compared to the G1 group (p = 0.006). Data presented here suggested a cardiac involvement in dogs with SIRS, analogously to humans, that may significantly influence the patient's prognosis.
Collapse
Affiliation(s)
- Michela Pugliese
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy
| | - Rocky La Maestra
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy
| | - Monica Ragusa
- Complex Structure of Surgical Sciences and Technologies, IRCCS—Scientific Institute for Research, Hospitalization and Healthcare—Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Mehmet Erman Or
- Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Giordana Merola
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy
- Correspondence: (E.N.); (A.P.); Tel.: +39-90-6766742 (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, Via Umberto Palatucci, 98168 Messina, Italy
- Correspondence: (E.N.); (A.P.); Tel.: +39-90-6766742 (A.P.)
| |
Collapse
|
18
|
Liu M, Wang Z, Zhang J, Ye D, Wang M, Xu Y, Zhao M, Feng Y, Lu X, Pan H, Pan W, Wei C, Tian D, Li W, Lyu J, Ye J, Wan J. IL-12p40 deletion aggravates lipopolysaccharide-induced cardiac dysfunction in mice. Front Cardiovasc Med 2022; 9:950029. [PMID: 36186987 PMCID: PMC9523082 DOI: 10.3389/fcvm.2022.950029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cardiac dysfunction is one of the most common complications of sepsis and is associated with the adverse outcomes and high mortality of sepsis patients. IL-12p40, the common subunit of IL-12 and IL-23, has been shown to be involved in a variety of inflammation-related diseases, such as psoriasis and inflammatory bowel disease. However, the role of IL-12p40 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains obscure. This study aimed to explore the role of IL-12p40 in LPS-induced cardiac dysfunction and its potential mechanisms. METHODS In this study, mice were treated with LPS and the cardiac expression of IL-12p40 was determined. Then, IL-12p40-/- mice were used to detect the role and mechanisms of IL-12p40 in LPS-induced cardiac injury. In addition, monocytes were adoptively transferred to IL-12p40-/- mice to explore their effects on LPS-induced cardiac dysfunction. RESULTS The results showed that cardiac IL-12p40 expression was significantly increased after treated with LPS. In addition, IL-12p40 deletion significantly aggravated LPS-induced cardiac dysfunction, evidenced by the increased serum levels of cardiomyocyte injury markers and heart injury scores, as well as by the deteriorated cardiac function. Moreover, IL-12p40 deletion increased LPS-induced monocyte accumulation and cardiac expression of inflammatory cytokines, as well as enhanced the activation of the NF-κB and MAPK pathways. Furthermore, adoptive transfer WT mouse monocytes to IL-12p40-/- mice alleviated LPS-induced cardiac dysfunction and decreased the phosphorylation of p65. CONCLUSION IL-12p40 deletion significantly aggravated LPS-induced cardiac injury and cardiac dysfunction in mice by regulating the NF-κB and MAPK signaling pathways, and this process was related to monocytes. Therefore, IL-12p40 show a protective role in SIC, and IL-12p40 deficiency or anti-IL-12p40 monoclonal antibodies may be detrimental to patients with SIC.
Collapse
Affiliation(s)
- Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Tian
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjun Lyu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Bejiqi R, Pajaziti N, Agushi S. Kawasaki Disease Shock Syndrome Presented with Giant Coronary Artery Dilatation - Presentation of Two Cases and a Literature Review. Acta Inform Med 2022; 30:253-256. [PMID: 36311151 PMCID: PMC9559664 DOI: 10.5455/aim.2022.30.253-256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022] Open
Abstract
Background Kawasaki disease is an acute, self-limited vasculitis of childhood characterized by fever, bilateral nonexudative conjunctivitis, erythema of the lips and oral mucosa, changes in the extremities, rash, and cervical lymphadenopathy. Coronary artery aneurysms or ectasia develop in approximately 15 to 25% of untreated children with the disease and may lead to myocardial infarction, sudden death, or ischemic heart disease. Despite an overlap of clinical features with toxic shock syndrome, children with Kawasaki disease generally do not develop shock. Objective Here we present two adolescent boys who had KDSS and discuss their differentiating features from MIS-C. Case reports Two adolescent children presented with a toxic shock-like illness, and were subsequently diagnosed with Kawasaki disease shock syndrome when coronary artery abnormalities were found on transthoracic echocardiography. Conclusion Pediatricians and paediatric cardiologists alike should be aware of this potentially severe form of manifestation of the Kawasaki disease which needs to be differentiated from the multisystem inflammatory syndrome in children.
Collapse
Affiliation(s)
- Ramush Bejiqi
- Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Nafije Pajaziti
- Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Shqipe Agushi
- Faculty of Medicine, University of Pristina, Pristina, Kosovo
| |
Collapse
|
20
|
Sadasivuni S, Saha M, Bhatia N, Banerjee I, Sanyal A. Fusion of fully integrated analog machine learning classifier with electronic medical records for real-time prediction of sepsis onset. Sci Rep 2022; 12:5711. [PMID: 35383233 PMCID: PMC8983688 DOI: 10.1038/s41598-022-09712-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The objective of this work is to develop a fusion artificial intelligence (AI) model that combines patient electronic medical record (EMR) and physiological sensor data to accurately predict early risk of sepsis. The fusion AI model has two components—an on-chip AI model that continuously analyzes patient electrocardiogram (ECG) data and a cloud AI model that combines EMR and prediction scores from on-chip AI model to predict fusion sepsis onset score. The on-chip AI model is designed using analog circuits for sepsis prediction with high energy efficiency for integration with resource constrained wearable device. Combination of EMR and sensor physiological data improves prediction performance compared to EMR or physiological data alone, and the late fusion model has an accuracy of 93% in predicting sepsis 4 h before onset. The key differentiation of this work over existing sepsis prediction literature is the use of single modality patient vital (ECG) and simple demographic information, instead of comprehensive laboratory test results and multiple vital signs. Such simple configuration and high accuracy makes our solution favorable for real-time, at-home use for self-monitoring.
