1
|
Jang G, Park R, Esteva E, Hsu PF, Feng J, Upadhaya S, Sawai CM, Aifantis I, Fooksman DR, Reizis B. Leukemogenic Kras mutation reprograms multipotent progenitors to facilitate its spread through the hematopoietic system. J Exp Med 2025; 222:e20240587. [PMID: 40072317 PMCID: PMC11899982 DOI: 10.1084/jem.20240587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/09/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages. The acceleration was mediated by KrasG12D-expressing multipotent progenitors (MPP) that lacked self-renewal but showed increased proliferation and aberrant transcriptome. The deletion of osteopontin, a secreted negative regulator of stem/progenitor cells, delayed the early expansion of mutant progenitors. KrasG12D-carrying cells showed increased CXCR4-driven motility in the bone marrow, and the blockade of CXCR4 reduced the expansion of MPP in vivo. Finally, therapeutic blockade of KRASG12D spared mutant HSC but reduced the expansion of mutant MPP and their mature progeny. Thus, transforming mutations facilitate their own spread from stem cells by reprogramming MPP, creating a preleukemic state via a two-component stem/progenitor circuit.
Collapse
Affiliation(s)
- Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rosa Park
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY, USA
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - David R. Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Wu X, Liu W, Wang Y, Wang K, Xing B. Association of various RAS codon mutations and prognostic outcomes of patients with colorectal liver metastases after hepatectomy. Cancer Med 2024; 13:e70168. [PMID: 39377605 PMCID: PMC11459679 DOI: 10.1002/cam4.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The prognostic and predictive value of RAS mutations in patients with colorectal liver metastases (CRLM) who have undergone hepatectomy holds substantial importance. The present study aimed to investigate the impact of different RAS codon mutations on long-term survival in CRLM patients. METHODS A retrospective analysis was conducted on clinicopathological data from 399 CRLM patients with RAS mutations who underwent hepatectomy between January 2000 and December 2020. The RAS mutation gene status was assessed in KRAS codons (G12, G13, Q61, and A146) and NRAS codons (G12, G13, and Q61). Survival curves were generated using the Kaplan-Meier plotter and compared using the log-rank test. Univariate and multivariate analyses were performed to analyze the clinicopathological data. RESULTS In the entire cohort, patients with KRAS G12 mutations exhibited the most favorable prognosis (p = 0.018). Comparatively, patients harboring KRAS Q61 mutations experienced poorer overall survival (OS) with a median of 15 months versus 33 months (p = 0.011) when compared to those with KRAS G12 mutations. Moreover, patients with NRAS Q61 mutations also showed decreased OS with a median of 26 months versus 33 months (p = 0.020) in comparison to KRAS G12 mutation patients. The results of multivariate analysis showed that both KRAS Q61 mutation (HR 2.130; 95% CI 1.088-4.168; p = 0.027) and NRAS Q61 mutation (HR 2.877; 95% CI 1.398-5.922; p = 0.004) were independent influencing factors of OS. Based on all identified risk factors, patients with RAS mutation were divided into high-risk and low-risk groups. Notably, in the high-risk group, the incorporation of postoperative chemotherapy was associated with longer OS, while it did not improve the survival of patients in the low-risk group. CONCLUSIONS KRAS Q61 and NRAS Q61 mutations are promising predictors for OS in CRLM patients after hepatectomy. Postoperative chemotherapy may significantly benefit CRLM patients with RAS mutations, particularly those identified as high-risk.
Collapse
Affiliation(s)
- Xiao‐Gang Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department IPeking University Cancer Hospital & InstituteBeijingChina
| | - Wei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department IPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan‐Yan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department IPeking University Cancer Hospital & InstituteBeijingChina
| | - Kun Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department IPeking University Cancer Hospital & InstituteBeijingChina
| | - Bao‐Cai Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department IPeking University Cancer Hospital & InstituteBeijingChina
| |
Collapse
|
3
|
Tyagi IS, Tsui HYC, Chen S, Li X, Mat WK, Khan MA, Choy LB, Chan KYA, Chan TMD, Ng CPS, Ng HK, Poon WS, Xue H. Non-mitotic proliferation of malignant cancer cells revealed through live-cell imaging of primary and cell-line cultures. Cell Div 2024; 19:3. [PMID: 38341593 DOI: 10.1186/s13008-024-00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Anti-mitosis has been a key strategy of anti-cancer therapies, targeting at a fundamental property of cancer cells, their non-controllable proliferation due to overactive mitotic divisions. For improved anti-cancer therapies, it is important to find out whether cancer cells can proliferate independent of mitosis and become resistant to anti-mitotic agents. RESULTS In this study, live-cell imaging was applied to both primary-cultures of tumor cells, and immortalized cancer cell lines, to detect aberrant proliferations. Cells isolated from various malignant tumors, such as Grade-III hemangiopericytoma, atypical meningioma, and metastatic brain tumor exhibit distinct cellular behaviors, including amoeboid sequestration, tailing, tunneling, nucleic DNA leakage, as well as prokaryote-like division such as binary fission and budding-shedding, which are collectively referred to and reported as 'non-mitotic proliferation' in this study. In contrast, benign tumors including Grade-I hemangiopericytoma and meningioma were not obvious in such behaviors. Moreover, when cultured in medium free of any anti-cancer drugs, cells from a recurrent Grade-III hemangiopericytoma that had been subjected to pre-operation adjuvant chemotherapy gradually shifted from non-mitotic proliferation to abnormal mitosis in the form of daughter number variation (DNV) and endomitosis, and eventually regular mitosis. Similarly, when treated with the anti-cancer drugs Epirubicin or Cisplatin, the cancer cell lines HeLa and A549 showed a shift from regular mitosis to abnormal mitosis, and further to non-mitosis as the dominant mode of proliferation with increasing drug concentrations. Upon removal of the drugs, the cells reversed back to regular mitosis with only minor occurrences of abnormal mitosis, accompanied by increased expression of the stem cell markers ALDH1, Sox, Oct4 and Nanog. CONCLUSIONS The present study revealed that various types of malignant, but not benign, cancer cells exhibited cellular behaviors indicative of non-mitotic proliferation such as binary fission, which was typical of prokaryotic cell division, suggesting cell level atavism. Moreover, reversible transitions through the three modes of proliferation, i.e., mitosis, abnormal mitosis and non-mitosis, were observed when anticancer drug concentrations were grossly increased inducing non-mitosis or decreased favoring mitosis. Potential clinical significance of non-mitotic proliferation in cancer drug resistance and recurrence, and its relationship with cancer stem cells are worthy of further studies.
Collapse
Affiliation(s)
- Iram Shazia Tyagi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ho Yin Calvin Tsui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Si Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Xinyi Li
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wai-Kin Mat
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Muhammad A Khan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Lucas Brendan Choy
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ka-Yin Aden Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tat-Ming Danny Chan
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Chi-Ping Stephanie Ng
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Sang Poon
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China.
- Department of Neurosurgery, Neuro-Medical Centre, University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China.
| | - Hong Xue
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, 511458, Guangzhou, China.
| |
Collapse
|
4
|
Takematsu T, Mima K, Hayashi H, Kitano Y, Nakagawa S, Hiyoshi Y, Okabe H, Imai K, Miyamoto Y, Baba H. RAS mutation status in combination with the JSHBPS nomogram may be useful for preoperative identification of colorectal liver metastases with high risk of recurrence and mortality after hepatectomy. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:69-79. [PMID: 37897144 DOI: 10.1002/jhbp.1389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE To investigate the prognostic impact of RAS mutations on the Japanese Society of Hepatobiliary and Pancreatic Surgeons (JSHBPS) nomogram score in patients with colorectal cancer liver metastasis (CRLM) following hepatectomy. METHODS We included 218 consecutive patients undergoing hepatectomy for CRLM between 2004 and 2020. The JSHBPS nomogram score was calculated using six preoperative clinical factors. The score ranged from 0 to 25, and higher scores indicated greater tumor burden. Associations of RAS mutations with disease-free survival (DFS) and overall survival (OS) by the JSHBPS nomogram score were examined. Multivariable Cox proportional hazard regression models were used to estimate adjusted hazard ratios (HRs) and confidence intervals (CIs). RESULTS RAS mutations were detected in 72 (33%) of the 218 patients. Multivariate analyses revealed that RAS mutations were independently associated with poor DFS (HR, 1.93; 95% CI: 1.20-3.10; p = .007) and OS (HR, 2.65; 95% CI: 1.59-4.71; p = .001) compared with wild-type RAS with JSHBPS nomogram scores ≤ 10. However, in patients with scores ≥ 11, the association of RAS mutations with DFS or OS was not statistically significant (p > .08). CONCLUSION RAS mutation status in combination with the JSHBPS nomogram may be useful for preoperatively identifying CRLM with high risk of recurrence and mortality after hepatectomy.
