1
|
Xu H, Ding S, Tong Y, Zhang Q. Genetic Evidence of Obesity-Induced Chronic Wounds Mediated by Inflammatory Biomarkers. Biol Res Nurs 2025; 27:326-338. [PMID: 39568230 DOI: 10.1177/10998004241299375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Background: Obese patients are increasingly recognized as being at higher risk for skin diseases, particularly chronic wounds. While the exact mechanisms remain unclear, obesity is suspected to influence the development of chronic injuries via inflammatory biomarkers. Single nucleotide polymorphisms (SNPs) may further influence gene expression, protein function, and levels of inflammatory biomarkers through various mechanisms, thereby modulating inflammatory responses that contribute to wound pathogenesis. Methods: A two-sample two-step Mendelian Randomization (MR) was employed to explore the causal relationship between obesity and chronic wounds, focusing on the mediating role of inflammatory biomarkers. SNPs were used as instrumental variables (IVs) to infer causality. Obesity-related genetic data were sourced from the UK Biobank and GIANT consortium. Genome-wide association studies provided data on 92 inflammatory biomarkers, involving 14,824 and 575,531 individuals. Pressure injuries, lower limb venous ulcers, and diabetic foot ulcer data were obtained from FinnGen R10 and the Pan-UK Biobank. Results: Obesity significantly increased the risk of pressure injuries, lower limb venous ulcers, and diabetic foot ulcers. CCL19, hGDNF, IL-12B, and TNFRSF9 were identified as mediators in obesity-induced lower limb venous ulcers. Conclusion: This study provides genetic evidence that obesity leads to lower limb venous ulcers via inflammatory biomarkers, suggesting potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Hai Xu
- Nursing College, Hangzhou Normal University, Hangzhou, China
- Department of Nursing, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Sheyuan Ding
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- The Affiliated Hospital of Hangzhou Normal University (School of Clinical Medicine, School of Stomatology), Hangzhou, China
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiong Zhang
- Nursing College, Hangzhou Normal University, Hangzhou, China
- Department of Nursing, Zhejiang Provincial People's Hospital, Hangzhou, China
- Center for Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Ahn J, Park JH, Choi HJ, Lee D, Hong HE, Kim OH, Kim SJ. Scaffold implantation vs. intravenous delivery: a comparative preclinical animal study evaluating peroxisome proliferator-activated receptor gamma coactivator 1-alpha adipose-derived stem cells in liver fibrosis treatment. Ann Surg Treat Res 2025; 108:186-197. [PMID: 40083980 PMCID: PMC11896761 DOI: 10.4174/astr.2025.108.3.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 03/16/2025] Open
Abstract
Purpose Regenerative medicine is expected to offer an alternative to liver transplantation for treating liver diseases in the future, with one significant challenge being the establishment of an effective stem cell administration route. This study assessed the antifibrogenic effects of adipose-derived stem cells (ASCs) in a liver fibrosis mouse model, focusing on 2 methods of delivery: intravenous injection and scaffold implantation. Methods An extracellular matrix mimic scaffold was utilized for culturing peroxisome proliferator-activated receptor gamma coactivator 1-alpha-overexpressing ASCs (tASCs). These scaffolds, laden with tASCs, were then implanted subcutaneously in mice exhibiting liver fibrosis. In contrast, the Cell groups received biweekly intravenous injections of tASCs for 4 weeks. After 4 weeks, tissue samples were harvested from the euthanized mice for subsequent analysis. Results Real-time PCR and Western blot analyses on liver tissues, focusing on markers like alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-2, and transforming growth factor-beta 1 (TGF-β1), showed that both delivery routes substantially lowered fibrotic and inflammatory markers compared to controls (P < 0.05), with no significant differences between the routes. Histological examinations, along with immunohistochemical analysis of α-SMA, collagen type I alpha, and TGF-β1, revealed that the scaffold implantation approach resulted in a greater reduction in fibrosis and lower immunoreactivity for fibrotic markers than intravenous delivery (P < 0.05). Conclusion These findings indicate that delivering tASCs via a scaffold could be more effective, or at least similarly effective, in treating liver fibrosis compared to intravenous delivery. Scaffold implantation could offer a beneficial alternative to frequent intravenous treatments, suggesting its potential utility in clinical applications for liver disease treatment.
