1
|
Zupancic M, Kostopoulou ON, Marklund L, Dalianis T. Therapeutic options for human papillomavirus-positive tonsil and base of tongue cancer. J Intern Med 2025; 297:608-629. [PMID: 40246777 PMCID: PMC12087873 DOI: 10.1111/joim.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The incidences of human papillomavirus-positive (HPV+) tonsillar and base tongue squamous cell carcinomas (TSCC and BOTSCC) have increased in recent decades. Notably, HPV+ TSCC and BOTSCC have a significantly better prognosis than their HPV-negative counterparts when treated with current surgical options, radiotherapy, or intensified chemoradiotherapy. However, a cure is not achieved in 20% of patients with HPV+ TSCC/BOTSCC. Meanwhile, cured patients often present with severe chronic side effects. This necessitates novel tailored alternatives, such as targeted therapy, immune checkpoint inhibitors (ICIs), and treatment de-escalation, together with better follow-up. Current precision medicine therefore focuses on detecting predictive and driver cancer genes to better stratify patient treatment, provide those with poor prognostic markers targeted therapy, and select those with favorable markers for de-escalated therapy. Moreover, detecting cell-free HPV DNA (cfHPV DNA) in plasma before and after treatment has been attempted to improve follow-up. In this context, this perspective discusses the significance of optimally defining HPV+ status, which requires HPV DNA and p16INKa overexpression, using prognostic markers, such as high CD8+ T-cell counts and HPV E2 mRNA expression, tumor size, and following cfHPV DNA for patient selection for specific therapies. Clinical trials with ICI with/without chemotherapy, targeted therapy with specific inhibitors-such as phosphoinositide 3-kinase and fibroblast growth factor receptor inhibitors-or immune therapy with various HPV-based vaccines for treating recurrences have yielded promising results.
Collapse
Affiliation(s)
- Mark Zupancic
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
| | | | - Linda Marklund
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
- Department of Surgical SciencesSection of Otolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
- Division of Ear Nose and Throat DiseasesDepartment of Clinical Sciences Intervention and TechnologyKarolinska InstitutetStockholmSweden
| | - Tina Dalianis
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Hildebrand LS, Jost T, Schindler M, Derer A, Fuhrmann G, Fietkau R, Distel LV. Inhibiting NHEJ in HNSCC cell lines by the ligase IV inhibitor SCR130 has limited radiosensitizing effects. Sci Rep 2025; 15:17871. [PMID: 40404928 PMCID: PMC12098888 DOI: 10.1038/s41598-025-03159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
Radiotherapy (RT) is a relevant treatment for head and neck squamous cell carcinoma (HNSCC) patients but radioresistance, which depends on DNA damage response (DDR), restrains outcome. Therefore, manipulating DDR by small molecule inhibitors (SMI) is a promising treatment option. The main DNA double strand break (DSB) repair mechanisms in healthy mammalian cells are homologous recombination (HR) and non-homologous end joining (NHEJ). It is known that HR is already often impaired in tumors because of cancerous transitions. Therefore, additionally inhibiting NHEJ is a possibility to specifically target tumor cells and spare healthy tissue, which has the alternative DSB repair mechanism available. We treated HNSCC and healthy fibroblast cell lines with 30 µM of the ligase IV inhibitor SCR130 and a single dose of 2 Gy (Gy) ionizing radiation (IR) to investigate the inhibitor's radiosensitizing effect. In short, the effect of SCR130 in combination with IR on cell death, clonogenicity, and DNA damage is limited and highly cell line specific. Nevertheless, SCR130 increases the number of cells in G0/G1 phase concomitant with gained p21 expression consistently. We suggest that SCR130 in combination with IR has anti-proliferative effects, but an escape of the cells by upregulation of ligase IV resulting from the treatment is possible.
Collapse
Affiliation(s)
- Laura S Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Tina Jost
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Radiation Oncology, Translational Radiobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Marion Schindler
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 5, 91058, Erlangen, Germany
| | - Anja Derer
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Radiation Oncology, Translational Radiobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Gregor Fuhrmann
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 5, 91058, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| |
Collapse
|
3
|
Chen AM. HPV-Mediated Radiosensitivity in Oropharyngeal Squamous Cell Carcinoma: Molecular Mechanisms and Cellular Pathways. Curr Oncol Rep 2025; 27:634-641. [PMID: 40214894 DOI: 10.1007/s11912-025-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE OF REVIEW While the oncogenic potential of HPV has been well-established in other disease sites (e.g. cervix, vulva, anus), it is increasingly evident that a significant proportion of oropharyngeal cancer cases are related to the virus. Although considerable progress has been made in the understanding of this disease with respect to its underlying biology and clinical behavior, numerous questions persist. From a therapeutic standpoint, HPV-positive oropharyngeal cancer has been shown to be more radiosensitive than HPV-negative disease. However, how HPV mediates this radiosensitivity is relatively uncertain. RECENT FINDINGS Given that it has been firmly established that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite response to radiation and can be treated with less-than-standard doses, logical questions pertain to how HPV confers this benefit to infected patients. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, multiple theories have been proposed. Indeed, it is likely that no single explanation exists for the increased radiosensitivity, and instead, HPV likely exerts its influence through a cascade of activated pathways at both the cellular level and tumor microenvironment. As will be discussed in this review, the proposed mechanisms for HPV-induced radiation response have generally centered on the disruption of such cellular pathways as DNA repair, cell cycle checkpoints, metabolic-induced stress, immunology, and cancer stem cells. Given that HPV-positive oropharyngeal cancer is increasingly recognized as a public health problem, the search to better understand its unique biological radiosensitivity has important societal and treatment-related implications.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Irvine, Chao Family Comprehensive Cancer Center, University of California, 101 The City Drive, Building 23, Orange, CA, 92868, USA.
| |
Collapse
|
4
|
Issing C, Menche C, Richter MR, Mosa MH, von der Grün J, Fleischmann M, Thoenissen P, Winkelmann R, Darvishi T, Loth AG, Ghanaati S, Rödel F, Wild PJ, Brandts CH, Stöver T, Farin HF. Head and neck tumor organoid biobank for modelling individual responses to radiation therapy according to the TP53/HPV status. J Exp Clin Cancer Res 2025; 44:85. [PMID: 40045309 PMCID: PMC11881459 DOI: 10.1186/s13046-025-03345-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Head and neck cancers (HNC) represent an extremely heterogeneous group of diseases with a poorly predictable therapy outcome. Patient-derived tumor organoids (PDTO) offer enormous potential for individualized therapy testing and a better mechanistic understanding of the main HNC drivers. METHODS Here, we have established a comprehensive molecularly and functionally characterized head and neck organoid biobank (HNOB) recapitulating the clinically relevant subtypes of TP53 mutant and human papillomavirus type 16 (HPV 16) infection-driven HNC. Organoids were exposed to radiotherapy, and responses were correlated with clinical data. Genetically engineered normal and tumor organoids were used for testing the direct functional consequences of TP53-loss and HPV infection. RESULTS The HNOB consisting of 18 organoid models, including 15 tumor models, was generated. We identified subtype-associated transcriptomic signatures and pathological features, including sensitivity to TP53 stabilization by the MDM2 inhibitor Nutlin-3. Furthermore, we describe an in vitro radio response assay revealing phenotypic heterogeneity linked to the individual patient's treatment outcome, including relapse probability. Using genetically engineered organoids, the possibility of co-existence of both cancer drivers was confirmed. TP53 loss, as well as HPV, increased growth in normal and tumor organoids. TP53 loss-of-function alone was insufficient to promote radiation resistance, whereas HPV 16 oncogenes E6/E7 mediated radiosensitivity via induction of cell cycle arrest. CONCLUSION Our results highlight the translational value of the head and neck organoid models not only for patient stratification but also for mechanistic validation of therapy responsiveness of specific cancer drivers.
Collapse
Affiliation(s)
- Christian Issing
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany.
- Mildred-Scheel Early Career Center Frankfurt, Frankfurt/Main, Germany.
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mara Romero Richter
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Jens von der Grün
- Mildred-Scheel Early Career Center Frankfurt, Frankfurt/Main, Germany
- Department of Radio-oncology, University Hospital Zürich, Zürich, Switzerland
| | - Maximilian Fleischmann
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Philipp Thoenissen
- Clinic of Oral, Cranio-Maxillofacial and Plastic Facial Surgery, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute for Pathology and Human Genetics, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Tahmineh Darvishi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Andreas G Loth
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Shahram Ghanaati
- Clinic of Oral, Cranio-Maxillofacial and Plastic Facial Surgery, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Franz Rödel
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Peter J Wild
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
- Dr. Senckenberg Institute for Pathology and Human Genetics, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Christian H Brandts
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Timo Stöver
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Longoni M, Fankhauser CD, Negri F, Salonia A, Basile G, Johnstone PAS, Bandini M. Treatment strategies in human papillomavirus-related advanced penile cancer. Nat Rev Urol 2025:10.1038/s41585-025-00994-z. [PMID: 39966660 DOI: 10.1038/s41585-025-00994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Penile cancer is a rare neoplasm with heterogeneous prevalence influenced by risk factors such as smoking, poor hygiene and human papillomavirus (HPV) infection. Southern Africa, South America and Southeast Asia have the highest incidence of this disease. Penile squamous cell carcinomas (PSCCs) account for the majority of instances of penile cancer, with HPV-related carcinogenesis implicated in up to half of them. Increases in PSCC incidence in industrialized nations parallel the rising high-risk HPV infection rates, particularly HPV-16. Early-stage, localized PSCC is often manageable, but treatment options in advanced disease remain limited, with poor survival outcomes. Emerging evidence suggests that HPV-positive PSCC might exhibit unique therapeutic responses, including increased sensitivity to radiotherapy and chemotherapy, as has been observed in HPV-driven head and neck squamous cell carcinoma. Results of studies in HPV-positive PSCC demonstrate improved responses to chemoradiotherapy and immunotherapy, underscoring the potential for tailored treatments and de-escalation. Additionally, incorporating immunotherapy with radiotherapy in HPV-driven PSCC might provide greater oncological benefits than standard chemotherapy. These observations suggest that treatment strategies for HPV-positive PSCC might benefit from de-escalated chemoradiotherapy regimens or immunotherapy incorporation, potentially optimizing efficacy while minimizing toxic effects. Furthermore, biomarkers such as tumour mutational burden, programmed cell death ligand 1 expression, and genetic alterations could be crucial for predicting treatment response. Comprehensive biomarker assessment and accurate HPV status determination are essential for developing patient-tailored therapeutic strategies. These data provide evidence of the potential benefits of individualized approaches based on tumour biology and biomarker profiles.