Collapse
Affiliation(s)
- Toru Takematsu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kitano
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Brandão GR, Trindade BO, Flores LHF, Motter SB, Alves CB, Remonti TAP, Lucchese AM, Junior ADP, Kalil AN. Does RAS Status Increase the Prevalence of Positive Resection Margin in Colorectal Liver Metastasis? A Systematic Review and Meta-Analysis. Am Surg 2023; 89:5638-5647. [PMID: 36896840 DOI: 10.1177/00031348231156763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
BACKGROUND Colorectal liver metastasis has a high incidence, and RAS oncogene mutation status carries significant prognostic information. We aimed to assess whether RAS-mutated patients present more or less frequently with positive margins in their hepatic metastasectomy. METHODS We performed a systematic review and meta-analysis of studies from PubMed, Embase, and Lilacs databases. We analyzed liver metastatic colorectal cancer studies, which included information on RAS status and had surgical margin analysis of the liver metastasis. Odds ratios were computed using a random-effect model due to anticipated heterogeneity. We further performed a subanalysis limited to studies that included only patients with KRAS instead of all-RAS mutations. RESULTS From the 2,705 studies screened, 19 articles were included in the meta-analysis. There were 7,391 patients. The prevalence of positive resection margin was not significantly different between patients carrier vs non-carrier for the all-RAS mutations (OR .99; 95% CI 0.83-1.18; P = .87), and for only KRAS mutation (OR .93; 95% CI 0.73-1.19; P = .57). CONCLUSIONS Despite the strong correlation between colorectal liver metastasis prognosis and RAS mutation status, our meta-analysis's results suggest no correlation between the RAS status and the prevalence of positive resection margins. The findings contribute to a better understanding of the RAS mutation's role in the surgical resections of colorectal liver metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Cassio Bona Alves
- Surgical Oncology, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | - Antonio Nocchi Kalil
- Surgical Oncology, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
6
|
Ganguli S, Wyatt T, Nyga A, Lawson RH, Meyer T, Baum B, Matthews HK. Oncogenic Ras deregulates cell-substrate interactions during mitotic rounding and respreading to alter cell division orientation. Curr Biol 2023; 33:2728-2741.e3. [PMID: 37343559 PMCID: PMC7614879 DOI: 10.1016/j.cub.2023.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Oncogenic Ras has been shown to change the way cancer cells divide by increasing the forces generated during mitotic rounding. In this way, RasV12 enables cancer cells to divide across a wider range of mechanical environments than normal cells. Here, we identify a further role for oncogenic Ras-ERK signaling in division by showing that RasV12 expression alters the shape, division orientation, and respreading dynamics of cells as they exit mitosis. Many of these effects appear to result from the impact of RasV12 signaling on actomyosin contractility, because RasV12 induces the severing of retraction fibers that normally guide spindle positioning and provide a memory of the interphase cell shape. In support of this idea, the RasV12 phenotype is reversed by inhibition of actomyosin contractility and can be mimicked by the loss of cell-substrate adhesion during mitosis. Finally, we show that RasV12 activation also perturbs division orientation in cells cultured in 2D epithelial monolayers and 3D spheroids. Thus, the induction of oncogenic Ras-ERK signaling leads to rapid changes in division orientation that, along with the effects of RasV12 on cell growth and cell-cycle progression, are likely to disrupt epithelial tissue organization and contribute to cancer dissemination.
Collapse
Affiliation(s)
- Sushila Ganguli
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Tom Wyatt
- Laboratoirè Matiere et Systèmes Complexes, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, Bâtiment Condorcet, 75013 Paris, France
| | - Agata Nyga
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rachel H Lawson
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tim Meyer
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Buzz Baum
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Helen K Matthews
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
7
|
Ai X, Zhou S, Chen M, Du F, Yuan Y, Cui X, Dong J, Huang X, Tang Z. Leveraging Small Molecule-Induced Aptazyme Cleavage for Directed A-to-I RNA Editing. ACS Synth Biol 2023. [PMID: 37384927 DOI: 10.1021/acssynbio.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
As a promising therapeutic approach for the correction of pathogenic mutations, the RNA editing process is reversible and tunable without permanently altering the genome. RNA editing mediated by human ADAR proteins offers distinct advantages, including high specificity and low propensity to cause immunogenicity. Herein, we describe a small molecule-inducible RNA editing strategy by incorporating aptazymes into the guide RNA of ADAR-based RNA editing technology. Once small molecules are added or removed, aptazymes trigger self-cleavage to release the guide RNA, achieving small molecule-controlled RNA editing. To satisfy different RNA editing applications, both turn-on and turn-off A-to-I RNA editing of target mRNA have been realized by using on/off-switch aptazymes. Theoretically speaking, this strategy can be applied to various ADAR-based editing systems, which could improve the safety and potential clinical applications of RNA editing technology.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meiyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Chang LC, Fan CW, Tseng WK, Chen JR, Hua CC. The tumor/normal tissue ratio of Keap1 protein is a predictor for lymphovascular invasion in colorectal cancer: A correlation study between the Nrf2 and KRas pathways. Biomarkers 2022; 27:701-707. [PMID: 35830714 DOI: 10.1080/1354750x.2022.2102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE: Oxidative stress has impacts on the KRas and Nrf2/Keap1 pathways, which have multiple interactions with each other and play important roles in colorectal cancer (CRC). This study investigated the expressions of proteins in the KRas and Nrf2/Keap1 pathways and their associations with clinicopathological features in CRC.METHODS: The protein levels of Nrf2, Keap1, Bach1, p62, HO1, KRas, Erk, Raf1 and PI3K in both the tumor and normal tissues of 60 CRC subjects were determined by Western blot and their T/N (tumor/normal tissue) ratios were correlated with clinicopathological features.RESULTS: The T/N ratios of proteins in the KRas and Nrf2/Keap1 pathways had correlation patterns and proximity profiles in cluster dendrograms different in CRC with different status of lymphovascular invasion (LVI) or lymph node/distant metastases. The Keap1 protein T/N ratio was a significant predictor (odd ratio: 2.24; 95% confidence interval: 1.26 - 4.38) of LVI, which in turn predicted metastases (11.0; 3.49 - 39.8).CONCLUSION: The interactions between the KRas and Nrf2/Keap1 pathways may be affected differently by LVI and metastases, and the protein T/N ratio of Keap1 may be helpful for predicting LVI in CRC.
Collapse
Affiliation(s)
- Liang-Che Chang
- Department of Pathology, Chang Gung Memorial Hospital, Keelung and Chang Gung university, Keelung, Republic of China
| | - Chung-Wei Fan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung university Keelung, Republic of China
| | - Wen-Ko Tseng
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung university Keelung, Republic of China
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung and Chang Gung university, Keelung, Republic of China
| | - Chung-Ching Hua
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung and Chang Gung university Keelung, Republic of China
| |
Collapse
|
9
|
Chen Z, Wang S, Li HL, Luo H, Wu X, Lu J, Wang HW, Chen Y, Chen D, Wu WT, Zhang S, He Q, Lu D, Liu N, You Y, Wu W, Wang H. FOSL1 promotes proneural-to-mesenchymal transition of glioblastoma stem cells via UBC9/CYLD/NF-κB axis. Mol Ther 2022; 30:2568-2583. [DOI: 10.1016/j.ymthe.2021.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 10/18/2022] Open
|
10
|
Ferino A, Marquevielle J, Choudhary H, Cinque G, Robert C, Bourdoncle A, Picco R, Mergny JL, Salgado GF, Xodo LE. hnRNPA1/UP1 Unfolds KRAS G-Quadruplexes and Feeds a Regulatory Axis Controlling Gene Expression. ACS OMEGA 2021; 6:34092-34106. [PMID: 34926957 PMCID: PMC8675163 DOI: 10.1021/acsomega.1c05538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/12/2021] [Indexed: 05/20/2023]
Abstract
Recent studies have proven that the genetic landscape of pancreatic cancer is dominated by the KRAS oncogene. Its transcription is controlled by a G-rich motif (called 32R) located immediately upstream of the TSS. 32R may fold into a G-quadruplex (G4) in equilibrium between two G4 conformers: G9T (T M = 61.2 °C) and G25T (T M = 54.7 °C). We found that both G4s bind to hnRNPA1 and its proteolytic fragment UP1, promoting several contacts with the RRM protein domains. 1D NMR analysis of DNA imino protons shows that, upon binding to UP1, G25T is readily unfolded at both 5' and 3' tetrads, while G9T is only partially unfolded. The impact of hnRNPA1 on KRAS expression was determined by comparing Panc-1 cells with two Panc-1 knockout cell lines in which hnRNPA1 was deleted by the CRISPR/Cas9 technology. The results showed that the expression of KRAS is inhibited in the knockout cell lines, indicating that hnRNPA1 is essential for the transcription of KRAS. In addition, the knockout cell lines, compared to normal Panc-1 cells, show a dramatic decrease in cell growth and capacity of colony formation. Pull-down and Western blot experiments indicate that conformer G25T is a better platform than conformer G9T for the assembly of the transcription preinitiation complex with PARP1, Ku70, MAZ, and hnRNPA1. Together, our data prove that hnRNPA1, being a key transcription factor for the activation of KRAS, can be a new therapeutic target for the rational design of anticancer strategies.