Collapse
Affiliation(s)
| | - Monjoy Saha
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA
| | - Neal Bhatia
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Imon Banerjee
- Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA.,Department of Radiology, Emory University, Atlanta, GA, 30322, USA
| | - Arindam Sanyal
- Electrical Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
21
|
Shimada BK, Boyman L, Huang W, Zhu J, Yang Y, Chen F, Kane MA, Yadava N, Zou L, Lederer WJ, Polster BM, Chao W. Pyruvate-Driven Oxidative Phosphorylation is Downregulated in Sepsis-Induced Cardiomyopathy: A Study of Mitochondrial Proteome. Shock 2022; 57:553-564. [PMID: 34506367 PMCID: PMC8904652 DOI: 10.1097/shk.0000000000001858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is a major contributing factor for morbidity and mortality in sepsis. Accumulative evidence has suggested that cardiac mitochondrial oxidative phosphorylation is attenuated in sepsis, but the underlying molecular mechanisms remain incompletely understood. METHODS Adult male mice of 9 to 12 weeks old were subjected to sham or cecal ligation and puncture procedure. Echocardiography in vivo and Langendorff-perfused hearts were used to assess cardiac function 24 h after the procedures. Unbiased proteomics analysis was performed to profile mitochondrial proteins in the hearts of both sham and SIC mice. Seahorse respirator technology was used to evaluate oxygen consumption in purified mitochondria. RESULTS Of the 665 mitochondrial proteins identified in the proteomics assay, 35 were altered in septic mice. The mitochondrial remodeling involved various energy metabolism pathways including subunits of the electron transport chain, fatty acid catabolism, and carbohydrate oxidative metabolism. We also identified a significant increase of pyruvate dehydrogenase (PDH) kinase 4 (PDK4) and inhibition of PDH activity in septic hearts. Furthermore, compared to sham mice, mitochondrial oxygen consumption of septic mice was significantly reduced when pyruvate was provided as a substrate. However, it was unchanged when PDH was bypassed by directly supplying the Complex I substrate NADH, or by using the Complex II substrate succinate, or using Complex IV substrate, or by providing the beta-oxidation substrate palmitoylcarnitine, neither of which require PDH for mitochondrial oxygen consumption. CONCLUSIONS These data demonstrate a broad mitochondrial protein remodeling, PDH inactivation and impaired pyruvate-fueled oxidative phosphorylation during SIC, and provide a molecular framework for further exploration.
Collapse
Affiliation(s)
- Briana K. Shimada
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - Liron Boyman
- The Department of Physiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jing Zhu
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - Yang Yang
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Nagendra Yadava
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - W. Jonathan Lederer
- The Department of Physiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brian M. Polster
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, Baltimore, Maryland
| |
Collapse
|
22
|
Yuliarto S, Pudjiadi AH, Latief A. Characteristics of hemodynamic parameters after fluid resuscitation and vasoactive drugs administration in pediatric shock: A prospective observational study. Ann Med Surg (Lond) 2022; 76:103521. [PMID: 35495407 PMCID: PMC9052134 DOI: 10.1016/j.amsu.2022.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Prior studies have shown that septic shock survivors had a normal cardiac index (CI) and systemic vascular resistance index (SVRI). However, this feature seems to be questionable in other-caused shock, since several factors are associated with the hemodynamic profile. This study aims to describe hemodynamic profiles (preload, inotropy, afterload, stroke volume, and cardiac output) after fluid resuscitation and vasoactive therapy in children with shock. Methods Children aged 1 month to 18 years old with shock conditions were included in this study. Fluid resuscitation was administered following the American College of Critical Care Medicine (ACCM) protocol. Hemodynamic profiles were assessed at 1 and 6 h from the start of fluid resuscitation. Grouping of the subjects was determined by the USCOM examination in 1st hour until the end of the study and we divided into 3 groups. Results At 1 h, group 1 (low CI) was 14% (CI:2.5[1.2–3.2]L/min/m2), group 2 (normal CI) was 66% (CI:4.2[3.4–5.8]L/min/m2), and group 3 (high CI) was 20% (CI:7.1[6.1–9.4]L/min/m2). SVRI was higher in groups 1 and 2 compared to group 3 (p < 0.05). Group 1 and 2 revealed fluid-refractory shock (SVV:25[12–34]% and 29(13–58)%, respectively), lower Smith-Madigan Inotropy Index (SMII) and higher Potential to Kinetic Ratio (PKR) compared to group 3 (p < 0.05). Group 3 revealed fluid-responsive shock (Stroke Volume Variation (SVV):32[18–158]%), higher SMII and lower PKR. At 6th hour, CI in all groups were normal (group 1:3.5[1.2–7.5]; group 2:4.0[1.7–6.1]; group 3:6.0[3.1–6.2]). However, 71.4% and 54.5% of subjects in groups 1 and 2, respectively, still revealed low inotropy. Group 3 revealed a significant increase in SVRI and PKR (p < 0.01). Conclusions Most pediatric shock patients were hypodynamic. Even when the CI was normal, the preload, inotropy, and afterload may still be abnormal. It represented the inotropy as a key to hemodynamic.
Describe the macrocirculation parameter (preload, inotropy, afterload) in children with shock. Most pediatric shock tend to be hypodynamic. Fluid and vasoactive agent therapy should be guided by combination of the hemodynamic parameters.
Collapse
|
23
|
Cao JD, Wang ZC, Wang YL, Li HC, Gu CM, Bai ZG, Chen ZQ, Wang SS, Xiang ST. Risk factors for progression of Urolith Associated with Obstructive Urosepsis to severe sepsis or septic shock. BMC Urol 2022; 22:46. [PMID: 35346141 PMCID: PMC8962082 DOI: 10.1186/s12894-022-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION To analyze the risk factors for progression of urolith associated with obstructive urosepsis to severe sepsis or septic shock, we had done the retrospective cross-sectional study, which would facilitate the early identification of high-risk patients. MATERIALS AND METHODS Datas were retrospectively reviewed from 160 patients, suffering from obstructive urosepsis associated with urolith between December 2013 and December 2019. There were 49 patients complicating by severe sepsis (severe sepsis group), 12 patients complicating by septic shock (septic shock group), and 99 patients without progressing to severe sepsis or septic shock (sepsis group). The data covered age, gender, BMI (body mass index), time interval from ED (emergency department) to admission, WBC count (white blood cell count), NLR (neutrophil/lymphocyte ratio), HGB (hemoglobin), etc. Datas were analyzed by univariate analyses and multivariate logistic regression analysis. The corresponding nomogram prediction model was drawn according to the regression coefficients. RESULTS Univariate analysis showed that the differences of age, the time interval from ED to admission, history of diabetes mellitus, history of CKI (chronic kidney disease), NLR, HGB, platelet count, TBil (total bilirubin), SCr (serum creatinine), ALB (albumin), PT (prothrombin time), APTT (activated partial thromboplastin time), INR (international normalized ratio), PCT (procalcitonin), and positive rate of pathogens in blood culture were statistically significant (P < 0.05). Multivariatelogistic regression analysis showed that age, SCr, and history of CKI were independent risk factors for progression to severe sepsis, or septic shock (P < 0.05). CONCLUSIONS Aged ≥ 65 years, SCr ≥ 248 mol/L, and history of CKI were independent risk factors for progression of urolith associated with obstructive urosepsis to severe sepsis or septic shock. We need to pay more attention to these aspects, when coming across the patients with urolithic sepsis.
Collapse
Affiliation(s)
- J D Cao
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China
| | - Z C Wang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China
| | - Y L Wang
- From Department of Andrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Zhuhai, China
| | - H C Li
- From Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - C M Gu
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China
| | - Z G Bai
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China
| | - Z Q Chen
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China
| | - S S Wang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China.
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Da Tong Road, Guangzhou, 510120, China.
| | - S T Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Fangcun Branch, 36 Chong'an Street, North Dongjiao Road, Guangzhou, 510370, China.