Collapse
Affiliation(s)
- Mattia Longoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Christian D Fankhauser
- Department of Urology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Urology, Luzerner Kantonsspital, University of Lucerne, Lucerne, Switzerland
- University of Zurich, Faculty of Medicine and Surgery, Zurich, Switzerland
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Fausto Negri
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
| | - Giuseppe Basile
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy
- Department of Urology, The Royal Free London Foundation Trust, London, UK
| | - Peter A S Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marco Bandini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
- University "Vita-Salute" San Raffaele, Faculty of Medicine and Surgery, Milan, Italy.
| |
Collapse
|
6
|
Kharouta M, Lorenz FJ, Mahase S, Shi H, Goyal N, Yao M. The Role of Radiotherapy to the Primary Site in Oropharyngeal Cancer with Limited Metastases-An Analysis of a Hospital-Based Registry. Cancers (Basel) 2024; 16:4130. [PMID: 39766030 PMCID: PMC11674761 DOI: 10.3390/cancers16244130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Limited metastatic squamous cell carcinoma of the oropharynx (OPC) lacks clear management guidelines, especially for HPV-associated disease. The objective of this study was to investigate if primary site radiotherapy (RT) benefits overall survival in limited metastatic OPC. Methods: Utilizing the National Cancer Database (NCDB), patients aged 18-90 with OPC presenting as cM1 with limited metastatic disease to one distant site were identified. Propensity score matching, Cox-proportional hazards models, and Kaplan-Meier estimates were employed to assess factors associated with overall survival. Results: In this study, 1056 patients were included with metastases involving bone (19.0%), brain (0.8%), lung (52.9%), liver (10.1%), and lymph nodes (20.4%). Treatment modalities included 54.6% receiving primary site RT, 45.4% receiving no RT, and 69.9% undergoing systemic therapy. For HPV-positive patients, RT (HR 0.64, p = 0.0026) and receipt of chemotherapy (HR = 0.57, p = 0.0057) were associated with improved overall survival, while bone and lung metastases were associated with decreased survival (HR = 1.75 and 1.39, p = 0.0041 and 0.041, respectively). In HPV-negative cases, survival also correlated with RT (HR = 0.65, p = 0.0047), receipt of chemotherapy (HR = 0.45, p < 0.001), clinical T4 disease (HR = 1.99, p = 0.012), presence of bone metastases (HR = 2.52, p < 0.001), lung metastases (HR = 1.49, p = 0.035), and lymphovascular invasion (HR = 1.10, p < 0.001). Overall, patients who received RT showed increased median overall survival from 9.9 to 16.1 months (p < 0.001) compared to those who did not. When stratified by RT and HPV status, there was higher median survival for both HPV-positive (from 17.1 to 24.9 months, p < 0.001) and HPV-negative patients (from 8.4 to 12.9 months, p = 0.0016) who received RT compared to those who did not. Conclusions: Primary-site radiotherapy may positively impact overall survival in limited metastatic OPC, irrespective of HPV status.
Collapse
Affiliation(s)
- Michael Kharouta
- Department of Radiation Oncology, Creticos Cancer Center, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - F. Jeffrey Lorenz
- Department of Otolaryngology–Head and Neck Surgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sean Mahase
- Department of Radiation Oncology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China;
| | - Neerav Goyal
- Department of Otolaryngology–Head and Neck Surgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Min Yao
- Department of Radiation Oncology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Antrobus J, Mackinnon B, Melia E, Hughes JR, Parsons JL. HDAC Inhibitors Can Enhance Radiosensitivity of Head and Neck Cancer Cells Through Suppressing DNA Repair. Cancers (Basel) 2024; 16:4108. [PMID: 39682293 DOI: 10.3390/cancers16234108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The incidence of head and neck squamous cell carcinoma (HNSCC), currently ~800,000 cases per year worldwide, is rising. Radiotherapy remains a mainstay for the treatment of HNSCC, although inherent radioresistance, particularly in human papillomavirus (HPV)-negative disease subtypes, remains a significant barrier to effective treatment. Therefore, combinatorial strategies using drugs or inhibitors against specific cellular targets are necessary to enhance HNSCC radiosensitivity to lead to an improvement in patient outcomes. Given that radiotherapy acts through targeting and damaging DNA, a common strategy is to focus on enzymes within DNA-dependent cellular pathways, such as DNA damage repair. Methods: Here, we have employed a 3D spheroid model of HNSCC (FaDu) in combination with a targeted drug screen to identify novel radiosensitisers that suppress tumour growth. Results: We identified that histone deacetylases (HDACs) were prominent candidates, and subsequently identified that the HDAC inhibitors mocetinostat and pracinostat, as well as the combined HDAC-epidermal growth factor receptor inhibitor CUDC-101, were effective at radiosensitising cell models of HNSCC (FaDu, A253, UMSCC11b) through their impact on both spheroid growth and clonogenic survival assays. We also demonstrated that this combinatorial strategy leads to inhibition of the repair of DNA double-strand breaks through the neutral comet assay and γH2AX foci analysis using immunofluorescence microscopy, providing a mechanism of action through which HDAC inhibition functions in HNSCC radiosensitisation. Conclusions: We believe that this approach should be further investigated in preclinical models, in order to realise the full therapeutic potential of HDAC inhibition for the radiosensitisation of HNSCC, eventually leading to improved patient treatment efficacy and outcomes.
Collapse
Affiliation(s)
- Jennifer Antrobus
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Bethany Mackinnon
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emma Melia
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan R Hughes
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jason L Parsons
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: Who, why, what, where, when, how, how much…and what next? Radiother Oncol 2024; 200:110373. [PMID: 38857702 DOI: 10.1016/j.radonc.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The emergence of treatment de-escalation as a feasible option for patients with newly diagnosed human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma has generated considerable excitement among both providers and patients alike. Since HPV-positive oropharyngeal carcinoma has been shown to be a unique entity with distinct clinical and molecular characteristics, the rationale for customizing treatment for patients with this disease is compelling. Indeed, evidence has accumulated demonstrating that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts and thus might possibly be targeted with de-escalated approaches. The fundamental goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the intensity of treatment and thus the incidence of both short- and long-term toxicity. Given the rapidly increasing incidence of this disease, particularly among younger patients who are generally healthy, the focus on quality of life seems germane. Although the exact reason for the improved sensitivity of HPV-positive oropharyngeal carcinoma to treatment is uncertain, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, these studies have been fairly heterogeneous in design, and it remains questionable how to apply their findings to real-world practice. The potential of integrating translational approaches into clinical paradigms is also just starting to become recognized. Consequently, multiple uncertainties continue to exist with respect to de-escalation for HPV-positive oropharyngeal cancer, and these questions comprise the crux of this review.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California- Irvine, School of Medicine, Irvine, CA 92617, United States.
| |
Collapse
|
9
|
He L, Hertel L, James CD, Morgan IM, Klingelhutz AJ, Fu TM, Kauvar LM, McVoy MA. Inhibition of human cytomegalovirus entry into mucosal epithelial cells. Antiviral Res 2024; 230:105971. [PMID: 39074588 PMCID: PMC11408113 DOI: 10.1016/j.antiviral.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Human cytomegalovirus (CMV) causes serious developmental disabilities in newborns infected in utero following oral acquisition by the mother. Thus, neutralizing antibodies in maternal saliva have potential to prevent maternal infection and, consequently, fetal transmission and disease. Based on standard cell culture models, CMV entry mediators (and hence neutralizing targets) are cell type-dependent: entry into fibroblasts requires glycoprotein B (gB) and a trimeric complex (TC) of glycoproteins H, L, and O, whereas endothelial and epithelial cell entry additionally requires a pentameric complex (PC) of glycoproteins H and L with UL128, UL130, and UL131A. However, as the mediators of mucosal cell entry and the potential impact of cellular differentiation remained unclear, the present studies utilized mutant viruses, neutralizing antibodies, and soluble TC-receptor to determine the entry mediators required for infection of mucocutaneus cell lines and primary tonsil epithelial cells. Entry into undifferentiated cells was largely PC-dependent, but PC-independent entry could be induced by differentiation. TC-independent entry was also observed and varied by cell line and differentiation. Infection of primary tonsil cells from some donors was entirely TC-independent. In contrast, an antibody to gB or disruption of virion attachment using heparin blocked entry into all cells. These findings indicate that CMV entry into the spectrum of cell types encountered in vivo is likely to be more complex than has been suggested by standard cell culture models and may be influenced by the relative abundance of virion envelope glycoprotein complexes as well as by cell type, tissue of origin, and state of differentiation.
Collapse
Affiliation(s)
- Li He
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Laura Hertel
- Department of Pediatrics, School of Medicine, University of California San Francisco, Oakland, CA, 94609, USA
| | - Claire D James
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Meidenbauer J, Wachter M, Schulz SR, Mostafa N, Zülch L, Frey B, Fietkau R, Gaipl US, Jost T. Inhibition of ATM or ATR in combination with hypo-fractionated radiotherapy leads to a different immunophenotype on transcript and protein level in HNSCC. Front Oncol 2024; 14:1460150. [PMID: 39411143 PMCID: PMC11473424 DOI: 10.3389/fonc.2024.1460150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background The treatment of head and neck tumors remains a challenge due to their reduced radiosensitivity. Small molecule kinase inhibitors (smKI) that inhibit the DNA damage response, may increase the radiosensitivity of tumor cells. However, little is known about how the immunophenotype of the tumor cells is modulated thereby. Therefore, we investigated whether the combination of ATM or ATR inhibitors with hypo-fractionated radiotherapy (RT) has a different impact on the expression of immune checkpoint markers (extrinsic), the release of cytokines or the transcriptome (intrinsic) of head and neck squamous cell carcinoma (HNSCC) cells. Methods The toxic and immunogenic effects of the smKI AZD0156 (ATMi) and VE-822 (ATRi) in combination with a hypo-fractionated scheme of 2x5Gy RT on HPV-negative (HSC4, Cal-33) and HPV-positive (UM-SCC-47, UD-SCC-2) HNSCC cell lines were analyzed as follows: cell death (necrosis, apoptosis; detected by AnxV/PI), expression of immunostimulatory (ICOS-L, OX40-L, TNFSFR9, CD70) and immunosuppressive (PD-L1, PD-L2, HVEM) checkpoint marker using flow cytometry; the release of cytokines using multiplex ELISA and the gene expression of Cal-33 on mRNA level 48 h post-RT. Results Cell death was mainly induced by the combination of RT with both inhibitors, but stronger with ATRi. Further, the immune phenotype of cancer cells, not dying from combination therapy itself, is altered predominantly by RT+ATRi in an immune-stimulatory manner by the up-regulation of ICOS-L. However, the analysis of secreted cytokines after treatment of HNSCC cell lines revealed an ambivalent influence of both inhibitors, as we observed the intensified secretion of IL-6 and IL-8 after RT+ATRi. These findings were confirmed by RNAseq analysis and further the stronger immune-suppressive character of RT+ATMi was enlightened. We detected the down-regulation of a central protein of cytoplasmatic sensing pathways of nucleic acids, RIG-1, and found one immune-suppressive target, EDIL3, strongly up-regulated by RT+ATMi. Conclusion Independent of a restrictive toxicity, the combination of RT + either ATMi or ATRi leads to comprehensive and immune-modulating alterations in HNSCC. This includes pro-inflammatory signaling induced by RT + ATRi but also anti-inflammatory signals. These findings were confirmed by RNAseq analysis, which further highlighted the immune-suppressive nature of RT + ATMi.
Collapse
Affiliation(s)
- Julia Meidenbauer
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wachter
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nada Mostafa
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lilli Zülch
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Jost
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H, Parikh AS. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3047. [PMID: 39272905 PMCID: PMC11394608 DOI: 10.3390/cancers16173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide according to GLOBOCAN estimates from 2022. Current therapy options for recurrent or metastatic disease are limited to conventional cytotoxic chemotherapy and immunotherapy, with few targeted therapy options readily available. Recent single-cell transcriptomic analyses identified TGF-β signaling as an important mediator of functional interplays between cancer-associated fibroblasts and a subset of mesenchymal cancer cells. This signaling was shown to drive invasiveness, treatment resistance, and immune evasion. These data provide renewed interest in the TGF-β pathway as an alternative therapeutic target, prompting a critical review of previous clinical data which suggest a lack of benefit from TGF-β inhibitors. While preclinical data have demonstrated the great anti-tumorigenic potential of TGF-β inhibitors, the underwhelming results of ongoing and completed clinical trials highlight the difficulty actualizing these benefits into clinical practice. This topical review will discuss the relevant preclinical and clinical findings for TGF-β inhibitors in HNSCC and will explore the potential role of patient stratification in the development of this therapeutic strategy.
