1
|
Mari V, Angerilli V, Munari G, Scarpa M, Bao QR, Pucciarelli S, Fassan M, Spolverato G. Molecular Determinants of Peritoneal Dissemination in Gastric Adenocarcinoma. Dig Dis 2022; 41:49-65. [PMID: 35940137 DOI: 10.1159/000526333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peritoneal dissemination represents a poor prognostic indicator in gastric cancer. Despite a comprehensive molecular characterization of this disease, no peritoneal dissemination-specific signature has been identified, limiting the tailoring of the surgical and oncological treatments. In this review, we outline the available literature focusing on the role of the different molecular pathways involved in the acquisition of peritoneal metastatic dissemination. SUMMARY According to our results, several molecular determinants are associated with peritoneal carcinomatosis and are involved in several cellular and molecular carcinogenetic processes. However, a comprehensive understanding of the complex molecular landscape of gastric carcinosis is still lacking. KEY MESSAGES More efforts should be made toward the integration of molecular and histologic data to perform a risk prediction assessment of peritoneal dissemination based on molecular profiling and histological evaluation.
Collapse
Affiliation(s)
- Valentina Mari
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giada Munari
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Marco Scarpa
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Quoc Riccardo Bao
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Gaya Spolverato
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| |
Collapse
|
2
|
Koike K, Masuda T, Sato K, Fujii A, Wakiyama H, Tobo T, Takahashi J, Motomura Y, Nakano T, Saito H, Matsumoto Y, Otsu H, Takeishi K, Yonemura Y, Mimori K, Nakagawa T. GET4 is a novel driver gene in colorectal cancer that regulates the localization of BAG6, a nucleocytoplasmic shuttling protein. Cancer Sci 2021; 113:156-169. [PMID: 34704338 PMCID: PMC8748226 DOI: 10.1111/cas.15174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer and a significant cause of cancer mortality worldwide. Further improvements of CRC therapeutic approaches are needed. BCL2‐associated athanogene 6 (BAG6), a multifunctional scaffold protein, plays an important role in tumor progression. However, regulation of BAG6 in malignancies remains unclear. This study showed that guided entry of tail‐anchored proteins factor 4 (GET4), a component of the BAG6 complex, regulates the intercellular localization of BAG6 in CRC. Furthermore, GET4 was identified as a candidate driver gene on the short arm of chromosome 7, which is often amplified in CRC, by our bioinformatics approach using the CRC dataset from The Cancer Genome Atlas. Clinicopathologic and prognostic analyses using CRC datasets showed that GET4 was overexpressed in tumor cells due to an increased DNA copy number. High GET4 expression was an independent poor prognostic factor in CRC, whereas BAG6 was mainly overexpressed in the cytoplasm of tumor cells without gene alteration. The biological significance of GET4 was examined using GET4 KO CRC cells generated with CRISPR‐Cas9 technology or transfected CRC cells. In vitro and in vivo analyses showed that GET4 promoted tumor growth. It appears to facilitate cell cycle progression by cytoplasmic enrichment of BAG6‐mediated p53 acetylation followed by reduced p21 expression. In conclusion, we showed that GET4 is a novel driver gene and a prognostic biomarker that promotes CRC progression by inducing the cytoplasmic transport of BAG6. GET4 could be a promising therapeutic molecular target in CRC.