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Da Tong Road, Guangzhou, 510120, China.
| |
Collapse
|
24
|
Chandler T, Westhoff T, Sipka A, Overton T, Mann S. Lipopolysaccharide challenge following intravenous amino acid infusion in postpartum dairy cows: II. Clinical and inflammatory responses. J Dairy Sci 2022; 105:4611-4623. [DOI: 10.3168/jds.2021-21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
|
25
|
Maitz T, Parfianowicz D, Vojtek A, Rajeswaran Y, Vyas AV, Gupta R. COVID-19 Cardiovascular Connection: A Review of Cardiac Manifestations in COVID-19 Infection and Treatment Modalities. Curr Probl Cardiol 2022:101186. [PMID: 35351486 PMCID: PMC8957382 DOI: 10.1016/j.cpcardiol.2022.101186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus pandemic has crippled healthcare system since its outbreak in 2020, and has led to over 2.6 million deaths worldwide. Clinical manifestations of COVID-19 range from asymptomatic carrier to severe pneumonia, to life-threatening acute respiratory distress syndrome (ARDS). The early efforts of the pandemic surrounded treating the pulmonary component of COVID-19, however, there has been robust data surrounding the cardiac complications associated with the virus. This is suspected to be from a marked inflammatory response as well as direct viral injury. Arrhythmias, acute myocardial injury, myocarditis, cardiomyopathy, thrombosis, and myocardial fibrosis are some of the observed cardiac complications. There have been high morbidity and mortality rates in those affected by cardiac conditions associated with COVID-19. Additionally, there have been documented cases of patients presenting with typical cardiac symptoms who are subsequently discovered to have COVID-19 infection. In those who test positive for COVID-19, clinical awareness of the significant cardiac components of the virus is pertinent to prevent morbidity and mortality. Unfortunately, treatment and preventative measures developed for COVID-19 have been shown to be also be associated with cardiac complications. This is a comprehensive review of the cardiac complications and manifestations of COVID-19 infection in addition to those associated with both treatment and vaccination.
Collapse
Affiliation(s)
- Theresa Maitz
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA
| | | | - Ashley Vojtek
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA
| | | | - Apurva V Vyas
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| |
Collapse
|
26
|
Effectiveness of Angiotensin II for Catecholamine Refractory Septic or Distributive Shock on Mortality: A Propensity Score Weighted Analysis of Real-World Experience in the Medical ICU. Crit Care Explor 2022; 4:e0623. [PMID: 35072084 PMCID: PMC8769135 DOI: 10.1097/cce.0000000000000623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Supplemental Digital Content is available in the text. Angiotensin II (ATII) was approved for septic or other distributive shock due to its property of increasing blood pressure within 3 hours. Limited data exist regarding its effectiveness when used in real-world clinical practice.
Collapse
|
27
|
Patel P, Ruge M, Gomez JMD, du Fay de Lavallaz J, Rao A, Williams KA, Volgman AS, Costanzo MRR, Suboc T, Marinescu K. Prognostic value of H2FPEF score in COVID-19. AMERICAN HEART JOURNAL PLUS: CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100111. [PMID: 35252908 PMCID: PMC8887956 DOI: 10.1016/j.ahjo.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Study objective This study sought to assess the predictive value of H2FPEF score in patients with COVID-19. Design Retrospective study. Setting Rush University Medical Center. Participants A total of 1682 patients had an echocardiogram in the year preceding their COVID-19 admission with a preserved ejection fraction (≥50%). A total of 156 patients met inclusion criteria. Interventions Patients were divided into H2FPEF into low (0–2), intermediate (3–5), and high (6–9) score H2FPEF groups and outcomes were compared. Main outcome measures Adjusted multivariable logistic regression models evaluated the association between H2FPEF score group and a composite outcome for severe COVID-19 infection consisting of (1) 60-day mortality or illness requiring (2) intensive care unit, (3) intubation, or (4) non-invasive positive pressure ventilation. Results High H2FPEF scores were at increased risk for severe COVID-19 infection when compared intermediate to H2FPEF score groups (OR 2.18 [CI: 1.01–4.80]; p = 0.049) and low H2FPEF score groups (OR 2.99 [CI: 1.22–7.61]; p < 0.05). There was no difference in outcome between intermediate H2FPEF scores (OR 1.34 [CI: 0.59–3.16]; p = 0.489) and low H2FPEF score. Conclusions Patients with a high H2FPEF score were at increased risk for severe COVID-19 infection when compared to patients with an intermediate or low H2FPEF score regardless of regardless of coronary artery disease and chronic kidney disease.
Collapse
|
28
|
Akter F, Araf Y, Naser IB, Promon SK. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regen Ther 2021; 18:447-456. [PMID: 34608441 PMCID: PMC8481096 DOI: 10.1016/j.reth.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.
Collapse
Affiliation(s)
- Fariya Akter
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
29
|
Protective Effect of Topiroxostat on Myocardial Injury Induced by Lipopolysaccharide. J Surg Res 2021; 271:171-179. [PMID: 34815074 DOI: 10.1016/j.jss.2021.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Myocardial injury induced by sepsis is the most common cause of death. Topiroxostat has been found to have organ protective effects, but its role in septic shock-related cardiomyocyte damage is still unclear and needs further study. MATERIAL AND METHODS An endotoxemic shock model in rats was constructed. After topiroxostat treatment, hemodynamic parameters, myocardial injury marker enzymes, oxidative stress, myocardial injury, and apoptosis were measured by polyphysiograph, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, TUNEL staining, and western blot. During in vitro experiments, the effect of topiroxostat on cell vitality, oxidative stress, inflammatory factors, apoptosis-related markers, phosphorylated-p65 (p-p65) and p65 expressions were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and western blot. RESULTS Topiroxostat improved myocardial dysfunction and superoxide dismutase activity while suppressing levels of creatine kinase, lactate dehydrogenase and malondialdehyde in serum of endotoxemic shock rats. Additionally, topiroxostat augmented dry-wet weight ratios of the hearts in rats. Meanwhile, topiroxostat was proved to alleviate interstitial edema and apoptosis in myocardial tissues of endotoxemic shock rats. During in vitro experiments, topiroxostat pretreatment elevated lipopolysaccharide (LPS)-induced H9c2 cell vitality, and alleviated oxidative stress and inflammation. Moreover, topiroxostat pretreatment downregulated apoptosis-related markers, p-p65, and p-p65/p65 levels in LPS-induced H9c2 cells. CONCLUSIONS Topiroxostat attenuated LPS-induced myocardial injury via repressing apoptosis and oxidative stress.