Collapse
Affiliation(s)
- William R Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Isabel Cioffi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Corinne Stonebraker
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Matthew Spence
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
12
|
Ahmadi Kamalabadi M, Ostadebrahimi H, Koosha F, Fatemidokht A, Menbari Oskuie I, Amin F, Shiralizadeh Dezfuli A. Gd-GQDs as nanotheranostic platform for the treatment of HPV-positive oropharyngeal cancer. Med Oncol 2024; 41:205. [PMID: 39037549 DOI: 10.1007/s12032-024-02431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
In this study, we developed new gadolinium-graphene quantum dot nanoparticles (Gd-GQDs) as a theranostic platform for magnetic resonance imaging and improved the efficiency of radiotherapy in HPV-positive oropharyngeal cancer. Based on cell toxicity results, Gd-GQD NPs were nontoxic for both cancer and normal cell lines up to 25 µg/ml. These NPs enhance the cytotoxic effect of radiation only on cancer cells but not on normal cells. The flow cytometry analysis indicated that cell death mainly occurred in the late phase of apoptosis. The immunocytochemical analysis was used to evaluate apoptosis pathway proteins. The Bcl-2 and p53 protein levels did not differ statistically significantly between radiation alone group and those that received irradiation in combination with NPs. In contrast, the combination group exhibited a significant increase in Bax protein expression, suggesting that cells could undergo apoptosis independent of the p53 pathway. Magnetic resonance (MR) imaging showed that Gd-GQD NPs, when used at low concentrations, enhanced T1-weighted signal intensity resulting from T1 shortening effects. At higher concentrations, the T2 shortening effect became predominant and was able to decrease the signal intensity. Gd-GQD appears to offer a novel approach for enhancing the effectiveness of radiation treatment and facilitating MR imaging for monitoring HPV-positive tumors.
Collapse
Affiliation(s)
- Mahdieh Ahmadi Kamalabadi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Radiology, Faculty of Allied Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Ostadebrahimi
- Department of Pediatrics, Faculty of Medicine, Non-Communicable Disease Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Darband St, Ghods Sq., Tehran, 1971653313, Iran.
| | - Asieh Fatemidokht
- Department of Radiology, Faculty of Allied Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Menbari Oskuie
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amin
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Shiralizadeh Dezfuli
- Ronash Technology Pars Company (AMINBIC), Tehran University Science and Technology Park, North Campus of Tehran University, Farshi Moghadam St., North Kargar St, Tehran, 1439813204, Iran.
| |
Collapse
|
13
|
Thomson DJ, Slevin NJ, Baines H, Betts G, Bolton S, Evans M, Garcez K, Irlam J, Lee L, Melillo N, Mistry H, More E, Nutting C, Price JM, Schipani S, Sen M, Yang H, West CM. Randomized Phase 3 Trial of the Hypoxia Modifier Nimorazole Added to Radiation Therapy With Benefit Assessed in Hypoxic Head and Neck Cancers Determined Using a Gene Signature (NIMRAD). Int J Radiat Oncol Biol Phys 2024; 119:771-782. [PMID: 38072326 DOI: 10.1016/j.ijrobp.2023.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE Tumor hypoxia is an adverse prognostic factor in head and neck squamous cell carcinoma (HNSCC). We assessed whether patients with hypoxic HNSCC benefited from the addition of nimorazole to definitive intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS NIMRAD was a phase 3, multicenter, placebo-controlled, double-anonymized trial of patients with HNSCC unsuitable for concurrent platinum chemotherapy or cetuximab with definitive IMRT (NCT01950689). Patients were randomized 1:1 to receive IMRT (65 Gy in 30 fractions over 6 weeks) plus nimorazole (1.2 g/m2 daily, before IMRT) or placebo. The primary endpoint was freedom from locoregional progression (FFLRP) in patients with hypoxic tumors, defined as greater than or equal to the median tumor hypoxia score of the first 50 patients analyzed (≥0.079), using a validated 26-gene signature. The planned sample size was 340 patients, allowing for signature generation in 85% and an assumed hazard ratio (HR) of 0.50 for nimorazole effectiveness in the hypoxic group and requiring 66 locoregional failures to have 80% power in a 2-tail log-rank test at the 5% significance level. RESULTS Three hundred thirty-eight patients were randomized by 19 centers in the United Kingdom from May 2014 to May 2019, with a median follow-up of 3.1 years (95% CI, 2.9-3.4). Hypoxia scores were available for 286 (85%). The median patient age was 73 years (range, 44-88; IQR, 70-76). There were 36 (25.9%) locoregional failures in the hypoxic group, in which nimorazole + IMRT did not improve FFLRP (adjusted HR, 0.72; 95% CI, 0.36-1.44; P = .35) or overall survival (adjusted HR, 0.96; 95% CI, 0.53-1.72; P = .88) compared with placebo + IMRT. Similarly, nimorazole + IMRT did not improve FFLRP or overall survival in the whole population. In total (N = 338), 73% of patients allocated nimorazole adhered to the drug for ≥50% of IMRT fractions. Nimorazole + IMRT caused more acute nausea compared with placebo + IMRT (Common Terminology Criteria for Adverse Events version 4.0 G1+2: 56.6% vs 42.4%, G3: 10.1% vs 5.3%, respectively; P < .05). CONCLUSIONS Addition of the hypoxia modifier nimorazole to IMRT for locally advanced HNSCC in older and less fit patients did not improve locoregional control or survival.
Collapse
Affiliation(s)
- David J Thomson
- The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Liverpool, Liverpool, United Kingdom; Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Nick J Slevin
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Helen Baines
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Northwood, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Guy Betts
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Steve Bolton
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mererid Evans
- Cardiff University and Velindre Cancer Centre, Cardiff, United Kingdom
| | - Kate Garcez
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Joely Irlam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Lip Lee
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | - Hitesh Mistry
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; SystemsForecastingUK Ltd, Lancaster, United Kingdom
| | - Elisabet More
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | | | - James M Price
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Stefano Schipani
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom
| | - Mehmet Sen
- Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
| | - Huiqi Yang
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Northwood, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Catharine M West
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| |
Collapse
|
14
|
Wang Y, Wang F, Wang S, Zhang L, Fu H, Sun L, Wang W, Liu C, Ren W, Gao L, Xing G, Ma X. p16 and p53 can Serve as Prognostic Markers for Head and Neck Squamous Cell Carcinoma. Int Dent J 2024; 74:543-552. [PMID: 38105167 PMCID: PMC11123557 DOI: 10.1016/j.identj.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVE The present study aimed to explore the expression and clinical significance of human papilloma virus-related pathogenic factors (p16, cyclin D1, p53) in patients with head and neck squamous cell carcinoma (HNSCC) and construct a predictive model. METHODS The Cancer Genome Atlas was used to obtain clinical data for 112 patients with HNSCC. Expression of p16, p53, and cyclin D1 was quantified. We used the survival package of the R program to set the cut-off value. Values above the cut-off were considered positive, while values below the cut-off were negative. Kaplan-Meier analysis and univariate and multivariate Cox regression analyses were performed to investigate prognostic clinicopathological indicators and the expression of p16, p53, and cyclin D1. A predictive model was constructed based on the results of multifactor Cox regression analysis, and the accuracy of the predictive model was verified through final calibration analysis. Follow-up of patients with HNSCC at the Affiliated Hospital of Binzhou Medical University was conducted from 2015 to 2017, and reliability of the predictive model was validated based on follow-up data and molecular expression levels. RESULTS According to the results, expression of p16 and p53 was significantly associated with prognosis (P < .05). The predictive model constructed based on the expression levels of p16 and p53 was useful for evaluating the prognosis of patients with HNSCC. The predictive model was validated using follow-up data obtained from the hospital, and the trend of the follow-up results was consistent with the predictive model. CONCLUSION p16 and p53 can be used as key indicators to predict the prognosis of HNSCC patients and as critical immunohistochemical indicators in clinical practice. The survival model constructed based on p16 and p53 expression levels reliably predicts patient prognosis.
Collapse
Affiliation(s)
- Yue Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of stomatology, ZiBo Central Hospital, ZiBo, Shandong, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Shuhan Wang
- School of Stomatology, Qilu Medical University, ZiBo, Shangdong, China
| | - Lingnan Zhang
- School of Stomatology, Binzhou Medical University, Yantai, China; Department of Orthodontics, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Honghai Fu
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Legang Sun
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China; School of Stomatology, Binzhou Medical University, Yantai, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chunxia Liu
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoyi Xing
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China; School of Stomatology, Binzhou Medical University, Yantai, China; Wuhan Dongxihu District People's Hospital
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
15
|
Chatterjee S, Starrett GJ. Microhomology-mediated repair machinery and its relationship with HPV-mediated oncogenesis. J Med Virol 2024; 96:e29674. [PMID: 38757834 DOI: 10.1002/jmv.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Jones KM, Bryan A, McCunn E, Lantz PE, Blalock H, Ojeda IC, Mehta K, Cosper PF. The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus. Cancers (Basel) 2024; 16:1662. [PMID: 38730612 PMCID: PMC11083350 DOI: 10.3390/cancers16091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Pate E. Lantz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Blalock
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Isabel C. Ojeda
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Kavi Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
17
|
Lorini L, Bossi P, Psyrri A, Bonomo P. Human Papilloma Virus (HPV) driven oropharyngeal cancer in current or previous heavy smokers: should we look for a different treatment paradigm? Front Oncol 2024; 14:1383019. [PMID: 38651143 PMCID: PMC11033308 DOI: 10.3389/fonc.2024.1383019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Human papillomavirus Virus (HPV)-associated oropharyngeal squamous cell carcinoma (OSCC) has increased in incidence in recent decades and represents a heterogeneous disease entity in the context of Head and Neck Squamous Cell Carcinoma (HNSCC), in terms of disease prognosis. Treatment of locoregionally advanced OSCC is mainly based on concurrent chemoradiotherapy. Given the younger age of patients, if compared with HPV-negative counterparts, and the high cure rates, the acute- and long-term toxicity in survivors represents a field of interest. However, patient selection for de-escalation trials remains a major challenge due to the lack of robust validated prognostic indicators within the HPV-associated OSCC. Discussion The impact of smoking status on HPV-associated OSCC prognosis has been demonstrated in the majority of studies. However, the magnitude of the association is unclear due to variability in smoking metrics and study outcomes. Smoking status has been identified as a potential confounding factor in HPV-positive de-escalation trials. Smokers with HPV-positive OSCC have a worse prognosis in most studies than non-smokers and may require different and more aggressive therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Lorini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Amanda Psyrri
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| | - Pierluigi Bonomo
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
18
|
Ivers JD, Puvvada N, Quick CM, Rajaram N. Investigating the relationship between hypoxia, hypoxia-inducible factor 1, and the optical redox ratio in response to radiation therapy. BIOPHOTONICS DISCOVERY 2024; 1:015003. [PMID: 40109884 PMCID: PMC11922545 DOI: 10.1117/1.bios.1.1.015003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Significance Radiation resistance is a major contributor to cancer treatment failure and is likely driven by multiple pathways. Multivariate visualization that preserves the spatial co-localization of factors could aid in understanding mechanisms of resistance and identifying biomarkers of response. Aim We aim to investigate the spatial and temporal relationship between hypoxia, hypoxia-inducible factor 1 (HIF-1α), and metabolism in response to radiation therapy in two cell lines of known radiation resistance and sensitivity. Approach Two-photon excited fluorescence and fluorescence lifetime imaging microscopy were used to quantify the optical redox ratio (ORR) and NAD(P)H fluorescent lifetime and bound fraction in frozen tumor sections and co-registered with immunohistochemical stain-based imaging of hypoxic fraction and HIF-1α. Results Histogram analysis of hypoxia, HIF-1α, and ORR revealed an increase in the ORR in regions of low hypoxia and high HIF-1α, indicating that the stabilization of HIF-1α is likely due to an increase in reactive oxygen species following radiation therapy. In addition, the bound NAD(P)H fraction was higher in regions with a low ORR in resistant tumors following radiation, suggesting an increase in fatty acid synthesis. Conclusions A multivariate histogram approach can reveal hidden trends not observed in bulk analysis of tumor images and may be useful in understanding biomarkers and mechanisms of radiation resistance.