Collapse
Affiliation(s)
- Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kuniaki Sato
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Wakiyama
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yushi Motomura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takafumi Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | - Hajime Otsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kazuki Takeishi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takashi Nakagawa
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
3
|
Xin Z, Zhang L, Liu M, Wang Y, Zhang Y, Zhao W, Sun Y, Shi L, Xu N, Zhang N, Xu H. Helicobacter pylori Infection-Related Long Non-Coding RNA Signatures Predict the Prognostic Status for Gastric Cancer Patients. Front Oncol 2021; 11:709796. [PMID: 34386426 PMCID: PMC8353258 DOI: 10.3389/fonc.2021.709796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) is a type I biological carcinogen, which may cause about 75% of the total incidence of gastric cancer worldwide. H. pylori infection can induce and activate the cancer-promoting signaling pathway and affect the occurrence and outcome of gastric cancer through controlling the regulatory functions of long non-coding RNAs (lncRNAs). However, we have no understanding of the prognostic worth of lncRNAs for gastric cancer patients infected with H. pylori. Method We screened differentially expressed lncRNAs using DESeq2 method among TCGA database. And we built the H. pylori infection-related lncRNAs regulatory patterns. Then, we constructed H. pylori infection-based lncRNAs prognostic signatures for gastric cancer patients together with H. pylori infection, via uni-variable and multi-variable COX regression analyses. Based on receiver operator characteristic curve (ROC) analysis, we evaluated the prediction effectiveness for this model. Results We identified 115 H. pylori infection-related genes were differentially expressed among H. pylori-infected gastric cancer tissues versus gastric cancer tissues. Functional enrichment analysis implies that H. pylori infection might interfere with the immune-related pathways among gastric cancer tissues. Then, we built H. pylori infection-related dys-regulated lncRNA regulatory networks. We also identified 13 differentially expressed lncRNAs were associated with prognosis for gastric cancer patients together with H. pylori infection. Kaplan-Meier analysis demonstrated that the lncRNA signatures were correlated with the poor prognosis. What is more, the AUC of the lncRNA signatures was 0.712. Also, this prognostic prediction model was superior to the traditional clinical characters. Conclusion We successfully constructed a H. pylori-related lncRNA risk signature and nomogram associated with H. pylori-infected gastric cancer patients prognosis, and the signature and nomogram can predict the prognosis of these patients.
Collapse
Affiliation(s)
- Zhuoyuan Xin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China.,The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China.,Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Luping Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Mingqing Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yachen Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yingli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Weidan Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yongxiao Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Lei Shi
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Na Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
The Role of Chemokines in the Development of Gastric Cancer - Diagnostic and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21228456. [PMID: 33182840 PMCID: PMC7697532 DOI: 10.3390/ijms21228456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and the second leading cause of cancer-related death. GC is usually diagnosed at an advanced stage due to late presentation of symptoms. Therefore, there is a need for establishing more sensitive and specific markers useful in early detection of the disease when a cancer is asymptomatic to improve the diagnostic and clinical decision-making process. Some researchers suggest that chemokines and their specific receptors play an important role in GC initiation and progression via promotion of angiogenesis, tumor transformation, invasion, survival and metastasis as well as protection from host response and inter-cell communication. Chemokines are small proteins produced by various cells such as endothelial cells, fibroblasts, leukocytes, and epithelial and tumor cells. According to our knowledge, the significance of chemokines and their specific receptors in diagnosing GC and evaluating its progression has not been fully elucidated. The present article offers a review of current knowledge on general characteristics of chemokines, specific receptors and their role in GC pathogenesis as well as their potential usefulness as novel biomarkers for GC.
Collapse
|
5
|