Collapse
|
30
|
Zou B, Tian Y, Shi Z, Zhang R, Ma H. Protective effects of active compounds from on heart and brain of mice at simulated high altitude. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:568-574. [PMID: 34986540 DOI: 10.3724/zdxbyxb-2021-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the active compounds from on the heart and brain of mice at simulated high altitude.Fifty healthy male adult BALB/c mice were randomly divided into normal control group, hypoxic model group, acetazolamide group, petroleum ether extract of (PESI) group and octacosan group with 10 mice in each group. Acetazolamide group, PESI group and octacosan group were treated with acetazolamide PESI (200 mg/kg) or octacosan by single tail vein injection, respectively. Except normal control group, the mice were exposed to a simulated high altitude of for in an animal decompression chamber. After the mice were sacrificed by cervical dislocation, the heart and brain were histologically observed by HE staining; superoxide dismutase (SOD) activity, total anti-oxidant capacity (T-AOC) and the content of malondialdehyde (MDA) in plasma, heart and brain tissues were detected by WST-1 method, ABTS method and TBA method, respectively; lactic acid and lactate dehydrogenase (LDH) activity in plasma, heart and brain tissues were detected by colorimetric method and microwell plate method, respectively; ATP content and ATPase activity in heart and brain tissues were detected by colorimetric method. PESI and octacosane significantly attenuated the pathological damages of heart and brain tissue at simulated high altitude; increased SOD activity, T-AOC and LDH activity, and decreased the contents of MDA and lactic acid in plasma, heart and brain tissues; increased the content of ATP in heart and brain tissues; increased the activities of Na-K ATPase, Mg ATPase, Ca ATPase and Ca-Mg ATPase in myocardial tissue; and increased the activities of Mg ATPase, Ca-Mg ATPase in brain tissue. PESI and octacosan exert anti-hypoxic activity by improving the antioxidant capacity, reducing the free radical levels, promoting the anaerobic fermentation, and alleviating the energy deficiency and metabolic disorders caused by hypoxia in mice.
Collapse
Affiliation(s)
- Beilei Zou
- 2. Key Laboratory of the Plateau Medicine, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Yiting Tian
- 2. Key Laboratory of the Plateau Medicine, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Zhiqun Shi
- 2. Key Laboratory of the Plateau Medicine, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Ruxue Zhang
- 2. Key Laboratory of the Plateau Medicine, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Huiping Ma
- 2. Key Laboratory of the Plateau Medicine, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
31
|
Xue J, Liu J, Xu B, Yu J, Zhang A, Qin L, Liu C, Yang Y. miR-21-5p inhibits inflammation injuries in LPS-treated H9c2 cells by regulating PDCD4. Am J Transl Res 2021; 13:11450-11460. [PMID: 34786071 PMCID: PMC8581922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To explore the expression levels and the potential regulatory mechanism of miR-21-5p in LPS-treated H9c2 cells. METHODS The secretions of the inflammatory cytokines induced by LPS in H9c2 cells were evaluated using ELISA. We used RT-RCR and western blot to measure the relative mRNA and protein expression levels in LPS-treated H9c2 cells. CCK-8 and EdU assays showed the viability and proliferation profiles of the H9c2 cells. TUNEL assays demonstrated the apoptotic behaviors of the H9c2 cells, and a luciferase reporter analysis was used to investigate the interactions between miR-21-5p and programmed cell death protein 4 (PDCD4). RESULTS LPS induced damage to the H9c2 cells by reducing the cell viability and down-regulating miR-21-5p. On the other hand, miR-21-5p overexpression inhibited the LPS-induced inflammatory damage in the H9c2 cells. Moreover, PDCD4 was verified as a downstream target gene of miR-21-5p, and its expression was inhibited by the higher miR-21-5p content. Finally, miR-21-5p inhibited septic processes, and the PDCD4 overexpression rescued the miR-21-5p effect in the LPS-treated H9c2 cells. CONCLUSION Our findings suggest that miR-21-5p inhibits the LPS-induced progression of sepsis in H9c2 cells. Additionally, PDCD4 is a downstream target gene of miR-21-5p, and both molecules serve as potential therapeutic targets for heart sepsis patients.
Collapse
Affiliation(s)
- Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Bo Xu
- Department of Orthopaedics, Qidong Hospital of Traditional Chinese MedicineNantong, Jiangsu Province, China
| | - Junbo Yu
- Department of Trauma Center, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Aixian Zhang
- Department of General Practice Medicine, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Lili Qin
- Department of Endoscopic Center, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Chun Liu
- Department of Emergency Medicine, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| |
Collapse
|
32
|
Kwon JM, Lee YR, Jung MS, Lee YJ, Jo YY, Kang DY, Lee SY, Cho YH, Shin JH, Ban JH, Kim KH. Deep-learning model for screening sepsis using electrocardiography. Scand J Trauma Resusc Emerg Med 2021; 29:145. [PMID: 34602084 PMCID: PMC8487616 DOI: 10.1186/s13049-021-00953-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction and a major healthcare burden worldwide. Although sepsis is a medical emergency that requires immediate management, screening for the occurrence of sepsis is difficult. Herein, we propose a deep learning-based model (DLM) for screening sepsis using electrocardiography (ECG). Methods This retrospective cohort study included 46,017 patients who were admitted to two hospitals. A total of 1,548 and 639 patients had sepsis and septic shock, respectively. The DLM was developed using 73,727 ECGs from 18,142 patients, and internal validation was conducted using 7774 ECGs from 7,774 patients. Furthermore, we conducted an external validation with 20,101 ECGs from 20,101 patients from another hospital to verify the applicability of the DLM across centers.
Results During the internal and external validations, the area under the receiver operating characteristic curve (AUC) of the DLM using 12-lead ECG was 0.901 (95% confidence interval, 0.882–0.920) and 0.863 (0.846–0.879), respectively, for screening sepsis and 0.906 (95% confidence interval (CI), 0.877–0.936) and 0.899 (95% CI, 0.872–0.925), respectively, for detecting septic shock. The AUC of the DLM for detecting sepsis using 6-lead and single-lead ECGs was 0.845–0.882. A sensitivity map revealed that the QRS complex and T waves were associated with sepsis. Subgroup analysis was conducted using ECGs from 4,609 patients who were admitted with an infectious disease, and the AUC of the DLM for predicting in-hospital mortality was 0.817 (0.793–0.840). There was a significant difference in the prediction score of DLM using ECG according to the presence of infection in the validation dataset (0.277 vs. 0.574, p < 0.001), including severe acute respiratory syndrome coronavirus 2 (0.260 vs. 0.725, p = 0.018).
Conclusions The DLM delivered reasonable performance for sepsis screening using 12-, 6-, and single-lead ECGs. The results suggest that sepsis can be screened using not only conventional ECG devices but also diverse life-type ECG machines employing the DLM, thereby preventing irreversible disease progression and mortality.
Collapse
Affiliation(s)
- Joon-Myoung Kwon
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea. .,Medical Research Team, Medical AI, Co., Seoul, Republic of Korea. .,Department of Critical Care and Emergency Medicine, Mediplex Sejong Hospital, 20, Gyeyangmunhwa-ro, Gyeyang-gu, Incheon, Republic of Korea. .,Medical R&D Center, Body Friend, Co., Seoul, Republic of Korea.
