1
|
Phi LTH, Cheng Y, Funakoshi Y, Bertucci F, Finetti P, Van Laere SJ, Zou F, Long JP, Ogata S, Krishnamurthy S, Reuben JM, Foulks JM, Warner SL, Rosenbluth JM, Sood AK, Tripathy D, Ueno NT, Wang X. AXL promotes inflammatory breast cancer progression by regulating immunosuppressive macrophage polarization. Breast Cancer Res 2025; 27:70. [PMID: 40329335 PMCID: PMC12057249 DOI: 10.1186/s13058-025-02015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are key promoters of inflammatory breast cancer (IBC), the most aggressive form of breast cancer. The receptor tyrosine kinase AXL is highly expressed in various cancer types, including IBC, but its role in TAMs remains unexplored. METHODS We examined the effects of AXL inhibitor TP-0903 on tumor growth and tumor microenvironment (TME) component M2 macrophages (CD206+) in IBC and triple-negative breast cancer mouse models using flow cytometry and immunohistochemical staining. Additionally, we knocked out AXL expression in human THP-1 monocytes and evaluated the effect of AXL signaling on immunosuppressive M2 macrophage polarization and IBC cell growth and migration. We then investigated the underlying mechanisms through RNA sequencing analysis. Last, we performed CIBERSORT deconvolution to analyze the association between AXL expression and tumor-infiltrating immune cell types in tumor samples from the Inflammatory Breast Cancer International Consortium. RESULTS We found that inhibiting the AXL pathway significantly reduced IBC tumor growth and decreased CD206+ macrophage populations within tumors. Mechanistically, our in vitro data showed that AXL promoted M2 macrophage polarization and enhanced the secretion of immunosuppressive chemokines, including CCL20, CCL26, and epiregulin, via the transcription factor STAT6 and thereby accelerated IBC cell growth and migration. RNA sequencing analysis further indicated that AXL signaling in immunosuppressive M2 macrophages regulated the expression of molecules and cytokines, contributing to an immunosuppressive TME in IBC. Moreover, high AXL expression was correlated with larger populations of immunosuppressive immune cells but smaller populations of immunoactive immune cells in tissues from patients with IBC. CONCLUSIONS AXL signaling promotes IBC growth by inducing M2 macrophage polarization and driving the secretion of immunosuppressive molecules and cytokines via STAT6 signaling, thereby contributing to an immunosuppressive TME. Collectively, these findings highlight the potential of targeting AXL signaling as a novel therapeutic approach for IBC that warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Lan T H Phi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Yating Cheng
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yohei Funakoshi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francois Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Steven J Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fang Zou
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suguru Ogata
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
- University of Hawai'i Inflammatory Breast Cancer Clinic and Research Program, Honolulu, HI, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Jennifer M Rosenbluth
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, USA.
- University of Hawai'i Inflammatory Breast Cancer Clinic and Research Program, Honolulu, HI, USA.
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, USA.
- University of Hawai'i Inflammatory Breast Cancer Clinic and Research Program, Honolulu, HI, USA.
| |
Collapse
|
2
|
Mughal SS, Reiss Y, Felsberg J, Meyer L, Macas J, Schlue S, Starzetz T, Köhrer K, Fehm T, Müller V, Lamszus K, Schadendorf D, Helfrich I, Wikman H, Berghoff A, Brors B, Plate KH, Reifenberger G. Identification and characterization of tertiary lymphoid structures in brain metastases. Acta Neuropathol Commun 2025; 13:91. [PMID: 40319321 PMCID: PMC12049775 DOI: 10.1186/s40478-025-02007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/13/2025] [Indexed: 05/07/2025] Open
Abstract
Brain metastases (BrM) are the most common cancers in the brain and linked to poor prognosis. Given the high incidence and often limited treatment options, understanding the complexity of the BrM tumor microenvironment is crucial for the development of novel therapeutic strategies. We performed transcriptome-wide gene expression profiling combined with spatial immune cell profiling to characterize the tumor immune microenvironment in 95 patients with BrM from different primary tumors. We found that BrM from lung carcinoma and malignant melanoma showed overall higher immune cell infiltration as compared to BrM from breast carcinoma. RNA sequencing-based immune cell deconvolution revealed gene expression signatures indicative of tertiary lymphoid structures (TLS) in subsets of BrM, mostly from lung cancer and melanoma. This finding was corroborated by multiplex immunofluorescence staining of immune cells in BrM tissue sections. Detection of TLS signatures was more common in treatment-naïve BrM and associated with prolonged survival after BrM diagnosis in lung cancer patients. Our findings highlight the cellular diversity of the tumor immune microenvironment in BrM of different cancer types and suggest a role of TLS formation for BrM patient outcome.
Collapse
Affiliation(s)
- Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120, Heidelberg, Germany.
| | - Yvonne Reiss
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Lasse Meyer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Silja Schlue
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Tatjana Starzetz
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
| | - Karl Köhrer
- Center for Biological and Medical Research (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, Center of Integrated Oncology ABCD, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 50, 45147, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 50, 45147, Essen, Germany
- Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University (LMU), Frauenlobstrasse 9-11, 80337, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Berghoff
- Department of Internal Medicine 1, Clinical Division of Oncology, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty and Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120, Heidelberg, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Saif A, Islam MT, Raihan MO, Yousefi N, Rahman MA, Faridi H, Hasan AR, Hossain MM, Saleem RM, Albadrani GM, Al-Ghadi MQ, Ahasan Setu MA, Kamel M, Abdel-Daim MM, Aktaruzzaman M. Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches. Comput Biol Med 2025; 190:110044. [PMID: 40120182 DOI: 10.1016/j.compbiomed.2025.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysis of CDC7 across multiple cancers is lacking, and existing therapeutic options have come with limited clinical success. The aim of this is to integrate a comprehensive pan-cancer analysis of CDC7 with the identification of novel marine-derived inhibitors, bridging the understanding of CDC7's role as a prognostic biomarker and therapeutic target across diverse cancer types. In this study, we conducted a pan-cancer analysis of CDC7 across 33 tumor types using publicly available datasets to evaluate its expression, genetic alterations, immune interactions, survival, and prognostic significance. Additionally, a marine-derived compound library of 31,492 molecules was screened to identify potential CDC7 inhibitors using chemoinformatics and machine learning. The top candidates underwent rigorous evaluations, including molecular docking, pharmacokinetics, toxicity, Density Functional Theory (DFT) calculations, and Molecular Dynamics (MD) simulations. The findings revealed that CDC7 is overexpressed in several cancers and is associated with poor survival outcomes and unfavorable prognosis. Enrichment analysis linked CDC7 to critical DNA replication pathways, while its role in modulating tumor-immune interactions highlighted its potential as a target for immunotherapy. Among all tested compounds, Tetrahydroaltersolanol D (CMNPD21999) exhibited the strongest binding affinity and stability, along with better drug-likeness and zero toxicity. These attributes highlight its potential as a promising drug candidate for CDC7 inhibition and future cancer treatment development. Furthermore, additional in vitro and in vivo studies are required to confirm the effectiveness of this drug candidate against the CDC7 protein.
Collapse
Affiliation(s)
- Ahmed Saif
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Tarikul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh.
| | - Md Obayed Raihan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA.
| | - Niloofar Yousefi
- Department of Industrial Engineering and Management Systems, University of Central Florida, USA, Orlando, FL, USA
| | - Md Ajijur Rahman
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hafeez Faridi
- Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL, USA
| | - Al Riyad Hasan
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mirza Mahfuj Hossain
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 65431, Saudi Arabia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ali Ahasan Setu
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Md Aktaruzzaman
- Laboratory of Advanced Computational Biology, Biological Research on the Brain (BRB), Jashore, 7408, Bangladesh; Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
4
|
Su X, Kang D, Wang J, Li L, Huang R, Zou Z. Tertiary lymphoid structures associated with improved survival and enhanced antitumor immunity in acral melanoma. NPJ Precis Oncol 2025; 9:103. [PMID: 40200106 PMCID: PMC11978811 DOI: 10.1038/s41698-025-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Understanding the impact of tertiary lymphoid structures (TLSs) on acral melanoma (AM) and the tumor microenvironment (TME) is critical. We analyzed TLS features in primary AM lesions from 46 patients and identified intratumoral TLSs (intra-TLSs) in 25 patients. Intra-TLS presence was significantly associated with improved overall survival. Hematoxylin and eosin staining and multiplex immunofluorescence revealed increased T-cell and CD8+ T-cell infiltration and fewer tumor-associated macrophages in the TME of intra-TLS patients. Transcriptomic analysis identified a TLS-associated Th1/B-cell gene set as a predictor of survival and immunotherapy response. These findings highlight the prognostic value of intra-TLSs in AMs and suggest that targeting TLS formation could enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Xinyu Su
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Donglin Kang
- Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiayu Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rong Huang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyun Zou
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Guillaume SM, Foster WS, San Martín Molina I, Watson EM, Innocentin S, Kennedy GM, Denton AE, Linterman MA. Lung B cells in ectopic germinal centers undergo affinity maturation. Proc Natl Acad Sci U S A 2025; 122:e2416855122. [PMID: 40168127 PMCID: PMC12002176 DOI: 10.1073/pnas.2416855122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
The lungs are constantly exposed to the external environment and a myriad of antigenic challenges within the air. Chronic exposure to allergens and other airborne antigens can result in the formation of lymphocyte aggregates in the lung, which can harbor ectopic germinal centers (GCs). After allergen exposure, GCs that form in the lung are much smaller and less densely packed with B cells than lymph node GCs. Despite this, ectopic lung GCs support somatic hypermutation and affinity-based maturation as in lymph node GCs, and export memory B cells (MBCs) directly into the lung tissue. This demonstrates that the lung can locally diversify B cell responses and supports the generation of tissue MBC populations in situ.