Lyu L, Zheng Y, Hong Y, Wang M, Deng Y, Wu Y, Xu P, Yang S, Wang S, Yao J, Zhang D, Guo Y, Lyu J, Dai Z. Comprehensive analysis of the prognostic value and immune function of chemokine-CXC receptor family members in breast cancer. Int Immunopharmacol 2020; 87:106797. [PMID: 32702599 DOI: 10.1016/j.intimp.2020.106797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Recently, immune checkpoint inhibitors (ICIs) have been successfully used for treating melanoma. Unfortunately, many breast cancer (BC) patients show low response to ICIs due to the lack of infiltrating immune cells. Previous studies revealed that chemokine-CXC receptors (CXCRs) play a crucial role in leukocyte infiltration and promote cancer cell proliferation, migration, metastasis, and angiogenesis. However, the underlying functions of CXCRs in cancer-immunity cycle remain unclear. In this study, we firstly found that in comparison to normal tissues, BC tissues, especially basal-like BC, showed increased mRNA levels of CXCR3/4/5/6/8, but decreased CXCR1/2/7 expression using UALCAN and TIMER database. Interestingly, it's was found that the mRNA levels of CXCR3/4/5/6 were decreased in lymphocyte depleted of the BC immune subtype. Subsequently, functional enrichment analysis of distinct CXCRs indicated that CXCR3/4/5/6 were strongly associated to immune-related biological functions. Therefore, further analysis using TIMER and TISIDB database suggested that CXCR3/4/5/6 expression were strongly correlated with tumor-infiltrating lymphocytes (TILs) and immune checkpoints in BC. Finally, Kaplan-Meier Plotter analysis indicated that high mRNA expression of CXCR4 predicted worse relapse-free survival (RFS), whereas CXCR3/5/6 indicated better RFS in BC patients. These findings suggest a therapeutic value for CXCR3/4/5/6 in combination with ICIs for the treatment of BC.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Hong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dai Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Guo
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Xin Q, Sun Q, Zhang CS, Zhang Q, Li CJ. Functions and mechanisms of chemokine receptor 7 in tumors of the digestive system. World J Clin Cases 2020; 8:2448-2463. [PMID: 32607322 PMCID: PMC7322425 DOI: 10.12998/wjcc.v8.i12.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7), recently termed ACKR3, belongs to the G protein-coupled cell surface receptor family, binds to stromal cell-derived factor-1 [SDF-1, or chemokine (C-X-C motif) ligand 12] or chemokine (C-X-C motif) ligand 11, and is the most common chemokine receptor expressed in a variety of cancer cells. SDF-1 binds to its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and regulates cell proliferation, survival, angiogenesis and migration. In recent years, another new receptor for SDF-1, CXCR7, has been discovered, and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells. Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells. Unlike CXCR4, CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca2+ release following ligand binding, which is essential for recruiting and activating G proteins. CXCR7 is generally thought to work in three ways: (1) Recruiting β-arrestin 2; (2) Heterodimerizing with CXCR4; and (3) Acting as a “scavenger” of SDF-1, thus lowering the level of SDF-1 to weaken the activity of CXCR4. In the present review, the expression and role of CXCR7, as well as its prognosis in cancers of the digestive system, were investigated.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Quan Sun
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| |
Collapse
|
7
|
CXCR7 Inhibits Fibrosis via Wnt/ β-Catenin Pathways during the Process of Angiogenesis in Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216926. [PMID: 32566651 PMCID: PMC7293734 DOI: 10.1155/2020/1216926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Although SDF-1/CXCR7 plays an important role in angiogenesis, the function and the pathway of the SDF-1/CXCR7 axis might depend on the cell type or tissue origin and not fully understood. In this study, we investigated the effect of CXCR7 in SDF-1-induced proliferation, migration, apoptosis, tube formation, and endothelial-to-mesenchymal transition (EndMT) of human umbilical vein endothelial cells (HUVECs), and the potential pathway of SDF-1/CXCR7. We confirmed that the silencing of CXCR7 inhibited the proliferation of HUVECs and contributed the apoptosis, while overexpressed CXCR7 increased SDF-1-induced HUVECs migration and tube formation. However, upregulated CXCR7 inhibited the expression of α-SMA, suggesting that CXCR7 might attenuate EndMT. In addition, overexpressed CXCR7 activated AKT and ERK signaling pathways but suppressed Wnt/β-catenin pathways in HUVECs. The inhibition of Wnt/β-catenin pathways decreased the expression of α-SMA. Altogether, these results suggest that CXCR7 might inhibit fibrosis via Wnt/β-catenin pathways during the process of angiogenesis.
Collapse
|
8
|
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide, and is caused by complex interactions of multiple risk factors such as environmental (Helicobacter pylori and Epstein–Barr Virus), hereditary (genetic alterations and epigenetic modifications), as well as dietary and lifestyle factors. GC is usually detected at an advanced stage, with a dismal prognosis. Even for patients with similar clinical or pathologic stage receiving similar treatment, the outcomes are still uneven and unpredictable. To better incorporate genetic and epigenetic profiles into GC prognostic predication, gene expression signatures have been developed to predict GC outcomes. More recently, the advancement of high-throughput sequencing technology, also known as next-generation sequencing (NGS) technology, and analysis has provided the basis for accurate molecular classification of GC tumors. Here, we summarized and updated the literature related to NGS studies of GC, including whole-genome sequencing, whole-exome sequencing, RNA sequencing, and targeted sequencing, and discussed current progresses. NGS has facilitated the identification of genetic/epigenetic targets for screening as well as development of targeted agent therapy, thus enabling individualized patient management and treatment.