Collapse
Affiliation(s)
- Jesse D Ivers
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Nagavenkatasai Puvvada
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Charles M Quick
- University of Arkansas for Medical Sciences, Department of Pathology, Little Rock, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| |
Collapse
|
19
|
Mallick S, Choi Y, Taylor AM, Cosper PF. Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses 2024; 16:501. [PMID: 38675844 PMCID: PMC11053578 DOI: 10.3390/v16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.
Collapse
Affiliation(s)
- Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Yeseo Choi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
20
|
Lee NY, Sherman EJ, Schöder H, Wray R, Boyle JO, Singh B, Grkovski M, Paudyal R, Cunningham L, Zhang Z, Hatzoglou V, Katabi N, Diplas BH, Han J, Imber BS, Pham K, Yu Y, Zakeri K, McBride SM, Kang JJ, Tsai CJ, Chen LC, Gelblum DY, Shah JP, Ganly I, Cohen MA, Cracchiolo JR, Morris LG, Dunn LA, Michel LS, Fetten JV, Kripani A, Pfister DG, Ho AL, Shukla-Dave A, Humm JL, Powell SN, Li BT, Reis-Filho JS, Diaz LA, Wong RJ, Riaz N. Hypoxia-Directed Treatment of Human Papillomavirus-Related Oropharyngeal Carcinoma. J Clin Oncol 2024; 42:940-950. [PMID: 38241600 PMCID: PMC10927322 DOI: 10.1200/jco.23.01308] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 01/21/2024] Open
Abstract
PURPOSE Standard curative-intent chemoradiotherapy for human papillomavirus (HPV)-related oropharyngeal carcinoma results in significant toxicity. Since hypoxic tumors are radioresistant, we posited that the aerobic state of a tumor could identify patients eligible for de-escalation of chemoradiotherapy while maintaining treatment efficacy. METHODS We enrolled patients with HPV-related oropharyngeal carcinoma to receive de-escalated definitive chemoradiotherapy in a phase II study (ClinicalTrials.gov identifier: NCT03323463). Patients first underwent surgical removal of disease at their primary site, but not of gross disease in the neck. A baseline 18F-fluoromisonidazole positron emission tomography scan was used to measure tumor hypoxia and was repeated 1-2 weeks intratreatment. Patients with nonhypoxic tumors received 30 Gy (3 weeks) with chemotherapy, whereas those with hypoxic tumors received standard chemoradiotherapy to 70 Gy (7 weeks). The primary objective was achieving a 2-year locoregional control (LRC) of 95% with a 7% noninferiority margin. RESULTS One hundred fifty-eight patients with T0-2/N1-N2c were enrolled, of which 152 patients were eligible for analyses. Of these, 128 patients met criteria for 30 Gy and 24 patients received 70 Gy. The 2-year LRC was 94.7% (95% CI, 89.8 to 97.7), meeting our primary objective. With a median follow-up time of 38.3 (range, 22.1-58.4) months, the 2-year progression-free survival (PFS) and overall survival (OS) rates were 94% and 100%, respectively, for the 30-Gy cohort. The 70-Gy cohort had similar 2-year PFS and OS rates at 96% and 96%, respectively. Acute grade 3-4 adverse events were more common in 70 Gy versus 30 Gy (58.3% v 32%; P = .02). Late grade 3-4 adverse events only occurred in the 70-Gy cohort, in which 4.5% complained of late dysphagia. CONCLUSION Tumor hypoxia is a promising approach to direct dosing of curative-intent chemoradiotherapy for HPV-related carcinomas with preserved efficacy and substantially reduced toxicity that requires further investigation.
Collapse
Affiliation(s)
- Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eric J. Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - HeiKo Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jay O. Boyle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bhuvanesh Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Louise Cunningham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bill H. Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James Han
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brandon S. Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khoi Pham
- Department of Finance, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean M. McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jung J. Kang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - C. Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Linda C. Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jatin P. Shah
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Luc G.T. Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lara A. Dunn
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Loren S. Michel
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James V. Fetten
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anuja Kripani
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David G. Pfister
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan L. Ho
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John L. Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bob T. Li
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis A. Diaz
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
21
|
Liu Y, Zhang N, Yang Q. Predicting the recurrence of usual-type cervical adenocarcinoma using a nomogram based on clinical and pathological factors: a retrospective observational study. Front Oncol 2024; 14:1320265. [PMID: 38384815 PMCID: PMC10879399 DOI: 10.3389/fonc.2024.1320265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Background Usual-type cervical adenocarcinoma is the most frequent type of adenocarcinoma, and its prevalence is increasing worldwide. Tumor recurrence is the leading cause of mortality; therefore, recognizing the risk factors for cervical cancer recurrence and providing effective therapy for recurrent cervical cancer are critical steps in increasing patient survival rates. This study aimed to retrospectively analyze the clinicopathological data of patients with usual-type cervical adenocarcinoma by combining the diagnosis and treatment records after the initial treatment and recurrence. Methods We retrospectively analyzed patients diagnosed with usual-type cervical adenocarcinoma who underwent radical hysterectomy and pelvic lymph node dissection at Shengjing Hospital of China Medical University between June 2013 and June 2022. We constructed a nomogram-based postoperative recurrence prediction model, internally evaluated its efficacy, and performed internal validation. Results This study included 395 participants, including 87 individuals with recurrence. At a 7:3 ratio, the 395 patients were divided into two groups: a training set (n = 276) and a validation set (n = 119). The training set was subjected to univariate analysis, and the risk variables for recurrence included smoking, ovarian metastasis, International Federation of Gynaecology and Obstetrics (FIGO) staging, lymphovascular space invasion, perineural invasion, depth of muscular invasion, tumor size, lymph node metastasis, and postoperative HPV infection months. The aforementioned components were analyzed using logistic regression analysis, and the results showed that the postoperative HPV infection month, tumor size, perineural invasion, and FIGO stage were independent risk factors for postoperative recurrence (p<0.05). The aforementioned model was represented as a nomogram. The training and validation set consistency indices, calculated using the bootstrap method of internal validation, were 0.88 and 0.86, respectively. The model constructed in this study predicted the postoperative recurrence of usual-type cervical cancer, as indicated by the receiver operating characteristic curve. The model demonstrated good performance, as evidenced by the area under the curve, sensitivity, and specificity values of 0.90, 0.859, and 0.844, respectively. Conclusion Based on the FIGO staging, peripheral nerve invasion, tumor size, and months of postoperative HPV infection, the predictive model and nomogram for postoperative recurrence of usual-type cervical adenocarcinoma are precise and effective. More extensive stratified evaluations of the risk of cervical adenocarcinoma recurrence are still required, as is a thorough assessment of postoperative recurrence in the future.
Collapse
Affiliation(s)
| | | | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Jain P, Kumar N, Shetty SC, Kalladka SS, Ramesh PS, Patil P, Kumar M, Rajendra VK, Devegowda D, Shetty V. Prevalence of Epstein Barr Virus and Herpes Simplex Virus Among Human Papillomavirus Negative Oral Cancer Patients: A Cross-Sectional Study from South India. Indian J Otolaryngol Head Neck Surg 2024; 76:414-421. [PMID: 38440516 PMCID: PMC10908691 DOI: 10.1007/s12070-023-04174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 03/06/2024] Open
Abstract
The high incidence of oral carcinomas is due to its multifactorial etiology and the presence of various risk factors. Human Papillomavirus (HPV) has a proven role in the pathogenesis of oral carcinomas, but in the recent times there has been an increasing incidence of oral cancers who are negative for HPV infection. Also, these patients are non-smokers and non-drinkers so it could be speculated that these oral cancers are due to some other etiological factor probably of other viral infections. Therefore, this study examined the prevalence of Epstein Barr Virus (EBV) and Herpes Simplex Virus (HSV) among oral cancer patients. This cross-sectional study was conducted from January 2019 to June 2020. Biopsy samples from 47 newly diagnosed untreated patients with oral malignancies were collected along with their demographic and clinicopathological information. DNA extracted from the biopsies was processed for nested PCR for the detection of EBV and HSV. All the samples tested negative for HPV and HSV infection. Nested PCR detected 29 cases (70.7%) to be positive for EBV. The non-cancerous adjacent tissues also were negative for HPV, EBV and HSV. The prevalence of EBV was found to be more in males (62.1%) and the highest number of cases was of the left buccal mucosa compromising 34% of the total cases. From the present study it can be concluded that EBV but not HSV infection is associated with an increased risk of developing oral cancers. Although, 70.7% of the patients were found to be positive for EBV whether the viral infection played any role in the driving the malignancy needs to be further elucidated.
Collapse
Affiliation(s)
- Paras Jain
- Department of General Surgery, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Nawin Kumar
- Department of General Surgery, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
- Department of Surgery, Manipal TATA Medical College, Jamshedpur, India
| | - Shriya C. Shetty
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Shwetha Shetty Kalladka
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Pushkal Sinduvadi Ramesh
- Centre of Excellence in Molecular Biology & Regenerative Medicine (DST-FIST Sponsored centre), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015 India
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 United States
| | - Prakash Patil
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Mohana Kumar
- Nitte University Centre for Stem Cell Research & Regenerative Medicine (NUCSReM), KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Vinay Kumar Rajendra
- Department of Surgical Oncology, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Devanand Devegowda
- Centre of Excellence in Molecular Biology & Regenerative Medicine (DST-FIST Sponsored centre), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015 India
| | - Veena Shetty
- Department of Microbiology, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
23
|
Xie M, Chaudhary R, Slebos RJ, Lee K, Song F, Poole MI, Hoening DS, Noel LC, Hernandez-Prera JC, Conejo-Garcia JR, Chung CH, Tan AC. Immune landscape in molecular subtypes of human papillomavirus-negative head and neck cancer. Mol Carcinog 2024; 63:120-135. [PMID: 37750589 PMCID: PMC10841270 DOI: 10.1002/mc.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) remain a poorly understood disease clinically and immunologically. HPV is a known risk factor of HNSCC associated with better outcome, whereas HPV-negative HNSCC are more heterogeneous in outcome. Gene expression signatures have been developed to classify HNSCC into four molecular subtypes (classical, basal, mesenchymal, and atypical). However, the molecular underpinnings of treatment response and the immune landscape for these molecular subtypes are largely unknown. Herein, we described a comprehensive immune landscape analysis in three independent HNSCC cohorts (>700 patients) using transcriptomics data. We assigned the HPV- HNSCC patients into these four molecular subtypes and characterized the tumor microenvironment using deconvolution method. We determined that atypical and mesenchymal subtypes have greater immune enrichment and exhibit a T-cell exhaustion phenotype, compared to classical and basal subtypes. Further analyses revealed different B cell maturation and antibody isotypes enrichment patterns, and distinct immune microenvironment crosstalk in the atypical and mesenchymal subtypes. Taken together, our study suggests that treatments that enhances B cell activity may benefit patients with HNSCC of the atypical subtypes. The rationale can be utilized in the design of future precision immunotherapy trials based on the molecular subtypes of HPV- HNSCC.