| | - Ye Rang Lee
- Medical Research Team, Medical AI, Co., Seoul, Republic of Korea
| | - Min-Seung Jung
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea
| | - Yoon-Ji Lee
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea
| | - Yong-Yeon Jo
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea
| | - Da-Young Kang
- Medical Research Team, Medical AI, Co., Seoul, Republic of Korea
| | - Soo Youn Lee
- Medical Research Team, Medical AI, Co., Seoul, Republic of Korea.,Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
| | - Yong-Hyeon Cho
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea
| | - Jae-Hyun Shin
- Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea
| | - Jang-Hyeon Ban
- Medical R&D Center, Body Friend, Co., Seoul, Republic of Korea
| | - Kyung-Hee Kim
- Medical Research Team, Medical AI, Co., Seoul, Republic of Korea.,Division of Cardiology Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
| |
Collapse
|
33
|
Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria. Inflammation 2021; 43:1184-1200. [PMID: 32333359 DOI: 10.1007/s10753-020-01233-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a lethal syndrome with multiple organ failure caused by an inappropriate host response to infection. Cardiac dysfunction is one of the important complications of sepsis, termed sepsis-induced myocardial dysfunction (SIMD), which is characterized by systolic and diastolic dysfunction of both sides of the heart. Mechanisms that contribute to SIMD include an excessive inflammatory response, altered circulatory, microvascular status, nitric oxide (NO) synthesis impairment, endothelial dysfunction, disorders of calcium regulation, cardiac autophagy anomaly, autonomic nervous system dysregulation, metabolic reprogramming, and mitochondrial dysfunction. The role of mitochondrial dysfunction, which is characterized by structural abnormalities, increased oxidative stress, abnormal opening of the mitochondrial permeability transition pore (mPTP), mitochondrial uncoupling, and disordered quality control systems, has been gaining increasing attention as a central player in the pathophysiology of SIMD. The disruption of homeostasis within the organism induced by mitochondrial dysfunction may also be an important aspect of SIMD development. In addition, an emerging therapy strategy targeting mitochondria, namely, metabolic resuscitation, seems promising. The current review briefly introduces the mechanism of SIMD, highlights how mitochondrial dysfunction contributes to SIMD, and discusses the role of metabolic resuscitation in the treatment of SIMD.
Collapse
|
34
|
Song W, Zhang T, Yang N, Zhang T, Wen R, Liu C. Inhibition of micro RNA miR-122-5p prevents lipopolysaccharide-induced myocardial injury by inhibiting oxidative stress, inflammation and apoptosis via targeting GIT1. Bioengineered 2021; 12:1902-1915. [PMID: 34002676 PMCID: PMC8806731 DOI: 10.1080/21655979.2021.1926201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myocardial injury resulting from sepsis is the leading cause of death worldwide. Micro RNA miR-122-5p is involved in various physiological and pathological processes and is highly expressed in the heart of septic rats. However, its function in sepsis-caused myocardial injury remains elusive. Herein, a rat model of septic myocardial injury was established by intraperitoneal injection of lipopolysaccharide (LPS), and cardiomyocyte H9c2 was exposed to LPS to induce sepsis-related inflammatory injury in vitro. Inhibition of miR-122-5p suppressed LPS-triggered myocardial injury evidenced by decreased heart weight index (HWI), reduced inflammatory cell infiltration and cell rupture, and reduced cardiac marker enzymes cTnI and LDH. MiR-122-5p inhibition inhibited ROS production and enhanced the activities of antioxidant enzymes CAT, SOD and GSH-px in LPS-treated rats and H9c2 cells. MiR-122-5p inhibition reduced the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β, and inhibited cell apoptosis along with decreased cleaved-caspase 3 induced by LPS. Moreover, increased GIT1 expression was found following miR-122-5p inhibition. We further verified GIT1 as a target of miR-122-5p, and silencing GIT1 partially reversed the benefits of miR-122-5p loss in LPS-injured H9c2 cells. The HO-1 and NQO-1 expression and Nrf-2 activation were enhanced by miR-122-5p inhibition, which was reversed by GIT1 depletion, indicating the involvement of Nrf-2/HO-1 signaling in regulating miR-122-5p/GIT1-mediated cardioprotection. Taken together, our data suggest that inhibition of miR-122-5p may mitigate sepsis-triggered myocardial injury through inhibiting inflammation, oxidative stress and apoptosis via targeting GIT1, which provides a possible therapeutic target for sepsis.
Collapse
Affiliation(s)
- Wenliang Song
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tiening Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tao Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunfeng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
35
|
Ji W, Wan T, Zhang F, Zhu X, Guo S, Mei X. Aldehyde Dehydrogenase 2 Protects Against Lipopolysaccharide-Induced Myocardial Injury by Suppressing Mitophagy. Front Pharmacol 2021; 12:641058. [PMID: 34025411 PMCID: PMC8139555 DOI: 10.3389/fphar.2021.641058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced circulatory and cardiac dysfunction is associated with high mortality rates. Mitophagy, a specific form of autophagy, is excessively activated in lipopolysaccharide-induced myocardial injury. The present study investigated whether aldehyde dehydrogenase 2 (ALDH2) regulates mitophagy in sepsis-induced myocardial dysfunction. After lipopolysaccharide administration, cardiac dysfunction, inflammatory cell infiltration, biochemical indicators of myocardial cell injury, and cardiomyocyte apoptosis were ameliorated in mice by ALDH2 activation or overexpression. In contrast, cardiac dysfunction and cardiomyocyte apoptosis were exacerbated in mice followed ALDH2 inhibition. Moreover, ALDH2 activation or overexpression regulated mitophagy by suppressing the expression of phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin, by preventing the accumulation of 4-hydroxy-trans-nonenal. Conversely, ALDH2 inhibition promoted the expression of LC3B by increasing 4-hydroxy-trans-2-nonenal accumulation. Consequently, ALDH2 may protect the heart from lipopolysaccharide-induced injury by suppressing PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Wenqing Ji
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Tiantian Wan
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Fang Zhang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Mei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| |
Collapse
|
36
|
Wang R, Xu Y, Zhang W, Fang Y, Yang T, Zeng D, Wei T, Liu J, Zhou H, Li Y, Huang ZP, Zhang M. Inhibiting miR-22 Alleviates Cardiac Dysfunction by Regulating Sirt1 in Septic Cardiomyopathy. Front Cell Dev Biol 2021; 9:650666. [PMID: 33869205 PMCID: PMC8047209 DOI: 10.3389/fcell.2021.650666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 01/20/2023] Open
Abstract
High morbidity and mortality are the most typical characteristics of septic cardiomyopathy. We aimed to reveal the role of miR-22 in septic cardiomyopathy and to explore the underlying mechanisms. miR-22 cardiac-specific knockout (miR-22cKO) mice and miR-22 cardiac-specific transgenic (miR-22cOE) mice were subjected to a cecal ligation and puncture (CLP) operation, while a sham operation was used in the control group. The echocardiogram results suggested that miR-22cKO CLP mice cardiac dysfunction was alleviated. The serum LDH and CK-MB were reduced in the miR-22cKO CLP mice. As expected, there was reduced apoptosis, increased autophagy and alleviated mitochondrial dysfunction in the miR-22cKO CLP mice, while it had contrary role in the miR-22cOE group. Inhibiting miR-22 promoted autophagy by increasing the LC3II/GAPDH ratio and decreasing the p62 level. Additionally, culturing primary cardiomyocytes with lipopolysaccharide (LPS) simulated sepsis-induced cardiomyopathy in vitro. Inhibiting miR-22 promoted autophagic flux confirmed by an increased LC3II/GAPDH ratio and reduced p62 protein level under bafilomycin A1 conditions. Knocking out miR-22 may exert a cardioprotective effect on sepsis by increasing autophagy and decreasing apoptosis via sirt1. Our results revealed that targeting miR-22 may become a new strategy for septic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine, The First Affiliated Hospital, Institute of Precision Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ting Wei
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haijia Zhou
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, The First Affiliated Hospital, Institute of Precision Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
38
|
Abstract
Heart failure is a common disease state that can be encountered at different stages in the course of a COVID-19 patient presentation. New or existing heart failure in the setting of COVID-19 can present a set of unique challenges that can complicate presentation, management, and prognosis. A careful understanding of the hemodynamic and diagnostic implications is essential for appropriate triage and management of these patients. Abnormal cardiac biomarkers are common in COVID-19 and can stem from a variety of mechanisms that involve the viral entry itself through the ACE2 receptors, direct cardiac injury, increased thrombotic activity, stress cardiomyopathy, and among others. The cytokine storm observed in this pandemic can be a culprit in many of the observed mechanisms and presentations. A correct understanding of the two-way interaction between heart failure medications and the infection as well as the proposed COVID-19 medications and heart failure can result in optimal management. Guideline-directed medical therapy for heart failure should not be interrupted for theoretical concerns but rather based on tolerance and clinical presentation. Initiating specific cardiac or heart failure medications to prevent the infection or mitigate the disease is also not an evidence-based practice at this time. Heart failure patients on advanced therapies including those with heart transplantation will particularly benefit from involving the advanced heart failure team members in the overall management if they contract the virus.