Collapse
Affiliation(s)
- Annalisa Ferino
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Julien Marquevielle
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Himanshi Choudhary
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Giorgio Cinque
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Coralie Robert
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Anne Bourdoncle
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Raffaella Picco
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Jean-Louis Mergny
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Gilmar F. Salgado
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Luigi E. Xodo
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
- luigi.xodo@uniud.it
| |
Collapse
|
11
|
Guo Y, Wang S, Zhao ZY, Li JN, Shang A, Li DL, Wang M. Skeletal muscle metastasis with bone metaplasia from colon cancer: A case report and review of the literature. World J Clin Cases 2021; 9:9285-9294. [PMID: 34786415 PMCID: PMC8567510 DOI: 10.12998/wjcc.v9.i30.9285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer is a common malignant disease of the gastrointestinal tract and usually occurs at the junction of the rectum and sigmoid colon. Lymphatic and hematogenous metastases occur frequently in colon cancer and the most common metastatic sites include the liver, lung, peritoneum, bone, and lymph nodes. As a manifestation of advanced tumor spread and metastasis, soft tissue metastasis, especially skeletal muscle metastasis with bone metaplasia caused by colon cancer, is rare, accounting for less than 1% of metastases.
CASE SUMMARY A 43-year-old male patient developed skeletal muscle metastasis with bone metaplasia of the right proximal thigh 5 mo after colon cancer was diagnosed. The patient was admitted to the hospital because of pain caused by a local mass on his right thigh. Positron emission tomography-computed tomography showed many enlarged lymph nodes around the abdominal aorta but no signs of lung or liver metastases. Color ultrasound revealed a mass located in the skeletal muscle and the results of histological biopsy revealed a poorly differentiated adenocarcinoma suspected to be distant metastases from colon cancer. Immunohistochemistry showed small woven bone components that were considered to be ossified.
CONCLUSION This case reminds us that for patients with advanced colorectal tumors, we should be alert to the possibility of unconventional metastasis.
Collapse
Affiliation(s)
- Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Ze-Yun Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - An Shang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Lin Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
12
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
13
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
14
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
15
|
Liu W, Zhang W, Xu Y, Li YH, Xing BC. A Prognostic Scoring System to Predict Survival Outcome of Resectable Colorectal Liver Metastases in this Modern Era. Ann Surg Oncol 2021; 28:7709-7718. [PMID: 34023948 DOI: 10.1245/s10434-021-10143-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/10/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND An individualized treatment decision is based on the accurate evaluation of clinical risk factors and prognosis for resectable colorectal liver metastases. The current study aimed to develop an effective nomogram to predict progression-free survival (PFS) and to design a treatment schedule preoperatively. METHODS The study enrolled a primary cohort of 532 patients with resectable colorectal liver metastases (CRLM) who underwent hepatic resection at two institutions and a validation cohort of 237 patients at two additional institutions with resectable CRLM between 1 January 2008 and 31 December 2018. A nomogram was created based on the independent predictors in the multivariable analysis of progression-free survival in the primary cohort. The predictive accuracy and discriminative ability of the nomogram were determined by the concordance index (C-index) and the calibration curve. The score was compared with the current standard Fong score and validated with an external cohort. RESULTS The independent risk factors for CRLM patients identified in the multivariable analysis were tumor larger than 5 cm, more than one tumor, RAS mutation, primary lymph node metastasis, and primary tumor located on the right side. All five factors were considered in the nomogram. The C-index of the nomogram for predicting survival was 0.696. With external validation, the C-index of the nomogram for the prediction of the PFS was 0.682, which demonstrated that this model has a good level of discriminative ability. For high-risk patients (score > 16), neoadjuvant chemotherapy improved PFS and overall survival (OS) after hepatic resection. CONCLUSION The current nomogram demonstrated an accurate performance in predicting PFS for resectable CRLM patients with liver-limited disease. Based on the current nomogram, high-risk patients (nomogram score > 16) might benefit from neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Hepatopancreatobiliary Surgery Department I, Beijing Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yu-Hong Li
- Sun Yat-sen University Oncology Hospital, Internal Medicine of Digestive Tumor, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Bao-Cai Xing
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Hepatopancreatobiliary Surgery Department I, Beijing Cancer Hospital and Institute, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Huang J, Zang Q, Wen Y, Pan Z, Yao Z, Huang M, Huang J, Chen J, Wang R. Prognostic value of KRAS mutation in patients undergoing pulmonary metastasectomy for colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 160:103308. [PMID: 33753248 DOI: 10.1016/j.critrevonc.2021.103308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The purpose of the study was to evaluate whether KRAS mutation could be an independent prognostic biomarker in patients undergoing pulmonary metastasectomy (PM) for colorectal cancer (CRC). METHODS A systemic review was performed by searching online databases to identify studies reporting overall survival (OS) and recurrence free survival (RFS) of CRC patients undergoing PM. Pooled HRs were calculated for OS and RFS. RESULTS A total of 15233 patients from 60 studies were included. Pooled analysis showed that KRAS mutation was associated with worse OS (HR: 1.86, 95 % Cl: 1.35-2.57) and RFS (HR: 1.68, 95 % Cl: 1.38-2.04). A significant effect on OS and/or RFS was also shown by other 18 factors. CONCLUSIONS This meta-analysis found that KRAS mutation is an important prognostic predictor for OS and RFS in CRC patients undergoing PM, supporting a comprehensive model including clinicopathological and biological factors for optimal patients selection and prognosis for surgical treatment.
Collapse
Affiliation(s)
- Junfeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qing Zang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaokai Wen
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhe Pan
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiyuan Yao
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingkai Huang
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiongqiang Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingsong Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Rongchang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Kimmel JC, Brack AS, Marshall WF. Deep Convolutional and Recurrent Neural Networks for Cell Motility Discrimination and Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:562-574. [PMID: 31251191 DOI: 10.1109/tcbb.2019.2919307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cells in culture display diverse motility behaviors that may reflect differences in cell state and function, providing motivation to discriminate between different motility behaviors. Current methods to do so rely upon manual feature engineering. However, the types of features necessary to distinguish between motility behaviors can vary greatly depending on the biological context, and it is not always clear which features may be most predictive in each setting for distinguishing particular cell types or disease states. Convolutional neural networks (CNNs) are machine learning models allowing for relevant features to be learned directly from spatial data. Similarly, recurrent neural networks (RNNs) are a class of models capable of learning long term temporal dependencies. Given that cell motility is inherently spacio-temporal data, we present an approach utilizing both convolutional and long- short-term memory (LSTM) recurrent neural network units to analyze cell motility data. These RNN models provide accurate classification of simulated motility and experimentally measured motility from multiple cell types, comparable to results achieved with hand-engineered features. The variety of cell motility differences we can detect suggests that the algorithm is generally applicable to additional cell types not analyzed here. RNN autoencoders based on the same architecture are capable of learning motility features in an unsupervised manner and capturing variation between myogenic cells in the latent space. Adapting these RNN models to motility prediction, RNNs are capable of predicting muscle stem cell motility from past tracking data with performance superior to standard motion prediction models. This advance in cell motility prediction may be of practical utility in cell tracking applications.
Collapse
|
18
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
19
|
Choi BH, Kou Z, Colon TM, Chen CH, Chen Y, Dai W. Identification of Radil as a Ras binding partner and putative activator. J Biol Chem 2021; 296:100314. [PMID: 33482197 PMCID: PMC7949112 DOI: 10.1016/j.jbc.2021.100314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Ras genes are among the most frequently mutated oncogenes in human malignancies. To date, there are no successful anticancer drugs in the clinic that target Ras proteins or their pathways. Therefore, it is imperative to identify and characterize new components that regulate Ras activity or mediate its downstream signaling. To this end, we used a combination of affinity-pulldown and mass spectrometry to search for proteins that are physically associated with KRas. One of the top hits was Radil, a gene product with a Ras-association domain. Radil is known to be a downstream effector of Rap1, inhibiting RhoA signaling to regulate cell adhesion and migration. We demonstrate that Radil interacted with all three isoforms of Ras including HRas, NRas, and KRas, although it exhibited the strongest interaction with KRas. Moreover, Radil interacts with GTP-bound Ras more efficiently, suggesting a possibility that Radil may be involved in Ras activation. Supporting this, ectopic expression of Radil led to transient activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase; Radil knockdown resulted in weakened activation of Ras downstream signaling components, which was coupled with decreased cell proliferation and invasion, and reduced expression of mesenchymal cell markers. Moreover, Radil knockdown greatly reduced the number of adhesion foci and depolymerized actin filaments, molecular processes that facilitate cancer cell migration. Taken together, our present studies strongly suggest that Radil is an important player for regulating Ras signaling, cell adhesion, and the epithelial–mesenchymal transition and may provide new directions for Ras-related anticancer drug development.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Ziyue Kou
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Tania Marlyn Colon
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Chih-Hong Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, California, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, California, USA
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York, USA.
| |
Collapse
|
20
|
Abstract
Ras proteins mediate extracellular and cytoplasmic signaling networks via receptor tyrosine kinase. The Ras pathway induces activation of signaling molecules involved in cell proliferation and growth, cell survival and apoptosis, metabolism, and motility. Although Ras mutations in breast cancer are not frequently reported, hyperactivation of Ras signaling plays an important role in breast cancer growth and progression. Oncogenic Ras activation occurs via loss of Ras GTPase-activating proteins, overexpression of growth factor receptor, and stimulation by various cytokines. Effective control of oncogenic Ras is one of the therapeutic strategies in breast cancer. The mechanisms of intracellular localization, activation, and signaling pathway of Ras in cancer have been used to develop therapeutic candidates. Recent studies have reported an effective therapy for breast cancer by inhibition of enzymes involved in the posttranslational modification of Ras, such as farnesyltransferase and geranylgeranyltransferase 1, and anti-cancer therapies targeting the epidermal growth factor receptor (EGFR). Emerging targets involved in EGF-mediated Ras activity in breast cancer have shed new insight into Ras activation in breast cancer progression. These alternative mechanisms for Ras signaling pathway may suggest novel therapeutic approaches for targeting Ras in breast cancer. In spite of the difficulties in targeting Ras protein, important discoveries highlight the direct inhibition of Ras activity. Further studies may elucidate the effects of targeting Ras protein and the clinical relevance thereof.