Collapse
Affiliation(s)
- Mengyu Xie
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robbert J.C. Slebos
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kyubum Lee
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Maria I. Poole
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Dirk S. Hoening
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Leenil C. Noel
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Juan C. Hernandez-Prera
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Huntsman Cancer Institute, Department of Oncological Sciences and Biomedical Informatics, University of Utah, Salt Lake City, UT, 84112 USA
| |
Collapse
|
24
|
Tuominen S, Nissi L, Kukkula A, Routila J, Huusko T, Leivo I, Minn H, Irjala H, Löyttyniemi E, Ventelä S, Sundvall M, Grönroos TJ. TSPO is a potential independent prognostic factor associated with cellular respiration and p16 in head and neck squamous cell carcinoma. Front Oncol 2023; 13:1298333. [PMID: 38162485 PMCID: PMC10755888 DOI: 10.3389/fonc.2023.1298333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background Treatment resistance and relapse are common problems in head and neck squamous cell carcinoma (HNSCC). Except for p16, no clinically accepted prognostic biomarkers are available for HNSCC. New biomarkers predictive of recurrence and survival are crucial for optimal treatment planning and patient outcome. High translocator protein (TSPO) levels have been associated with poor survival in cancer, but the role of TSPO has not been extensively evaluated in HNSCC. Materials and methods TSPO expression was determined in a large population-based tissue microarray cohort including 611 patients with HNSCC and evaluated for survival in several clinicopathological subgroups. A TCGA HNSCC cohort was used to further analyze the role of TSPO in HNSCC. Results TSPO expression was downregulated in more aggressive tumors. Low TSPO expression associated with worse 5-year survival and was an independent prognostic factor for disease-specific survival. Subgroup analyses showed that low TSPO expression associated with worse survival particularly in p16-positive oropharyngeal cancer. In silico analyses supported the prognostic role of TSPO. Cellular respiration had the highest significance in pathway analyses for genes expressed positively with TSPO. Conclusion Decreased TSPO expression associates with poor prognosis in HNSCC. TSPO is a prognostic biomarker in HNSCC to potentially guide treatment stratification especially in p16-positive oropharyngeal cancer.
Collapse
Affiliation(s)
- Sanni Tuominen
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Research Laboratory, Turku University Hospital and University of Turku, Turku, Finland
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland
| | - Linda Nissi
- Department of Clinical Oncology, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti Kukkula
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Research Laboratory, Turku University Hospital and University of Turku, Turku, Finland
| | - Johannes Routila
- Department of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Huusko
- Department of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Ilmo Leivo
- Department of Pathology, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Minn
- Department of Clinical Oncology, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Turku University Hospital and University of Turku, Turku, Finland
| | - Sami Ventelä
- Department of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Research Laboratory, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Oncology, Turku University Hospital and University of Turku, Turku, Finland
| | - Tove J. Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Clinical Oncology, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
25
|
Kansy BA, Wehrs TP, Bruderek K, Si Y, Ludwig S, Droege F, Hasskamp P, Henkel U, Dominas N, Hoffmann TK, Horn PA, Schuler M, Gauler TC, Lindemann M, Lang S, Bankfalvi A, Brandau S. HPV-associated head and neck cancer is characterized by distinct profiles of CD8 + T cells and myeloid-derived suppressor cells. Cancer Immunol Immunother 2023; 72:4367-4383. [PMID: 38019346 PMCID: PMC10700222 DOI: 10.1007/s00262-023-03571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Patients with HPV--localized head and neck cancer (HNC) show inferior outcomes after surgery and radiochemotherapy compared to HPV-associated cancers. The underlying mechanisms remain elusive, but differences in immune status and immune activity may be implicated. In this study, we analyzed immune profiles of CD8+ T cells and myeloid-derived suppressor cells (MDSC) in HPV+ versus HPV- disease.The overall frequency of CD8+ T cells was reduced in HNC versus healthy donors but substantially increased after curative therapy (surgery and/or radiochemotherapy). In HPV+ patients, this increase was associated with significant induction of peripheral blood CD8+/CD45RA-/CD62L- effector memory cells. The frequency of HPV-antigen-specific CD8+ cells was low even in patients with virally associated tumors and dropped to background levels after curative therapy. Pre-therapeutic counts of circulating monocytic MDSC, but not PMN-MDSC, were increased in patients with HPV- disease. This increase was accompanied by reduced fractions of terminally differentiated CD8+ effector cells. HPV- tumors showed reduced infiltrates of CD8+ and CD45RO+ immune cells compared with HPV+ tumors. Importantly, frequencies of tumor tissue-infiltrating PMN-MDSC were increased, while percentages of Granzyme B+ and Ki-67+ CD8 T cells were reduced in patients with HPV- disease.We report differences in frequencies and relative ratios of MDSC and effector T cells in HPV- HNC compared with more immunogenic HPV-associated disease. Our data provide new insight into the immunological profiles of these two tumor entities and may be utilized for more tailored immunotherapeutic approaches in the future.
Collapse
Affiliation(s)
- Benjamin A Kansy
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Tim P Wehrs
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yu Si
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Mannheim, Germany
| | - Freya Droege
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Pia Hasskamp
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Uta Henkel
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Nina Dominas
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, University Hospital Ulm, Ulm, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Thomas C Gauler
- Department of Medical Oncology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
- Department of Radiation Oncology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Duisburg-Essen, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| |
Collapse
|
26
|
Brennan K, Espín-Pérez A, Chang S, Bedi N, Saumyaa S, Shin JH, Plevritis SK, Gevaert O, Sunwoo JB, Gentles AJ. Loss of p53-DREAM-mediated repression of cell cycle genes as a driver of lymph node metastasis in head and neck cancer. Genome Med 2023; 15:98. [PMID: 37978395 PMCID: PMC10656821 DOI: 10.1186/s13073-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Nikita Bedi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Saumyaa Saumyaa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Marsh IR, Li C, Grudzinski J, Jeffery J, Longhurst C, Adam DP, Hernandez R, Weichert JP, Harari PM, Bednarz BP. Targeting of Head and Neck Cancer by Radioiodinated CLR1404 in Murine Xenograft Tumor Models with Partial Volume Corrected Theranostic Dosimetry. Cancer Biother Radiopharm 2023; 38:458-467. [PMID: 37022739 PMCID: PMC10516227 DOI: 10.1089/cbr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Background: Delivery of radiotherapeutic dose to recurrent head and neck cancer (HNC) is primarily limited by locoregional toxicity in conventional radiotherapy. As such, HNC patients stand to benefit from the conformal targeting of primary and remnant disease achievable with radiopharmaceutical therapies. In this study, the authors investigated the tumor targeting capacity of 131I-CLR1404 (iopofosine I-131) in various HNC xenograft mouse models and the impact of partial volume correction (PVC) on theranostic dosimetry based on 124I-CLR1404 (CLR 124) positron emission tomography (PET)/computed tomography (CT) imaging. Methods: Mice bearing flank tumor xenograft models of HNC (six murine cell line and six human patient derived) were intravenously administered 6.5-9.1 MBq of CLR 124 and imaged five times over the course of 6 d using microPET/CT. In vivo tumor uptake of CLR 124 was assessed and PVC for 124I was applied using a novel preclinical phantom. Using subject-specific theranostic dosimetry estimations for iopofosine I-131 based on CLR 124 imaging, a discrete radiation dose escalation study (2, 4, 6, and 8 Gy) was performed to evaluate tumor growth response to iopofosine I-131 relative to a single fraction of external beam radiation therapy (6 Gy). Results: PET imaging demonstrated consistent tumor selective uptake and retention of CLR 124 across all HNC xenograft models. Peak uptake of 4.4% ± 0.8% and 4.2% ± 0.4% was observed in squamous cell carcinoma-22B and UW-13, respectively. PVC application increased uptake measures by 47%-188% and reduced absolute differences between in vivo and ex vivo uptake measurements from 3.3% to 1.0 percent injected activity per gram. Tumor dosimetry averaged over all HNC models was 0.85 ± 0.27 Gy/MBq (1.58 ± 0.46 Gy/MBq with PVC). Therapeutic iopofosine I-131 studies demonstrated a variable, but linear relationship between iopofosine I-131 radiation dose and tumor growth delay (p < 0.05). Conclusions: Iopofosine I-131 demonstrated tumoricidal capacity in preclinical HNC tumor models and the theranostic pairing with CLR 124 presents a promising new treatment approach for personalizing administration of iopofosine I-131.
Collapse
Affiliation(s)
- Ian R. Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chunrong Li
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph Grudzinski
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Justin Jeffery
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David P. Adam
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P. Weichert
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul M. Harari
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan P. Bednarz
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Koi L, Bitto V, Weise C, Möbius L, Linge A, Löck S, Yaromina A, Besso MJ, Valentini C, Pfeifer M, Overgaard J, Zips D, Kurth I, Krause M, Baumann M. Prognostic biomarkers for the response to the radiosensitizer nimorazole combined with RCTx: a pre-clinical trial in HNSCC xenografts. J Transl Med 2023; 21:576. [PMID: 37633930 PMCID: PMC10464469 DOI: 10.1186/s12967-023-04439-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Tumor hypoxia is associated with resistance to radiotherapy and chemotherapy. In head and neck squamous cell carcinoma (HNSCC), nimorazole, an oxygen mimic, combined with radiotherapy (RT) enabled to improve loco-regional control (LRC) in some patients with hypoxic tumors but it is unknown whether this holds also for radiochemotherapy (RCTx). Here, we investigated the impact of nimorazole combined with RCTx in HNSCC xenografts and explored molecular biomarkers for its targeted use. METHODS Irradiations were performed with 30 fractions in 6 weeks combined with weekly cisplatin. Nimorazole was applied before each fraction, beginning with the first or after ten fractions. Effect of RCTx with or without addition of nimorazole was quantified as permanent local control after irradiation. For histological evaluation and targeted gene expression analysis, tumors were excised untreated or after ten fractions. Using quantitative image analysis, micromilieu parameters were determined. RESULTS Nimorazole combined with RCTx significantly improved permanent local control in two tumor models, and showed a potential improvement in two additional models. In these four models, pimonidazole hypoxic volume (pHV) was significantly reduced after ten fractions of RCTx alone. Our results suggest that nimorazole combined with RCTx might improve TCR compared to RCTx alone if hypoxia is decreased during the course of RCTx but further experiments are warranted to verify this association. Differential gene expression analysis revealed 12 genes as potential for RCTx response. When evaluated in patients with HNSCC who were treated with primary RCTx, these genes were predictive for LRC. CONCLUSIONS Nimorazole combined with RCTx improved local tumor control in some but not in all HNSCC xenografts. We identified prognostic biomarkers with the potential for translation to patients with HNSCC.