Collapse
Affiliation(s)
- Joseph Ahn
- Department of Surgery, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Jung Hyun Park
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dosang Lee
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ha-Eun Hong
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Translational Research Team, Surginex Co., Ltd., Seoul, Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Translational Research Team, Surginex Co., Ltd., Seoul, Korea
| | - Say-June Kim
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Translational Research Team, Surginex Co., Ltd., Seoul, Korea
| |
Collapse
|
3
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
4
|
Liu C, Xu X, He X, Ren J, Chi M, Deng G, Li G, Nasser MI. Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med 2023; 55:2284890. [PMID: 38039549 PMCID: PMC10836253 DOI: 10.1080/07853890.2023.2284890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Background: Cardiovascular disease (CVD) is widely observed in modern society. CVDs are responsible for the majority of fatalities, with heart attacks and strokes accounting for approximately 80% of these cases. Furthermore, a significant proportion of these deaths, precisely one-third, occurs in individuals under 70. Metabolic syndrome encompasses a range of diseases characterized by various physiological dysfunctions. These include increased inflammation in adipose tissue, enhanced cholesterol synthesis in the liver, impaired insulin secretion, insulin resistance, compromised vascular tone and integrity, endothelial dysfunction, and atheroma formation. These factors contribute to the development of metabolic disorders and significantly increase the likelihood of experiencing cardiovascular complications.Method: We selected studies that proposed hypotheses regarding metabolic disease syndrome and cardiovascular disease (CVD) and the role of Nrf2/HO-1 and factor regulation in CVD research investigations based on our searches of Medline and PubMed.Results: A total of 118 articles were included in the review, 16 of which exclusively addressed hypotheses about the role of Nrf2 on Glucose regulation, while 16 involved Cholesterol regulation. Likewise, 14 references were used to prove the importance of mitochondria on Nrf2. Multiple studies have provided evidence suggesting the involvement of Nrf2/HO-1 in various physiological processes, including metabolism and immune response. A total of 48 research articles and reviews have been used to highlight the role of metabolic syndrome and CVD.Conclusion: This review provides an overview of the literature on Nrf2/HO-1 and its role in metabolic disease syndrome and CVD.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Gang Deng
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Guisen Li
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Clare K, Dillon JF, Brennan PN. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J Clin Transl Hepatol 2022; 10:939-946. [PMID: 36304513 PMCID: PMC9547261 DOI: 10.14218/jcth.2022.00067] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
The pathogenesis of metabolic-associated fatty liver disease (MAFLD) is complex and thought to be dependent on multiple parallel hits on a background of genetic susceptibility. The evidence suggests that MAFLD progression is a dynamic two-way process relating to repetitive bouts of metabolic stress and inflammation interspersed with endogenous anti-inflammatory reparative responses. In MAFLD, excessive hepatic lipid accumulation causes the production of lipotoxins that induce mitochondrial dysfunction, endoplasmic reticular stress, and over production of reactive oxygen species (ROS). Models of MAFLD show marked disruption of mitochondrial function and reduced oxidative capacitance with impact on cellular processes including mitophagy, oxidative phosphorylation, and mitochondrial biogenesis. In excess, ROS modify insulin and innate immune signaling and alter the expression and activity of essential enzymes involved in lipid homeostasis. ROS can also cause direct damage to intracellular structures causing hepatocyte injury and death. In select cases, the use of anti-oxidants and ROS scavengers have been shown to diminish the pro-apoptopic effects of fatty acids. Given this link, endogenous anti-oxidant pathways have been a target of interest, with Nrf2 activation showing a reduction in oxidative stress and inflammation in models of MAFLD. Thyroid hormone receptor β (THRβ) agonists and nuclear peroxisome proliferation-activated receptor (PPAR) family have also gained interest in reducing hepatic lipotoxicity and restoring hepatic function in models of MAFLD. Unfortunately, the true interplay between the clinical and molecular components of MAFLD progression remain only partly understood. Most recently, multiomics-based strategies are being adopted for hypothesis-free analysis of the molecular changes in MAFLD. Transcriptome profiling maps the unique genotype-phenotype associations in MAFLD and with various single-cell transcriptome-based projects underway, there is hope of novel physiological insights to MAFLD progression and uncover therapeutic targets.
Collapse
Affiliation(s)
- Kathleen Clare
- Royal Alexandra Hospital, Paisley, NHS Greater Glasgow and Clyde, PA2 9PN, UK
| | - John F. Dillon
- University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Paul N. Brennan
- University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, EH16 4UU, UK
- Correspondence to: Paul N. Brennan, University of Dundee, Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK. ORCID: https://orcid.org/0000-0001-8368-1478. Tel: +44-7445308786, E-mail:
| |
Collapse
|
6
|