Collapse
Affiliation(s)
- Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- PLA Marine Corps Hospital, Chaozhou, Guangdong 521000, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, P. R. China
| | - Zhongxing Fu
- Ningguo Bio-Leader Biotechnology Co., Ltd., Anhui, Hefei, P. R. China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-related Diseases, Shanghai, P. R. China
| | - Yan Du
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
9
|
Nambara S, Masuda T, Kobayashi Y, Sato K, Tobo T, Koike K, Noda M, Ogawa Y, Kuroda Y, Ito S, Eguchi H, Sugimachi K, Mimori K. GTF2IRD1 on chromosome 7 is a novel oncogene regulating the tumor-suppressor gene TGFβR2 in colorectal cancer. Cancer Sci 2019; 111:343-355. [PMID: 31758608 PMCID: PMC7004548 DOI: 10.1111/cas.14248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] Open
Abstract
Chromosome 7q (Ch.7q) is clonally amplified in colorectal cancer (CRC). We aimed to identify oncogenes on Ch.7q that are overexpressed through DNA copy number amplification and determine the biological and clinical significance of these oncogenes in CRC. We identified general transcription factor 2I repeat domain‐containing protein 1 (GTF2IRD1) as a potential oncogene using a CRC dataset from The Cancer Genome Atlas with a bioinformatics approach. We measured the expression of GTF2IRD1 in 98 patients with CRC using immunohistochemistry and RT‐quantitative PCR (RT‐qPCR). The biological effects of GTF2IRD1 expression were explored by gene set enrichment analysis (GSEA). Next, we undertook in vitro cell proliferation and cell cycle assays using siGTF2IRD1‐transfected CRC cells. We further investigated the oncogenic mechanisms through which GTF2IRD1 promoted CRC progression. Finally, we assessed the clinical significance of GTF2IRD1 expression by RT‐qPCR. GTF2IRD1 was overexpressed in tumor cells and liver metastatic lesions. The GSEA revealed a positive correlation between GTF2IRD1 expression and cell cycle progression‐related genes. GTF2IRD1 knockdown inhibited cell proliferation and induced cell cycle arrest in Smad4‐mutated CRC. GTF2IRD1 downregulated the expression of the gene encoding transforming growth factor β receptor 2 (TGFβR2), a tumor‐suppressor gene in Smad4‐mutated CRC. On multivariate analysis, high GTF2IRD1 expression was an independent poor prognostic factor. Clinicopathological analysis showed that GTF2IRD1 expression was positively correlated with liver metastasis. In conclusion, GTF2IRD1 promoted CRC progression by downregulating TGFβR2 and could be a prognostic biomarker on Ch.7q in CRC. GTF2IRD1 could also be a novel oncogene in CRC.
Collapse
Affiliation(s)
- Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Yousuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Gastroenterological Surgery, National Kyushu Cancer Center, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
10
|
Yu C, Zhang Y. Characterization of the prognostic values of CXCR family in gastric cancer. Cytokine 2019; 123:154785. [PMID: 31344595 DOI: 10.1016/j.cyto.2019.154785] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The role of CXC chemokine receptors (CXCRs) in gastric cancer (GC) has been an increasing focus. However, comprehensive prognostic values of CXCR members in GC are yet to be clearly defined. METHODS Multiple public available datasets, including Kaplan-Meier (KM) plotter, oncomine, the cancer genome atlas (TCGA), SurvExpress platform and the tumor immune estimation resource (TIMER), were used for mRNA expression and prognostic characterization. Nomogram method was used for clinical model prediction. RESULTS CXCR3, CXCR4 and CXCR5 displayed significantly up-regulated expression in tumor compared to normal. High mRNA expression of CXCR2 (HR = 0.77, 95%CI: 0.62-0.95, p = 0.014), CXCR3 (HR = 0.74, 95%CI: 0.61-0.90, p = 0.0024), CXCR4 (HR = 0.7, 95%CI: 0.58-0.86, p = 0.00048), CXCR5 (HR = 0.72, 95%CI: 0.59-0.87, p = 0.00093) and CXCR6 (HR = 0.66, 95%CI: 0.54-0.81, p = 4.9e-05) was significantly associated with favorable overall survival (OS). The prognostic values of CXCR members were also explored in subtypes, including HER2 status, Lauren classification, pathological stages. The low risk group of CXCR signature displayed a significantly favorable OS compared to the high risk group (HR = 3.22, 95% CI = 2.21-4.69, p = 1.057e-09). Nomogram clinical models were established for both OS (C-index: 0.692; 95%CI: 0.648-0.736) and recurrence free survival (C-index: 0.731; 95%CI: 0.675-0.786). In addition, CXCR6 and CD8+T cells featured the highest correlation (partial-cor = 0.781, p = 4.17e-77). CONCLUSION This study identified distinct expression and prognostic values of CXCR members in GC using public databases.