Collapse
Affiliation(s)
| | - William S. Foster
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Isabel San Martín Molina
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
- Babraham Imaging Core, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Emily M. Watson
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Silvia Innocentin
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Grant M. Kennedy
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
- Department of Physics, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Alice E. Denton
- Department of Immunology and Inflammation, Imperial College London, LondonW12 0NN, United Kingdom
| | | |
Collapse
|
6
|
Xin M, Wang A, Ji M, Wu J, Jiang B, Shi M, Song L, Xin Z. Molecular Biology and Functions of T Follicular Helper Cells in Cancer and Immunotherapy. Immune Netw 2025; 25:e7. [PMID: 40342840 PMCID: PMC12056291 DOI: 10.4110/in.2025.25.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 05/11/2025] Open
Abstract
T follicular helper (Tfh) cells are integral to the germinal center (GC) response and the development of potent humoral immunity. By priming B cells, Tfh cells can initiate both extrafollicular and GC-dependent Ab responses. The dynamic physical interactions between Tfh and B cells constitute the primary platform for Tfh cells to provide essential "help" factors to B cells, as well as for reciprocal signaling from B cells to sustain the helper state of Tfh cells. In recent years, significant advancements have been made in understanding the diverse roles of Tfh cells across various diseases, particularly in cancer. Notably, beyond the classical GC-Tfh cells, it is increasingly recognized that the Tfh cell phenotype is highly heterogeneous and dynamic, which adds complexity to their roles in disease contexts. This review aims to encapsulate progress in Tfh cell biology, with a focus on their role in cancer and immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Antuo Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Minghao Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jingru Wu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|
7
|
Mao Q, Tian Y, Yu Q, Chen L, Zhang L, Tong Y, Yao W, Gao X, Tian H. Enhanced efficiency of MHC class II tumor neoantigen vaccines with a novel CD4 + T-cell helper epitope. J Pharmacol Exp Ther 2025; 392:103570. [PMID: 40267770 DOI: 10.1016/j.jpet.2025.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/23/2025] [Indexed: 04/25/2025] Open
Abstract
Tumor neoantigens, defined as tumor-specific antigens arising from somatic mutations, have shown great potential as targets for cancer vaccines in clinical studies. However, the number of neoantigens capable of effectively activating immune responses is quite limited. Over the past few decades, tumor neoantigen vaccines based on MHC-I epitopes that activate CD8+ T cells have been extensively studied. However, growing evidence suggests that CD4+ T cells are important in cancer immunotherapy. In contrast to CD8+ T cells, the receptors on CD4+ T cells exhibit a wider range of antigen peptide-MHC recognition, which can detect more tumor mutation antigens. In our earlier studies, a nitrated CD4+ T-cell epitope (NitraTh) was constructed as a novel CD4+ T-cell epitope that can enhance the immunogenicity of multiple tumor antigens. Therefore, we designed vaccines targeting MHC-II neoantigen epitopes using the nitrated T-cell epitope containing immunogenic amino acids. We found that vaccines conjugated with NitraTh exhibited enhanced immunogenicity. Crucially, the NitraTh-modified MHC-II tumor neoantigen vaccines increased the proportion of CD4+ T cells that infiltrate tumors and the spleen, elevated the expression of several cytokines with antitumor effects and facilitated the transformation of CD4+ T cells into Th1 cells, thereby reducing tumor growth. Additionally, the nitrated epitope has been shown to transform naïve CD4+ T cells into effector memory cells, thus facilitating enduring antitumor actions. The strategy of combining nitrated epitopes with MHC-II neoantigen epitopes confirms the significance of CD4+ T-cell immunity in cancer and may provide a novel approach for cancer vaccine design. SIGNIFICANCE STATEMENT: This study presents a novel design paradigm for tumor vaccines-combining MHC-II epitopes with nitrated CD4+ T-cell epitopes. This approach promotes the differentiation of CD4+ T cells toward a Th1 phenotype and generates long-lasting effector memory CD4+ T cells. Under the enhanced effects of CD4+ T cells, the vaccines we designed achieved superior antitumor efficacy and improved the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qiuli Mao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yahong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiumin Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingxiao Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Li Zhang
- Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Cui X, Gu X, Li D, Wu P, Sun N, Zhang C, He J. Tertiary lymphoid structures as a biomarker in immunotherapy and beyond: Advancing towards clinical application. Cancer Lett 2025; 613:217491. [PMID: 39862919 DOI: 10.1016/j.canlet.2025.217491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation. Their role in enhancing immune responses, particularly in the context of cancer, makes them a focal point in immunotherapy. This review discusses recent advances in TLS assessment that involves complex gene expression signatures, histological analysis, artificial intelligence, and spatial omics. The presence and maturity of TLS are associated with better outcomes in various cancers, acting as a biomarker for immunotherapy effectiveness. This review explores the structure, formation, and role of TLS in disease prognosis, including their roles in immunotherapy and non-immunotherapy treatments, highlighting a need to develop novel techniques for precise characterization of TLS as well as their significance as predictive biomarkers beyond traditional biomarkers.
Collapse
Affiliation(s)
- Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Huang Z, Mo C, Li L, Hou Q, Pan Y, Zhu G, Qiu F, Zou Q, Yang J. Identification of novel neutrophil-extracellular-traps-related genes as biomarkers for breast cancer prognosis and immunotherapy. Transl Cancer Res 2025; 14:1737-1752. [PMID: 40224973 PMCID: PMC11985209 DOI: 10.21037/tcr-24-1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
Background Breast cancer (BC) ranks as one of the most prevalent malignancies among women globally. This study aimed to explore the involvement of neutrophil extracellular traps (NETs)-related genes (NETRGs) in BC pathogenesis, highlighting the critical role of NETs. Methods Differentially expressed NETRGs (DE-NETRGs) were identified by intersecting BC vs. control differentially expressed genes (DEGs) with the NETRG gene set from The Cancer Genome Atlas breast cancer (TCGA-BRCA) and GSE42568 datasets. Functional analysis elucidated their biological roles. Prognostic biomarkers were selected using least absolute shrinkage and selection operator (LASSO) and Cox regression, generating a predictive model, of which its prognostic predictive ability was evaluated through the Kaplan-Meier (KM) survival curve and receiver operating characteristic (ROC) curve, and verified it in the test set and the validation set. Subsequently, the clinicopathological features were incorporated into the risk model for Cox independent prognostic analysis, and a nomogram was constructed to verify the predictive performance of the model. Finally, the mechanism of action of the biomarkers in BC was explored through immune infiltration, immunotherapy, and drug sensitivity. The biomarker expression validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Functional analysis revealed 37 DE-NETRGs associated with leukocyte migration and the Interleukin (IL)-17 signaling pathway. Four biomarkers [F2RL2, AZU1, IL33, neutrophil elastase (ELANE)] were used to construct the prognostic model and it was validated by the test set and the validation set. The KM curve showed significant differences in prognosis between the high- and low-risk group, while the ROC curve showed that the model had good predictive performance. Radiation, age, tumor stage, pathologic N, and risk scores were identified as independent prognostic factors. Subgroups based on risk scores exhibited distinct immune cell infiltration patterns, with the risk score positively correlated with M0 macrophages and resting mast cells. The high-risk group demonstrated lower Tumor Immune Dysfunction and Exclusion (TIDE) scores. Drug sensitivity varied between risk subgroups, and qRT-PCR confirmed the expression of ELANE and IL33. Conclusions This study has reported four biomarkers related to BC prognosis, namely F2RL2, AZU1, IL33, and ELANE. Our study has offered new potential biomarkers for prognosis and has identified therapeutic targets for the treatment and prognosis prediction in BC patients.
Collapse
Affiliation(s)
- Zhen Huang
- Graduate School of Jinan University, Guangzhou, China
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Chongde Mo
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lihui Li
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qiyan Hou
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yinhua Pan
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Guiyue Zhu
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Fangyu Qiu
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Quanqing Zou
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Graduate School of Jinan University, Guangzhou, China
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
10
|
Sheriff L, Copland A, Lecky DAJ, Done R, George LS, Jennings EK, Rouvray S, Elliot TAE, Jinks ES, Pallan L, Bending D. Lag3 and PD-1 pathways preferentially regulate NFAT-dependent TCR signalling programmes during early CD4 + T cell activation. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf015. [PMID: 40351814 PMCID: PMC12066006 DOI: 10.1093/immadv/ltaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Lag3 and PD-1 are immune checkpoints that regulate T cell responses and are current immunotherapy targets. Yet how they function to control early stages of CD4+ T cell activation remains unclear. Methods Here, we show that the PD-1 and Lag3 pathways exhibit layered control of the early CD4+ T cell activation process, with the effects of Lag3 more pronounced in the presence of PD-1 pathway co-blockade (CB). RNA sequencing revealed that CB drove an early NFAT-dependent transcriptional profile, including promotion of ICOShi T follicular helper cell differentiation. Results NFAT pathway inhibition abolished CB-induced upregulation of NFAT-dependent co-receptors ICOS and OX40, whilst unaffecting the NFAT-independent gene Nr4a1. Mechanistically, Lag3 and PD-1 pathways functioned additively to regulate the duration of T cell receptor signals during CD4+ T cell re-activation. Phenotypic changes in peripheral blood CD4+ T cells in humans on anti-Lag3 and anti-PD-1 combination therapy revealed upregulation of genes encoding ICOS and OX40 on distinct CD4+ T cell subsets, highlighting the potential translational relevance of our findings. Conclusion Our data therefore reveal that PD-1 and Lag3 pathways converge to additively regulate TCR signal duration and may preferentially control NFAT-dependent transcriptional activity during early CD4+ T cell re-activation.
Collapse
Affiliation(s)
- Lozan Sheriff
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alastair Copland
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David A J Lecky
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Reygn Done
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna S George
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Emma K Jennings
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sophie Rouvray
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Thomas A E Elliot
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Elizabeth S Jinks
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lalit Pallan
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David Bending
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
11
|
Ren X, Guo A, Geng J, Chen Y, Wang X, Zhou L, Shi L. Pan-cancer analysis of co-inhibitory molecules revealing their potential prognostic and clinical values in immunotherapy. Front Immunol 2025; 16:1544104. [PMID: 40196117 PMCID: PMC11973099 DOI: 10.3389/fimmu.2025.1544104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background The widespread use of immune checkpoint inhibitors (anti-CTLA4 or PD-1) has opened a new chapter in tumor immunotherapy by providing long-term remission for patients. Unfortunately, however, these agents are not universally available and only a minority of patients respond to them. Therefore, there is an urgent need to develop novel therapeutic strategies targeting other co-inhibitory molecules. However, comprehensive information on the expression and prognostic value of co-inhibitory molecules, including co-inhibitory receptors and their ligands, in different cancers is not yet available. Methods We investigated the expression, correlation, and prognostic value of co-inhibitory molecules in different cancer types based on TCGA, UCSC Xena, TIMER, CellMiner datasets. We also examined the associations between the expression of these molecules and the extent of immune cell infiltration. Besides, we conducted a more in-depth study of VISTA. Result The results of differential expression analysis, correlation analysis, and drug sensitivity analysis suggest that CTLA4, PD-1, TIGIT, LAG3, TIM3, NRP1, VISTA, CD80, CD86, PD-L1, PD-L2, PVR, PVRL2, FGL1, LGALS9, HMGB1, SEMA4A, and VEGFA are associated with tumor prognosis and immune cell infiltration. Therefore, we believe that they are hopefully to serve as prognostic biomarkers for certain cancers. In addition, our analysis indicates that VISTA plays a complex role and its expression is related to TMB, MSI, cancer cell stemness, DNA/RNA methylation, and drug sensitivity. Conclusions These co-inhibitory molecules have the potential to serve as prognostic biomarkers and therapeutic targets for a broad spectrum of cancers, given their strong associations with key clinical metrics. Furthermore, the analysis results indicate that VISTA may represent a promising target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Anjie Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiahui Geng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yuling Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lian Zhou
- Department of Head&Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Ni X, Wang W, Sun H, An R, Lei Y, Wang CL. A new marker for predicting sentinel lymph node metastasis in early (cT1-2N0) breast cancer: Tumor-infiltrating lymphocytes (TILs). PLoS One 2025; 20:e0320487. [PMID: 40106761 PMCID: PMC11922523 DOI: 10.1371/journal.pone.0320487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) are associated with lymph node metastasis and prognosis in breast cancer. Therefore, we explored the value of TILs in predicting sentinel lymph node metastasis (SLNM) in patients with early-stage (cT1-2N0) breast cancer and provided a new method for preoperative assessment of SLNM status. METHODS This study included 337 patients with early-stage breast cancer who underwent surgery at our hospital from January 2022 to December 2023. The expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 in the patients was assessed using immunohistochemistry (IHC). TILs in the core needle biopsy samples were evaluated histopathologically, and patients were divided into high and low TILs groups based on the density of TILs. Statistical analysis was conducted, and a predictive model was established. RESULTS The study found that patients with high TILs had a significantly lower rate of SLNM compared to those with low TILs (P < 0.001). The cT stage and the level of TILs were identified as independent predictive factors for SLNM. The ROC curve analysis indicated that the density of TILs has good predictive efficacy for SLNM. Based on the results of the multivariate regression analysis, a nomogram predictive model for SLNM was constructed. CONCLUSIONS Our study showed that the density of TILs and cT stage are independent predictive factors for SLNM in early-stage (cT1-2N0) breast cancer, and the predictive effect of TILs density on SLNM is significant in Luminal and triple-negative breast cancers.
Collapse
Affiliation(s)
- Xihao Ni
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, People’s Republic of China,
| | - Weitao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, People’s Republic of China,
| | - Huimin Sun
- Department of Pathology, Weifang People’s Hospital, Weifang, Shandong Province, People’s Republic of China,
| | - Ran An
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, People’s Republic of China,
| | - Ying Lei
- Department of Breast Surgery, Weifang People’s Hospital, Weifang, Shandong Province, People’s Republic of China
| | - Chang-liang Wang
- Department of Breast Surgery, Weifang People’s Hospital, Weifang, Shandong Province, People’s Republic of China
| |
Collapse
|
13
|
Li Z, Liu S, Liu D, Yang K, Xiong J, Fang Z. Multiple mechanisms and applications of tertiary lymphoid structures and immune checkpoint blockade. J Exp Clin Cancer Res 2025; 44:84. [PMID: 40038799 PMCID: PMC11881293 DOI: 10.1186/s13046-025-03318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) inhibits tumor immune escape and has significantly advanced tumor therapy. However, ICB benefits only a minority of patients treated and may lead to many immune-related adverse events. Therefore, identifying factors that can predict treatment outcomes, enhance synergy with ICB, and mitigate immune-related adverse events is urgently needed. MAIN TEXT Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues that arise from the tumor periphery. They have been found to be associated with better prognosis and improved clinical outcomes after ICB therapy. TLS may help address the problems associated with ICB. The multiple mechanisms of action between TLS and ICB remain unknown. This paper described potential mechanisms of interaction between the two and explored their potential applications.