Waldman M, Singh SP, Shen HH, Alex R, Rezzani R, Favero G, Hochhauser E, Kornowski R, Arad M, Peterson SJ. Silencing the Adipocytokine NOV: A Novel Approach to Reversing Oxidative Stress-Induced Cardiometabolic Dysfunction. Cells 2022; 11:cells11193060. [PMID: 36231029 PMCID: PMC9564193 DOI: 10.3390/cells11193060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: NOV/CCN3 is an adipocytokine recently linked to obesity, insulin resistance, and cardiometabolic dysfunction. NOV is manufactured and secreted from adipose tissue, with blood levels highly correlated with BMI. NOV levels are increased in obesity and a myriad of inflammatory diseases. Elevated NOV levels cause oxidative stress by increasing free radicals, decreasing antioxidants, and decreasing heme oxygenase (HO-1) levels, resulting in decreased vascular function. Silencing NOV in NOV knockout mice improved insulin sensitivity. We wanted to study how suppressing NOV expression in an obese animal model affected pathways and processes related to obesity, inflammation, and cardiometabolic function. This is the first study to investigate the interaction of adipose tissue-specific NOV/CCN3 and cardiometabolic function. Methods: We constructed a lentivirus containing the adiponectin-promoter-driven shNOV to examine the effect of NOV inhibition (shNOV) in adipose tissue on the heart of mice fed a high-fat diet. Mice were randomly divided into three groups (five per group): (1) lean (normal diet), (2) high-fat diet (HFD)+ sham virus, and (3) HFD + shNOV lentivirus. Blood pressure, tissue inflammation, and oxygen consumption were measured. Metabolic and mitochondrial markers were studied in fat and heart tissues. Results: Mice fed an HFD developed adipocyte hypertrophy, fibrosis, inflammation, and decreased mitochondrial respiration. Inhibiting NOV expression in the adipose tissue of obese mice by shNOV increased mitochondrial markers for biogenesis (PGC-1α, the nuclear co-activator of HO-1) and functional integrity (FIS1) and insulin signaling (AKT). The upregulation of metabolic and mitochondrial markers was also evident in the hearts of the shNOV mice with the activation of mitophagy. Using RNA arrays, we identified a subgroup of genes that highly correlated with increased adipocyte mitochondrial autophagy in shNOV-treated mice. A heat map analysis in obese mice confirmed that the suppression of NOV overrides the genetic susceptibility of adiposity and the associated detrimental metabolic changes and correlates with the restoration of anti-inflammatory, thermogenic, and mitochondrial genes. Conclusion: Our novel findings demonstrate that inhibiting NOV expression improves adipose tissue function in a positive way in cardiometabolic function by inducing mitophagy and improving mitochondrial function by the upregulation of PGC-1α, the insulin sensitivity signaling protein. Inhibiting NOV expression increases PGC-1, a key component of cardiac bioenergetics, as well as key signaling components of metabolic change, resulting in improved glucose tolerance, improved mitochondrial function, and decreased inflammation. These metabolic changes resulted in increased oxygen consumption, decreased adipocyte size, and improved cardiac metabolism and vascular function at the structural level. The crosstalk of the adipose tissue-specific deletion of NOV/CCN3 improved cardiovascular function, representing a novel therapeutic strategy for obesity-related cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 699780, Israel
| | - Shailendra P. Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Sports Biosciences, Central University of Rajasthan, Kishangarh 305817, India
| | - Hsin-Hsueh Shen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 699780, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petach Tikva 49100, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv 699780, Israel
| | - Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA
- Correspondence: or
| |
Collapse
|
7
|
Adipocyte-Specific Expression of PGC1α Promotes Adipocyte Browning and Alleviates Obesity-Induced Metabolic Dysfunction in an HO-1-Dependent Fashion. Antioxidants (Basel) 2022; 11:antiox11061147. [PMID: 35740043 PMCID: PMC9220759 DOI: 10.3390/antiox11061147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that PGC1-α plays a crucial role in mitochondrial and vascular function, yet the physiological significance of PGC1α and HO expression in adipose tissues in the context of obesity-linked vascular dysfunction remains unclear. We studied three groups of six-week-old C57BL/6J male mice: (1) mice fed a normal chow diet; (2) mice fed a high-fat diet (H.F.D.) for 28 weeks, and (3) mice fed a high-fat diet (H.F.D.) for 28 weeks, treated with adipose-specific overexpression of PGC-1α (transgenic-adipocyte-PGC-1α) at week 20, and continued on H.F.D. for weeks 20–28. R.N.A. arrays examined 88 genes involved in adipocyte proliferation and maturation. Blood pressure, tissue fibrosis, fasting glucose, and oxygen consumption were measured, as well as liver steatosis, and the expression levels of metabolic and mitochondrial markers. Obese mice exhibited a marked reduction of PGC1α and developed adipocyte hypertrophy, fibrosis, hepatic steatosis, and decreased mitochondrial respiration. Mice with adipose-specific overexpression of PGC1-α exhibited improvement in HO-1, mitochondrial biogenesis and respiration, with a decrease in fasting glucose, reduced blood pressure and fibrosis, and increased oxygen consumption. PGC-1α led to the upregulated expression of processes associated with the browning of fat tissue, including UCP1, FGF21, and pAMPK signaling, with a reduction in inflammatory adipokines, NOV/CCN3 expression, and TGFβ. These changes required HO-1 expression. The R.N.A. array analysis identified subgroups of genes positively correlated with contributions to the browning of adipose tissue, all dependent on HO-1. Our observations reveal a positive impact of adipose-PGC1-α on distal organ systems, with beneficial effects on HO-1 levels, reversing obesity-linked cardiometabolic disturbances.
Collapse
|
8
|
Dalbeni A, Castelli M, Zoncapè M, Minuz P, Sacerdoti D. Platelets in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:842636. [PMID: 35250588 PMCID: PMC8895200 DOI: 10.3389/fphar.2022.842636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Non alcoholic steatohepatitis (NASH) is the inflammatory reaction of the liver to excessive accumulation of lipids in the hepatocytes. NASH can progress to cirrhosis and hepatocellular carcinoma (HCC). Fatty liver is the hepatic manifestation of metabolic syndrome. A subclinical inflammatory state is present in patients with metabolic alterations like insulin resistance, type-2 diabetes, obesity, hyperlipidemia, and hypertension. Platelets participate in immune cells recruitment and cytokines-induced liver damage. It is hypothesized that lipid toxicity cause accumulation of platelets in the liver, platelet adhesion and activation, which primes the immunoinflammatory reaction and activation of stellate cells. Recent data suggest that antiplatelet drugs may interrupt this cascade and prevent/improve NASH. They may also improve some metabolic alterations. The pathophysiology of inflammatory liver disease and the implication of platelets are discussed in details.