Collapse
Affiliation(s)
- Feras Bader
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, PO Box 112412, Abu Dhabi, United Arab Emirates.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Yosef Manla
- Department of Research and Education, Cleveland Clinic Abu Dhabi, Al Maryah Island, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Bassam Atallah
- Department of Pharmacy Services, Cleveland Clinic Abu Dhabi, Al Maryah Island, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Randall C Starling
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Kaufman Center for Heart Failure, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
39
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP, Xiao XZ. Shikonin Ameliorates LPS-Induced Cardiac Dysfunction by SIRT1-Dependent Inhibition of NLRP3 Inflammasome. Front Physiol 2020; 11:570441. [PMID: 33178042 PMCID: PMC7596688 DOI: 10.3389/fphys.2020.570441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Shikonin (SHI) is an anti-inflammatory agent extracted from natural herbs. It is still unknown whether SHI ameliorates lipopolysaccharide (LPS)-induced cardiac dysfunction. This study aims to explore the protective effects of SHI on LPS-induced myocardial injury and its mechanism. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of SHI. In the present study, we found that SHI treatment improved the survival rate and cardiac function and remarkably ameliorated the release of inflammatory cytokines and macrophage infiltration in heart tissue of LPS-treated mice. SHI also reduced lactate dehydrogenase (LDH) and cardiac troponin (cTn) release, cell inflammation, and apoptosis in LPS plus adenosine triphosphate (ATP)-treated H9c2 cells. In addition, SHI significantly upregulated silent information regulator 1 (SIRT1) expression and suppressed the upregulation of NOD-like receptor protein 3 (NLRP3), cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Meanwhile, we got the same results in LPS plus ATP-treated H9c2 cells in vitro. Further, SIRT1 inhibitor or siRNA partially blocked SHI-mediated upregulation of SIRT1 expression and downregulation of NLRP3, cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Therefore, we conclude that SHI ameliorates LPS-induced cardiac dysfunction by inhibiting SIRT1-dependent activation of NLRP3 inflammasomes and might be a promising therapeutic strategy for the treatment of LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhong-Biao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Yi Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xiang-Ping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xian-Zhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
40
|
Abstract
We retrospectively reviewed all pertinent extracorporeal membrane oxygenation (ECMO) studies (January 1995 to September 2017) of adults with sepsis as a primary indication for intervention and its association with morbidity and mortality. Collected data included study type, ECMO configuration, outcomes, effect size, and other features. Advanced age was a risk factor for death. Compared with nonsurvivors, survivors had a lower median Sepsis-Related Organ Failure Assessment score on day 3 (15 vs. 18, p = 0.01). Biomarkers in survivors and nonsurvivors, respectively, were peak lactate (from two studies: 4.5 vs. 15.1 mmol/L, p = 0.03; 3.6 ± 3.7 vs. 3.3 ± 2.4 mmol/L, p = 0.850) and procalcitonin levels (41 vs. 164 ng/ml, p = 0.008). Bacteremia was associated with catheter colonization, and 90.5% of a group without bloodstream infections survived to discharge; ECMO weaning was possible for less than half the bloodstream infection group. Myocarditis portended favorable outcomes for patients with sepsis who received ECMO. Extracorporeal membrane oxygenation was used in immunosuppressed patients with refractory cardiopulmonary insufficiency from severe sepsis with successful weaning from ECMO for most patients. Overall survival varied substantially among studies (15.38-71.43%). Existing studies do not present well-defined patterns supporting use of ECMO in sepsis because of sample sizes and disparate study designs.
Collapse
|
41
|
Saeed Z, Greer O, Shah NM. Is the Host Viral Response and the Immunogenicity of Vaccines Altered in Pregnancy? Antibodies (Basel) 2020; 9:E38. [PMID: 32759839 PMCID: PMC7551810 DOI: 10.3390/antib9030038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The intricacy of the maternal immune system arises from its ability to prevent a maternal immune response against a semi-allogenic fetus, while protecting the mother against harmful pathogens. However, these immunological adaptations may also make pregnant women vulnerable to developing adverse complications from respiratory viral infections. While the influenza and SARS pandemics support this theory, there is less certainty regarding the clinical impact of SARS-CoV-2 in pregnancy. In the current COVID-19 pandemic, vaccine development is key to public preventative strategies. Whilst most viral vaccines are able to induce a seroprotective antibody response, in some high-risk individuals this may not correlate with clinical protection. Some studies have shown that factors such as age, gender, and chronic illnesses can reduce their effectiveness and in this review, we discuss how pregnancy may affect the efficacy and immunogenicity of vaccines. We present literature to support the hypothesis that pregnant women are more susceptible to respiratory viral infections and may not respond to vaccines as effectively. In particular, we focus on the clinical implications of important respiratory viral infections such as influenza during pregnancy, and the pregnancy induced alterations in important leukocytes such as TFH, cTFH and B cells, which play an important role in generating long-lasting and high-affinity antibodies. Finally, we review how this may affect the efficacy of vaccines against influenza in pregnancy and highlight areas that require further research.