Collapse
Affiliation(s)
- Zelin Li
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuhan Liu
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deyu Liu
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kangping Yang
- The 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Xiong
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of General Practice, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Ziling Fang
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of Oncology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Moura T, Laranjeira P, Caramelo O, Gil AM, Paiva A. Breast Cancer and Tumor Microenvironment: The Crucial Role of Immune Cells. Curr Oncol 2025; 32:143. [PMID: 40136347 PMCID: PMC11941043 DOI: 10.3390/curroncol32030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Breast cancer is the most common type of cancer in women and the second leading cause of death by cancer. Despite recent advances, the mortality rate remains high, underlining the need to develop new therapeutic approaches. The complex interaction between cancer cells and the tumor microenvironment (TME) is crucial in determining tumor progression, therapy response, and patient prognosis. Understanding the role of immune cells in carcinogenesis and tumor progression can help improve targeted therapeutic options, increasing the likelihood of a favorable prognosis. Therefore, this review aims to critically analyze the complex interaction between tumor cells and immune cells, emphasizing the clinical and therapeutic implications. Additionally, we explore advances in immunotherapies, with a focus on immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Tânia Moura
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal; (T.M.); (P.L.)
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal; (T.M.); (P.L.)
- Group of Environmental Genetics of Oncobiology (CIMAGO), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Center of Neurosciences and Cell (CNC), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Olga Caramelo
- Gynecology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-075 Coimbra, Portugal;
| | - Ana M. Gil
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal; (T.M.); (P.L.)
- Group of Environmental Genetics of Oncobiology (CIMAGO), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, ESTESC—Coimbra Health School, 3046-854 Coimbra, Portugal
| |
Collapse
|
15
|
Lei H, Hu J, Zhu J, Li R, Zhao Y, Zhao Y, He G, Song T, Lu C, Zheng W, Li L, Liu C, Chen H. Global research prospects and trends in TFH cells and tumors: a bibliometric analysis. Front Oncol 2025; 15:1443890. [PMID: 40027134 PMCID: PMC11867951 DOI: 10.3389/fonc.2025.1443890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Background T follicular helper (TFH) cells, a subset of CD4+Th cells, play a critical role in B cell activation, proliferation, and differentiation primarily within B follicles in secondary lymphoid organs, essential processes for effective antibody responses. TFH cells are also implicated in various conditions, including autoimmune diseases, cancer, infectious diseases, allergies, and vaccine reactions. Despite their broad impact, a review of the literature on TFH cells and tumors has not been conducted. We aimed to fill this gap by providing a detailed analysis of the research landscape concerning TFH cells and tumors. Method We conducted a bibliometric analysis of literature on TFH cells and tumors from 2012 to 2024 using the Web of Science Core Collection (WoSCC). For an analysis of the global research landscape, we employed VOSviewer (version 1.6.20), CiteSpace 6.2.R6 software, and the "bibliometric" package in R language (version 4.3.2) to evaluate data on countries/regions, authors and cited authors, institutions, journals, references, and keywords. We also conducted a systematic review to summarize the global research trends, prospects, and hotspots in this field. Results Our analysis included contributions from 60 countries/regions, 7,864 authors, 35,853 cited authors, 1,756 institutions, 385 academic journals, 50883 references, 222 keywords, and 1,181published papers. Over the past decade, the volume of research on TFH cells and tumors had consistently increased. China published the most papers, more than double that of the United States. The top 2 authors ranked by publication volume were Gaulard, Philippe (14 articles, 379 citations), and De leval, Laurence (12 articles, 236 citations) Notably, 9 of the top 10 most published institutions were from China. Frontiers in Immunology and Immunity were the leading journals in publications and citations. A cluster analysis revealed a shift in research focus from "expression","B cells" and "survival" to "tumor microenvironment", "tumor infiltrating immune cells" and "immune infiltration" in recent years. Conclusion This bibliometric analysis suggests that TFH cells hold significant research value and potential clinical applications in tumor immunotherapy. Moreover, the bibliometric analysis offers valuable references and guidance for related research endeavors. It also points out the prevailing issues and challenges in TFH cell research, and underscores the need for further basic and clinical research to advance the related fields.
Collapse
Affiliation(s)
- Hao Lei
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junpeng Zhu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runze Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisheng He
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Song
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chong Lu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Zhou Y, Li Z, Wang G, Yu H, Zhou Y, Li Y, Chen W, Dai H, He Y, Li L. Understanding the relationship between silicone implants, tumor antigens, and breast cancer risk: An immunological study in rats. Int Immunopharmacol 2025; 147:113991. [PMID: 39805174 DOI: 10.1016/j.intimp.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the effects of silicone implants on the incidence of breast cancer in rats, as well as their impact on immune surveillance mechanisms. Female SD rats were divided into three groups: a Placebo Surgery Group (PSG), a Thoracic Implant Group (TIG), and a Back Implant Group (BIG). Following the corresponding surgical procedures, we measured Secretoglobin Family 2A, Member 2(SCGB2A2) and Mucin-1 (MUC1) antigen levels using ELISA, and statistical analyses were conducted to evaluate immune responses. The N-Methyl-N-Nitrosourea(MNU)-induced breast cancer model and pathological analyses indicated that the incidence of breast cancer in the thoracic implant group was lower, suggesting that silicone implants may reduce the risk of breast cancer. Additionally, laser speckle blood flow imaging and immunohistochemical analysis revealed blood perfusion in the implant capsule area and an active response of immune cells, indicating that immune surveillance may exert local effects. These findings provide the first evidence of a relationship between tumor antigens, silicone implants, and breast cancer incidence, offering a new immunological perspective on the safety of silicone implants.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Zihao Li
- Department of First Clinical Medical School, Wenzhou Medical University, Wenzhou, PR China
| | - Gaoyi Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hua Yu
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yaqin Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yijun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Wanying Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hao Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yucang He
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; National Key Clinical Specialty (Wound Healing), The First Affiliate d Hospital Of Wenzhou Medical University, PR China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; National Key Clinical Specialty (Wound Healing), The First Affiliate d Hospital Of Wenzhou Medical University, PR China.
| |
Collapse
|
17
|
Amisaki M, Zebboudj A, Yano H, Zhang SL, Payne G, Chandra AK, Yu R, Guasp P, Sethna ZM, Ohmoto A, Rojas LA, Cheng C, Waters T, Solovyov A, Martis S, Doane AS, Reiche C, Bruno EM, Milighetti M, Soares K, Odgerel Z, Moral JA, Zhao JN, Gönen M, Gardner R, Tumanov AV, Khan AG, Vergnolle O, Nyakatura EK, Lorenz IC, Baca M, Patterson E, Greenbaum B, Artis D, Merghoub T, Balachandran VP. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 2025; 638:1076-1084. [PMID: 39814891 PMCID: PMC11864983 DOI: 10.1038/s41586-024-08426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway1, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues2, induces TLSs. In mice, Il33 deficiency severely attenuates inflammation- and LTβR-activation-induced TLSs in models of colitis and pancreatic ductal adenocarcinoma (PDAC). In PDAC, the alarmin domain of IL-33 activates group 2 innate lymphoid cells (ILC2s) expressing LT that engage putative LTβR+ myeloid organizer cells to initiate tertiary lymphoneogenesis. Notably, lymphoneogenic ILC2s migrate to PDACs from the gut, can be mobilized to PDACs in different tissues and are modulated by gut microbiota. Furthermore, we detect putative lymphoneogenic ILC2s and IL-33-expressing cells within TLSs in human PDAC that correlate with improved prognosis. To harness this lymphoneogenic pathway for immunotherapy, we engineer a recombinant human IL-33 protein that expands intratumoural lymphoneogenic ILC2s and TLSs and demonstrates enhanced anti-tumour activity in PDAC mice. In summary, we identify the molecules and cells of a druggable pathway that induces inflammation-triggered TLSs. More broadly, we reveal a lymphoneogenic function for alarmins and ILC2s.
Collapse
Affiliation(s)
- Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Siqi Linsey Zhang
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary M Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akihiro Ohmoto
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Cheng
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Martis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley S Doane
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel M Bruno
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Milighetti
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia N Zhao
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Olivia Vergnolle
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Manuel Baca
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Erin Patterson
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Suzuki H, Hamada K, Hamanishi J, Ueda A, Murakami R, Taki M, Mizuno R, Watanabe K, Sato H, Hosoe Y, Ito H, Yamanoi K, Yoshitomi H, Kakiuchi N, Yamaguchi K, Matsumura N, Ogawa S, Ueno H, Mandai M. Artificial intelligence-based spatial analysis of tertiary lymphoid structures and clinical significance for endometrial cancer. Cancer Immunol Immunother 2025; 74:84. [PMID: 39891665 PMCID: PMC11787133 DOI: 10.1007/s00262-024-03929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
With the incorporation of immune checkpoint inhibitors into the treatment of endometrial cancer (EC), a deeper understanding of the tumor immune microenvironment is critical. Tertiary lymphoid structures (TLSs) are considered favorable prognostic factors for EC, but the significance of their spatial distribution remains unclear. B cell receptor repertoire analysis performed using six TLS samples located at various distances from the tumor showed that TLSs in distal areas had more shared B cell clones with tumor-infiltrating lymphocytes. To comprehensively investigate the distribution of TLSs, we developed an artificial intelligence model to detect TLSs and determine their spatial locations in whole-slide images. Our model effectively quantified TLSs, and TLSs were detected in 69% of the patients with EC. We identified them as proximal or distal to the tumor margin and demonstrated that patients with distal TLSs (dTLSs) had significantly prolonged overall survival and progression-free survival (PFS) across multiple cohorts [hazard ratio (HR), 0.56; 95% confidence interval (CI), 0.36-0.88; p = 0.01 for overall survival; HR, 0.58; 95% CI, 0.40-0.84; p = 0.004 for PFS]. When analyzed by molecular subtype, patients with dTLSs in the copy-number-high EC subtype had significantly longer PFS (HR, 0.51; 95% CI, 0.29-0.91; p = 0.02). Moreover, patients with dTLSs had a higher response rate to immune checkpoint inhibitors (87.5 vs. 41.7%) and a trend toward improved PFS. Our findings indicate that the functions and prognostic implications of TLSs may vary with their locations, and dTLSs may serve as prognostic factors and predictors of treatment efficacy. This may facilitate personalized therapy for patients with EC.