Collapse
Affiliation(s)
- Andrea Dalbeni
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Marco Castelli
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Mirko Zoncapè
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Pietro Minuz
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- *Correspondence: Pietro Minuz,
| | - David Sacerdoti
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
9
|
The Association of Nephroblastoma Overexpressed (NOV) and Endothelial Progenitor Cells with Oxidative Stress in Obstructive Sleep Apnea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7138800. [PMID: 34868456 PMCID: PMC8635870 DOI: 10.1155/2021/7138800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Objective Obstructive sleep apnea (OSA) is a sleep disorder characterized by intermittent hypoxia, chronic inflammation, and oxidative stress and is associated with cardiometabolic disease. Several biological substrates have been associated with OSA such as nephroblastoma overexpressed (NOV), endothelial progenitor cells (EPC), and circulating endothelial cells (CEC). Few studies have looked at the association of NOV with OSA while the EPC/CEC relationships with OSA are unclear. In this study, we hypothesize that (1) NOV is associated with the severity of OSA independent of BMI, identifying a protein that may play a role in the biogenesis of OSA complications, and (2) EPCs and CECs are also associated with the severity of OSA and are biomarkers of endothelial dysfunction in OSA. Methods 61 subjects underwent overnight polysomnography (PSG), clinical evaluation, and blood analysis for NOV, EPC, CEC, interleukin 6 (IL-6), and other potential biomarkers. Results NOV and EPCs were independently associated with the oxygen desaturation index (ODI) after adjusting for potential confounders including body mass index (BMI), age, and sex (NOV p = 0.032; EPC p = 0.001). EPC was also independently associated with AHI after adjusting for BMI, age, and sex (p = 0.017). IL-6 was independently associated with AHI, but not with ODI. Conclusion NOV and EPC levels correlate with the degree of OSA independent of BMI, indicating that these biomarkers could potentially further elucidate the relationship between OSA patients and their risk of the subsequent development of cardiovascular disease.
Collapse
|
10
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
11
|
Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021; 11:biom11040589. [PMID: 33923744 PMCID: PMC8072688 DOI: 10.3390/biom11040589] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Collapse
|
12
|
Mirhashemi ME, Shah RV, Kitchen RR, Rong J, Spahillari A, Pico AR, Vitseva O, Levy D, Demarco D, Shah S, Iafrati MD, Larson MG, Tanriverdi K, Freedman JE. The Dynamic Platelet Transcriptome in Obesity and Weight Loss. Arterioscler Thromb Vasc Biol 2021; 41:854-864. [PMID: 33297754 PMCID: PMC8105277 DOI: 10.1161/atvbaha.120.315186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Adiposity is associated with oxidative stress, inflammation, and glucose intolerance. Previous data suggest that platelet gene expression is associated with key cardiometabolic phenotypes, including body mass index but stable in healthy individuals over time. However, modulation of gene expression in platelets in response to metabolic shifts (eg, weight reduction) is unknown and may be important to defining mechanism. Approach and Results: Platelet RNA sequencing and aggregation were performed from 21 individuals with massive weight loss (>45 kg) following bariatric surgery. Based on RNA sequencing data, we measured the expression of 67 genes from isolated platelet RNA using high-throughput quantitative reverse transcription quantitative PCR in 1864 FHS (Framingham Heart Study) participants. Many transcripts not previously studied in platelets were differentially expressed with bariatric surgical weight loss, appeared specific to platelets (eg, not differentially expressed in leukocytes), and were enriched for a nonalcoholic fatty liver disease pathway. Platelet aggregation studies did not detect alteration in platelet function after significant weight loss. Linear regression models demonstrated several platelet genes modestly associated with cross-sectional cardiometabolic phenotypes, including body mass index. There were no associations between studied transcripts and incident diabetes or cardiovascular end points. CONCLUSIONS In summary, while there is no change in platelet aggregation function after significant weight loss, the human platelet experiences a dramatic transcriptional shift that implicates pathways potentially relevant to improved cardiometabolic risk postweight loss (eg, nonalcoholic fatty liver disease). Further studies are needed to determine the mechanistic importance of these observations.
Collapse
Affiliation(s)
- Marzieh Ezzaty Mirhashemi
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Ravi V. Shah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert R. Kitchen
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jian Rong
- Department of Biostatistics, Boston University, Boston, MA
| | - Aferdita Spahillari
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA
| | - Olga Vitseva
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Sajani Shah
- Department of Surgery, Tufts University, Boston, MA
| | | | | | - Kahraman Tanriverdi
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jane E. Freedman
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
13
|
Novel Heme Oxygenase-1 (HO-1) Inducers Based on Dimethyl Fumarate Structure. Int J Mol Sci 2020; 21:ijms21249541. [PMID: 33333908 PMCID: PMC7765375 DOI: 10.3390/ijms21249541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022] Open
Abstract
Novel heme oxygenase-1 (HO-1) inducers based on dimethyl fumarate (DMF) structure are reported in this paper. These compounds are obtained by modification of the DMF backbone. Particularly, maintaining the α, β-unsaturated dicarbonyl function as the central chain crucial for HO-1 induction, different substituted or unsubstituted phenyl rings are introduced by means of an ester or amide linkage. Symmetric and asymmetric derivatives are synthesized. All compounds are tested on a human hepatic stellate cell line LX-2 to assay their capacity for modifying HO-1 expression. Compounds 1b, 1l and 1m stand out for their potency as HO-1 inducers, being 2–3 fold more active than DMF, and for their ability to reverse reactive oxygen species (ROS) production mediated using palmitic acid (PA). These properties, coupled with a low toxicity toward LX-2 cell lines, make these compounds potentially useful for treatment of diseases in which HO-1 overexpression may counteract inflammation, such as hepatic fibrosis. Docking studies show a correlation between predicted binding free energy and experimental HO-1 expression data. These preliminary results may support the development of new approaches in the management of liver fibrosis.