Collapse
Affiliation(s)
- Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Verena Bitto
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany.
| | - Corina Weise
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Möbius
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - María José Besso
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Valentini
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manuel Pfeifer
- Institute of Legal Medicine, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Jens Overgaard
- Department of Radiation Oncology, University Hospital Aarhus, Aarhus, Denmark
| | - Daniel Zips
- Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ina Kurth
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
29
|
Jansen F, Betz CS, Belau MH, Matnjani G, Clauditz TS, Dwertmann-Rico S, Stölzel K, Möckelmann N, Böttcher A. Outcomes following oropharyngeal squamous cell carcinoma resection and bilateral neck dissection with or without contralateral postoperative radiotherapy of the pathologically node-negative neck. Eur Arch Otorhinolaryngol 2023; 280:3843-3853. [PMID: 37133497 PMCID: PMC10313843 DOI: 10.1007/s00405-023-07972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE There are no consensus guidelines regarding the postoperative treatment of the contralateral pathologically node-negative neck in oropharyngeal squamous cell carcinoma. This study aimed to determine if omission of postoperative irradiation of the contralateral pathologically node-negative neck affects oncological outcomes. METHODS We retrospectively identified 84 patients with primary surgical treatment including bilateral neck dissection and postoperative (chemo-)radiotherapy (PO(C)RT). Survival was analyzed using the log-rank test and the Kaplan-Meier method. RESULTS Patients showed no decrease in tumor-free, cause-specific (CSS), or overall survival (OS) when PO(C)RT of the contralateral pathologically node-negative neck was omitted. Increased OS was found in patients with unilateral PO(C)RT and especially an increased OS and CSS was found in unilateral PO(C)RT and in tumors arising from lymphoepithelial tissue. CONCLUSIONS Omitting the contralateral pathologically node-negative neck appears to be safe in terms of survival and our retrospective study advocates further prospective randomized control de-escalation trials.
Collapse
Affiliation(s)
- Florian Jansen
- Department of Otorhinolaryngology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Matthias Hans Belau
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gesa Matnjani
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Katharina Stölzel
- Department of Otorhinolaryngology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Otorhinolaryngology, Kath. Marienkrankenhaus GmbH, Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
30
|
Yapindi L, Bowley T, Kurtaneck N, Bergeson RL, James K, Wilbourne J, Harrod CK, Hernandez BY, Emerling BM, Yates C, Harrod R. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023; 585:1-20. [PMID: 37257253 PMCID: PMC10527176 DOI: 10.1016/j.virol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.
Collapse
Affiliation(s)
- Lacin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Tetiana Bowley
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Nick Kurtaneck
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Rachel L Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Kylie James
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Jillian Wilbourne
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Carolyn K Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, 96813, United States
| | | | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX, 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States.
| |
Collapse
|
31
|
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: evolving paradigms and future strategies. Front Oncol 2023; 13:1175578. [PMID: 37576899 PMCID: PMC10413127 DOI: 10.3389/fonc.2023.1175578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma has increased dramatically in recent years reaching epidemic-like proportions. Data has emerged not only showing that these cancers are a unique entity with distinct molecular characteristics but that they also have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts. This, it has been increasingly suggested that these tumors can be targeted with de-escalated approaches using reduced doses of radiation. The overriding goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the incidence of both short- and long-term toxicity. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, these studies have been complicated by such factors as the relatively limited sample sizes, as well as the variability in treatment, inclusion criteria, and follow-up. As the data continues to mature on de-escalation, it is unquestionable that treatment paradigms for this disease will evolve. The ongoing quest to define a standard regimen comprises the subject of this review.
Collapse
Affiliation(s)
- Allen M. Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, School of Medicine, University of California- Irvine, Irvine, CA, United States
| |
Collapse
|
32
|
Sutera P, Skinner H, Witek M, Mishra M, Kwok Y, Davicioni E, Feng F, Song D, Nichols E, Tran PT, Bergom C. Histology Specific Molecular Biomarkers: Ushering in a New Era of Precision Radiation Oncology. Semin Radiat Oncol 2023; 33:232-242. [PMID: 37331778 PMCID: PMC10446901 DOI: 10.1016/j.semradonc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Histopathology and clinical staging have historically formed the backbone for allocation of treatment decisions in oncology. Although this has provided an extremely practical and fruitful approach for decades, it has long been evident that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. As efficient and affordable DNA and RNA sequencing have become available, the ability to provide precision therapy has become within grasp. This has been realized with systemic oncologic therapy, as targeted therapies have demonstrated immense promise for subsets of patients with oncogene-driver mutations. Further, several studies have evaluated predictive biomarkers for response to systemic therapy within a variety of malignancies. Within radiation oncology, the use of genomics/transcriptomics to guide the use, dose, and fractionation of radiation therapy is rapidly evolving but still in its infancy. The genomic adjusted radiation dose/radiation sensitivity index is one such early and exciting effort to provide genomically guided radiation dosing with a pan-cancer approach. In addition to this broad method, a histology specific approach to precision radiation therapy is also underway. Herein we review select literature surrounding the use of histology specific, molecular biomarkers to allow for precision radiotherapy with the greatest emphasis on commercially available and prospectively validated biomarkers.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heath Skinner
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Witek
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Felix Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Daniel Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Nichols
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Oetting A, Christiansen S, Gatzemeier F, Köcher S, Bußmann L, Böttcher A, Stölzel K, Hoffmann AS, Struve N, Kriegs M, Petersen C, Betz C, Rothkamm K, Zech HB, Rieckmann T. Impaired DNA double-strand break repair and effective radiosensitization of HPV-negative HNSCC cell lines through combined inhibition of PARP and Wee1. Clin Transl Radiat Oncol 2023; 41:100630. [PMID: 37180052 PMCID: PMC10172863 DOI: 10.1016/j.ctro.2023.100630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives In head and neck squamous cell carcinoma (HNSCC), tumors negative for Human Papillomavirus (HPV) remain a difficult to treat entity and the morbidity of current multimodal treatment is high. Radiotherapy in combination with molecular targeting could represent suitable, less toxic treatment options especially for cisplatin ineligible patients. Therefore, we tested dual targeting of PARP and the intra-S/G2 checkpoint through Wee1 inhibition for its radiosensitizing capacity in radioresistant HPV-negative HNSCC cells. Materials and methods Three radioresistant HPV-negative cell lines (HSC4, SAS, UT-SCC-60a) were treated with olaparib, adavosertib and ionizing irradiation. The impact on cell cycle, G2 arrest and replication stress was assessed through flow cytometry after DAPI, phospho-histone H3 and γH2AX staining. Long term cell survival after treatment was determined through colony formation assay and DNA double-strand break (DSB) levels were assessed through quantification of nuclear 53BP1 foci in cell lines and patient-derived HPV± tumor slice cultures. Results Wee1 and dual targeting induced replication stress but failed to effectively inhibit radiation-induced G2 cell cycle arrest. Single as well as combined inhibition increased radiation sensitivity and residual DSB levels, with the largest effects induced through dual targeting. Dual targeting also enhanced residual DSB levels in patient-derived slice cultures from HPV-negative but not HPV+ HNSCC (5/7 vs. 1/6). Conclusion We conclude that the combined inhibition of PARP and Wee1 results in enhanced residual DNA damage levels after irradiation and effectively sensitizes radioresistant HPV-negative HNSCC cells. Ex vivo tumor slice cultures may predict the response of individual patients with HPV-negative HNSCC to this dual targeting approach.
Collapse
Affiliation(s)
- Agnes Oetting
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Sabrina Christiansen
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Fruzsina Gatzemeier
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Sabrina Köcher
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Katharina Stölzel
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Anna Sophie Hoffmann
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Nina Struve
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Germany
| | - Malte Kriegs
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Cordula Petersen
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Kai Rothkamm
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Henrike Barbara Zech
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
- Corresponding author at: University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
34
|
Rimini M, Franco P, Bertolini F, Berardino DB, Giulia ZM, Stefano V, Andrikou K, Arcadipane F, Napolitano M, Buno LV, Alessandra GM, Olivero F, Ferreri F, Ricardi U, Cascinu S, Casadei-Gardini A. The Prognostic Role of Baseline Eosinophils in HPV-Related Cancers: a Multi-institutional Analysis of Anal SCC and OPC Patients Treated with Radical CT-RT. J Gastrointest Cancer 2023; 54:662-671. [PMID: 35915202 PMCID: PMC9342937 DOI: 10.1007/s12029-022-00850-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIM Anal squamous cell carcinoma (SCC) and oropharyngeal cancer (OPC) are rare tumors associated with HPV infection. Bioumoral predictors of response to chemoradiation (CT-RT) are lacking in these settings. With the aim to find new biomarkers, we investigated the role of eosinophils in both HPV-positive anal SCC and HPV-related oropharyngeal cancer (OPC). METHODS We retrieved clinical and laboratory data of patients with HPV-positive anal SCC treated with CT-RT in 5 institutions, and patients with locally advanced OPC SCC treated with CT-RT in 2 institutions. We examined the association between baseline eosinophil count (the best cutoff has been evaluated by ROC curve analysis: 100 × 10^9/L) and disease-free survival (DFS). Unadjusted and adjusted hazard ratios by baseline characteristics were calculated using the Cox proportional hazards model. RESULTS Three hundred four patients with HPV-positive anal SCCs and 168 patients with OPCs (122 HPV-positive, 46 HPV-negative diseases) were analyzed. In anal SCC, low eosinophil count (< 100 × 10^9/L) correlates to a better DFS (HR = 0.59; p = 0.0392); likewise, in HPV-positive OPC, low eosinophil count correlates to a better DFS (HR = 0.50; p = 0.0428). In HPV-negative OPC, low eosinophil count confers worse DFS compared to high eosinophil count (HR = 3.53; p = 0.0098). After adjustment for age and sex, eosinophils were confirmed to be independent prognostic factors for DFS (HR = 4.55; p = 0.0139). CONCLUSION Eosinophil count could be used as a prognostic factor in anal HPV-positive SCC. The worse prognosis showed in HPV-positive patients with high eosinophil count is likely to derive from an unfavorable interaction between the HPV-induced immunomodulation and eosinophils, which may hamper the curative effect of RT.
Collapse
Affiliation(s)
- Margherita Rimini
- Oncologic Department, IRCCS San Raffaele Scientific Institute Hospital, 20019, Milan, Italy
| | - Pierfrancesco Franco
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy.