Collapse
Affiliation(s)
| | | | - Nishel Mohan Shah
- Academic Department of Obstetrics & Gynaecology, Imperial College London, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK; (Z.S.); (O.G.)
| |
Collapse
|
42
|
Abstract
Remarkable progress has been made in the development of new therapies for cancer, dramatically changing the landscape of treatment approaches for several malignancies and continuing to increase patient survival. Accordingly, adverse effects of cancer therapies that interfere with the continuation of best-possible care, induce life-threatening risks or lead to long-term morbidity are gaining increasing importance. Cardiovascular toxic effects of cancer therapeutics and radiation therapy are the epitome of such concerns, and proper knowledge, interpretation and management are needed and have to be placed within the context of the overall care of individual patients with cancer. Furthermore, the cardiotoxicity spectrum has broadened to include myocarditis with immune checkpoint inhibitors and cardiac dysfunction in the setting of cytokine release syndrome with chimeric antigen receptor T cell therapy. An increase in the incidence of arrhythmias related to inflammation such as atrial fibrillation can also be expected, in addition to the broadening set of cancer therapeutics that can induce prolongation of the corrected QT interval. Therefore, cardiologists of today have to be familiar not only with the cardiotoxicity associated with traditional cancer therapies, such as anthracycline, trastuzumab or radiation therapy, but even more so with an ever-increasing repertoire of therapeutics. This Review provides this information, summarizing the latest developments at the juncture of cardiology, oncology and haematology.
Collapse
Affiliation(s)
- Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Jung E, Romero R, Yeo L, Diaz-Primera R, Marin-Concha J, Para R, Lopez AM, Pacora P, Gomez-Lopez N, Yoon BH, Kim CJ, Berry SM, Hsu CD. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med 2020; 25:101146. [PMID: 33164775 PMCID: PMC10580248 DOI: 10.1016/j.siny.2020.101146] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fetus can deploy a local or systemic inflammatory response when exposed to microorganisms or, alternatively, to non-infection-related stimuli (e.g., danger signals or alarmins). The term "Fetal Inflammatory Response Syndrome" (FIRS) was coined to describe a condition characterized by evidence of a systemic inflammatory response, frequently a result of the activation of the innate limb of the immune response. FIRS can be diagnosed by an increased concentration of umbilical cord plasma or serum acute phase reactants such as C-reactive protein or cytokines (e.g., interleukin-6). Pathologic evidence of a systemic fetal inflammatory response indicates the presence of funisitis or chorionic vasculitis. FIRS was first described in patients at risk for intraamniotic infection who presented preterm labor with intact membranes or preterm prelabor rupture of the membranes. However, FIRS can also be observed in patients with sterile intra-amniotic inflammation, alloimmunization (e.g., Rh disease), and active autoimmune disorders. Neonates born with FIRS have a higher rate of complications, such as early-onset neonatal sepsis, intraventricular hemorrhage, periventricular leukomalacia, and death, than those born without FIRS. Survivors are at risk for long-term sequelae that may include bronchopulmonary dysplasia, neurodevelopmental disorders, such as cerebral palsy, retinopathy of prematurity, and sensorineuronal hearing loss. Experimental FIRS can be induced by intra-amniotic administration of bacteria, microbial products (such as endotoxin), or inflammatory cytokines (such as interleukin-1), and animal models have provided important insights about the mechanisms responsible for multiple organ involvement and dysfunction. A systemic fetal inflammatory response is thought to be adaptive, but, on occasion, may become dysregulated whereby a fetal cytokine storm ensues and can lead to multiple organ dysfunction and even fetal death if delivery does not occur ("rescued by birth"). Thus, the onset of preterm labor in this context can be considered to have survival value. The evidence so far suggests that FIRS may compound the effects of immaturity and neonatal inflammation, thus increasing the risk of neonatal complications and long-term morbidity. Modulation of a dysregulated fetal inflammatory response by the administration of antimicrobial agents, anti-inflammatory agents, or cell-based therapy holds promise to reduce infant morbidity and mortality.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA.
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio Marin-Concha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley M Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Habimana R, Choi I, Cho HJ, Kim D, Lee K, Jeong I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit Care 2020; 35:57-66. [PMID: 32506871 PMCID: PMC7280799 DOI: 10.4266/acc.2020.00248] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
It is well known that cardiac dysfunction in sepsis is associated with significantly increased mortality. The pathophysiology of sepsis-induced cardiac dysfunction can be summarized as involving impaired myocardial circulation, direct myocardial depression, and mitochondrial dysfunction. Impaired blood flow to the myocardium is associated with microvascular dysfunction, impaired endothelium, and ventriculo-arterial uncoupling. The mechanisms behind direct myocardial depression consist of downregulation of β-adrenoceptors and several myocardial suppressants (such as cytokine and nitric oxide). Recent research has highlighted that mitochondrial dysfunction, which results in energy depletion, is a major factor in sepsis-induced cardiac dysfunction. Therefore, the authors summarize the pathophysiological process of cardiac dysfunction in sepsis based on the results of recent studies.
Collapse
Affiliation(s)
| | - Insu Choi
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, Korea
| | - Dowan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Kyoseon Lee
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Inseok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| |
Collapse
|
45
|
Keilich SR, Lorenzo EC, Torrance BL, Harrison AG, Bartley JM, Haynes L. Vaccination mitigates influenza-induced muscular declines in aged mice. GeroScience 2020; 42:1593-1608. [PMID: 32472355 DOI: 10.1007/s11357-020-00206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022] Open
Abstract
Influenza (flu) infection increases the risk for disability, falls, and broken bones in older adults. We have employed a preclinical model to examine the impact of flu on muscle function, which has a direct impact on fall risk. In mice, flu causes mobility and strength impairments with induction of inflammatory and muscle degradation genes that are increased and prolonged with aging. To determine if vaccination could reduce flu-induced muscle decrements, mice were vaccinated with flu nucleoprotein, infected, and muscle parameters were measured. Vaccination of aged mice resulted in significant protection from functional decrements, muscle gene expressions alterations, and morphological damage. Vaccination also improved protection from lung localized and systemic inflammation in aged mice. Despite documented decreased vaccine efficacy with aging, vaccination still provided partial protection to aged mice and represents a potential strategy to prevent flu-induced disability. These findings provide translational insight on ways to reduce flu-induced disability with aging. Graphical abstract .
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Erica C Lorenzo
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Blake L Torrance
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jenna M Bartley
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA. .,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
46
|
Khan IH, Zahra SA, Zaim S, Harky A. At the heart of COVID-19. J Card Surg 2020; 35:1287-1294. [PMID: 32369872 DOI: 10.1111/jocs.14596] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease (COVID-19) first presented in Wuhan, Hubei province, China in December 2019. Since then, it has rapidly spread across the world, and is now formally considered a pandemic. The disease does not discriminate but increasing age and the presence of comorbidities are associated with severe form of the disease and poor outcomes. Although the prevalence of COVID-19 in patients with cardiovascular disease is under-reported, there is evidence that pre-existing cardiac disease can render individuals vulnerable. It is thought that COVID-19 may have both a direct and indirect effect on the cardiovascular system; however, the primary mechanism of underlying cardiovascular involvement is still uncertain. Of particular interest is the role of angiotensin-converting enzyme 2, which is well known for its cardiovascular effects and is also considered to be important in the pathogenesis of COVID-19. With a range of different drug candidates being suggested, effective anti-virals and vaccines are an area of on-going research. While our knowledge of COVID-19 continues to rapidly expand, this review highlights recent advances in our understanding of the interaction between COVID-19 and the cardiovascular system.