Collapse
|
21
|
Effect of ginger extracts on colorectal cancer HCT-116 cell line in the expression of MMP-2 and KRAS. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Richter C, Mayhew D, Rennhack JP, So J, Stover EH, Hwang JH, Szczesna-Cordary D. Genomic Amplification and Functional Dependency of the Gamma Actin Gene ACTG1 in Uterine Cancer. Int J Mol Sci 2020; 21:ijms21228690. [PMID: 33217970 PMCID: PMC7698702 DOI: 10.3390/ijms21228690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomere and cytoskeleton genes, or actomyosin genes, regulate cell biology including mechanical stress, cell motility, and cell division. While actomyosin genes are recurrently dysregulated in cancers, their oncogenic roles have not been examined in a lineage-specific fashion. In this report, we investigated dysregulation of nine sarcomeric and cytoskeletal genes across 20 cancer lineages. We found that uterine cancers harbored the highest frequencies of amplification and overexpression of the gamma actin gene, ACTG1. Each of the four subtypes of uterine cancers, mixed endometrial carcinomas, serous carcinomas, endometroid carcinomas, and carcinosarcomas harbored between 5~20% of ACTG1 gene amplification or overexpression. Clinically, patients with ACTG1 gains had a poor prognosis. ACTG1 gains showed transcriptional patterns that reflect activation of oncogenic signals, repressed response to innate immunity, or immunotherapy. Functionally, the CRISPR-CAS9 gene deletion of ACTG1 had the most robust and consistent effects in uterine cancer cells relative to 20 other lineages. Overall, we propose that ACTG1 regulates the fitness of uterine cancer cells by modulating cell-intrinsic properties and the tumor microenvironment. In summary, the ACTG1 functions relative to other actomyosin genes support the notion that it is a potential biomarker and a target gene in uterine cancer precision therapies.
Collapse
Affiliation(s)
- Camden Richter
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - David Mayhew
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
- Department of Radiation Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Jonathan P. Rennhack
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - Jonathan So
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - Elizabeth H. Stover
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, MA 02215, USA; (C.R.); (D.M.); (J.P.R.); (J.S.); (E.H.S.)
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55414, USA
- Correspondence: (J.H.H.); (D.S.-C.); Tel.: +1-612-626-3003 (J.H.H.); +1-305-243-2908 (D.S.-C.); Fax: +1-612-625-6919 (J.H.H.); +1-305-243-4555 (D.S.-C.)
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (J.H.H.); (D.S.-C.); Tel.: +1-612-626-3003 (J.H.H.); +1-305-243-2908 (D.S.-C.); Fax: +1-612-625-6919 (J.H.H.); +1-305-243-4555 (D.S.-C.)
| |
Collapse
|
23
|
Klimpel A, Stillger K, Wiederstein JL, Krüger M, Neundorf I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. FEBS J 2020; 288:2911-2929. [PMID: 33112492 DOI: 10.1111/febs.15612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.
Collapse
Affiliation(s)
- Annika Klimpel
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Germany
| |
Collapse
|
24
|
4-Hydroxyacetophenone modulates the actomyosin cytoskeleton to reduce metastasis. Proc Natl Acad Sci U S A 2020; 117:22423-22429. [PMID: 32848073 DOI: 10.1073/pnas.2014639117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Metastases are the cause of the vast majority of cancer deaths. In the metastatic process, cells migrate to the vasculature, intravasate, extravasate, and establish metastatic colonies. This pattern of spread requires the cancer cells to change shape and to navigate tissue barriers. Approaches that block this mechanical program represent new therapeutic avenues. We show that 4-hydroxyacetophenone (4-HAP) inhibits colon cancer cell adhesion, invasion, and migration in vitro and reduces the metastatic burden in an in vivo model of colon cancer metastasis to the liver. Treatment with 4-HAP activates nonmuscle myosin-2C (NM2C) (MYH14) to alter actin organization, inhibiting the mechanical program of metastasis. We identify NM2C as a specific therapeutic target. Pharmacological control of myosin isoforms is a promising approach to address metastatic disease, one that may be readily combined with other therapeutic strategies.
Collapse
|
25
|
Saadat LV, Boerner T, Goldman DA, Gonen M, Frankel TL, Vakiani E, Kingham TP, Jarnagin WR, Wei AC, Soares KC, Solit DB, D'Angelica MI. Association of RAS Mutation Location and Oncologic Outcomes After Resection of Colorectal Liver Metastases. Ann Surg Oncol 2020; 28:817-825. [PMID: 32683635 DOI: 10.1245/s10434-020-08862-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND RAS mutations are prognostic for patients with metastatic colorectal cancer (mCRC). We investigated clinical, pathologic, and survival differences based on RAS exon for patients with colorectal liver metastases (CRLM). METHODS This retrospective, single-center study included patients with R0/R1 resection of CRLM from 1992 to 2016. Patients with unresected extrahepatic disease or liver-first resection were excluded. Overall survival (OS) and recurrence-free survival were assessed and stratified by mutation status and location. Fisher's exact test, Wilcoxon rank-sum test, and log-rank test were used, where appropriate. RESULTS A total of 938 mCRC patients were identified with median age of 57 (range 19-91). Of the 445 patients with KRAS mutations, 407 (91%) had a mutation in exon 2, 14 (3%) exon 3, and 24 (5%) exon 4. Median OS was 71.4 months (95% confidence interval [CI] 66.1-76.5). Patients with KRAS mutations had worse OS compared with KRAS wild-type patients (median 55.5 vs. 91.3 months, p < 0.001). While there was no significant difference in OS based on the exon mutated (p = 0.12), 5-year OS was higher for patients with exon 4 mutations [68.8% (95% CI 0.45-0.84)] compared with those with mutations in exon 2 [45.7% (95% CI 0.40-0.51)] or exon 3 [39.1% (95% CI: 0.11-0.68)]. Patients with NRAS mutant tumors also had worse OS compared with NRAS wild-type patients (median 50.9 vs. 73.3 months, p = 0.03). CONCLUSIONS NRAS and KRAS exon 3/4 mutations are present in a minority of mCRC patients. Patients with exon 4 mutant tumors may have a more favorable prognosis, although the difference in oncologic outcomes based on mutated exon appears to be smaller than previously reported.
Collapse
Affiliation(s)
- Lily V Saadat
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Thomas Boerner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Debra A Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice C Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin C Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
26
|
Matthews HK, Ganguli S, Plak K, Taubenberger AV, Win Z, Williamson M, Piel M, Guck J, Baum B. Oncogenic Signaling Alters Cell Shape and Mechanics to Facilitate Cell Division under Confinement. Dev Cell 2020; 52:563-573.e3. [PMID: 32032547 PMCID: PMC7063569 DOI: 10.1016/j.devcel.2020.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic RasV12 activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that RasV12-expressing cells are softer in interphase but stiffen more upon entry into mitosis. These RasV12-dependent changes allow cells to round up and divide faithfully when confined underneath a stiff hydrogel, conditions in which normal cells and cells with reduced levels of Ras-ERK signaling suffer multiple spindle assembly and chromosome segregation errors. Thus, by promoting cell rounding and stiffening in mitosis, oncogenic RasV12 enables cells to proliferate under conditions of mechanical confinement like those experienced by cells in crowded tumors.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sushila Ganguli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Zaw Win
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Max Williamson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058 Erlangen, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Ras functional proximity proteomics establishes mTORC2 as new direct ras effector. Oncotarget 2019; 10:5126-5135. [PMID: 31497244 PMCID: PMC6718260 DOI: 10.18632/oncotarget.27025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/14/2023] Open
Abstract
Although oncogenic mutations in the three major Ras isoforms, KRAS, HRAS and NRAS, are present in nearly a third of human cancers, therapeutic targeting of Ras remains a challenge due to its structure and complex regulation. However, an in-depth examination of the protein interactome of oncogenic Ras may provide new insights into key regulators, effectors and other mediators of its tumorigenic functions. Previous proteomic analyses have been limited by experimental tools that fail to capture the dynamic, transient nature of Ras cellular interactions. Therefore, in a recent study, we integrated proximity-dependent biotin labeling (BioID) proteomics with CRISPR screening of identified proteins to identify Ras proximal proteins required for Ras-dependent cancer cell growth. Oncogenic Ras was proximal to proteins involved in unexpected biological processes, such as vesicular trafficking and solute transport. Critically, we identified a direct, bona fide interaction between active Ras and the mTOR Complex 2 (mTORC2) that stimulated mTORC2 kinase activity. The oncogenic Ras-mTORC2 interaction resulted in a downstream pro-proliferative transcriptional program and promoted Ras-dependent tumor growth in vivo. Here we provide additional insight into the Ras isoform-specific protein interactomes, highlighting new opportunities for unique tumor-type therapies. Finally, we discuss the active Ras-mTORC2 interaction in detail, providing a more complete understanding of the direct relationship between Ras and mTORC2. Collectively, our findings support a model wherein Ras integrates an expanded array of pro-oncogenic signals to drive tumorigenic processes, including action on mTORC2 as a direct effector of Ras-driven proliferative signals.