Collapse
Affiliation(s)
- Chaoran Yu
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200025, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200025, PR China; Department of Gastrointestinal Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, PR China.
| | - Yujie Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
11
|
Li N, Xu H, Ou Y, Feng Z, Zhang Q, Zhu Q, Cai Z. LPS-induced CXCR7 expression promotes gastric Cancer proliferation and migration via the TLR4/MD-2 pathway. Diagn Pathol 2019; 14:3. [PMID: 30636642 PMCID: PMC6330400 DOI: 10.1186/s13000-019-0780-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) from Helicobacter pylori (HP) plays an important role in gastric cancer occurrence and development. Toll-like receptor 4 (TLR4) and myeloid differential protein-2 (MD-2) are also reported to be involved in gastric cancer cell proliferation and invasion. CXC chemokine receptor 7 (CXCR7), a second receptor for CXCL12, has been detected in multiple types of tumor tissues. Nevertheless, the biological function and regulation of CXCR7 and its relationship with TLR4 and MD-2 in gastric cancer are not completely understood and therefore warrant further study. METHODS CXCR7 expression was examined in 150 gastric cancer tissues using immunohistochemistry (IHC). RT-PCR and western blotting were used to detect CXCR7 expression in several gastric cancer cell lines (SGC7901, AGS, MGC-803, MKN-45 and BGC823). shRNAs were designed using a pGPU6/GFP/Neo vector. A CCK-8 assay was used to assess cell proliferation, and transwell assays were performed to assess cell migration. In addition, a gastric cancer xenograft model was generated. RESULTS The LPS-TLR4-MD-2 pathway elevates CXCR7 expression in SGC7901 cells, and TLR4/MD-2-mediated increases in CXCR7 levels modulate the proliferation and migration of tumor cells. Knockdown of TLR4 and MD-2 demonstrated that both are essential for LPS-induced CXCR7 expression, which in turn is responsible for LPS-induced SGC7901 cell proliferation and migration. Moreover, higher TLR4, MD-2 and CXCR7 expression was detected in gastric cancer tissues than in paracancerous normal control tissues. The expression levels of TLR4, MD-2 and CXCR7 were closely related to gastric cancer TNM stage and lymph node metastasis. In an animal model, significant differences in CXCR7 expression in tumor masses were observed between the control group and experimental group. CONCLUSIONS The results of this study indicate that CXCR7 plays an important role in gastric cancer progression via inflammatory mechanisms, suggesting that CXCR7 could provide a basis for the development and clinical application of a targeted drug for gastric cancer.
Collapse
Affiliation(s)
- Nan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Zhenzhong Feng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Qiong Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Qing Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Zhaogen Cai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China. .,Department of Pathology, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
12
|
Fan H, Wang W, Yan J, Xiao L, Yang L. Prognostic significance of CXCR7 in cancer patients: a meta-analysis. Cancer Cell Int 2018; 18:212. [PMID: 30574021 PMCID: PMC6300004 DOI: 10.1186/s12935-018-0702-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Background CXC chemokine receptor 7 (CXCR7) is frequently overexpressed in a variety of tumors. Nevertheless, whether CXCR7 can be used as a tumor prognosis marker has not been systematically assessed. The current meta-analysis was performed to obtain an accurate evaluation of the relationship between CXCR7 level and the prognosis of cancer patients. Methods Embase, Web of Science, and PubMed were systematically searched according to a defined search strategy up to June 11, 2018. Then, the required data were extracted from all qualified studies which were screened out based on the defined inclusion and exclusion criteria. Finally, the hazard ratios (HR) with 95% confidence intervals (CI) were used to evaluate the prognostic significance of CXCR7 in tumor patients. Results A total of 28 original research studies comprising 33 cohorts and 5685 patients were included in this meta-analysis. The results showed that CXCR7 overexpression was significantly related to worse overall survival (OS) (HR 1.72; 95% CI 1.49–1.99), disease-free survival (DFS) (HR 5.58; 95% CI 3.16–9.85), progression-free survival (PFS) (HR 2.83; 95% CI 1.66–4.85) and recurrence-free survival (RFS) (HR 1.58; 95% CI 1.34–1.88) in cancer patients. Furthermore, for certain types of cancer, significant associations between higher CXCR7 expression and worse OS of glioma (HR 1.77; 95% CI 1.43–2.19), breast cancer (HR 1.45; 95% CI 1.28–1.63), esophageal cancer (HR 2.72; 95% CI 1.11–6.66) and pancreatic cancer (HR 1.46; 95% CI 1.12–1.90) were found. However, for lung cancer and hepatocellular cancer, there was no significant relationship between CXCR7 expression level and OS, (HR 2.40; 95% CI 0.34–17.07) and (HR 1.37; 95% CI 0.84–2.24) respectively. Conclusions Increased CXCR7 level could predict poor prognosis of tumor patients and might be regarded as a novel prognostic biomarker for tumor patients.