Collapse
Affiliation(s)
- Haruka Suzuki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Akihiko Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rin Mizuno
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Watanabe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hanako Sato
- Department of Obstetrics and Gynecology, Kindai University, Osaka, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroaki Ito
- Department of Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University, Osaka, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Hideki Ueno
- Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
19
|
Lin J, Jiang S, Chen B, Du Y, Qin C, Song Y, Peng Y, Ding M, Wu J, Lin Y, Xu T. Tertiary Lymphoid Structures are Linked to Enhanced Antitumor Immunity and Better Prognosis in Muscle-Invasive Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410998. [PMID: 39739621 PMCID: PMC11831474 DOI: 10.1002/advs.202410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
The prognosis for muscle-invasive bladder cancer (MIBC) remains poor, and reliable prognostic markers have yet to be identified. Tertiary lymphoid structures (TLS) have been associated with favorable outcomes in certain cancers. However, the relationship between TLS and MIBC remains unclear. A multi-omics approach is utilized, leveraging single-cell RNA sequencing, spatial transcriptomics, bulk RNA sequencing, and immunohistochemistry, to investigate the roles of B cells and TLS in MIBC. These findings indicate that elevated levels of B cells and TLS correlate with improved prognoses in patients with MIBC, aligning with the robust antitumor immune responses observed in the TLS region. From a mechanistic perspective, CXCL13 serves as a critical cytokine for TLS formation in MIBC, primarily secreted by clonally expanded CXCL13+ T cells. This cytokine interacts with the CXCR5 receptor on NR4A2+ B cells, promoting TLS development. Plasma cells arising within the TLS microenvironment predominantly produce the IGHG antibody, potentially enhancing the phagocytic capabilities of C1QC+ macrophages. From an application standpoint, a TLS-specific gene signature is developed that effectively predicts outcomes in MIBC and other cancers. This study highlights the prognostic potential of TLS in MIBC and reveals immune mechanisms, offering insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Jiaxing Lin
- Department of UrologyPeking University People's HospitalBeijing100044China
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
| | - Shan Jiang
- Department of UrologyPeking University People's HospitalBeijing100044China
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
| | - Baoqiang Chen
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
| | - Yiqing Du
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yuxuan Song
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yun Peng
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Mengting Ding
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Jilin Wu
- Department of UrologyPeking University People's HospitalBeijing100044China
| | - Yihan Lin
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life SciencesPeking UniversityBeijing100871China
- Peking University Chengdu Academy for Advanced Interdisciplinary BiotechnologiesChengduSichuan610213China
| | - Tao Xu
- Department of UrologyPeking University People's HospitalBeijing100044China
| |
Collapse
|
20
|
Ribeiro V, Teillaud JL, Dieu-Nosjean MC, Lescaille G, Rochefort J. The prognostic significance of tertiary lymphoid structures in oral squamous cell carcinomas: a systematic review. FRONTIERS IN ORAL HEALTH 2025; 5:1524313. [PMID: 39911478 PMCID: PMC11794802 DOI: 10.3389/froh.2024.1524313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Upper aerodigestive tract cancers are prevalent, with a global incidence surpassing 500,000 new cases in 2018. Among these, oral squamous cell carcinomas (OSCC) constitute the majority. OSCC has a low 5-year survival rate due to late-stage diagnosis. Risk factors include alcohol and tobacco use. However, non-smokers and non-drinkers are also affected, especially young patients with tongue cancer. The impact of tumor microenvironment (TME) and tumor-infiltrating lymphocytes (TILs) on OSCC prognosis remains debated. Remarkably, Tertiary Lymphoid Structures (TLS) identified in solid tumors have shown associations with favorable outcomes, yet their prognostic significance in OSCC remains understudied. Objective Thus, this systematic review aims to explore the value of TLS in OSCC reported in the literature. Method A scoping review was conducted and six retrospective cohort studies involving 1,203 patients met the inclusion criteria. Results Predominantly male patients, with an average age of 49.3 years were included. Immunohistochemistry was the primary method to identify TLS, present in 21% up to 100% of cases. TLS were predominantly located in the peri-tumoral area (75.4%-84.8%) compared to the intra-tumoral area (33.8%-33.9%). Our review shows that the presence of TLS is associated with improved survival in OSCC. Discussion However, variations in TLS detection and classification methods across studies introduce potential biases, hindering direct comparisons between findings. For instance, reports that are based solely on examining HES-stained slides for TLS identification may raise reliability concerns. Standardization of methodologies is imperative to ensure consistency in criteria utilization, thereby facilitating meaningful data comparisons. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023428010, PROSPERO (CRD42023428010).
Collapse
Affiliation(s)
- V. Ribeiro
- Faculté de Santé, UFR Odontologie, Université Paris-Cité, Paris, France
| | - J-L. Teillaud
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - M-C. Dieu-Nosjean
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - G. Lescaille
- Faculté de Santé, UFR Odontologie, Université Paris-Cité, Paris, France
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
- Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - J. Rochefort
- Faculté de Santé, UFR Odontologie, Université Paris-Cité, Paris, France
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
- Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
21
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
22
|
Wu S, Xiang R, Zhong Y, Zhao S, Zhang Z, Kou Z, Zhang S, Zhao Y, Zu C, Zhao G, Xiao Y, Ren S, Gao X, Wang B. TLR7/8/9 agonists and low-dose cisplatin synergistically promotes tertiary lymphatic structure formation and antitumor immunity. NPJ Vaccines 2025; 10:13. [PMID: 39827246 PMCID: PMC11742977 DOI: 10.1038/s41541-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
In situ vaccination (ISV) triggers antitumor immune responses using the patient's own cancer antigens, yet limited neoantigen release hampers its efficacy. Our novel combination therapy involves low-dose local cisplatin followed by ISV with a TLR7/8/9 agonist formulation (CR108), in which CR108 boosts and sustains the antitumor responses induced by the cisplatin-released neoantigens. In mouse models, the cisplatin+CR108 combination significantly outperformed cisplatin or CR108 alone in abrogating established 4T1 and B16 tumors. The synergistic antitumor effects of cisplatin and CR108 were accompanied by markedly increased tumor tertiary lymphatic structures (TLS) formation, higher levels of type I and III interferons and TNF-α in serum, augmented T and B lymphocyte infiltration, antigen-presenting cell activation, as well as reduced functionally of exhausted T cells. Single-cell sequencing analysis uncovered a potential pathway for TLS to serve as a reservoir for functional antitumor effector T cells. Furthermore, cisplatin+CR108 combo therapy, but neither cisplatin nor CR108 alone, effectively inhibited the growth of treated 4T-1 tumor in an effector T cell-dependent manner. Notably, the combo therapy also suppressed the growth of distant untreated 4T-1 tumors, demonstrating systemic antitumor effects. Moreover, combo-therapy led to full regression of 4T-1 tumors in a large percentage of mice, who became strongly resistant to secondary tumor challenge, a clear indication of antitumor immunological memory. The cisplatin+CR108 combo therapy holds promise in converting "cold" tumors into "hot" ones and eliciting robust antitumor immune responses in vivo.
Collapse
Affiliation(s)
- Shuting Wu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Rong Xiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yiwei Zhong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Shushu Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- The Wistar Institute, Philadelphia, 3601 Spruce Street, PA, 19104, USA
| | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Zhihua Kou
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Shijie Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Yi Zhao
- Precision Scientific (Beijing) LTD., Beijing, 100085, China
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Yanling Xiao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Sulin Ren
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Xiaoming Gao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China.
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Liu X, Lv W, Huang D, Cui H. The predictive role of tertiary lymphoid structures in the prognosis and response to immunotherapy of lung cancer patients: a systematic review and meta-analysis. BMC Cancer 2025; 25:87. [PMID: 39815237 PMCID: PMC11734324 DOI: 10.1186/s12885-025-13484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND There is still no consensus regarding the correlation between TLS and the prognosis of lung cancer patients. This meta-analysis aimed to investigate the association between TLS and prognosis in patients with lung cancer. In addition, the prognostic value of TLS for the efficacy of immunotherapy was also studied. METHODS We systematically searched the PubMed, Embase, Cochrane Library, and Web of Science databases from database inception to November 1, 2023. The hazard ratio (HR) and corresponding 95% confidence interval (CI) for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS) and disease-specific survival (DSS) were extracted and merged with STATA 14.0. The study protocol was registered with PROSPERO (CRD42024502483). RESULTS A total of 17 studies comprising 4291 patients were included in this meta-analysis. The pooled results revealed that high TLS/TLS + patients had better OS (HR = 0.66, 95% CI: 0.50-0.88), DFS (HR = 0.46, 95% CI: 0.33-0.64), DSS (HR = 0.48, 95% CI: 0.39-0.60) and RFS (HR = 0.43, 95% CI: 0.33-0.57). High TLS/TLS + patients tended to have longer PFS than low TLS/TLS + patients (HR = 0.68, 95% CI: 0.35-1.35). Interestingly, in the Asia subgroup, the association between TLS and survival was especially significant, whereas there was no significant difference in Europe. In addition, in patients who received neoadjuvant chemoimmunotherapy, high TLS/TLS + was associated with prolonged DFS (HR = 0.21, 95%CI: 0.05-0.93). CONCLUSION High TLS/TLS + was associated with improved survival and an improved response to neoadjuvant chemoimmunotherapy in lung cancer patients, suggesting that TLS may be a prognostic biomarker and may also be a promising predictive marker for the response to neoadjuvant chemoimmunotherapy. However, additional original studies are needed to further confirm these findings.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
24
|
Lo Tartaro D, Aramini B, Masciale V, Paschalidis N, Lofaro FD, Neroni A, Borella R, Santacroce E, Ciobanu AL, Samarelli AV, Boraldi F, Quaglino D, Dubini A, Gaudio M, Manzotti G, Reggiani F, Torricelli F, Ciarrocchi A, Neri A, Bertolini F, Dominici M, Filosso PL, Stella F, Gibellini L, De Biasi S, Cossarizza A. Metabolically activated and highly polyfunctional intratumoral VISTA + regulatory B cells are associated with tumor recurrence in early-stage NSCLC. Mol Cancer 2025; 24:16. [PMID: 39810191 PMCID: PMC11730485 DOI: 10.1186/s12943-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC. Our analysis revealed that TME contains diverse B cell clusters, including VISTA+ Bregs, with distinct metabolic and functional profiles. Target liquid chromatography-tandem mass spectrometry confirmed the expression of VISTA on B cells. VISTA+ Bregs displayed high metabolic demand and were able to produce different cytokines, including interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Spatial analysis showed colocalization of B cells with CD4+/CD8+ T lymphocytes in TME. The computational analysis of intercellular communications that links ligands to target genes, performed by NicheNet, predicted B-T interactions via VISTA-PSGL-1 axis. Colocalization analyses revealed that PSGL-1 T cells and VISTA+ B cells are adjacent in the TME. Notably, tumor infiltrating CD8+ T cells expressing PSGL-1 exhibited enhanced metabolism and cytotoxicity. In NSCLC patients, prediction analysis performed by PENCIL revealed the presence of an association between PSGL-1+CD8+ T cells and VISTA+ Bregs with lung recurrence. Our findings suggest a potential interaction between Bregs and T cells through the VISTA-PSGL-1 axis, that could influence NSCLC recurrence.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/immunology
- Tumor Microenvironment/immunology
- B7 Antigens/metabolism
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Female
- Male
- Middle Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | | | | | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Bertolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pier Luigi Filosso
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
25
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
26
|
Moura T, Caramelo O, Silva I, Silva S, Gonçalo M, Portilha MA, Moreira JN, Gil AM, Laranjeira P, Paiva A. Early-Stage Luminal B-like Breast Cancer Exhibits a More Immunosuppressive Tumor Microenvironment than Luminal A-like Breast Cancer. Biomolecules 2025; 15:78. [PMID: 39858472 PMCID: PMC11763923 DOI: 10.3390/biom15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous malignant disease with a varying prognosis and is classified into four molecular subtypes. It remains one of the most prevalent cancers globally, with the tumor microenvironment playing a critical role in disease progression and patient outcomes. METHODS This study evaluated tumor samples from 40 female patients with luminal A and B breast cancer, utilizing flow cytometry to phenotypically characterize the immune cells and tumor cells present within the tumor tissue. RESULTS The luminal B-like tumor samples exhibited increased infiltration of CD4+ cells, regulatory T cells (Tregs), and Th17 cells and decreased levels of NK cells, γδ T cells, Th1 cells, and follicular T cells, which is indicative of a more immunosuppressive tumor microenvironment. CONCLUSIONS These findings suggest that luminal B-like tumors have a microenvironment that is less supportive of effective anti-tumor immune responses compared to luminal A tumors. This study enhances the understanding of the immunological differences between luminal subtypes of breast cancer and identifies potential new therapeutic targets and biomarkers that could drive advancements in precision medicine for breast cancer management.
Collapse
Affiliation(s)
- Tânia Moura
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Olga Caramelo
- Gynecology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal;
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
| | - Sandra Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
| | - Manuela Gonçalo
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; (M.G.); (M.A.P.)
| | - Maria Antónia Portilha
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; (M.G.); (M.A.P.)
| | - João N. Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo das Ciências da Saúde, Sub-Unidade 1, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Avenida Bissaya Barreto, Bloco Hospitalar de Celas, nº 205, 3000-076 Coimbra, Portugal; (T.M.); (I.S.); (S.S.)