Collapse
|
28
|
Kemeny N, Kurilova I, Li J, Camacho JC, Sofocleous CT. Liver-Directed and Systemic Therapies for Colorectal Cancer Liver Metastases. Cardiovasc Intervent Radiol 2019; 42:1240-1254. [PMID: 31312902 DOI: 10.1007/s00270-019-02284-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
|
29
|
Charitou T, Srihari S, Lynn MA, Jarboui MA, Fasterius E, Moldovan M, Shirasawa S, Tsunoda T, Ueffing M, Xie J, Xin J, Wang X, Proud CG, Boldt K, Al-Khalili Szigyarto C, Kolch W, Lynn DJ. Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRAS G13D mutation. Br J Cancer 2019; 121:37-50. [PMID: 31133691 PMCID: PMC6738113 DOI: 10.1038/s41416-019-0477-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Activating mutations in KRAS frequently occur in colorectal cancer (CRC) patients, leading to resistance to EGFR-targeted therapies. Methods To better understand the cellular reprogramming which occurs in mutant KRAS cells, we have undertaken a systems-level analysis of four CRC cell lines which express either wild type (wt) KRAS or the oncogenic KRASG13D allele (mtKRAS). Results RNAseq revealed that genes involved in ribosome biogenesis, mRNA translation and metabolism were significantly upregulated in mtKRAS cells. Consistent with the transcriptional data, protein synthesis and cell proliferation were significantly higher in the mtKRAS cells. Targeted metabolomics analysis also confirmed the metabolic reprogramming in mtKRAS cells. Interestingly, mtKRAS cells were highly transcriptionally responsive to EGFR activation by TGFα stimulation, which was associated with an unexpected downregulation of genes involved in a range of anabolic processes. While TGFα treatment strongly activated protein synthesis in wtKRAS cells, protein synthesis was not activated above basal levels in the TGFα-treated mtKRAS cells. This was likely due to the defective activation of the mTORC1 and other pathways by TGFα in mtKRAS cells, which was associated with impaired activation of PKB signalling and a transient induction of AMPK signalling. Conclusions We have found that mtKRAS cells are substantially rewired at the transcriptional, translational and metabolic levels and that this rewiring may reveal new vulnerabilities in oncogenic KRAS CRC cells that could be exploited in future.
Collapse
Affiliation(s)
- Theodosia Charitou
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Sriganesh Srihari
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Miriam A Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Mohamed-Ali Jarboui
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
| | - Erik Fasterius
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Max Moldovan
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Senji Shirasawa
- Faculty of Medicine, Fukuoka University, Fukuoka, Fukuoka Prefecture, 814-0133, Japan
| | - Toshiyuki Tsunoda
- Faculty of Medicine, Fukuoka University, Fukuoka, Fukuoka Prefecture, 814-0133, Japan
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jianling Xie
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jin Xin
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Xuemin Wang
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Christopher G Proud
- Nutrition, Diabetes & Metabolism, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Karsten Boldt
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| | - David J Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia. .,School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
30
|
Jin J, Guo Q, Xie J, Jin D, Zhu Y. Combination of MEK Inhibitor and the JAK2-STAT3 Pathway Inhibition for the Therapy of Colon Cancer. Pathol Oncol Res 2019; 25:769-775. [PMID: 30706361 DOI: 10.1007/s12253-019-00592-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023]
Abstract
The study aimed to investigate the reason of HCT116 cell resistance to MEK inhibitor, and the combination treatment effects of MEK inhibitor AZD6244 and JAK2/STAT3 inhibitor AG490 on colon cancer in vitro and in vivo, including cell viability, apoptosis, and explore the partial mechanisms focused on AZD6244 promoted the activation of JAK2-STAT3 pathways. In vitro, we examined the HCT116 cell viability by CCK8, cell apoptosis by flow cytometry; Western blot measured p-ERK, p-JAK2, p-STAT3 and STAT3 expression. In vivo, nude mice were subcutaneously injected by HCT116 cells. The tumor volume and weight were detected. HCT116 cell resistance to MEK inhibitor AZD6244, which inhibited the activation of ERK and promoted the activation of JAK2-STAT3 signaling. The combination treatment of AZD6244 and AG490 significantly inhibited cell viability and induced cell apoptosis, and completely inhibited the activation of ERK and JAK2-STAT3 signaling. Combination treatment of AZD6244 and AG490 had a stronger effect than that of AZD6244 as a monotherapy in vitro and in vivo. The treatment of AZD6244 on K-Ras mutations HCT116 cells promoted the activation of JAK2/STAT3 signaling. JAK2/STAT3 inhibitor AG490 synergistically increases effects of AZD6244 on colon cancer in vitro and in vivo. Collectively, these results provide a rationale for combining inhibitors of the JAK/STAT pathway and MEK inhibitors to reduce the potential impact of drug resistance.
Collapse
Affiliation(s)
- Jianying Jin
- Department of Blood Oncology, Taizhou Hospital, Taizhou, 318000, China
| | - Qunyi Guo
- Department of Blood Oncology, Taizhou Hospital, Taizhou, 318000, China
| | - Jingjing Xie
- Department of Blood Oncology, Taizhou Hospital, Taizhou, 318000, China
| | - Dan Jin
- Department of Blood Oncology, Taizhou Hospital, Taizhou, 318000, China
| | - Yanan Zhu
- Emergency Center of Taizhou Hospital, Taizhou, 318000, China.
| |
Collapse
|
31
|
PLGA-PEG nanoparticles for targeted delivery of the mTOR/PI3kinase inhibitor dactolisib to inflamed endothelium. Int J Pharm 2018; 548:747-758. [DOI: 10.1016/j.ijpharm.2017.10.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022]
|
32
|
Barbon C, Margonis GA, Andreatos N, Rezaee N, Sasaki K, Buettner S, Damaskos C, Pawlik TM, He J, Wolfgang CL, Weiss MJ. Colorectal Liver Metastases: Does the Future of Precision Medicine Lie in Genetic Testing? J Gastrointest Surg 2018; 22:1286-1296. [PMID: 29644557 DOI: 10.1007/s11605-018-3766-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Colorectal liver metastases (CRLM) present an important clinical challenge in both surgical and medical oncology. Despite improvements in management, survival among patients undergoing resection of CRLM is still very variable and there is a paucity of clinical trial data and reliable biomarkers that could guide prognostic forecasts, treatment selection, and follow-up. Fortunately, recent advances in molecular biology and tumor sequencing have identified a number of critical genetic loci and proliferation markers that may hold the key to understanding the biologic behavior of CRLM; specifically, mutations of KRAS, BRAF, TP53, PIK3CA, APC, expression of Ki-67, and the presence of microsatellite instability appear to have a decisive impact on prognosis and response to treatment in patients with CRLM. While the applicability of genetic biomarkers in everyday clinical practice remains conditional on the development of inexpensive bedside sequencing, targeted therapies, and the conduct of appropriate clinical trials, the promise of personalized treatment may be closer to realization than ever before.
Collapse
Affiliation(s)
- Carlotta Barbon
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Georgios Antonios Margonis
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Nikolaos Andreatos
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Neda Rezaee
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Kazunari Sasaki
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Stefan Buettner
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Christopher L Wolfgang
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA
| | - Matthew J Weiss
- Department of Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Halsted 608, Baltimore, MD, 21287, USA.
| |
Collapse
|
33
|
Krygowska AA, Castellano E. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031450. [PMID: 28847905 DOI: 10.1101/cshperspect.a031450] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance.
Collapse
Affiliation(s)
- Agata Adelajda Krygowska
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Esther Castellano
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
34
|
Schorch B, Heni H, Zahaf NI, Brummer T, Mione M, Schmidt G, Papatheodorou P, Aktories K. Targeting oncogenic Ras by the Clostridium perfringens toxin TpeL. Oncotarget 2018; 9:16489-16500. [PMID: 29662661 PMCID: PMC5893256 DOI: 10.18632/oncotarget.24740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium perfringens toxin TpeL belongs to the family of large clostridial glycosylating toxins. The toxin causes N-acetylglucosaminylation of Ras proteins at threonine35 thereby inactivating the small GTPases. Here, we show that all main types of oncogenic Ras proteins (H-Ras, K-Ras and N-Ras) are modified by the toxin in vitro and in vivo. Toxin-catalyzed modification of Ras was accompanied by inhibition of the MAP kinase pathway. Importantly, TpeL inhibited the paradoxical activation of the MAP kinase pathway induced by the BRAF inhibitor Vemurafenib in the human melanoma cell line SBCL2. The toxin also blocked Ras signaling in a zebrafish embryo model expressing oncogenic H-RasG12V, resulting in a reduction of melanocyte number. By using the binding and translocation component of anthrax toxin (protective antigen), the glucosyltransferase domain of TpeL was effectively introduced into target cells that were not sensitive to native TpeL toxin. To reach a higher specificity towards cancer cells, a chimeric TpeL toxin was engineered that possessed the knob region of adenovirus serotype 35 fiber, which interacts with CD46 of target cells frequently overexpressed in cancer cells. The chimeric TpeL fusion toxin efficiently inhibited Ras and MAP kinases in human pancreatic cancer Capan-2 cells, which were insensitive to the wild-type toxin. The data reveal that TpeL and TpeL-related immunotoxins provide a new toolset as Ras-inactivating agents.