| | - Federica Bertolini
- Department of Oncology and Hematology, Division of Oncology, University Hospital Modena, Modena, Italy
| | - De Bari Berardino
- Radiation Oncology, Centre Hospitalier Universitaire de Besançon, 25000, Besançon cedex, France
- Radiation Oncology, Réseau Hospitalier Neuchâtelois, CH-2300, La Chaux-de-Fonds, Switzerland
| | - Zampino Maria Giulia
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Vegge Stefano
- Radiation Oncology Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Kalliopi Andrikou
- Oncologic Department, Istituto Scientifico Romagnolo per lo Studio e la Cura Dei Tumori, IRCCS, Meldola (Forlì), Italy
| | - Francesca Arcadipane
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Martina Napolitano
- Department of Oncology and Hematology, Division of Oncology, University Hospital Modena, Modena, Italy
| | - Lavajo Vieira Buno
- Radiation Oncology, Centre Hospitalier Universitaire de Besançon, 25000, Besançon cedex, France
| | | | - Francesco Olivero
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Filippo Ferreri
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Umberto Ricardi
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Stefano Cascinu
- Oncologic Department, IRCCS San Raffaele Scientific Institute Hospital, 20019, Milan, Italy
| | - Andrea Casadei-Gardini
- Oncologic Department, IRCCS San Raffaele Scientific Institute Hospital, 20019, Milan, Italy
| |
Collapse
|
35
|
Benavente S. Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:291-313. [PMID: 37457128 PMCID: PMC10344731 DOI: 10.20517/cdr.2022.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Despite intensive efforts and refined techniques, overall survival in HPV-negative head and neck cancer remains poor. Robust immune priming is required to elicit a strong and durable antitumor immune response in immunologically cold and excluded tumors like HPV-negative head and neck cancer. This review highlights how the tumor microenvironment could be affected by different immune and stromal cell types, weighs the need to integrate metabolic regulation of the tumor microenvironment into cancer treatment strategies and summarizes the emerging clinical applicability of personalized immunotherapeutic strategies in HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Sergi Benavente
- Correspondence to: Dr. Sergi Benavente, Department of Radiation Oncology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119, Barcelona 08035, Spain. E-mail:
| |
Collapse
|
36
|
Gao Z, Zhao Q, Xu Y, Wang L. Improving the efficacy of combined radiotherapy and immunotherapy: focusing on the effects of radiosensitivity. Radiat Oncol 2023; 18:89. [PMID: 37226275 DOI: 10.1186/s13014-023-02278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Cancer treatment is gradually entering an era of precision, with multitude studies in gene testing and immunotherapy. Tumor cells can be recognized and eliminated by the immune system through the expression of tumor-associated antigens, but when the cancer escapes or otherwise suppresses immunity, the balance between cancer cell proliferation and immune-induced cancer cell killing may be interrupted, resulting in tumor proliferation and progression. There has been significant attention to combining conventional cancer therapies (i.e., radiotherapy) with immunotherapy as opposed to treatment alone. The combination of radio-immunotherapy has been demonstrated in both basic research and clinical trials to provide more effective anti-tumor responses. However, the absolute benefits of radio-immunotherapy are dependent on individual characteristics and not all patients can benefit from radio-immunotherapy. At present, there are numerous articles about exploring the optimal models for combination radio-immunotherapy, but the factors affecting the efficacy of the combination, especially with regard to radiosensitivity remain inconclusive. Radiosensitivity is a measure of the response of cells, tissues, or individuals to ionizing radiation, and various studies have shown that the radiosensitivity index (RSI) will be a potential biomarker for predicting the efficacy of combination radio-immunotherapy. The purpose of this review is to focus on the factors that influence and predict the radiosensitivity of tumor cells, and to evaluate the impact and predictive significance of radiosensitivity on the efficacy of radio-immunotherapy combination.
Collapse
Affiliation(s)
- Zhiru Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430064, China
| | - Yiyue Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
37
|
Aguayo F, Perez-Dominguez F, Osorio JC, Oliva C, Calaf GM. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. BIOLOGY 2023; 12:biology12050672. [PMID: 37237486 DOI: 10.3390/biology12050672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HR-HPVs) are the causal agents of cervical, anogenital and a subset of head and neck carcinomas (HNCs). Indeed, oropharyngeal cancers are a type of HNC highly associated with HR-HPV infections and constitute a specific clinical entity. The oncogenic mechanism of HR-HPV involves E6/E7 oncoprotein overexpression for promoting cell immortalization and transformation, through the downregulation of p53 and pRB tumor suppressor proteins, among other cellular targets. Additionally, E6/E7 proteins are involved in promoting PI3K/AKT/mTOR signaling pathway alterations. In this review, we address the relationship between HR-HPV and PI3K/AKT/mTOR signaling pathway activation in HNC with an emphasis on its therapeutic importance.
Collapse
Affiliation(s)
- Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Perez-Dominguez
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
38
|
García-Anaya MJ, Segado-Guillot S, Cabrera-Rodríguez J, Toledo-Serrano MD, Medina-Carmona JA, Gómez-Millán J. DOSE AND VOLUME DE-ESCALATION OF RADIOTHERAPY IN HEAD AND NECK CANCER. Crit Rev Oncol Hematol 2023; 186:103994. [PMID: 37061074 DOI: 10.1016/j.critrevonc.2023.103994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Radiotherapy plays a key role in the treatment of head and neck cancer. However, irradiation of the head and neck region is associated with high rates of acute and chronic toxicity. Technological advances have led to better visualisation of target volumes and critical structures and improved dose conformality in the treatment volume. Despite this, acute toxicity has not been substantially reduced and late toxicity has a significant impact on patients' quality of life. The greater radiosensitivity of tumours associated with the HPV and the development of new imaging techniques have encouraged research into new deintensified strategies to reduce the side effects of radiotherapy. The aim of this paper is to review the literature on the strategies of de-escalated treatment in dose and/or volume in head and neck cancer.
Collapse
Affiliation(s)
- M J García-Anaya
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain.
| | - S Segado-Guillot
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J Cabrera-Rodríguez
- Department of Radiation Oncology, Hospital Universitario de Badajoz. Badajoz, Spain
| | - M D Toledo-Serrano
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J A Medina-Carmona
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - J Gómez-Millán
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Malaga, Spain; Instituto de Investigación Biomédica de Malaga, Malaga, Spain
| |
Collapse
|
39
|
Cosper PF, Hrycyniak LCF, Paracha M, Lee DL, Wan J, Jones K, Bice SA, Nickel K, Mallick S, Taylor AM, Kimple RJ, Lambert PF, Weaver BA. HPV16 E6 induces chromosomal instability due to polar chromosomes caused by E6AP-dependent degradation of the mitotic kinesin CENP-E. Proc Natl Acad Sci U S A 2023; 120:e2216700120. [PMID: 36989302 PMCID: PMC10083562 DOI: 10.1073/pnas.2216700120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Denis L. Lee
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Kathryn Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Sophie A. Bice
- University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Kwangok Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY10032
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
40
|
Saba NF, Pamulapati S, Patel B, Mody M, Strojan P, Takes R, Mäkitie AA, Cohen O, Pace-Asciak P, Vermorken JB, Bradford C, Forastiere A, Teng Y, Wieland A, Ferlito A. Novel Immunotherapeutic Approaches to Treating HPV-Related Head and Neck Cancer. Cancers (Basel) 2023; 15:1959. [PMID: 37046621 PMCID: PMC10092986 DOI: 10.3390/cancers15071959] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Head and neck cancer (HNC) is the seventh most common malignancy, with oropharyngeal squamous cell carcinoma (OPSCC) accounting for a majority of cases in the western world. While HNC accounts for only 5% of all cancers in the United States, the incidence of a subset of OPSCC caused by human papillomavirus (HPV) is increasing rapidly. The treatment for OPSCC is multifaceted, with a recently emerging focus on immunotherapeutic approaches. With the increased incidence of HPV-related OPSCC and the approval of immunotherapy in the management of recurrent and metastatic HNC, there has been rising interest in exploring the role of immunotherapy in the treatment of HPV-related OPSCC specifically. The immune microenvironment in HPV-related disease is distinct from that in HPV-negative OPSCC, which has prompted further research into various immunotherapeutics. This review focuses on HPV-related OPSCC, its immune characteristics, and current challenges and future opportunities for immunotherapeutic applications in this virus-driven cancer.
Collapse
Affiliation(s)
- Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Bhamini Patel
- Department of Internal Medicine, Emory University, Atlanta, GA 30307, USA
| | - Mayur Mody
- Hematology and Oncology Program, AdventHealth Medical Group, Calhoun, GA 30701, USA
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia
| | - Robert Takes
- Department of Otolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Research Program in Systems Oncology, FI-00014 Helsinki, Finland
| | - Oded Cohen
- Department of Otolaryngology, Ben Gurion University of the Negev, Soroka Medical Center, Be’er Sheva 84-101, Israel
| | - Pia Pace-Asciak
- Department of Otolarynology—Head and Neck Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jan B. Vermorken
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Carol Bradford
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43212, USA
| | - Arlene Forastiere
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43212, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy
| |
Collapse
|
41
|
Lu XJD, Liu KYP, Prisman E, Wu J, Zhu YS, Poh C. Prognostic value and cost benefit of HPV testing for oropharyngeal cancer patients. Oral Dis 2023; 29:483-490. [PMID: 34129700 DOI: 10.1111/odi.13938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES High-risk human papillomavirus (HR-HPV) can cause oropharyngeal squamous cell carcinoma (OpSCC). The revised 8th edition of the AJCC Staging Manual now stages OpSCC by incorporating p16 immunohistochemistry (IHC), the surrogate marker for HPV status. This study assessed the prognostic values of p16 and HPV markers. METHODS We identified 244 OpSCC patients diagnosed between 2000 and 2008 from the British Columbia Cancer Registry with enough tissue to conduct experiments. Formalin-fixed, paraffin-embedded tissue sections were stained for p16 IHC, RNA in situ hybridization (ISH) HPV 16 and 18, and DNA ISH HR-HPV. Electronic charts were reviewed to collect clinical and outcome data. Combined positive RNA and/or DNA ISH was used to denote HPV status. RESULTS Human papillomavirus was positive among 77.9% of samples. Using HPV as the benchmark, p16 IHC had high sensitivity (90.5%), but low specificity (68.5%). Distinct subgroups of patients were identified by sequential separation of p16 then HPV status. Among both p16-positive and p16-negative groups, HPV-positive patients were younger, more males, and had better clinical outcomes, especially 5-year overall survival. We further evaluated the technical costs associated with HPV testing. CONCLUSION Human papillomavirus is more prognostic than p16 for OpSCC. Clinical laboratories can adopt HPV RNA ISH for routine analysis.
Collapse
Affiliation(s)
- Xian Jun David Lu
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kelly Yi Ping Liu
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Eitan Prisman
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Vancouver General Hospital, Vancouver, BC, Canada
| | - Jonn Wu
- Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver Center, Vancouver, BC, Canada
| | - Yuqi Sarah Zhu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Catherine Poh
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Use of 3D Spheroid Models for the Assessment of RT Response in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24043763. [PMID: 36835181 PMCID: PMC9963786 DOI: 10.3390/ijms24043763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy (RT) is a key player in the treatment of head and neck cancer (HNC). The RT response, however, is variable and influenced by multiple tumoral and tumor microenvironmental factors, such as human papillomavirus (HPV) infections and hypoxia. To investigate the biological mechanisms behind these variable responses, preclinical models are crucial. Up till now, 2D clonogenic and in vivo assays have remained the gold standard, although the popularity of 3D models is rising. In this study, we investigate the use of 3D spheroid models as a preclinical tool for radiobiological research by comparing the RT response of two HPV-positive and two HPV-negative HNC spheroid models to the RT response of their corresponding 2D and in vivo models. We demonstrate that HPV-positive spheroids keep their higher intrinsic radiosensitivity when compared to HPV-negative spheroids. A good correlation is found in the RT response between HPV-positive SCC154 and HPV-negative CAL27 spheroids and their respective xenografts. In addition, 3D spheroids are able to capture the heterogeneity of RT responses within HPV-positive and HPV-negative models. Moreover, we demonstrate the potential use of 3D spheroids in the study of the mechanisms underlying these RT responses in a spatial manner by whole-mount Ki-67 and pimonidazole staining. Overall, our results show that 3D spheroids are a promising model to assess the RT response in HNC.