Collapse
Affiliation(s)
| | - Syeda Anum Zahra
- Department of Medicine, St George's Hospital Medical School, London, UK
| | - Sevim Zaim
- Department of Medicine, University of Liverpool School of Medicine, Liverpool, UK
| | - Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
47
|
Evaluation of Tp-e interval and Tp-e/QT ratio in major burn patients. J Electrocardiol 2020; 60:67-71. [PMID: 32304902 DOI: 10.1016/j.jelectrocard.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Major burn injury is an acute stress reaction with systemic effects. Major burn injury has been associated with a number of cardiovascular dysfunctions, including ventricular arrhythmias. The mechanism of increased ventricular arrhythmias in burn patients uncertain. The aim of the present study was to evaluate the ventricular repolarization by using the Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio as candidate markers of ventricular arrhythmias in patients with major burn patients. In addition, the relationship between the repolarization parameters and the CRP(C-reactive protein) and ABSI(Abbreviated Burn Severity Index) score was investigated. METHODS 55 major burn patients, 55 age and sex matched healthy subjects were included in the study between January 2017 and September 2019. The risk of ventricular arrhythmias was evaluated by calculating the electrocardiographic Tp-e and QT interval, corrected QT(QTc), Tp-e/QT and Tp-e/QTc ratios. ABSI score was calculated in burn patients. Left ventricular functions were evaluated by echocardiography. RESULTS Tp-e interval (80.7 ± 5.7 vs. 67.4 ± 5.7; p < 0.001), Tp-e/QT ratio (0.21 ± 0.01 vs. 0.18 ± 0.01; p < 0.001) and Tp-e/QTc ratio (0.20 ± 0.01 vs.0.17 ± 0.01; p < 0.001) were significantly higher in major burn patients than the control group. There was a significant positive correlation between Tp-e interval, Tp-e/QTc ratio and ABSI score in major burn patients (r = 0.870, p < 0.001, r = 0.312, p = 0.020 consecutively). CONCLUSION Our study showed for the first time in literature that the Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio, which were evaluated electrocardiographically in major burn patients, were prolonged compared with normal healthy individuals. A positive correlation was determined between repolarization parameters and ABSI score. Whether these changes increase the risk of ventricular arrhythmia deserve further studies. TAKE-HOME MESSAGE Tp-e interval, Tp-e/QT ratio, and Tp-e/QTc ratio, which were evaluated electrocardiographically in major burn patients, were prolonged compared with normal healthy individuals and a positive correlation was found between these repolarization parameters and burn severity.
Collapse
|
48
|
Durmaz S, Kurtoğlu T, Barbarus E, Eliyatkın N, Yılmaz M. TNF-alpha inhibitor adalimumab attenuates endotoxin induced cardiac damage in rats. Acta Cir Bras 2020; 35:e202000202. [PMID: 32267288 PMCID: PMC7124089 DOI: 10.1590/s0102-865020200020000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate the effects of adalimumab pretreatment on the lipopolysaccharide-mediated myocardial injury. Methods Twenty-eight Wistar rats were randomized into four groups (n=7). Control (C) group animals were injected once a day with intraperitoneal (i.p) 0.9 % saline for two days. In the Adalimumab (Ada) group, adalimumab was injected at a dose of 10 mg/kg/ day (i.p) for two days. Lipopolysaccharide (Lps) group rats were injected with a dose of 5 mg/kg (i.p) lipopolysaccharide. Lipopolysaccharide + Adalimumab (Lps+Ada) group rats received adalimumab before the administration of lipopolysaccharide. The animals were sacrificed 24 h after the last injection and blood samples were obtained for determination of biochemical cardiac injury markers and circulating levels of TNF-α and interleukin-6 (IL-6). Hearts were harvested for histological examination. Results Endotoxin exposure resulted in significant increases in serum cardiac injury markers, serum cytokines and histological myocardial injury scores in the Lps group. The levels of circulating cytokines, cardiac injury markers and histological injury scores for myocardial necrosis, perivascular cell infiltration, and inflammation were significantly reduced in Lps+Ada as compared to Lps group (p<0.05). Conclusions Adalimumab pretreatment reduces endotoxin-induced myocardial damage in rats. This beneficial effect is thought to be related to the reduction of cytokine release.
Collapse
|
49
|
Cardiac Dysfunction Identified by Strain Echocardiography Is Associated With Illness Severity in Pediatric Sepsis. Pediatr Crit Care Med 2020; 21:e192-e199. [PMID: 32084099 DOI: 10.1097/pcc.0000000000002247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Sepsis-induced myocardial dysfunction has been associated with illness severity and mortality in pediatrics. Although early sepsis-induced myocardial dysfunction diagnosis could aid in hemodynamic management, current echocardiographic metrics for assessing biventricular function are limited in detecting early impairment. Strain echocardiography is a validated quantitative measure that can detect subtle perturbations in left ventricular and right ventricular function. This investigation evaluates the utility of strain echocardiography in pediatric sepsis and compares with to conventional methods. DESIGN Retrospective, observational study comparing left ventricular and right ventricular strain. Strain was compared with ejection fraction and fractional shortening and established sepsis severity of illness markers. SETTING Tertiary care medical-surgical PICU from July 2013 to January 2018. PATIENTS Seventy-nine septic children and 28 healthy controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Compared with healthy controls, patients with severe sepsis demonstrated abnormal left ventricular strain (left ventricular longitudinal strain: -13.0% ± 0.72; p = 0.04 and left ventricular circumferential strain: -16.5% ± 0.99; p = 0.046) and right ventricular (right ventricular longitudinal strain = -14.3% ± 6.3; p < 0.01) despite normal fractional shortening (36.0% ± 1.6 vs 38.1% ± 1.1; p = 0.5129) and ejection fraction (60.7% ± 2.2 vs 65.3% ± 1.5; p = 0.33). There was significant association between depressed left ventricular longitudinal strain and increased Vasotrope-Inotrope Score (r = 0.52; p = 0.034). Worsening left ventricular circumferential strain was correlated with higher lactate (r = 0.31; p = 0.03) and higher Pediatric Risk of Mortality-III score (r = 0.39; p < 0.01). Depressed right ventricular longitudinal strain was associated with elevated pediatric multiple organ dysfunction score (r = 0.44; p < 0.01) CONCLUSIONS:: Compared with healthy children, pediatric septic patients demonstrated abnormal left ventricular and right ventricular strain concerning for early signs of cardiac dysfunction. This was despite having normal ejection fraction and fractional shortening. Abnormal strain was associated with abnormal severity of illness markers. Strain echocardiography may have utility as an early indicator of sepsis-induced myocardial dysfunction in pediatric sepsis.
Collapse
|
50
|
Abstract
Myocardial depression is a common yet reversible phenomenon that occurs in patients in septic shock. Initially, it was unclear whether this provided an adaptive survival benefit, as early studies showed decreased mortality in septic patients with myocardial depression. However, subsequent larger studies have debunked this myth. Given that no benefit exists, cardiac dysfunction in septic patients may be monitored via echocardiography and may be treated with inotropic agents. Beta-blockers provide a novel avenue of treatment as they aid in reducing adrenergic overstimulation and cytokine production, which may drive the pathogenesis of septic shock. This review chronicles how the understanding of myocardial depression in sepsis has evolved and how it should be clinically managed.
Collapse
|