Collapse
Affiliation(s)
- Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hannah Heni
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nour-Imene Zahaf
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institut für Molekulare Medizin und Zellforschung, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggestein-Leopoldshafen, Germany.,Present Address: Center for Integrative Biology, University of Trento, Trento, Italy
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Present Address: Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany.,Present Address: Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Calandri M, Yamashita S, Gazzera C, Fonio P, Veltri A, Bustreo S, Sheth RA, Yevich SM, Vauthey JN, Odisio BC. Ablation of colorectal liver metastasis: Interaction of ablation margins and RAS mutation profiling on local tumour progression-free survival. Eur Radiol 2018; 28:2727-2734. [DOI: 10.1007/s00330-017-5273-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
36
|
Wu DW, Lin PL, Cheng YW, Huang CC, Wang L, Lee H. DDX3 enhances oncogenic KRAS‑induced tumor invasion in colorectal cancer via the β‑catenin/ZEB1 axis. Oncotarget 2017; 7:22687-99. [PMID: 27007150 PMCID: PMC5008392 DOI: 10.18632/oncotarget.8143] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/21/2016] [Indexed: 12/22/2022] Open
Abstract
DDX3 plays a dual role in colorectal cancer; however, the role and underlying mechanism of DDX3 in colorectal tumorigenesis remains unclear. Here, we provide evidence that DDX3 enhances oncogenic KRAS transcription via an increase in SP1 binding to its promoter. Accelerating oncogenic KRAS expression by DDX3 promotes the invasion capability via the ERK/PTEN/AKT/β-catenin cascade. Moreover, the β-catenin/ZEB1 axis is responsible for DDX3-induced cell invasiveness and xenograft lung tumor nodule formation. The xenograft lung tumor nodules induced by DDX3-overexpressing T84 stable clone were nearly suppressed by the inhibitor of AKT (perifosine) or β-catenin (XAV939). Among patients, high KRAS, positive nuclear β-catenin expression and high ZEB1 were more commonly occurred in high-DDX3 tumors than in low-DDX3 tumors. High-DDX3, high-KRAS, positive nuclear β-catenin tumors, and high-ZEB1 exhibited worse overall survival (OS) and relapse free survival (RFS) than their counterparts. In conclusion, DDX3 may play an oncogenic role to promote tumor growth and invasion in colon cancer cells via the β-catenin/ZEB1 axis due to increasing KRAS transcription. We therefore suggest that AKT or β-catenin may potentially act as a therapeutic target to improve tumor regression and outcomes in colorectal cancer patients who harbored high-DDX3 tumors.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Division of Colon and Rectum, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lee Wang
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
37
|
Brudvik KW, Vauthey JN. Surgery: KRAS mutations and hepatic recurrence after treatment of colorectal liver metastases. Nat Rev Gastroenterol Hepatol 2017; 14:638-639. [PMID: 28930294 DOI: 10.1038/nrgastro.2017.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kristoffer Watten Brudvik
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, PO Box 4950 Nydalen, 0424 Oslo, Norway
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Wang K, Liu W, Yan XL, Li J, Xing BC. Long-term postoperative survival prediction in patients with colorectal liver metastasis. Oncotarget 2017; 8:79927-79934. [PMID: 29108374 PMCID: PMC5668107 DOI: 10.18632/oncotarget.20322] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022] Open
Abstract
Numerous factors affect the prognosis of colorectal liver metastasis (CRLM) patients after hepatic resection. We investigated several factors related to overall survival in patients with CRLM to identify those most likely to benefit from hepatic resection, and produced a rational tumor biology score system. Three hundred CRLM patients treated with preoperative chemotherapy followed by hepatic resection between 2006 and 2016 were enrolled in our study. Clinicopathologic and long-term survival data were collected and assessed. Patient 1-, 3-, and 5-year overall survival rates were 92.7%, 58.3%, and 45.8%, respectively, while 1-, 3-, and 5-year disease-free survival rates were 44.7%, 28.6%, and 24.2%, respectively. Multivariate Cox regression analysis revealed poor preoperative chemotherapy response, Fong clinical risk score > 2, and KRAS mutation to be independent prognostic indicators in CRLM patients. As part of a preoperative staging system in which one point was assigned for each factor, a total score (out of 3) was predictive of long-term survival following surgery. These factors facilitate personalized prognostic assessments in CRLM patients planning for resection.
Collapse
Affiliation(s)
- Kun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | - Wei Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | - Xiao-Luan Yan
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | - Juan Li
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | - Bao-Cai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| |
Collapse
|
39
|
Wang C, Li Z, Shao F, Yang X, Feng X, Shi S, Gao Y, He J. High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017. [PMID: 28645305 PMCID: PMC5481965 DOI: 10.1186/s13046-017-0555-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Oesophageal cancer is one of the most common malignancies worldwide,and oesophageal squamous cell carcinoma (ESCC) is the predominant histological type both globally and in China. Collagen triple helix repeat containing 1 (CTHRC1) has been found to be upregulated in ESCC. However, its role in tumourigenesis and progression of ESCC remains unclear. Methods Using our previous ESCC mRNA profiling data, we screened upregulated genes to identify those required for proliferation. Immunohistochemistry was performed to determine the level of CTHRC1 protein expression in 204 ESCC patients. Correlations between CTHRC1 expression and clinicopathological characteristics were assessed. In addition, pyrosequencing and 5-aza-dC treatment were performed to evaluate methylation status of CTHRC1 promoter. In vitro and in vivo analyses were also conducted to determine the role of CTHRC1 in ESCC cell proliferation, migration and invasion, and RNA sequencing and molecular experiments were performed to study the underlying mechanisms. Results Based on mRNA profiling data, CTHRC1 was identified as one of the most significantly upregulated genes in ESCC tissues (n = 119, fold change = 20.5, P = 2.12E-66). RNA interference screening also showed that CTHRC1 was required for cell proliferation. Immunohistochemistry confirmed markedly high CTHRC1 protein expression in tumour tissues, and high CTHRC1 expression was positively correlated with advanced T stage (P = 0.043), lymph node metastasis (P = 0.023), TNM stage (P = 0.024) and poor overall survival (P = 0.020). Promoter hypomethylation at cg07757887 may contribute to increased CTHRC1 expression in ESCC cells and tumours. Forced overexpression of CTHRC1 significantly enhanced cell proliferation, migration and invasion, whereas depletion of CTHRC1 suppressed these cellular functions in three ESCC cell lines and xenografts. CTHRC1 was found to activate FRA-1 (Fos-related antigen 1, also known as FOSL1) through the MAPK/MEK/ERK cascade, which led to upregulation of cyclin D1 and thus promoted cell proliferation. FRA-1 also induced snail1-mediated MMP14 (matrix metallopeptidase 14, also known as MT1-MMP) expression to facilitate ESCC cell invasion, migration, and metastasis. Conclusions Our data suggest that CTHRC1 may act as an oncogenic driver in progression and metastasis of ESCC, and may serve as a potential biomarker for prognosis and personalized therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zitong Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xueying Yang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
40
|
Kawasaki H, Saotome T, Usui T, Ohama T, Sato K. Regulation of intestinal myofibroblasts by KRas-mutated colorectal cancer cells through heparin-binding epidermal growth factor-like growth factor. Oncol Rep 2017; 37:3128-3136. [PMID: 28339087 DOI: 10.3892/or.2017.5520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
In colorectal cancer, gain-of-function mutations in KRas play a critical role in malignant transformation. Tumor growth in colorectal cancer is known to be promoted by the intestinal myofibroblasts (IMFs) that localize adjacent to the cancer cells, but the mechanisms of interaction between KRas-mutated cancer cells and the myofibroblasts remain unclear. Here, we investigated the effects of KRas-mutated cells on the behavior of myofibroblasts by using mouse primary IMFs and cells of an IMF cell line (LmcMF) and a mouse colon epithelial cell line (aMoC1). Conditioned medium (CM) was collected from aMoC1 cells overexpressing a control vector or KRasV12 vector (KRasV12-CM), and the effects of KRasV12-CM on IMFs were analyzed by performing proliferation assays, wound-healing assays, Boyden chamber assays, and western blotting. Whereas KRasV12-CM exerted little effect on the differentiation and proliferation of primary IMFs, the CM promoted migration of both primary IMFs and LmcMF cells. In KRasV12-overexpressing aMoC1 cells, mRNA expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) was higher than in mock-transfected aMoC1 cells, and HB-EGF promoted the migration of primary IMFs and LmcMF cells. Moreover, KRasV12-CM-induced IMF migration was suppressed by dacomitinib, an inhibitor of HB-EGF receptors. Notably, in LmcMF cells, both KRasV12-CM and HB-EGF activated extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK), whereas KRasV12-CM-induced migration of IMFs was suppressed following treatment with either an ERK inhibitor (FR180204) or a JNK inhibitor (SP600125). These results suggest that HB-EGF secreted from KRas-mutated colorectal cancer cells promotes IMF migration through ERK and JNK activation, which, in turn, could support cancer progression.