- Gynecology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal;
- Medical Imaging Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; (M.G.); (M.A.P.)
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC—Coimbra Health School, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
| |
Collapse
|
27
|
Chen W, Zhang L, Gao M, Zhang N, Wang R, Liu Y, Niu Y, Jia L. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol 2025; 15:1519034. [PMID: 39840050 PMCID: PMC11747648 DOI: 10.3389/fimmu.2024.1519034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist. Histological features within the tumor microenvironment, such as tertiary lymphoid structures (TLSs), tumor-infiltrating lymphocytes, and the proportion of intratumoral stroma, are emerging as potentially effective prognostic factors. In gastric cancer, TLSs may serve as local immune hubs, enhancing the ability of immune cells to interact with and recognize tumor antigens, which is closely linked to the effectiveness of immunotherapy and improved survival rates in patients. However, the specific cell type driving TLS formation in tumors has not yet been elucidated. Mature TLSs are B-cell regions containing germinal centers. During germinal center formation, B cells undergo transformations to become mature cells with immune function, exerting anti-tumor effects. Therefore, targeting B cells within TLSs could provide new avenues for gastric cancer immunotherapy. This review, combined with current research on TLSs and B cells in gastric cancer, elaborates on the relationship between TLSs and B cells in the prognosis and immunotherapy of patients with gastric cancer, aiming to provide effective guidance for precise immunotherapy.
Collapse
Affiliation(s)
- Weiyi Chen
- Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lingli Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Man Gao
- Bayannur Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yan Niu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
28
|
Jenkins BH, Tracy I, Rodrigues MFSD, Smith MJL, Martinez BR, Edmond M, Mahadevan S, Rao A, Zong H, Liu K, Aggarwal A, Li L, Diehl L, King EV, Bates JG, Hanley CJ, Thomas GJ. Single cell and spatial analysis of immune-hot and immune-cold tumours identifies fibroblast subtypes associated with distinct immunological niches and positive immunotherapy response. Mol Cancer 2025; 24:3. [PMID: 39757146 DOI: 10.1186/s12943-024-02191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer-associated Fibroblasts (CAFs) have emerged as critical regulators of anti-tumour immunity, with both beneficial and detrimental properties that remain poorly characterised. To investigate this, we performed single-cell and spatial transcriptomic analysis, comparing head & neck squamous cell carcinoma (HNSCC) subgroups, which although heterogenous, can be considered broadly immune-hot and immune-cold (human papillomavirus [HPV]+ve and HPV-ve tumours respectively). This identified six fibroblast subpopulations, including two with immunomodulatory gene expression profiles (IL-11 + inflammatory [i]CAF and CCL19 + fibroblastic reticular cell [FRC]-like). IL-11 + iCAF were spatially associated with inflammatory monocytes and regulated in vitro through synergistic activation of canonical NF-κB signalling by IL-1β and TNF-α. FRC-like were enriched in immune-hot HPV+ve tumours, associated with CD4 + T-cells and B-cells in tertiary lymphoid structures and regulated through non-canonical NF-κB signalling via lymphotoxin. Pan-cancer analysis revealed several 'iCAF' subgroups present in both normal and cancer tissues; IL11 + iCAF were found in cancers from the gastrointestinal (GI) tract and transcriptomically distinct from iCAFs previously described in pancreatic and breast cancers with greater inflammatory properties; FRC-like fibroblasts were present at low frequencies in all tumour types, and were associated with significantly better survival in patients receiving checkpoint immunotherapy. This work clarifies and expands current literature on immunomodulatory CAFs, highlighting links with important immunological niches.
Collapse
Affiliation(s)
- Benjamin H Jenkins
- School of Cancer Sciences, University of Southampton, Southampton, UK
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, University of Southampton, Southampton, UK
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Maria Fernanda S D Rodrigues
- School of Cancer Sciences, University of Southampton, Southampton, UK
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University, São Paulo, Brazil
| | - Melanie J L Smith
- School of Cancer Sciences, University of Southampton, Southampton, UK
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Begoña R Martinez
- School of Cancer Sciences, University of Southampton, Southampton, UK
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, University of Southampton, Southampton, UK
- Dorset Cancer Centre, Poole Hospital NHS Foundation Trust, Poole, UK
| | | | - Anjali Rao
- Gilead Sciences Inc., Foster City, CA, US
| | | | - Kai Liu
- Gilead Sciences Inc., Foster City, CA, US
| | | | - Li Li
- Gilead Sciences Inc., Foster City, CA, US
| | | | - Emma V King
- School of Cancer Sciences, University of Southampton, Southampton, UK
- Dorset Cancer Centre, Poole Hospital NHS Foundation Trust, Poole, UK
| | | | - Christopher J Hanley
- School of Cancer Sciences, University of Southampton, Southampton, UK
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, University of Southampton, Southampton, UK.
- NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK.
| |
Collapse
|
29
|
Sun J, Tian Y, Yang C. Target therapy of TIGIT; a novel approach of immunotherapy for the treatment of colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:231-241. [PMID: 39158733 DOI: 10.1007/s00210-024-03346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), a newly discovered checkpoint, is characterized by its elevated expression on CD4 + T cells, CD8 + T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). Research to date has been shown that TIGIT has been linked to exhaustion of NK cell both and T cells in numerous cancers. CD155, being the specific ligand of TIGIT in humans, emerges as a key target for immunotherapy owing to its crucial interaction with TIGIT. Furthermore, numerous studies have demonstrated that the combination of TIGIT with other immune checkpoint inhibitors (ICIs) and/or traditional treatments elicits a potent antitumor response in colorectal cancer (CRC). This review provides an overview of the structure, function, and signaling pathways associated with TIGIT across multiple immune system cell types. Additionally, focusing on the role of TIGIT in the progression of CRC, this study reviewed various studies exploring TIGIT-based immunotherapy in CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yan Tian
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Changqing Yang
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
30
|
Chen M, Tang X, Liang Y, Ding T, He M, Wang D, Wang R. CENPF as a Potential Biomarker Associated with the Immune Microenvironment of Renal Cancer. Technol Cancer Res Treat 2025; 24:15330338251330791. [PMID: 40165474 PMCID: PMC11960158 DOI: 10.1177/15330338251330791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
IntroductionRenal cancer, particularly Kidney Renal Clear Cell Carcinoma (KIRC), remains a major clinical challenge due to its aggressive nature and poor prognosis. Identifying reliable biomarkers for tumor progression and survival is critical for improving patient outcomes. This study aimed to investigate the role of Centromere Protein F (CENPF) as a potential prognostic biomarker for renal cancer.MethodData from the TCGA database, including Kidney Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP), and KIRC, were analyzed to identify differentially expressed genes. Molecular Complex Detection (MCODE) was used to identify significant gene modules among upregulated genes, and univariate Cox regression analyses assessed the prognostic value of hub genes. Retrospective qPCR was conducted on tissue and plasma samples from KIRC patients to validate findings. Single-cell sequencing data from the GSE159115 dataset were analyzed, and the CIBERSORT algorithm was applied to evaluate the composition of tumor immune infiltrating cells (TIICs).ResultsCENPF was identified as a hub gene significantly upregulated in renal cancer subtypes, with overexpression linked to worse survival outcomes in KIRC patients. Retrospective qPCR confirmed high CENPF expression was associated with poorer prognosis. Single-cell sequencing revealed that CENPF is predominantly expressed in T-cell clusters. TIIC analysis showed a negative correlation between CENPF and resting mast cells, but positive correlations with follicular helper T-cells and memory-activated CD4T-cells. Prognostic analysis indicated that high follicular helper T-cell expression predicted poorer survival, while high plasma cell expression correlated with better outcomes.ConclusionCENPF plays a critical role in tumor progression and the modulation of the tumor immune microenvironment in KIRC. These findings suggest that CENPF could serve as a valuable prognostic biomarker and potential target for therapeutic intervention in renal cancer.
Collapse
MESH Headings
- Humans
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/mortality
- Kidney Neoplasms/metabolism
- Biomarkers, Tumor/genetics
- Prognosis
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Gene Expression Regulation, Neoplastic
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Female
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Gene Expression Profiling
- Computational Biology/methods
- Databases, Genetic
Collapse
Affiliation(s)
- Meilin Chen
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxin Tang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YanPing Liang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tangdang Ding
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meifang He
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruizhi Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Silina K, Ciompi F. Cancer-Associated Lymphoid Aggregates in Histology Images: Manual and Deep Learning-Based Quantification Approaches. Methods Mol Biol 2025; 2864:231-246. [PMID: 39527225 DOI: 10.1007/978-1-0716-4184-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Quantification of lymphoid aggregates including tertiary lymphoid structures (TLS) with germinal centers in histology images of cancer is a promising approach for developing prognostic and predictive tissue biomarkers. In this article, we provide recommendations for identifying lymphoid aggregates in tissue sections from routine pathology workflows such as hematoxylin and eosin staining. To overcome the intrinsic variability associated with manual image analysis (such as subjective decision-making, attention span), we recently developed a deep learning-based algorithm called HookNet-TLS to detect lymphoid aggregates and germinal centers in various tissues. Here, we additionally provide a guideline for using manually annotated images for training and implementing HookNet-TLS for automated and objective quantification of lymphoid aggregates in various cancer types.
Collapse
Affiliation(s)
- Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland.
| | - Francesco Ciompi
- Pathology Department, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
32
|
Gutierrez-Chavez C, Knockaert S, Dieu-Nosjean MC, Goc J. Methods for Selective Gene Expression Profiling in Single Tertiary Lymphoid Structure Using Laser Capture Microdissection. Methods Mol Biol 2025; 2864:107-126. [PMID: 39527219 DOI: 10.1007/978-1-0716-4184-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been increasingly recognized as a major driver of local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to perform. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.
Collapse
Affiliation(s)
- Claudia Gutierrez-Chavez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Vall d'Hebron Institute of Oncology, Aging and Cancer Group, Barcelona, Spain
| | - Samantha Knockaert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Institut de Recherches Servier, Center for Therapeutic Innovation in Oncology, Croissy-sur-Seine, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Jeremy Goc
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France.
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France.
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
33
|
Sonntag M, Stanojevic S, Laban S, Schuler PJ, Hoffmann TK, Brunner C. Identification of B Cell Subpopulations with Pro- and Anti-Tumorigenic Properties in an Immunocompetent Mouse Model of Head and Neck Squamous Cell Carcinoma. Cells 2024; 14:20. [PMID: 39791721 PMCID: PMC11720715 DOI: 10.3390/cells14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Due to their high developmental diversity and different regulatory and functional roles, B cell subpopulations can promote or inhibit tumor growth. An orthotopic murine HNSCC model was applied to investigate the B cell composition and function in HNSCCs. Using flow cytometry approaches, cells from the spleen, lymph nodes and tumors were analyzed. Additionally, immunoglobulin (Ig) levels post-tumor induction were tracked via enzyme-linked immunosorbent assays (ELISA). Following tumor induction, GCs, as well as increasing numbers of GL7+CD95+ GC B cells in the spleen and tumor tissues, were detected. In parallel, we observed CD39+CD73+ B cells in tumors and spleens of tumor-bearing mice. Notably, CD39+CD73+ expression was primarily detected on MZ B cells and to a lesser extent on follicular (FO) and non-follicular, newly formed (NF) B cells, supposing an immunosuppressive function of MZ B cells in the TME. Parallel to increased MZ B cell numbers in secondary lymphoid organs (SLOs) as well as in the tumor tissue, IgM antibody (Ab) levels rose continuously. In contrast, IgG1, IgG2, and IgG3 levels increased at later time points. Understanding the complex interactions between B cell subsets and the TME could lead to new strategies for enhancing the treatment and prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Michael Sonntag
- Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany; (M.S.); (S.S.); (S.L.); (P.J.S.); (T.K.H.)
| | - Sandra Stanojevic
- Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany; (M.S.); (S.S.); (S.L.); (P.J.S.); (T.K.H.)
| | - Simon Laban
- Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany; (M.S.); (S.S.); (S.L.); (P.J.S.); (T.K.H.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany; (M.S.); (S.S.); (S.L.); (P.J.S.); (T.K.H.)