Collapse
|
14
|
Shen HH, Alex R, Bellner L, Raffaele M, Licari M, Vanella L, Stec DE, Abraham NG. Milk thistle seed cold press oil attenuates markers of the metabolic syndrome in a mouse model of dietary-induced obesity. J Food Biochem 2020; 44:e13522. [PMID: 33047319 PMCID: PMC7770619 DOI: 10.1111/jfbc.13522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Milk thistle cold press oil (MTO) is an herbal remedy derived from Silybum marianum which contains a low level of silymarin and mixture of polyphenols and flavonoids. The effect of MTO on the cardiovascular and metabolic complications of obesity was studied in mice that were fed a high-fat diet (HFD) for 20 weeks and treated with MTO for the final 8 weeks of the diet. MTO treatment attenuated HFD-induced obesity, fasting hyperglycemia, hypertension, and induced markers of mitochondrial fusion and browning of white adipose. Markers of inflammation were also attenuated in both adipose and the liver of MTO-treated mice. In addition, MTO resulted in the improvement of liver fibrosis. These results demonstrate that MTO has beneficial actions to attenuate dietary obesity-induced weight gain, hyperglycemia, hypertension, inflammation, and suggest that MTO supplementation may prove beneficial to patients exhibiting symptoms of metabolic syndrome. PRACTICAL APPLICATIONS: Natural supplements are increasingly being considered as potential therapies for many chronic cardiovascular and metabolic diseases. Milk thistle cold press oil (MTO) is derived from Silybum marianum which is used as a dietary supplement in different parts of the world. The results of the present study demonstrate that MTO supplementation normalizes several metabolic and cardiovascular complications arising from dietary-induced obesity. MTO supplementation also had anti-inflammatory actions in the adipose as well as the liver. These results suggest that supplementation of MTO into the diet of obese individuals may afford protection against the worsening of cardiovascular and metabolic disease and improve inflammation and liver fibrosis.
Collapse
Affiliation(s)
- Hsin-Hsueh Shen
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department and Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Marco Raffaele
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Maria Licari
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
15
|
Sasson A, Kristoferson E, Batista R, McClung JA, Abraham NG, Peterson SJ. The pivotal role of heme Oxygenase-1 in reversing the pathophysiology and systemic complications of NAFLD. Arch Biochem Biophys 2020; 697:108679. [PMID: 33248947 DOI: 10.1016/j.abb.2020.108679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.
Collapse
Affiliation(s)
- Ariel Sasson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Eva Kristoferson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Rogerio Batista
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA.
| |
Collapse
|
16
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
17
|
Hirao H, Dery KJ, Kageyama S, Nakamura K, Kupiec-Weglinski JW. Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside. Free Radic Biol Med 2020; 157:75-82. [PMID: 32084514 PMCID: PMC7434658 DOI: 10.1016/j.freeradbiomed.2020.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI), a major risk factor for early allograft dysfunction (EAD) and acute or chronic graft rejection, contributes to donor organ shortage for life-saving orthotopic liver transplantation (OLT). The graft injury caused by local ischemia (warm and/or cold) leads to parenchymal cell death and release of danger-associated molecular patterns (DAMPs), followed by reperfusion-triggered production of reactive oxygen species (ROS), activation of inflammatory cells, hepatocellular damage and ultimate organ failure. Heme oxygenase 1 (HO-1), a heat shock protein-32 induced under IR-stress, is an essential component of the cytoprotective mechanism in stressed livers. HO-1 regulates anti-inflammatory responses and may be crucial in the pathogenesis of chronic diseases, such as arteriosclerosis, hypertension, diabetes and steatosis. An emerging area of study is macrophage-derived HO-1 and its pivotal intrahepatic homeostatic function played in IRI-OLT. Indeed, ectopic hepatic HO-1 overexpression activates intracellular SIRT1/autophagy axis to serve as a key cellular self-defense mechanism in both mouse and human OLT recipients. Recent translational studies in rodents and human liver transplant patients provide novel insights into HO-1 mediated cytoprotection against sterile hepatic inflammation. In this review, we summarize the current bench-to-bedside knowledge on HO-1 molecular signaling and discuss their future therapeutic potential to mitigate IRI in OLT.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kenneth J Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shoichi Kageyama
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Nishi-Kobe Medical Center, 5-7-1 Koji-dai, Nishi-ku, Kobe, Hyogo, 651-2273, Japan
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Raffaele M, Licari M, Amin S, Alex R, Shen HH, Singh SP, Vanella L, Rezzani R, Bonomini F, Peterson SJ, Stec DE, Abraham NG. Cold Press Pomegranate Seed Oil Attenuates Dietary-Obesity Induced Hepatic Steatosis and Fibrosis through Antioxidant and Mitochondrial Pathways in Obese Mice. Int J Mol Sci 2020; 21:ijms21155469. [PMID: 32751794 PMCID: PMC7432301 DOI: 10.3390/ijms21155469] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: Obesity is associated with metabolic syndrome, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. In this study, we investigated whether the dietary supplementation of pomegranate seed oil (PSO) exerted a protective effect on liver lipid uptake, fibrosis, and mitochondrial function in a mouse model of obesity and insulin resistance. Method: In this in vivo study, eight-week-old C57BL/6J male mice were fed with a high fat diet (HFD) for 24 weeks and then were divided into three groups as follows: group (1) Lean; group (n = 6) (2) HF diet; group (n = 6) (3) HF diet treated with PSO (40 mL/kg food) (n = 6) for eight additional weeks starting at 24 weeks. Physiological parameters, lipid droplet accumulation, inflammatory biomarkers, antioxidant biomarkers, mitochondrial biogenesis, insulin sensitivity, and hepatic fibrosis were determined to examine whether PSO intervention prevents obesity-associated metabolic syndrome. Results: The PSO group displayed an increase in oxygen consumption, as well as a decrease in fasting glucose and blood pressure (p < 0.05) when compared to the HFD-fed mice group. PSO increased both the activity and expression of hepatic HO-1, downregulated inflammatory adipokines, and decreased hepatic fibrosis. PSO increased the levels of thermogenic genes, mitochondrial signaling, and lipid metabolism through increases in Mfn2, OPA-1, PRDM 16, and PGC1α. Furthermore, PSO upregulated obesity-mediated hepatic insulin receptor phosphorylation Tyr-972, p-IRB tyr1146, and pAMPK, thereby decreasing insulin resistance. Conclusions: These results indicated that PSO decreased obesity-mediated insulin resistance and the progression of hepatic fibrosis through an improved liver signaling, as manifested by increased insulin receptor phosphorylation and thermogenic genes. Furthermore, our findings indicate a potential therapeutic role for PSO in the prevention of obesity-associated NAFLD, NASH, and other metabolic disorders.