Collapse
Affiliation(s)
- Huiqian Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
CD271+, CXCR7+, CXCR4+, and CD133+ Stem/Progenitor Cells and Clinical Characteristics of Acute Ischemic Stroke Patients. Neuromolecular Med 2018; 20:301-311. [PMID: 29744773 PMCID: PMC6097064 DOI: 10.1007/s12017-018-8494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Ischemic stroke causes mobilization of various groups of progenitor cells from bone marrow to bloodstream and this correlates with the neurological status of stroke patients. The goal of our study was to identify the activity of chosen progenitor/stem cells in the peripheral blood of acute ischemic stroke patients in the first 7 days after the incident, through associations between the levels of the cells and clinical features of the patients. Thirty-three acute ischemic stroke patients and 15 non-stroke control subjects had their venous blood collected repeatedly in order to assess the levels of the CD45–CD34 + CD271+, the CD45–CD34 + CXCR4+, the CD45–CD34 + CXCR7+, and the CD45–CD34 + CD133+ stem/progenitor cells by means of flow cytometry. The patients underwent repeated neurological and clinical assessments, pulse wave velocity (PWV) assessment on day 5, and MRI on day 1 and 5 ± 2. The levels of the CD45–CD34 + CXCR7+ and the CD45–CD34 + CD271+ cells were lower in the stroke patients compared with the control subjects. Only the CD45–CD34 + CD271+ cells correlated positively with lesion volume in the second MRI. The levels of the CD45–CD34 + CD133+ cells on day 2 correlated negatively with PWV and NIHSS score on day 9. The patients whose PWV was above 10 m/s had significantly higher levels of the CD45–CD34 + CXCR4+ and the CD45–CD34 + CXCR7+ cells on day 1 than those with PWV below 10 m/s. This study discovers possible activity of the CD45–CD34 + CD271+ progenitor/stem cells during the first 7 days after ischemic stroke, suggests associations of the CD45–CD34 + CD133+ cells with the neurological status of stroke patients, and some activity of the CD45–CD34 + CD133+, the CD45–CD34 + CXCR4+, and the CD45–CD34 + CXCR7+ progenitor/stem cells in the process of arterial remodeling.
Collapse
|
14
|
Cao Y, Song J, Ge J, Song Z, Chen J, Wu C. MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett 2017; 15:453-458. [PMID: 29422961 DOI: 10.3892/ol.2017.7305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRs) are a class of small non-coding RNAs that have been demonstrated to have a crucial role in tumorigenesis of human cancers, including gastric cancer (GC). Previous results have established that miR-100 participated in the development of GC; however, the underlying mechanism remains largely unknown. The preesent study utilized reverse transcription-quantitative polymerase chain reaction to analyze the expression of miR-100 in GC tissues and adjacent normal tissues. The present results indicated that the expression of miR-100 was downregulated in GC tissues when compared to the adjacent normal tissues. Furthermore, low miR-100 expression was observed to be associated with lymph node metastasis, tumor diameter and tumor stage. In addition, Kaplan-Meier analysis revealed that patients with low miR-100 expression tended to have a shorter overall survival. The miR-100 was further identified as an independent prognostic factor for overall survival. Notably, the levels of chemokine (CXC motif) receptor 7 (CXCR7) were inversely correlated with miR-100 in GC cell lines. Furthermore, miR-100 overexpression or CXCR7 depletion decreased in vitro GC cell proliferation. Bioinformatics analysis indicated that miR-100 may bind to the 3'-untranslated region of CXCR7 to prevent the initiation of protein translation. Thus, miR-100 may function as a tumor suppressor in GC, partly by regulating the expression of CXCR7, and the regulation of miR-100 expression may be a potential strategy for the treatment of GC patients.