- Department of Otorhinolaryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany; (M.S.); (S.S.); (S.L.); (P.J.S.); (T.K.H.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Ulm University Medical Center, 89075 Ulm, Germany; (M.S.); (S.S.); (S.L.); (P.J.S.); (T.K.H.)
- Core Facility Immune Monitoring, Medical Faculty, Ulm University, 89075 Ulm, Germany
| |
Collapse
|
34
|
Sitta J, De Carlo F, Kirven I, Tackett JH, Penfornis P, Dobbins GC, Barbier M, Del Valle L, Larsen CT, Schutt EG, Li R, Howard CM, Claudio PP. Microbubble-Protected Oncolytic Virotherapy Targeted by Sonoporation Induces Tumor Necrosis and T-Lymphocyte Infiltration in Humanized Mice Bearing Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13697. [PMID: 39769460 PMCID: PMC11678396 DOI: 10.3390/ijms252413697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent® lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system. Once inside the MB, the viral particles become acoustically active such that external ultrasound can target the delivery of the virus locally within the tumor. Humanized NSG female mice (Hu-CD34+ NSG-SGM3) engrafted in their flanks with MDA-MB-231-Luc triple-negative breast cancer (TNBC) cells were transduced with MB/OVs, with or without adjuvant Pembrolizumab treatment, and tumor sizes and tumor necrosis were assessed. The presence of CD8+ (cytotoxic T-cells), CD4+ (helper T-cells), and CD25+ (Tregs) tumor-infiltrating lymphocytes (TILs) was quantified in the tumor samples by immunohistochemistry. In an in vivo model of humanized mice engrafted with a human immune system, we observed significantly greater tumor necrosis and smaller tumor mass in human TNBC xenografts systemically treated with MB/OV complexes in the presence or absence of pembrolizumab adjuvant treatment, compared to controls. Additionally, we observed a low ratio of CD4+/CD8+ TILs and a high ratio of CD8+/CD25+ TILs in the MDA-MB-231 xenografts treated with MB/OVs complexes with or without pembrolizumab adjuvant treatment, compared to controls. Our study demonstrated the feasibility of using MBs to target OVs to TNBC through diagnostic ultrasound, which decreased tumor mass by increasing tumor necrosis and stimulated a local and systemic antitumoral immune response by increasing intratumoral CD8+ T-cytotoxic lymphocyte infiltration and decreasing CD25+ Treg cells.
Collapse
Affiliation(s)
- Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.S.); (C.M.H.)
- Department of Biomedical Sciences, Imaging Track, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - Imani Kirven
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - John H. Tackett
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - Patrice Penfornis
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| | - George Clement Dobbins
- Department of Neurosurgery and Bioinformatics, University of Alabama Birmingham, Birmingham, AL 35205, USA;
| | - Mallory Barbier
- Department of Pathology, Louisiana Cancer Research Center, Louisiana State University Health, New Orleans, LA 70112, USA; (M.B.); (L.D.V.)
| | - Luis Del Valle
- Department of Pathology, Louisiana Cancer Research Center, Louisiana State University Health, New Orleans, LA 70112, USA; (M.B.); (L.D.V.)
| | | | - Ernest G. Schutt
- Vesselon, Inc., Norwalk, CT 06851, USA; (C.T.L.); (E.G.S.); (R.L.)
| | - Rhodemann Li
- Vesselon, Inc., Norwalk, CT 06851, USA; (C.T.L.); (E.G.S.); (R.L.)
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.S.); (C.M.H.)
- Department of Biomedical Sciences, Imaging Track, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.D.C.); (I.K.); (J.H.T.); (P.P.)
| |
Collapse
|
35
|
Zhao X, Wang Y, Xue M, Ding Y, Zhang H, Wang K, Ren J, Li X, Xu M, Lv J, Wang Z, Sun D. Preoperative assessment of tertiary lymphoid structures in stage I lung adenocarcinoma using CT radiomics: a multicenter retrospective cohort study. Cancer Imaging 2024; 24:167. [PMID: 39696659 DOI: 10.1186/s40644-024-00813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE To develop a multimodal predictive model, Radiomics Integrated TLSs System (RAITS), based on preoperative CT radiomic features for the identification of TLSs in stage I lung adenocarcinoma patients and to evaluate its potential in prognosis stratification and guiding personalized treatment. METHODS The most recent preoperative chest CT thin-slice scans and postoperative hematoxylin and eosin-stained pathology sections of patients diagnosed with stage I LUAD were retrospectively collected. Tumor segmentation was achieved using an automatic virtual adversarial training segmentation algorithm based on a three-dimensional U-shape convolutional neural network (3D U-Net). Radiomic features were extracted from the tumor and peritumoral areas, with extensions of 2 mm, 4 mm, 6 mm, and 8 mm, respectively, and deep learning image features were extracted through a convolutional neural network. Subsequently, the RAITS was constructed. The performance of RAITS was then evaluated in both the train and validation cohorts. RESULTS RAITS demonstrated superior AUC, sensitivity, and specificity in both the training and external validation cohorts, outperforming traditional unimodal models. In the validation cohort, RAITS achieved an AUC of 0.78 (95% CI, 0.69-0.88) and showed higher net benefits across most threshold ranges. RAITS exhibited strong discriminative ability in risk stratification, with p < 0.01 in the training cohort and p = 0.02 in the validation cohort, consistent with the actual predictive performance of TLSs, where TLS-positive patients had significantly higher recurrence-free survival (RFS) compared to TLS-negative patients (p = 0.04 in the training cohort, p = 0.02 in the validation cohort). CONCLUSION As a multimodal predictive model based on preoperative CT radiomic features, RAITS demonstrated excellent performance in identifying TLSs in stage I LUAD and holds potential value in clinical decision-making.
Collapse
Affiliation(s)
| | - Yuhang Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Mengli Xue
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Yun Ding
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Han Zhang
- Chest hospital, Tianjin University, Tianjin, China
| | - Kai Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Jie Ren
- Department of Thoracic Surgery, Tianjin Jinnan Hospital, Tianjin, China
| | - Xin Li
- Chest hospital, Tianjin University, Tianjin, China
- Department of Thoracic Surgery, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Meilin Xu
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Jun Lv
- Department of Imaging, Tianjin Chest Hospital, Tianjin, China
| | - Zixiao Wang
- Department of Thoracic Surgery, Qinhuangdao First Hospital, Hebei Province, China
| | - Daqiang Sun
- Chest hospital, Tianjin University, Tianjin, China.
- Department of Thoracic Surgery, Tianjin Chest Hospital, No. 261, Taierzhuang South Road, Jinnan District, Tianjin, 300222, China.
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
36
|
Hu B, Yin G, Zhu J, Bai Y, Sun X. Continuous prediction for tumor mutation burden based on transcriptional data in gastrointestinal cancers. BMC Med Inform Decis Mak 2024; 24:384. [PMID: 39695561 DOI: 10.1186/s12911-024-02794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Tumor mutation burden (TMB) has been considered a biomarker for utilization of immune checkpoint inhibitors(ICIs), but whole exome sequencing(WES) and cancer gene panel(CGP) based on next generation sequencing for TMB detection are costly. Here, we use transcriptome data of TCGA to construct a model for TMB prediction in gastrointestinal tumors. METHODS Transcriptome data, somatic mutation data and clinical data of four gastrointestinal tumors from TCGA, including esophageal cancer (ESCA), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). Using R, we performed visual analysis of somatic mutation data, differentially expressed genes (DEGs) function enrichment analysis, gene set enrichment analysis (GSEA), and estimated TMB value in clinic. Finally, a deep neural network (DNN) model was constructed for TMB prediction. RESULTS Visualization of somatic mutation data summarized the classification of mutation, frequency of each mutation type, and top-mutated genes. GSEA showed the enrichment of CD4+/CD8+ T cells in the high TMB group and the activation of tumor suppressing pathways. Single-sample GSEA (ssGSEA) manifested that the high-TMB group had higher level of multiple immune cells infiltration. In addition, distribution of TMB was related to clinical parameters. Like age, M stage, N stage, AJCC stage, and overall survival(OS). After model optimization using genetic algorithm, in the training set, validation set, and testing set, the Pearson relevance coefficient r between predicted values and actual values reaches 0.98, 0.82, and 0.92, respectively; the coefficient of determination R2 is 0.95, 0.82, and 0.7, respectively. CONCLUSION TMB correlates with clinicopathological parameters in gastrointestinal carcinoma, and patients with high TMB have higher levels of immune infiltration. In addition, the DNN model based on 31 genes predicts TMB of gastrointestinal tumors in a high accuracy.
Collapse
Affiliation(s)
- Beibei Hu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guohui Yin
- Key Laboratory of Traffic Safety On Track (Central South University), Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Jialin Zhu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Bai
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
37
|
Zhao J, Zhang H, Zhao Y, Lin Z, Lin F, Wang Z, Mo Q, Lu G, Zhao G, Wang G. Exploratory Research for HIF-1α Overexpression Tumor Antigen in the Activation of Dendritic Cells and the Potent Anti-Tumor Immune Response. Cancer Manag Res 2024; 16:1813-1822. [PMID: 39713567 PMCID: PMC11662640 DOI: 10.2147/cmar.s482363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024] Open
Abstract
Background Tumor-specific antigens play an important role in dendritic cell (DC)-based immunotherapy. The acquisition of tumor-specific antigens, which are essential for DC-based immunotherapy, poses a significant challenge. This study aimed to explore the efficacy of hypoxia inducible factor-1α (HIF-1α) overexpression tumor antigens in DC-based immunotherapy. Methods An HIF-1α over-expression cell line was constructed to prepare HIF-1α overexpression tumor antigens. The expression of CD14, CD40, CD80, CD86, and HLA-DR on the surface of dendritic cells derived from monocytes was assessed using flow cytometry after stimulation with tumor antigens enriched in HIF-1α. T cell proliferation was analyzed by CFSE division following incubation with mature DCs. The apoptotic tumor cells were detected through annexin V/PI staining following coculture with dendritic cells (DCs) stimulated by HIF-1α enriched antigens. The detection of damage-associated molecular pattern molecules (DAMPs) HMGB1 and calreticulin (CALR) was performed using Western blotting. Results The results demonstrated that HIF-1α-enriched tumor antigens significantly upregulated the expression of CD40, CD80, CD86, and HLA-DR in DCs compared to normal tumor antigens. Furthermore, co-incubation with HIF-1α-enriched tumor antigen-activated DCs enhanced T cell proliferation and stimulated the T cell-mediated cytotoxicity. Notably, the expression of DAMPs, such as HMGB1 and CALR, was elevated in HIF-1α-enriched tumor antigens. Conclusion Our findings demonstrate that tumor antigens enriched with HIF-1α may encompass tumor-specific antigens capable of stimulating DC activation, thereby enhancing T cell proliferation and cytotoxicity. These results provide support for the further advancement of HIF-1α enriched tumor antigens in preclinical and clinical investigations pertaining to tumor treatment.