Collapse
Affiliation(s)
- Marco Raffaele
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Maria Licari
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Sherif Amin
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
| | - Ragin Alex
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
| | - Hsin-hsueh Shen
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
| | - Shailendra P. Singh
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Departments of Biotechnology and Biomedical Engineering, Central University of Rajasthan, Rajasthan 305817, India
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (R.R.); (F.B.)
| | - Francesca Bonomini
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (R.R.); (F.B.)
| | - Stephen J. Peterson
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA;
| | - David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +601-954-3109 (D.E.S.); +914-594-3121 (N.G.A.)
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +601-954-3109 (D.E.S.); +914-594-3121 (N.G.A.)
| |
Collapse
|
19
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice. Antioxidants (Basel) 2020; 9:antiox9060489. [PMID: 32512788 PMCID: PMC7346210 DOI: 10.3390/antiox9060489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Excessive lipid accumulation in white adipose tissue (WAT) results in adipocyte hypertrophy and chronic low-grade inflammation, which is the major cause of obesity-associated insulin resistance and consequent metabolic disease. The development of beige adipocytes in WAT (browning of WAT) increases energy expenditure and has been considered as a novel strategy to counteract obesity. Thymoquinone (TQ) is the main bioactive quinone derived from the plant Nigella Sativa and has antioxidative and anti-inflammatory capacities. Fish oil omega 3 (ω3) enhances both insulin sensitivity and glucose homeostasis in obesity, but the involved mechanisms remain unclear. The aim of this study is to explore the effects of TQ and ω3 PUFAs (polyunsaturated fatty acids) on obesity-associated inflammation, markers of insulin resistance, and the metabolic effects of adipose tissue browning. 3T3-L1 cells were cultured to investigate the effects of TQ and ω3 on the browning of WAT. C57BL/6J mice were fed a high-fat diet (HFD), supplemented with 0.75% TQ, and 2% ω3 in combination for eight weeks. In 3T3-L1 cells, TQ and ω3 reduced lipid droplet size and increased hallmarks of beige adipocytes such as uncoupling protein-1 (UCP1), PR domain containing 16 (PRDM16), fibroblast growth factor 21 (FGF21), Sirtuin 1 (Sirt1), Mitofusion 2 (Mfn2), and heme oxygenase 1 (HO-1) protein expression, as well as increased the phosphorylation of Protein Kinase B (AKT) and insulin receptors. In the adipose tissue of HFD mice, TQ and ω3 treatment attenuated levels of inflammatory adipokines, Nephroblastoma Overexpressed (NOV/CCN3) and Twist related protein 2 (TWIST2), and diminished adipocyte hypoxia by decreasing HIF1α expression and hallmarks of beige adipocytes such as UCP1, PRDM16, FGF21, and mitochondrial biogenesis markers Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), Sirt1, and Mfn2. Increased 5′ adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation and HO-1 expression were observed in adipose with TQ and ω3 treatment, which led to increased pAKT and pIRS1 Ser307 expression. In addition to the adipose, TQ and ω3 also increased inflammation and markers of insulin sensitivity in the liver, as demonstrated by increased phosphorylated insulin receptor (pIR tyr972), insulin receptor beta (IRβ), UCP1, and pIRS1 Ser307 and reduced NOV/CCN3 expression. Our data demonstrate the enhanced browning of WAT from TQ treatment in combination with ω3, which may play an important role in decreasing obesity-associated insulin resistance and in reducing the chronic inflammatory state of obesity.
Collapse
|
21
|
Bellner L, Lebovics NB, Rubinstein R, Buchen YD, Sinatra E, Sinatra G, Abraham NG, McClung JA, Thompson EA. Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxid Redox Signal 2020; 32:1045-1060. [PMID: 31891663 PMCID: PMC7153645 DOI: 10.1089/ars.2019.7970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Heme oxygenase (HO) plays a pivotal role in both vascular and metabolic functions and is involved in many physiological and pathophysiological processes in vascular endothelial cells (ECs) and adipocytes. Recent Advances: From the regulation of adipogenesis in adipose tissue to the adaptive response of vascular tissue in the ECs, HO plays a critical role in the capability of the vascular system to respond and adjust to insults in homeostasis. Recent studies show that HO-1 through regulation of adipocyte and adipose tissue functions ultimately aid not only in local but also in systemic maintenance of homeostasis. Critical Issues: Recent advances have revealed the existence of a cross talk between vascular ECs and adipocytes in adipose tissue. In the pathological state of obesity, this cross talk contributes to the condition's adverse chronic effects, and we propose that specific targeting of the HO-1 gene can restore signaling pathways and improve both vascular and adipose functions. Future Directions: A complete understanding of the role of HO-1 in regulation of cardiovascular homeostasis is important to comprehend the homeostatic regulation as well as in cardiovascular disease. Efforts are required to highlight the effects and the ability to target the HO-1 gene in models of obesity with an emphasis on the role of pericardial fat on cardiovascular health.