Collapse
|
43
|
Chitsike L, Bertucci A, Vazquez M, Lee S, Unternaehrer JJ, Duerksen-Hughes PJ. GA-OH enhances the cytotoxicity of photon and proton radiation in HPV + HNSCC cells. Front Oncol 2023; 13:1070485. [PMID: 36845698 PMCID: PMC9950506 DOI: 10.3389/fonc.2023.1070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Treatment-related toxicity following either chemo- or radiotherapy can create significant clinical challenges for HNSCC cancer patients, particularly those with HPV-associated oropharyngeal squamous cell carcinoma. Identifying and characterizing targeted therapy agents that enhance the efficacy of radiation is a reasonable approach for developing de-escalated radiation regimens that result in less radiation-induced sequelae. We evaluated the ability of our recently discovered, novel HPV E6 inhibitor (GA-OH) to radio-sensitize HPV+ and HPV- HNSCC cell lines to photon and proton radiation. Methods Radiosensitivity to either photon or proton beams was assessed using various assays such as colony formation assay, DNA damage markers, cell cycle and apoptosis, western blotting, and primary cells. Calculations for radiosensitivity indices and relative biological effectiveness (RBE) were based on the linear quadratic model. Results Our results showed that radiation derived from both X-ray photons and protons is effective in inhibiting colony formation in HNSCC cells, and that GA-OH potentiated radiosensitivity of the cells. This effect was stronger in HPV+ cells as compared to their HPV- counterparts. We also found that GA-OH was more effective than cetuximab but less effective than cisplatin (CDDP) in enhancing radiosensitivity of HSNCC cells. Further tests indicated that the effects of GA-OH on the response to radiation may be mediated through cell cycle arrest, particularly in HPV+ cell lines. Importantly, the results also showed that GA-OH increases the apoptotic induction of radiation as measured by several apoptotic markers, even though radiation alone had little effect on apoptosis. Conclusion The enhanced combinatorial cytotoxicity found in this study indicates the strong potential of E6 inhibition as a strategy to sensitize cells to radiation. Future research is warranted to further characterize the interaction of GA-OH derivatives and other E6-specific inhibitors with radiation, as well as its potential to improve the safety and effectiveness of radiation treatment for patients with oropharyngeal cancer.
Collapse
Affiliation(s)
- Lennox Chitsike
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Antonella Bertucci
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Marcelo Vazquez
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Steve Lee
- Department of Otolaryngology & Head/Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | | |
Collapse
|
44
|
Toni T, Viswanathan R, Robbins Y, Gunti S, Yang X, Huynh A, Cheng H, Sowers AL, Mitchell JB, Allen CT, Morgan EL, Van Waes C. Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma. Cancers (Basel) 2023; 15:1029. [PMID: 36831373 PMCID: PMC9954698 DOI: 10.3390/cancers15041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK-NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC.
Collapse
Affiliation(s)
- Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Huynh
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
46
|
Siqueira JM, Heguedusch D, Rodini CO, Nunes FD, Rodrigues MFSD. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:116-137. [PMID: 37065869 PMCID: PMC10099599 DOI: 10.20517/cdr.2022.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023]
Abstract
Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome therapy failure.
Collapse
Affiliation(s)
- Juliana Mota Siqueira
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo 17012-230, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Maria Fernanda Setúbal Destro Rodrigues
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo 01504-001, Brazil
- Correspondence to: PhD. Maria Fernanda Setúbal Destro Rodrigues. Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Rua Vergueiro, 235/249 - Liberdade, São Paulo 01504-001, Brazil. E-mail:
| |
Collapse
|
47
|
Avril D, Foy JP, Bouaoud J, Grégoire V, Saintigny P. Biomarkers of radioresistance in head and neck squamous cell carcinomas. Int J Radiat Biol 2023; 99:583-593. [PMID: 35930497 DOI: 10.1080/09553002.2022.2110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality. Although HNSCC is mainly caused by tobacco and alcohol consumption, infection by Human Papilloma Virus (HPV) has been also associated with the increasing incidence of oropharyngeal squamous cell carcinomas (OPSCC) during the past decades. HPV-positive HNSCC is characterized by a higher radiosensitivity compared to HPV-negative tumor. While several clinical trials are evaluating de-escaladed radiation doses strategies in HPV-positive HNSCC, molecular mechanisms associated with relative radioresistance in HPV-negative HNSCC are still broadly unknown. Our goal was to review recently proposed biomarkers of radioresistance in this setting, which may be useful for stratifying tumor's patient according to predicted level of radioresistance. CONCLUSIONS most of biomarkers of radioresistance in HPV-negative HNSCC are identified using a hypothesis-driven approach, based on molecular mechanisms known to play a key role during carcinogenesis, compared to an unsupervised data-driven approach regardless the biological rational. DNA repair and hypoxia are the two most widely investigated biological and targetable pathways related to radioresistance in HNSCC. The better understanding of molecular mechanisms and biomarkers of radioresistance in HPV-negative HNSCC could help for the development of radiosensitization strategies, based on targetable biomarkers, in radioresistant tumors as well as de-escalation radiation dose strategies, based on biological level of radioresistance, in radiosensitive tumors.
Collapse
Affiliation(s)
- Delphine Avril
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
48
|
Bruyere D, Roncarati P, Lebeau A, Lerho T, Poulain F, Hendrick E, Pilard C, Reynders C, Ancion M, Luyckx M, Renard M, Jacob Y, Twizere JC, Peiffer R, Peulen O, Delvenne P, Hubert P, McBride A, Gillet N, Masson M, Herfs M. Human papillomavirus E6/E7 oncoproteins promote radiotherapy-mediated tumor suppression by globally hijacking host DNA damage repair. Theranostics 2023; 13:1130-1149. [PMID: 36793865 PMCID: PMC9925306 DOI: 10.7150/thno.78091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Whatever the mucosa primary infected, HPV-positive cancers are traditionally associated with a favorable outcome, attributable to a high sensitivity to radiation therapy. However, the direct impact of viral E6/E7 oncoproteins on the intrinsic cellular radiosensitivity (and, globally, on host DNA repair) remains mostly speculative. Methods: Using several isogenic cell models expressing HPV16 E6 and/or E7, the effect of viral oncoproteins on global DNA damage response was first investigated by in vitro/in vivo approaches. The binary interactome of each individual HPV oncoprotein with factors involved in the various host DNA damage/repair mechanisms was then precisely mapped by Gaussia princeps luciferase complementation assay (and validated by co-immunoprecipitation). The stability/half-life of protein targets for HPV E6 and/or E7 as well as their subcellular localizations were determined. At last, the host genome integrity following E6/E7 expression and the synergy between radiotherapy and compounds targeting DNA repair were analyzed. Results: We first showed that the sole expression of one viral oncoprotein from HPV16 was able to significantly increase the sensitivity to irradiation of cells without affecting their basal viability parameters. In total, 10 novel targets (CHEK2, CLK2, CLK2/3, ERCC3, MNAT1, PER1, RMI1, RPA1, UVSSA and XRCC6) for E6 and 11 (ALKBH2, CHEK2, DNA2, DUT, ENDOV, ERCC3, PARP3, PMS1, PNKP, POLDIP2 and RBBP8) for E7 were identified. Importantly, not degraded following their interaction with E6 or E7, these proteins have been shown to be less linked to host DNA and to colocalize with HPV replication foci, denoting their crucial implication in viral life cycle. Finally, we found that E6/E7 oncoproteins globally jeopardize host genome integrity, increase the cellular sensitivity to DNA repair inhibitors and enhance their synergy with radiotherapy. Conclusion: Taken together, our findings provide a molecular insight into the direct hijacking of host DNA damage/repair responses by HPV oncoproteins, demonstrate the significant impact of this phenomenon on both intrinsic cellular radiosensitivity and host DNA integrity and suggest novel connected therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Florian Poulain
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Margaux Luyckx
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Michael Renard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Yves Jacob
- Unit of Molecular Genetics of RNA Viruses, UMR 3569, CNRS, Pasteur Institute, University of Paris Diderot, 75015 Paris, France
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-Molecular Biology of Diseases, University of Liege, 4000 Liege, Belgium
| | - Raphael Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.,Department of Pathology, University Hospital of Liege, 4000 Liege, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Alison McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicolas Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Murielle Masson
- Biothechnology Superior School, UMR 7242, CNRS, University of Strasbourg, 67412 Illkirch, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
49
|
Huang Y, Zou D, Guo M, He M, He H, Li X, Zheng Q, Li Q, Mao Z. HPV and radiosensitivity of cervical cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1405. [PMID: 36660629 PMCID: PMC9843372 DOI: 10.21037/atm-22-5930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Background and Objective Cervical cancer (CC), the most common gynecological malignancy, is divided into two categories: human papillomavirus-related [HPV positive (HPV+)] and non-HPV-related [HPV negative (HPV-)]. Compared with HPV- CC, HPV+ CC has better radiosensitivity and prognosis. We conducted a literature search and summarized relevant studies to explore the detailed mechanisms by which HPV+ improves the prognosis of CC compared to HPV-. Methods PubMed was used to search the literature on human papillomavirus, cervical cancer, and radiotherapy up to June 2022. Key Content and Findings Compared with HPV- CC, HPV+ CC has better radiotherapy outcomes and better prognosis. HPV improves the radiotherapy sensitivity of CC by inhibiting damaged DNA repair, increasing cell cycle arrest, reducing hypoxia, increasing cellular immune response, and other mechanisms. However, the effect of HPV on radiotherapy sensitivity of CC is not consistent and is affected by HPV type, viral load, and many other factors. Partial HPV+ CCs, due to hypoxia and other factors, are resistant to radiotherapy and have a poor prognosis. HPV- CC has poor radiotherapy sensitivity and poor prognosis. With the spread of the vaccine, HPV- CC will gradually increase, which is a cause for concern. Conclusions The radiosensitivity was significantly increased in patients with HPV+ CC, compared to HPV- patients. HPV improves the radiotherapy sensitivity of cervical cancer through a number of pathways. Meanwhile, the relationship between HPV and radiotherapy sensitivity is influenced by a number of factors. Some HPV+ CCs showed radiotherapy resistance, and HPV- CCs deserve further attention.
Collapse
Affiliation(s)
- Yue Huang
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Dongling Zou
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Mingfang Guo
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Misi He
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Hao He
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Xiuying Li
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Qian Zheng
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Qiaoling Li
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| | - Zejia Mao
- Department of Gynecological Cancer Center, Affiliated Cancer Hospital of Chongqing University, Chongqing, China
| |
Collapse
|
50
|
FDCSP Is an Immune-Associated Prognostic Biomarker in HPV-Positive Head and Neck Squamous Carcinoma. Biomolecules 2022; 12:biom12101458. [PMID: 36291667 PMCID: PMC9599724 DOI: 10.3390/biom12101458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Head and neck squamous carcinoma (HNSC) poses a major threat to human life. The role of human papillomavirus (HPV) infection in the initiation and progression of HNSC is becoming more widely accepted. HPV-positive (HPV+) HNSC has shown unique responses to cancer therapies, which may be due to differences in immune cell infiltration. It is critical to determine how the immune responses to HPV in HNSC are regulated. Methods: Transcriptome data of HNSC from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database were analyzed. Then, the CIBERSORT algorithm was used to calculate immune cell infiltration in HNSC. FDCSP expression level was detected by qPCR in the HNSC tissues collected from the Nanfang Hospital. Results: Follicular dendritic cell secreted protein (FDCSP) was highly expressed in HPV+ HNSC, and higher expression of FDSCP was associated with a favorable prognosis. In HPV+ HNSC samples, FDCSP significantly increased the proportion of T follicular helper cells (TFHs). FDCSP expression was also found to be associated with TP53 mutation status in HPV+ HNSC. The function of FDCSP was intimately connected to chemokine pathways, particularly with the C-X-C motif chemokine ligand 13 (CXCL13). We verified that the high expression of FDCSP in HPV+ HNSC and higher FDCSP is closely related to prognosis in HNSC samples we collected by qPCR. Conclusions: Collectively, these findings may provide fresh evidence that FDCSP is a potential chemokine-associated prognostic biomarker in HPV+ HNSC.
Collapse
|