Collapse
Affiliation(s)
- Jinjin Zhao
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Key Laboratory of Nano-Drug Delivery System Construction and Application in Xinxiang City, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Haiguang Zhang
- Department of Gynecology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yilin Zhao
- Department of Cardiology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhiqiang Lin
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fei Lin
- Department of Cardiology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Cardiovascular Repair Engineering Technology Research Center, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhiyin Wang
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Qingjiang Mo
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guangjian Lu
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guoan Zhao
- Department of Cardiology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Cardiovascular Repair Engineering Technology Research Center, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guoqiang Wang
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
38
|
Dong L, Li L, Zhu L, Xu F, Zhang R, Li Q, Zhu Y, Zeng Z, Ding K. Multiomics analysis of homologous recombination deficiency across cancer types. BIOMOLECULES & BIOMEDICINE 2024; 25:71-81. [PMID: 39073402 PMCID: PMC11647252 DOI: 10.17305/bb.2024.10448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
There remains ongoing debate regarding the association of homologous recombination deficiency (HRD) with patient survival across various malignancies, highlighting the need for a comprehensive understanding of HRD's role in different cancer types. Based on data from databases, we conducted a multivariable omics analysis on HRD in 33 cancer types, focusing mainly on 23 cancers in which HRD was significantly associated with patient overall survival (OS) rates. This analysis included the mechanisms related to patient prognosis, gene expression, gene mutation, and signaling pathways. In this study, HRD was found to be significantly associated with patient prognosis, but its impact varied among different cancers. HRD was linked to different outcomes for patients with distinct tumor subtypes and was correlated with clinical features such as clinical stage and tumor grade. Driver gene mutations, including TP53, MUC4, KRAS, HRAS, FLG, ANK3, BRCA2, ATRX, FGFR3, NFE2L2, MAP3K1, PIK3CA, CIC, FUBP1, ALB, CTNNB1, and MED12, were associated with HRD across specific cancer types. We also analyzed differentially expressed genes (DEGs) and differentially methylated regions (DMRs) in relation to HRD levels in these cancers. Furthermore, we explored the correlation between HRD and signaling pathways, as well as immune cell infiltration. Overall, our findings contribute to a comprehensive understanding of HRD's multifaceted role in cancer.
Collapse
Affiliation(s)
- Lin Dong
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Li
- Department of Pathology, Tongling People’s Hospital, Tongling, Anhui, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Fei Xu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhutian Zeng
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
39
|
Yakushi A, Sugimoto M, Sasaki T. Co-expression network and survival analysis of breast cancer inflammation and immune system hallmark genes. Comput Biol Chem 2024; 113:108204. [PMID: 39270542 DOI: 10.1016/j.compbiolchem.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The tertiary lymphoid structure (TLS) plays a central role in cancer immune response, and its gene expression pattern, called the TLS signature, has shown prognostic value in breast cancer. The formation of TLS and tumor-associated high endothelial venules (TA-HEVs), responsible for lymphocytic infiltration within the TLS, is associated with the expression of cancer hallmark genes (CHGs) related to immunity and inflammation. In this study, we performed co-expression network analysis of immune- and inflammation-related CHGs to identify predictive genes for breast cancer. In total, 382 immune- and inflammation-related CHGs with high expression variance were extracted from the GSE86166 microarray dataset of patients with breast cancer. CHGs were classified into five modules by applying weighted gene co-expression network analysis. The survival analysis results for each module showed that one module comprising 45 genes was statistically significant for relapse-free and overall survival. Four network properties identified key genes in this module with high prognostic prediction abilities: CD34, CXCL12, F2RL2, JAM2, PROS1, RAPGEF3, and SELP. The prognostic accuracy of the seven genes in breast cancer was synergistic and exceeded that of other predictors in both small and large public datasets. Enrichment analysis predicted that these genes had functions related to leukocyte infiltration of TA-HEVs. There was a positive correlation between key gene expression and the TLS signature, suggesting that gene expression levels are associated with TLS density. Co-expression network analysis of inflammation- and immune-related CHGs allowed us to identify genes that share a standard function in cancer immunity and have a high prognostic predictive value. This analytical approach may contribute to the identification of prognostic genes in TLS.
Collapse
Affiliation(s)
- Ayaka Yakushi
- Graduate School of Advanced Mathematical and Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan; Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takanori Sasaki
- Graduate School of Advanced Mathematical and Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan.
| |
Collapse
|
40
|
Lawton ML, Inge MM, Blum BC, Smith-Mahoney EL, Bolzan D, Lin W, McConney C, Porter J, Moore J, Youssef A, Tharani Y, Varelas X, Denis GV, Wong WW, Padhorny D, Kozakov D, Siggers T, Wuchty S, Snyder-Cappione J, Emili A. Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming. PLoS Biol 2024; 22:e3002943. [PMID: 39689157 DOI: 10.1371/journal.pbio.3002943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/06/2025] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Repeated antigen exposure leads to T-cell exhaustion, a transcriptionally and epigenetically distinct cellular state marked by loss of effector functions (e.g., cytotoxicity, cytokine production/release), up-regulation of inhibitory receptors (e.g., PD-1), and reduced proliferative capacity. Molecular pathways underlying T-cell exhaustion have been defined for CD8+ cytotoxic T cells, but which factors drive exhaustion in CD4+ T cells, that are also required for an effective immune response against a tumor or infection, remains unclear. Here, we utilize quantitative proteomic, phosphoproteomic, and metabolomic analyses to characterize the molecular basis of the dysfunctional cell state induced by chronic stimulation of CD4+ memory T cells. We identified a dynamic response encompassing both known and novel up-regulated cell surface receptors, as well as dozens of unexpected transcriptional regulators. Integrated causal network analysis of our combined data predicts the histone acetyltransferase p300 as a driver of aspects of this phenotype following chronic stimulation, which we confirmed via targeted small molecule inhibition. While our integrative analysis also revealed large-scale metabolic reprogramming, our independent investigation confirmed a global remodeling away from glycolysis to a dysfunctional fatty acid oxidation-based metabolism coincident with oxidative stress. Overall, these data provide both insights into the mechanistic basis of CD4+ T-cell exhaustion and serve as a valuable resource for future interventional studies aimed at modulating T-cell dysfunction.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa M Inge
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Erika L Smith-Mahoney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
| | - Weiwei Lin
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina McConney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacob Porter
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yashasvi Tharani
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gerald V Denis
- Hematology and Medical Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Siggers
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
- Miami Institute of Data Science and Computing, Miami, Florida, United States of America
| | - Jennifer Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
41
|
Lv J, Zhang X, Zhou M, Yan J, Chao G, Zhang S. Tertiary lymphoid structures in colorectal cancer. Ann Med 2024; 56:2400314. [PMID: 39575712 PMCID: PMC11616745 DOI: 10.1080/07853890.2024.2400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are ectopic clusters of immune cells found in non-lymphoid tissues, particularly within the tumor microenvironment (TME). These structures resemble secondary lymphoid organs and have been identified in various solid tumors, including colorectal cancer (CRC), where they are associated with favorable prognosis. The role of TLS in modulating the immune response within the TME and their impact on cancer prognosis has garnered increasing attention in recent years. OBJECTIVE This review aims to summarize the current understanding of TLS in CRC, focusing on their formation, function, and potential as prognostic markers and therapeutic targets. We explore the mechanisms by which TLS influence the immune response within the TME and their correlation with clinical outcomes in CRC patients. METHODS We conducted a comprehensive review of recent studies that investigated the presence and role of TLS in CRC. The review includes data from histopathological analyses, immunohistochemical studies, and clinical trials, examining the association between TLS density, composition, and CRC prognosis. Additionally, we explored emerging therapeutic strategies targeting TLS formation and function within the TME. RESULTS The presence of TLS in CRC is generally associated with an improved prognosis, particularly in early-stage disease. TLS formation is driven by chronic inflammation and is characterized by the organization of B and T cell zones, high endothelial venules (HEVs), and follicular dendritic cells (FDCs). The density and maturity of TLS are linked to better patient outcomes, including reduced recurrence rates and increased survival. Furthermore, the interplay between TLS and immune checkpoint inhibitors (ICIs) suggests potential therapeutic implications for enhancing anti-tumor immunity in CRC. CONCLUSIONS TLS represent a significant prognostic marker in CRC, with their presence correlating with favorable clinical outcomes. Ongoing research is required to fully understand the mechanisms by which TLS modulate the immune response within the TME and to develop effective therapies that harness their potential. The integration of TLS-focused strategies in CRC treatment could lead to improved patient management and outcomes.
Collapse
Affiliation(s)
- Jianyu Lv
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mi Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Junbin Yan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
42
|
Jin M, Fang J, Peng J, Wang X, Xing P, Jia K, Hu J, Wang D, Ding Y, Wang X, Li W, Chen Z. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies. Mol Cancer 2024; 23:266. [PMID: 39614285 PMCID: PMC11605969 DOI: 10.1186/s12943-024-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Immunotherapy targeting programmed cell death-1 (PD-1) and PD-L1 immune checkpoints has reshaped treatment paradigms across several cancers, including breast cancer. Combining PD-1/PD-L1 immune checkpoint blockade (ICB) with chemotherapy has shown promising efficacy in both early and metastatic triple-negative breast cancer, although only a subset of patients experiences durable responses. Identifying responders and optimizing immune drug selection are therefore critical. The effectiveness of PD-1/PD-L1 immunotherapy depends on both tumor-intrinsic factors and the extrinsic cell-cell interactions within the tumor microenvironment (TME). This review systematically summarizes the key findings from clinical trials of ICBs in breast cancer and examines the mechanisms underlying PD-L1 expression regulation. We also highlight recent advances in identifying potential biomarkers for PD-1/PD-L1 therapy and emerging evidence of TME alterations following treatment. Among these, the quantity, immunophenotype, and spatial distribution of tumor-infiltrating lymphocytes stand out as promising biomarkers. Additionally, we explore strategies to enhance the effectiveness of ICBs in breast cancer, aiming to support the development of personalized treatment approaches tailored to the unique characteristics of each patient's tumor.
Collapse
Affiliation(s)
- Menglei Jin
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Junwen Peng
- Department of General Surgery, The First People's Hospital of Jiande, Hangzhou, China
| | - Xintian Wang
- Department of General Surgery, The Second People's Hospital of Tongxiang, Jiaxing, Zhejiang, China
| | - Ping Xing
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Yuxin Ding
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xinyu Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenlu Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
43
|
Barakat R, Chatterjee J, Mu R, Qi X, Gu X, Smirnov I, Cobb O, Gao K, Barnes A, Kipnis J, Gutmann DH. Human single cell RNA-sequencing reveals a targetable CD8 + exhausted T cell population that maintains mouse low-grade glioma growth. Nat Commun 2024; 15:10312. [PMID: 39609412 PMCID: PMC11605098 DOI: 10.1038/s41467-024-54569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
In solid cancers, T cells typically function as cytotoxic effectors to limit tumor growth, prompting therapies that capitalize upon this antineoplastic property (immune checkpoint inhibition; ICI). Unfortunately, ICI treatments have been largely ineffective for high-grade brain tumors (gliomas; HGGs). Leveraging several single-cell RNA sequencing datasets, we report greater CD8+ exhausted T cells in human pediatric low-grade gliomas (LGGs) relative to adult and pediatric HGGs. Using several preclinical mouse LGG models (Nf1-OPG mice), we show that these PD1+/TIGIT+ CD8+ exhausted T cells are restricted to the tumor tissue, where they express paracrine factors necessary for OPG growth. Importantly, ICI treatments with α-PD1 and α-TIGIT antibodies attenuate Nf1-OPG tumor proliferation through suppression of two cytokine (Ccl4 and TGFβ)-mediated mechanisms, rather than by T cell-mediated cytotoxicity, as well as suppress monocyte-controlled T cell chemotaxis. Collectively, these findings establish a previously unrecognized function for CD8+ exhausted T cells as specialized regulators of LGG maintenance.
Collapse
Affiliation(s)
- Rasha Barakat
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Mu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xingxing Gu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Karen Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Angelica Barnes
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
44
|
Wang X, Venet D, Lifrange F, Larsimont D, Rediti M, Stenbeck L, Dupont F, Rouas G, Garcia AJ, Craciun L, Buisseret L, Ignatiadis M, Carausu M, Bhalla N, Masarapu Y, Villacampa EG, Franzén L, Saarenpää S, Kvastad L, Thrane K, Lundeberg J, Rothé F, Sotiriou C. Spatial transcriptomics reveals substantial heterogeneity in triple-negative breast cancer with potential clinical implications. Nat Commun 2024; 15:10232. [PMID: 39592577 PMCID: PMC11599601 DOI: 10.1038/s41467-024-54145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
While triple-negative breast cancer (TNBC) is known to be heterogeneous at the genomic and transcriptomic levels, spatial information on tumor organization and cell composition is still lacking. Here, we investigate TNBC tumor architecture including its microenvironment using spatial transcriptomics on a series of 92 patients. We perform an in-depth characterization of tumor and stroma organization and composition using an integrative approach combining histomorphological and spatial transcriptomics. Furthermore, a detailed molecular characterization of tertiary lymphoid structures leads to identify a gene signature strongly associated to disease outcome and response to immunotherapy in several tumor types beyond TNBC. A stepwise clustering analysis identifies nine TNBC spatial archetypes, further validated in external datasets. Several spatial archetypes are associated with disease outcome and characterized by potentially actionable features. In this work, we provide a comprehensive insight into the complexity of TNBC ecosystem with potential clinical relevance, opening avenues for treatment tailoring including immunotherapy.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - David Venet
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Frédéric Lifrange
- Department of Pathology, University Hospital Center of Liège, Liège, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Mattia Rediti
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Linnea Stenbeck
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Floriane Dupont
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Ghizlane Rouas
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Andrea Joaquin Garcia
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Laurence Buisseret
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Michail Ignatiadis
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Marcela Carausu
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Nayanika Bhalla
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Lovisa Franzén
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sami Saarenpää
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linda Kvastad
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kim Thrane
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium.