Collapse
Affiliation(s)
- Lars Bellner
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nachum B Lebovics
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | | | - Yosef D Buchen
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Emilia Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Giuseppe Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nader G Abraham
- Department of Pharmacology and New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, New York
| | - Ellen A Thompson
- Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, West Virginia
| |
Collapse
|
22
|
Drescher HK, Schippers A, Rosenhain S, Gremse F, Bongiovanni L, de Bruin A, Eswaran S, Gallage SU, Pfister D, Szydlowska M, Heikenwalder M, Weiskirchen S, Wagner N, Trautwein C, Weiskirchen R, Kroy DC. L-Selectin/CD62L is a Key Driver of Non-Alcoholic Steatohepatitis in Mice and Men. Cells 2020; 9:cells9051106. [PMID: 32365632 PMCID: PMC7290433 DOI: 10.3390/cells9051106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
CD62L (L-Selectin) dependent lymphocyte infiltration is known to induce inflammatory bowel disease (IBD), while its function in the liver, especially in non-alcoholic steatohepatitis (NASH), remains unclear. We here investigated the functional role of CD62L in NASH in humans as well as in two mouse models of steatohepatitis. Hepatic expression of a soluble form of CD62L (sCD62L) was measured in patients with steatosis and NASH. Furthermore, CD62L−/− mice were fed with a methionine and choline deficient (MCD) diet for 4 weeks or with a high fat diet (HFD) for 24 weeks. Patients with NASH displayed increased serum levels of sCD62L. Hepatic CD62L expression was higher in patients with steatosis and increased dramatically in NASH patients. Interestingly, compared to wild type (WT) mice, MCD and HFD-treated CD62L−/− mice were protected from diet-induced steatohepatitis. This was reflected by less fat accumulation in hepatocytes and a dampened manifestation of the metabolic syndrome with an improved insulin resistance and decreased cholesterol and triglyceride levels. Consistent with ameliorated disease, CD62L−/− animals exhibited an enhanced hepatic infiltration of Treg cells and a strong activation of an anti-oxidative stress response. Those changes finally resulted in less fibrosis in CD62L−/− mice. Additionally, this effect could be reproduced in a therapeutic setting by administrating an anti-CD62L blocking antibody. CD62L expression in humans and mice correlates with disease activity of steatohepatitis. CD62L knockout and anti-CD62L-treated mice are protected from diet-induced steatohepatitis suggesting that CD62L is a promising target for therapeutic interventions in NASH.
Collapse
Affiliation(s)
- Hannah K. Drescher
- Department of Internal Medicine III, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (C.T.); (D.C.K.)
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| | - Angela Schippers
- Department of Pediatrics, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (A.S.); (S.E.); (N.W.)
| | - Stefanie Rosenhain
- Institute for Experimental Molecular Imaging, University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.R.); (F.G.)
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.R.); (F.G.)
| | - Laura Bongiovanni
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, The Netherlands; (L.B.); (A.d.B.)
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, The Netherlands; (L.B.); (A.d.B.)
| | - Sreepradha Eswaran
- Department of Pediatrics, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (A.S.); (S.E.); (N.W.)
| | - Suchira U. Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Marta Szydlowska
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany; (S.U.G.); (D.P.); (M.S.); (M.H.)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.W.); (R.W.)
| | - Norbert Wagner
- Department of Pediatrics, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (A.S.); (S.E.); (N.W.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (C.T.); (D.C.K.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, 52074 Aachen, Germany; (S.W.); (R.W.)
| | - Daniela C. Kroy
- Department of Internal Medicine III, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (C.T.); (D.C.K.)
| |
Collapse
|
23
|
Adipocyte Specific HO-1 Gene Therapy is Effective in Antioxidant Treatment of Insulin Resistance and Vascular Function in an Obese Mice Model. Antioxidants (Basel) 2020; 9:antiox9010040. [PMID: 31906399 PMCID: PMC7022335 DOI: 10.3390/antiox9010040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity is a risk factor for vascular dysfunction and insulin resistance. The study aim was to demonstrate that adipocyte-specific HO-1 (heme oxygenase-1) gene therapy is a therapeutic approach for preventing the development of obesity-induced metabolic disease in an obese-mice model. Specific expression of HO-1 in adipose tissue was achieved by using a lentiviral vector expressing HO-1 under the control of the adiponectin vector (Lnv-adipo-HO-1). Mice fed a high-fat diet (HFD) developed adipocyte hypertrophy, fibrosis, decreased mitochondrial respiration, increased levels of inflammatory adipokines, insulin resistance, vascular dysfunction, and impaired heart mitochondrial signaling. These detrimental effects were prevented by the selective expression of HO-1 in adipocytes. Lnv-adipo-HO-1-transfected mice on a HFD display increased cellular respiration, increased oxygen consumption, increased mitochondrial function, and decreased adipocyte size. Moreover, RNA arrays confirmed that targeting adipocytes with HO-1 overrides the genetic susceptibility of adiposopathy and correlated with restoration of the expression of anti-inflammatory, thermogenic, and mitochondrial genes. Our data demonstrate that HO-1 gene therapy improved adipose tissue function and had positive impact on distal organs, suggesting that specific targeting of HO-1 gene therapy is an attractive therapeutic approach for improving insulin sensitivity, metabolic activity, and vascular function in obesity.