Collapse
Affiliation(s)
- Hideyoshi Kawasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takuya Saotome
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
41
|
Wu DW, Lin PL, Wang L, Huang CC, Lee H. The YAP1/SIX2 axis is required for DDX3-mediated tumor aggressiveness and cetuximab resistance in KRAS-wild-type colorectal cancer. Am J Cancer Res 2017; 7:1114-1132. [PMID: 28435452 PMCID: PMC5399580 DOI: 10.7150/thno.18175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
The mechanism underlying tumor aggressiveness and cetuximab (CTX) resistance in KRAS-wild-type (KRAS -WT) colorectal cancer remains obscure. We here provide evidence that DDX3 promoted soft agar growth and invasiveness of KRAS-WT cells, as already confirmed in KRAS-mutated cells. Mechanistically, increased KRAS expression induced ROS production, which elevated HIF-1α and YAP1 expression. Increased HIF-1α persistently promoted DDX3 expression via a KRAS/ROS/HIF-1α feedback loop. DDX3-mediated aggressiveness and CTX resistance were regulated by the YAP1/SIX2 axis in KRAS-WT cells and further confirmed in animal models. Kaplan-Meier and Cox regression analysis indicated that DDX3, KRAS, and YAP1 expression had prognostic value for OS and RFS in KRAS-WT and KRAS-mutated tumors, but SIX2 and YAP1/SIX2 were prognostic value only in KRAS-WT patients. The observation from patients seemed to support the mechanistic action of cell and animal models. We therefore suggest that combining YAP1 inhibitors with CTX may therefore suppress DDX3-mediated tumor aggressiveness and enhance CTX sensitivity in KRAS-WT colorectal cancer.
Collapse
|
42
|
Shindoh J, Nishioka Y, Yoshioka R, Sugawara T, Sakamoto Y, Hasegawa K, Hashimoto M, Kokudo N. KRAS Mutation Status Predicts Site-Specific Recurrence and Survival After Resection of Colorectal Liver Metastases Irrespective of Location of the Primary Lesion. Ann Surg Oncol 2016; 23:1890-1896. [PMID: 26786089 DOI: 10.1245/s10434-016-5087-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The KRAS mutation status is reportedly correlated with poor survival outcome in patients with colorectal liver metastases (CLM); however, its true prognostic impact and the reason for the poor prognosis remain unclear. METHODS Data on 163 patients with a known KRAS mutation status who underwent curative resection for CLM were retrospectively reviewed. The long-term survival and site-specific incidence of recurrence were then compared between patients with a KRAS mutation (mtKRAS) and those without a mutation (wtKRAS). RESULTS The mtKRAS group had a poorer 3-year disease-specific survival (DSS) rate (59.8 vs. 83.6 %, p = 0.016), 3-year recurrence-free survival (RFS) rate (0 vs. 20.2 %, p = 0.069), and median time to surgical failure (TSF) [18.8 vs. 39.7 months, p = 0.001] than the wtKRAS group. The cumulative incidences of liver recurrence and lung recurrence at 3 years were also higher in the mtKRAS group (76.2 vs. 54.7 %, p = 0.060; and 71.9 vs. 37.3 %, p < 0.001, respectively). A multivariate analysis confirmed that an mtKRAS status had a significant effect on the DSS rate (hazard ratio [HR] 2.9, p = 0.006), RFS (HR 2.0, p = 0.004), TSF (HR 2.4, p < 0.001), liver recurrence (HR 1.7, p < 0.001), and lung recurrence (HR 2.6, p < 0.001). Lung-related unresectable recurrences were more frequent (41 vs. 18 %, p = 0.048) and were associated with an earlier TSF (9.6 vs. 14.0 months, p = 0.14) in the mtKRAS group, regardless of the location of the primary lesions. CONCLUSIONS mtKRAS is associated with poor survival outcome after CLM resection because of a relatively high incidence of lung recurrence and a relatively short TSF.
Collapse
Affiliation(s)
- Junichi Shindoh
- Hepatobiliary-Pancreatic, Surgery Division, Department of Digestive Surgery, Toranomon Hospital, Tokyo, Japan.
- Okinaka Memorial Institute for Medical Disease, Tokyo, Japan.
| | - Yujiro Nishioka
- Hepatobiliary-Pancreatic, Surgery Division, Department of Digestive Surgery, Toranomon Hospital, Tokyo, Japan
- Hepatobiliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryuji Yoshioka
- Hepatobiliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshitaka Sugawara
- Hepatobiliary-Pancreatic, Surgery Division, Department of Digestive Surgery, Toranomon Hospital, Tokyo, Japan
| | - Yoshihiro Sakamoto
- Hepatobiliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepatobiliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaji Hashimoto
- Hepatobiliary-Pancreatic, Surgery Division, Department of Digestive Surgery, Toranomon Hospital, Tokyo, Japan
| | - Norihiro Kokudo
- Hepatobiliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
43
|
Zhao C, Xiao H, Wu X, Li C, Liang G, Yang S, Lin J. Rational combination of MEK inhibitor and the STAT3 pathway modulator for the therapy in K-Ras mutated pancreatic and colon cancer cells. Oncotarget 2016; 6:14472-87. [PMID: 25961376 PMCID: PMC4546480 DOI: 10.18632/oncotarget.3991] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
K-Ras mutations are frequently detected in pancreatic and colon cancers, which are associated with the resistance to MEK inhibitors targeting the Ras pathway. Identifying the underlying mechanisms for the acquired resistance is essential for the future clinical development of MEK inhibitors. Here, we identified that Signal Transducer and Activator of Transcription 3 (STAT3) was significantly activated following the MEK inhibition using AZD6244, PD98059 and Trametinib in K-Ras mutant pancreatic and colon cancer cells. The STAT3 activation may be important for the MEK inhibitor resistance in these K-Ras mutant cancer cells. We have shown that dual inhibition of STAT3 and MEK using the STAT3 inhibitor LY5 and MEK inhibitor Trametinib exerts significant anti-tumor cell efficacy in K-Ras mutant pancreatic and colon cancer cells in vitro. In addition, Trametinib showed increased suppression on tumor growth in vivo in STAT3 knockdown pancreatic cancer cells compared with tumor growth of control cells without STAT3 knockdown. Taken together, our results suggest the induced STAT3 activation as a possible mechanism for the resistance to MEK inhibitor and demonstrate the potentials of a combination therapy using MEK and STAT3 inhibitors in pancreatic and colon cancers harboring K-Ras mutant proteins.
Collapse
Affiliation(s)
- Chengguang Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People's Republic of China.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Xiao
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xiaojuan Wu
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People's Republic of China
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People's Republic of China
| | - Jiayuh Lin
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Castellano E, Molina-Arcas M, Krygowska AA, East P, Warne P, Nicol A, Downward J. RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression. Nat Commun 2016; 7:11245. [PMID: 27071537 PMCID: PMC4833863 DOI: 10.1038/ncomms11245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
RAS signalling through phosphoinositide 3-kinase (PI3-Kinase) has been shown to have an essential role in tumour initiation and maintenance. RAS also regulates cell motility and tumour invasiveness, but the role of direct RAS binding to PI3-Kinase in this remains uncertain. Here, we provide evidence that disruption of RAS interaction with PI3-Kinase p110α decreases cell motility and prevents activation of Rac GTPase. Analysis of gene expression in cells lacking RAS interaction with p110α reveals increased levels of the extracellular matrix glycoprotein Reelin and activation of its downstream pathway resulting in upregulation of E-cadherin expression. Induction of the Reelin/E-cadherin axis is also observed in Kras mutant lung tumours that are regressing due to blockade of RAS interaction with PI3-Kinase. Furthermore, loss of Reelin correlates with decreased survival of lung and breast cancer patients. Reelin thus plays a role in restraining RAS and PI3-kinase promotion of cell motility and potentially tumour metastasis.