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium.
| |
Collapse
|
45
|
Yu C, Xu J, Xu S, Tang L, Han Q, Sun Z. Research trends, hotspots and future directions of tertiary lymphoid structures in cancer: a comprehensive informatics analysis and visualization study. Discov Oncol 2024; 15:665. [PMID: 39549226 PMCID: PMC11569082 DOI: 10.1007/s12672-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Many studies have reported the presence of tertiary lymphoid structures (TLSs) in cancer, but the research progress of TLSs in cancer has not been systematically analyzed. Therefore, we analyzed the global scientific knowledge in the field using informatics methods. The results showed that TLSs in cancer have received increasing attention since the 21st century, with an annual publication growth rate of 27.86%. Unsupervised hierarchical clustering based on machine learning further categorized the research features into four clusters, with the cluster related to immunotherapy being considered an emerging cluster. TLSs and immunotherapy were identified as the top two hotspots with the highest occurrence frequency and total link strength. The Walktrap algorithm indicated that "TLSs, carcinoma, prognostic value" and "high endothelial venules, germinal-centers, node-like structures" are important to TLSs but remain underexplored, representing promising research directions. These findings suggest that cancer-related TLSs have brought new insights into antitumor immunity, and targeting TLSs has the potential to transform the landscape of antitumor immunotherapy.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Siyi Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Tang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Qinyuan Han
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengkui Sun
- Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China.
| |
Collapse
|
46
|
Bao Y, Mo Z, Wang S, Long J, Zhang H, Xu Y, Jiang H, Qian T, Zeng Z. Global trends in tertiary lymphoid structures: a bibliometric analysis from 2014 to 2023. Front Immunol 2024; 15:1475062. [PMID: 39620224 PMCID: PMC11604643 DOI: 10.3389/fimmu.2024.1475062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 03/30/2025] Open
Abstract
AIM AND BACKGROUND Tertiary lymphoid structures (TLS) are increasingly recognized for their role in immunity. Despite growing interest, a systematic bibliometric analysis of TLS-related research has been lacking. To provide a comprehensive overview of current research trends and hotspots, we conducted a bibliometric analysis using data from the Web of Science Core Collection. METHODS We retrieved TLS-related publications from the Science Citation Index Expanded within the Web of Science Core Collection from January 2014 to December 2023. Co-occurrence analysis with "VOSviewer" identified current status and research hotspots, while "CiteSpace" was used for co-citation analysis to assess knowledge evolution and bursts. Thematic evolution was explored using bibliometrics to identify emerging keyword trends. Additionally, we examined country/region, institutional, and author contributions and collaborations. Tables were created using Microsoft Word. RESULTS A total of 785 publications were analyzed, showing a continuous growth trend from 2017 to 2023, indicating escalating interest in TLS among researchers. Leading countries in TLS research were China (231 publications), the United States (212 publications), and France (89 publications). The most productive institution and author were the "Institut national de la santé et de la recherche médicale" (70 publications) and Catherine Sautes-Fridman (21 publications), respectively. Key topics included TLS, B cells, and immunotherapy. Recent research has focused on mechanisms linking TLS with cancers, such as immunotherapy, tumor microenvironment, tumor-infiltrating lymphocytes, prognosis, and immune checkpoint inhibitors, highlighting an expanding area of study. Additionally, TLS' potential as a biomarker for predicting immunotherapy efficacy across different cancer types remains a burgeoning research direction. CONCLUSIONS This study provides a comprehensive analysis of global TLS-related publications, revealing key literature metrics and identifying influential articles and emerging research concerns. These findings contribute valuable insights into the role of TLS in immunotherapy and suggest future directions for this dynamic field.
Collapse
Affiliation(s)
- Yiwen Bao
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zeming Mo
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuang Wang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Department of Head & Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| | - Honghong Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yujun Xu
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Honglian Jiang
- Department of Nephrology, The People’s Hospital of Qiannan, Duyun, Guizhou, China
| | - Tianbao Qian
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
47
|
Karapetyan L, Li A, Vargas De Stefano D, Abushukair HM, Al-Bzour AN, Knight A, Layding C, Wang H, Xu J, Yao J, Song X, Joy M, Nguyen J, Moran-Segura C, Bruno S, Sander C, Messina J, Mule JJ, Storkus WJ, Kirkwood JM. Differences in the pathological, transcriptomic, and prognostic implications of lymphoid structures between primary and metastatic cutaneous melanomas. J Immunother Cancer 2024; 12:e009231. [PMID: 39537211 PMCID: PMC11575263 DOI: 10.1136/jitc-2024-009231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND While the prognostic role of tertiary lymphoid structures (TLS) has been well studied in solid cancers, the prevalence and impact of immature precursor lymphoid structures known as lymphoid aggregates (LA) remain unresolved in relation to the disease process. In this study, we examined characteristics and the prognostic utility of LA and TLS status in histological samples from patients with melanoma. METHODS We assessed The Cancer Genomic Atlas-skin cutaneous melanoma digital slides and melanoma specimens from the University of Pittsburgh for the presence of LA and TLS using H&E staining, multiplex immunofluorescence (mIF) and transcriptomic analyses. Cox proportional hazard regression models were used to assess the prognostic value associated with the presence of lymphoid structures in melanomas. RESULTS A total of 278 evaluable samples were analyzed and split into primary melanomas in skin (N=195) and metastatic melanomas involving skin/subcutaneous/soft tissue sites (N=83). 72% of tumor specimens contained histologically defined LA located in peritumoral (34%), intratumoral (5.6%) or stromal (6.1%) locations, with the remaining samples (54.3%) exhibiting LA in multiple locations. In contrast to LA which tended to form more commonly in primary melanoma samples, TLS with germinal centers predominantly formed in peritumoral (45.2%) or stromal (35.5%) locations in metastatic melanomas (p=0.02), with TLS observed in 11% of all melanoma specimens evaluated. mIF analyses revealed cellular heterogeneity of lymphoid structures, with CD20+ (B) cells present in nodule-shaped and stromal locations where they exhibited a high degree of colocalization with CD4+ and CD8+ T cells. A previously defined 12-chemokine gene expression score was significantly higher in samples with evidence of LA versus none (p<0.001), and samples without LA/TLS were enriched with pigmentation/neural network gene signatures. The presence of LA was significantly associated with tumor-free regional lymph node status (p=0.002). In multivariable analysis, after adjusting for age, sex, sample type, and stage, the presence of LA was associated with improved patient overall survival (OS) (HR=0.52, 95% CI 0.31 to 0.87, p=0.01). CONCLUSION Melanoma frequently contains LA, which tends to form in diverse locations in the tumor microenvironment in association with improved overall survival and tumor-free regional lymph node status in patients with primary disease.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Aofei Li
- Department of Pathology, Indiana University, Indianapolis, Indiana, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Danielle Vargas De Stefano
- Department of Pathology, Phoenix Children's Hospital, Phoenix, Arizona, USA
- University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Hassan M Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Medical Oncology, OU Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Ayah N Al-Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Andrew Knight
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caroline Layding
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Graduate School of Public Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hong Wang
- Graduate School of Public Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jin Xu
- Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Jiqiang Yao
- Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Xiaofei Song
- Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Marion Joy
- University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Jonathan Nguyen
- Pathology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Carlos Moran-Segura
- Pathology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Sabrina Bruno
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Jane Messina
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Walter J Storkus
- Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M Kirkwood
- Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Sun G, Liu Y. Tertiary lymphoid structures in ovarian cancer. Front Immunol 2024; 15:1465516. [PMID: 39569184 PMCID: PMC11576424 DOI: 10.3389/fimmu.2024.1465516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Ovarian cancer (OC) is a significant cause of cancer-related mortality in women worldwide. Despite advances in treatment modalities, including surgery and chemotherapy, the overall prognosis for OC patients remains poor, particularly for patients with advanced or recurrent disease. Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized cancer treatment in various malignancies but has shown limited efficacy in treating OC, which is primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs), which are ectopic aggregates of immune cells, have emerged as potential mediators of antitumor immunity. This review explores the composition, formation, and induction of tumor associated TLS (TA-TLS) in OC, along with their role and therapeutic implications in disease development and treatment. By elucidating the roles TA-TLSs and their cellular compositions played in OC microenvironment, novel therapeutic targets may be identified to overcome immune suppression and enhance immunotherapy efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
49
|
van der Leun AM. Tertiary lymphoid structure formation: A matter of tumor-immune co-evolution. Mol Immunol 2024; 175:143-145. [PMID: 39383568 DOI: 10.1016/j.molimm.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The immune make-up of human tumors is dynamic over the course of cancer progression. However, what factors drive spatiotemporal changes in the tumor-immune landscape is not well-known. In issue 3 of Cell Reports Medicine, Liu, You, Lan and Ren et al. demonstrate that the development of tertiary lymphoid structures (TLSs) is a stepwise process that co-occurs with tumor progression in patients with lung adenocarcinoma (LUAD).
Collapse
Affiliation(s)
- Anne M van der Leun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA; Broad Institute of MIT and Harvard, Cambridge, USA; Departments of Cell Biology and Pathology, Harvard Medical School, Boston, USA.
| |
Collapse
|
50
|
Shi J, Pan L, Ma F, Zhang G, Duan Y. Thematic trends and knowledge-map of tumor-infiltrating lymphocytes in breast cancer: a scientometric analysis. Front Oncol 2024; 14:1438091. [PMID: 39555450 PMCID: PMC11564181 DOI: 10.3389/fonc.2024.1438091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs), essential for the anti-tumor response, are now recognized as promising and cost-effective biomarkers with both prognostic and predictive value. They are crucial in the precision treatment of breast cancer, particularly for predicting clinical outcomes and identifying candidates for immunotherapy. This study aims to encapsulate the current knowledge of TILs in breast cancer research while evaluating research trends both qualitatively and quantitatively. Methods Publications on TILs in breast cancer studies from January 1, 2004, to December 31, 2023, were extracted from the Web of Science Core Collection. Co-occurrence and collaboration analyses among countries/regions, institutions, authors, and keywords were performed with Bibliometrix R packages and VOSviewer software. CiteSpace was used for reference and keyword burst detection, while high-frequency keyword layouts were generated using BICOMB. gCLUTO was employed for biclustering analysis of the binary co-keyword matrix. Results A total of 2,066 articles on TILs in breast cancer were identified. Between 2004 and 2023, the USA and Milan University led productivity in terms of country/region and institution, respectively. The journals "CANCERS," "Breast Cancer Research and Treatment," and "Frontiers in Oncology" published the most articles on this topic. Loi S was the leading author, with the highest number of publications and co-citations. Co-keyword analysis revealed six research hotspots related to TILs in breast cancer. The pathological assessment of TILs using artificial intelligence (AI) remains in its early stages but is a key focus. Burst detection of keywords indicated significant activity in "immune cell infiltration", "immune checkpoint inhibitors", and "hormone receptor" over the past three years. Conclusion This study reviews recent advancements and trends in TILs research in breast cancer using scientometric analysis. The findings offer valuable insights for funding decisions and developing innovative strategies in TILs research, highlighting current research frontiers and trends.
Collapse
Affiliation(s)
- Jinan Shi
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lei Pan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Feixia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ganlu Zhang
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|