Collapse
Affiliation(s)
- Yongfeng Cao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Tianning, Changzhou, Jiangsu 213000, P.R. China
| | - Jiaye Song
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Jianjuan Ge
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Zhuchen Song
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Jia Chen
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Tianning, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
15
|
Fujishiro A, Miura Y, Iwasa M, Fujii S, Sugino N, Andoh A, Hirai H, Maekawa T, Ichinohe T. Effects of acute exposure to low-dose radiation on the characteristics of human bone marrow mesenchymal stromal/stem cells. Inflamm Regen 2017; 37:19. [PMID: 29259718 PMCID: PMC5725824 DOI: 10.1186/s41232-017-0049-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022] Open
Abstract
Background In recent years, increasing attention has been paid to the effects of low-dose irradiation on human health. We examined whether low-dose irradiation affected the functions of mesenchymal stromal/stem cells (MSCs), which are tissue/organ-supportive stem cells, derived from bone marrow (BM). Methods Normal human BM-MSCs from five healthy individuals were used in this study. Culture-expanded BM-MSCs were exposed to 0.1 gray (Gy) of γ-radiation (Cesium-137) at a rate of 0.8 Gy/min (Ir-MSCs), and their expansion, multi-differentiation, and hematopoiesis-supportive capabilities were investigated. Results The expansion of BM-MSCs was transiently delayed after low-dose γ-irradiation compared with that of non-irradiated BM-MSCs (non-Ir-MSCs) in two out of five lots. Adipogenic and osteogenic differentiation capabilities were not significantly affected by low-dose irradiation, although one lot of BM-MSCs tended to have transiently reduced differentiation. When human BM hematopoietic stem/progenitor cells (HPCs) were co-cultured with Ir-MSCs, the generation of CD34+CD38+ cells from HPCs was enhanced compared with that in co-cultures with non-Ir-MSCs in two out of five lots. The mRNA expression level of interleukin (IL)-6 was increased and those of stem cell factor (SCF) and fms-related tyrosine kinase 3 ligand (Flt3L) were decreased in the affected lots of Ir-MSCs. In the other three lots of BM-MSCs, a cell growth delay, enhanced generation of CD34+CD38+ cells from HPCs in co-culture, and a combination of increased expression of IL-6 and decreased expression of SCF and Flt3L were not observed. Of note, the characteristics of these affected Ir-MSCs recovered to a similar level as those of non-Ir-MSCs following culture for 3 weeks. Conclusions Our results suggest that acute exposure to low-dose (0.1 Gy) radiation can transiently affect the functional characteristics of human BM-MSCs.
Collapse
Affiliation(s)
- Aya Fujishiro
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan.,Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga 520-2192 Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan.,Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8553 Japan
| | - Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan.,Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga 520-2192 Japan
| | - Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan.,Department of Hematology/Oncology, Graduate School for Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Noriko Sugino
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan.,Department of Hematology/Oncology, Graduate School for Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga 520-2192 Japan
| | - Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8553 Japan
| |
Collapse
|
16
|
Xue L, Mao X, Ren L, Chu X. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med 2017; 6:1424-1436. [PMID: 28544785 PMCID: PMC5463074 DOI: 10.1002/cam4.1085] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The whole outcome for patients with gastric carcinoma (GC) is very poor because most of them remain metastatic disease during survival even at diagnosis or after surgery. Despite many improvements in multiple strategies of chemotherapy, immunotherapy, and targeted therapy, exploration of novel alternative therapeutic targets is still warranted. Chemokine receptor 4 (CXCR4) and its chemokine ligand 12 (CXCL12) have been identified with significantly elevated levels in various malignancies including GC, which correlates with the survival, proliferation, angiogenesis, and metastasis of tumor cells. Increasing experimental evidence suggests an implication of inhibition of CXCL12/CXCR4 axis as a promising targeted therapy, although there are rare trials focused on the therapeutic efficacy of CXCR4 inhibitors in GC until recently. Therefore, it is reasonable to infer that specific antagonists or antibodies targeting CXCL12/CXCR4 axis alone or combined with chemotherapy will be effective and worthy of further translational studies as a potential treatment strategy in advanced GC.
Collapse
Affiliation(s)
- Li‐Jun Xue
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Xiao‐Bei Mao
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Li‐Li Ren
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Xiao‐Yuan Chu
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| |
Collapse
|