Collapse
Affiliation(s)
- Esther Castellano
- Oncogene Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Miriam Molina-Arcas
- Oncogene Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Lung Cancer Group, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Agata Adelajda Krygowska
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Philip East
- Computational Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Patricia Warne
- Oncogene Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Alastair Nicol
- Light Microscopy Laboratories, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
- Lung Cancer Group, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
45
|
Brudvik KW, Mise Y, Chung MH, Chun YS, Kopetz SE, Passot G, Conrad C, Maru DM, Aloia TA, Vauthey JN. RAS Mutation Predicts Positive Resection Margins and Narrower Resection Margins in Patients Undergoing Resection of Colorectal Liver Metastases. Ann Surg Oncol 2016; 23:2635-43. [PMID: 27016292 DOI: 10.1245/s10434-016-5187-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND In patients undergoing resection of colorectal liver metastases (CLM), resection margin status is a significant predictor of survival, particularly in patients with suboptimal response to preoperative therapy. RAS mutations have been linked to more invasive and migratory tumor biology and poor response to modern chemotherapy. OBJECTIVE The aim of this study was to evaluate the relationship between RAS mutation and resection margin status in patients undergoing resection of CLM. METHODS Patients who underwent curative resection of CLM from 2005 to 2013 with known RAS mutation status were identified from a prospectively maintained database. A positive margin was defined as tumor cells <1 mm from the parenchymal transection line. RESULTS The study included 633 patients, of whom 229 (36.2 %) had mutant RAS. The positive margin rate was 11.4 % (26/229) for mutant RAS and 5.4 % (22/404) for wild-type RAS (p = 0.007). In multivariate analysis, the only factors associated with a positive margin were RAS mutation (hazard ratio [HR] 2.439; p = 0.005) and carcinoembryonic antigen level 4.5 ng/mL or greater (HR 2.060; p = 0.026). Among patients presenting with liver-first recurrence during follow-up, those with mutant RAS had narrower margins at initial CLM resection (median 4 mm vs. 7 mm; p = 0.031). A positive margin (HR 3.360; p < 0.001) and RAS mutation (HR 1.629; p = 0.044) were independently associated with worse overall survival. CONCLUSION RAS mutations are associated with positive margins in patients undergoing resection of CLM. Tumors with RAS mutation should prompt careful efforts to achieve negative resection margins.
Collapse
Affiliation(s)
- Kristoffer Watten Brudvik
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshihiro Mise
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Hsiang Chung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillaume Passot
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudius Conrad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas A Aloia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Iskit S, Schlicker A, Wessels L, Peeper DS. Fra-1 is a key driver of colon cancer metastasis and a Fra-1 classifier predicts disease-free survival. Oncotarget 2015; 6:43146-61. [PMID: 26646695 PMCID: PMC4791222 DOI: 10.18632/oncotarget.6454] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Fra-1 (Fos-related antigen-1) is a member of the AP-1 (activator protein-1) family of transcription factors. We previously showed that Fra-1 is necessary for breast cancer cells to metastasize in vivo, and that a classifier comprising genes that are expressed in a Fra-1-dependent fashion can predict breast cancer outcome. Here, we show that Fra-1 plays an important role also in colon cancer progression. Whereas Fra-1 depletion does not affect 2D proliferation of human colon cancer cells, it impairs growth in soft agar and in suspension. Consistently, subcutaneous tumors formed by Fra-1-depleted colon cancer cells are three times smaller than those produced by control cells. Most remarkably, when injected intravenously, Fra-1 depletion causes a 200-fold reduction in tumor burden. Moreover, a Fra-1 classifier generated by comparing RNA profiles of parental and Fra-1-depleted colon cancer cells can predict the prognosis of colon cancer patients. Functional pathway analysis revealed Wnt as one of the central pathways in the classifier, suggesting a possible mechanism of Fra-1 function in colon cancer metastasis. Our results demonstrate that Fra-1 is an important determinant of the metastatic potential of human colon cancer cells, and that the Fra-1 classifier can be used as a prognostic predictor in colon cancer patients.
Collapse
Affiliation(s)
- Sedef Iskit
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Andreas Schlicker
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Lodewyk Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| | - Daniel S. Peeper
- Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Dhillon AS, Tulchinsky E. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer. Oncogene 2015; 34:4421-8. [PMID: 25381818 PMCID: PMC4351906 DOI: 10.1038/onc.2014.374] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Tumour heterogeneity is a major factor undermining the success of therapies targeting metastatic cancer. Two major theories are thought to explain the phenomenon of heterogeneity in cancer--clonal evolution and cell plasticity. In this review, we examine a growing body of work implicating the transcription factor FOS-related antigen 1 (FRA-1) as a central node in tumour cell plasticity networks, and discuss mechanisms regulating its activity in cancer cells. We also discuss evidence from the FRA-1 perspective supporting the notion that clonal selection and cell plasticity represent two sides of the same coin. We propose that FRA-1-overexpressing clones featuring high plasticity undergo positive selection during consecutive stages of multistep tumour progression. This model underscores a potential mechanism through which tumour cells retaining elevated levels of plasticity acquire a selective advantage over other clonal populations within a tumour.
Collapse
Affiliation(s)
- A S Dhillon
- Research Division, Peter MacCallum Cancer Center, St Andrews Place, East Melbourne, Melbourne, Victoria 3002, Australia
| | - E Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
48
|
Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, Rakus D, Mann M. Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters. J Proteome Res 2015; 14:4005-18. [PMID: 26245529 DOI: 10.1021/acs.jproteome.5b00523] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is a leading cause of cancer-related death. It develops from normal enterocytes, through a benign adenoma stage, into the cancer and finally into the metastatic form. We previously compared the proteomes of normal colorectal enterocytes, cancer and nodal metastasis to a depth of 8100 proteins and found extensive quantitative remodeling between normal and cancer tissues but not cancer and metastasis (Wiśniewski et al. PMID 22968445). Here we utilize advances in the proteomic workflow to perform an in depth analysis of the normal tissue (N), the adenoma (A), and the cancer (C). Absolute proteomics of 10 000 proteins per patient from microdissected formalin-fixed and paraffin-embedded clinical material established a quantitative protein repository of the disease. Between N and A, 23% of all proteins changed significantly, 17.8% from A to C and 21.6% from N to C. Together with principal component analysis of the patient groups, this suggests that N, A, and C are equidistant but not on one developmental line. Our proteomics approach allowed us to assess changes in varied cell size, the composition of different subcellular components, and alterations in basic biological processes including the energy metabolism, plasma membrane transport, DNA replication, and transcription. This revealed several-fold higher concentrations of enzymes in fatty acid metabolism in C compared with N, and unexpectedly, the same held true of plasma membrane transporters.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Kamila Duś-Szachniewicz
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany.,Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Paweł Ostasiewicz
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , 50-205 Wrocław, Poland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
49
|
Brudvik KW, Kopetz SE, Li L, Conrad C, Aloia TA, Vauthey JN. Meta-analysis of KRAS mutations and survival after resection of colorectal liver metastases. Br J Surg 2015. [PMID: 26206254 DOI: 10.1002/bjs.9870] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In patients with advanced colorectal cancer, KRAS mutation status predicts response to treatment with monoclonal antibody targeting the epithelial growth factor receptor (EGFR). Recent reports have provided evidence that KRAS mutation status has prognostic value in patients with resectable colorectal liver metastases (CLM) irrespective of treatment with chemotherapy or anti-EGFR therapy. A meta-analysis was undertaken to clarify the impact of KRAS mutation on outcomes in patients with resectable CLM. METHODS PubMed, Embase and Cochrane Library databases were searched systematically to identify full-text articles reporting KRAS-stratified overall (OS) or recurrence-free (RFS) survival after resection of CLM. Hazard ratios (HRs) and 95 per cent c.i. from multivariable analyses were pooled in meta-analyses, and a random-effects model was used to calculate weight and overall results. RESULTS The search returned 355 articles, of which 14, including 1809 patients, met the inclusion criteria. Eight studies reported OS after resection of CLM in 1181 patients. The mutation rate was 27.6 per cent, and KRAS mutation was negatively associated with OS (HR 2.24, 95 per cent c.i. 1.76 to 2.85). Seven studies reported RFS after resection of CLM in 906 patients. The mutation rate was 28.0 per cent, and KRAS mutation was negatively associated with RFS (HR 1.89, 1.54 to 2.32). CONCLUSION KRAS mutation status is a prognostic factor in patients undergoing resection of colorectal liver metastases and should be considered in the evaluation of patients having liver resection.
Collapse
Affiliation(s)
- K W Brudvik
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - S E Kopetz
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Li
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Conrad
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - T A Aloia
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J-N Vauthey
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Kawamata H, Yamashita K, Kojo K, Ushiku H, Ooki A, Watanabe M. Discrepancies between the K-ras mutational status of primary colorectal cancers and corresponding liver metastases are found in codon 13. Genomics 2015; 106:71-5. [PMID: 26026309 DOI: 10.1016/j.ygeno.2015.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023]
Abstract
K-ras mutation status has remained elusive in the metastatic liver tumors of colorectal cancer (CRC) in contrast to the primary CRC tumors. In this study, K-ras mutational status of the primary and corresponding liver metastatic tumors was investigated in the 43 CRC patients. Codons 12 and 13 of K-ras were directly sequenced, and a K-ras mutation was evident in 17 cases (39.5%). In 6 cases, the K-ras mutation was evident only in the liver metastasis, but not in the primary CRC, where the mutation was found in codon 13. This discrepancy between primary and metastatic lesions with regard to codon 13 of the K-ras gene may explain the clinical discrepancy of EGFR antibody therapy. In conclusion, the current data may lead to the development of personalized medicine for recurrent CRC, although further validation study is still required.
Collapse
Affiliation(s)
- Hiroshi Kawamata
- Department of Surgery, Kitasato University School of Medicine, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Japan.
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Japan
| | - Akira Ooki
- Department of Surgery, Kitasato University School of Medicine, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Japan
| |
Collapse
|