Collapse
|
24
|
Pratt R, Lakhani HV, Zehra M, Desauguste R, Pillai SS, Sodhi K. Mechanistic Insight of Na/K-ATPase Signaling and HO-1 into Models of Obesity and Nonalcoholic Steatohepatitis. Int J Mol Sci 2019; 21:ijms21010087. [PMID: 31877680 PMCID: PMC6982200 DOI: 10.3390/ijms21010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifaceted pathophysiological condition that has been associated with lipid accumulation, adipocyte dysfunction, impaired mitochondrial biogenesis and an altered metabolic profile. Redox imbalance and excessive release of inflammatory mediators have been intricately linked in obesity-associated phenotypes. Hence, understanding the mechanisms of redox signaling pathways and molecular targets exacerbating oxidative stress is crucial in improving health outcomes. The activation of Na/K-ATPase/Src signaling, and its downstream pathways, by reactive oxygen species (ROS) has been recently implicated in obesity and subsequent nonalcoholic steatohepatitis (NASH), which causes further production of ROS creating an oxidant amplification loop. Apart from that, numerous studies have also characterized antioxidant properties of heme oxygenase 1 (HO-1), which is suppressed in an obese state. The induction of HO-1 restores cellular redox processes, which contributes to inhibition of the toxic milieu. The novelty of these independent mechanisms presents a unique opportunity to unravel their potential as molecular targets for redox regulation in obesity and NASH. The attenuation of oxidative stress, by understanding the underlying molecular mechanisms and associated mediators, with a targeted treatment modality may provide for improved therapeutic options to combat clinical disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Komal Sodhi
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
25
|
Carota G, Raffaele M, Sorrenti V, Salerno L, Pittalà V, Intagliata S. Ginseng and heme oxygenase-1: The link between an old herb and a new protective system. Fitoterapia 2019; 139:104370. [PMID: 31629872 DOI: 10.1016/j.fitote.2019.104370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
Abstract
Ginseng is an ancient herb, belonging to Asian traditional medicine, that has been considered as a restorative to enhance vitality for centuries. It has been demonstrated that the antioxidant action of ginseng may be mediated through activation of different cellular signaling pathways involving the heme oxygenase (HO) system. Several compounds derived from ginseng have been studied for their potential role in brain, heart and liver protection, and the Nrf2 pathway seems to be the most affected by these natural molecules to exert this effect. Ginseng is also popularly used in cancer patients therapy for the demonstrated capability to defend tissues from chemotherapy-induced damage. Reported results suggest that the effect of ginseng is primarily associated with ROS scavenging, mainly exerted through the activation of Nrf2 pathway, and the consequent induction of HO-1 levels. This review aims to discuss the connection between the antioxidant properties of ginseng and the activation of the HO system, as well as to outline novel therapeutic applications of this medicinal plant to human health.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
26
|
Ishtiaq SM, Rashid H, Hussain Z, Arshad MI, Khan JA. Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease. Rev Endocr Metab Disord 2019; 20:253-261. [PMID: 31656991 DOI: 10.1007/s11154-019-09510-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adiponectin, a soluble adipocytokine, plays an important role in the functioning of adipose tissue and in the regulation of inflammation, particularly hepatic inflammation. The adiponectin subsequently imparts a crucial role in metabolic and hepato-inflammatory diseases. The most recent evidences indicate that lipotoxicity-induced inflammation in the liver is associated with obesity-derived alterations and remolding in adipose tissue that culminates in most prevalent liver pathology named as non-alcoholic fatty liver disease (NAFLD). A comprehensive crosstalk of adiponectin and its cognate receptors, specifically adiponectin receptor-2 in the liver mediates ameliorative effects in obesity-induced NAFLD by interaction with hepatic peroxisome proliferator-activated receptors (PPARs). Recent studies highlight the implication of molecular mediators mainly involved in the pathogenesis of obesity and obesity-driven NAFLD, however, the plausible mechanisms remain elusive. The present review aimed at collating the data regarding mechanistic approaches of adiponectin and adiponectin-activated PPARs as well as PPAR-induced adiponectin levels in attenuation of hepatic lipoinflammation. Understanding the rapidly occurring adiponectin-mediated pathophysiological outcomes might be of importance in the development of new therapies that can potentially resolve obesity and obesity-associated NAFLD.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haroon Rashid
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zulfia Hussain
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Junaid Ali Khan
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
27
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
28
|
Raffaele M, Carota G, Sferrazzo G, Licari M, Barbagallo I, Sorrenti V, Signorelli SS, Vanella L. Inhibition of Heme Oxygenase Antioxidant Activity Exacerbates Hepatic Steatosis and Fibrosis In Vitro. Antioxidants (Basel) 2019; 8:antiox8080277. [PMID: 31387260 PMCID: PMC6719023 DOI: 10.3390/antiox8080277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
The progression of non-alcoholic fatty liver disease (NAFLD) and the development of hepatic fibrosis is caused by changes in redox balance, leading to an increase of reactive oxygen species (ROS) levels. NAFLD patients are at risk of progressing to non-alcoholic steatohepatitis (NASH), associated to cardiovascular diseases (CVD), coronary heart disease and stroke. Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. The present work was directed to determine whether use of an inhibitor of HO-1 activity affects lipid metabolism and fibrosis process in hepatic cells. Oil Red assay and mRNA analysis were used to evaluate the triglycerides content and the lipid metabolism pathway in HepG2 cells. ROS measurement, RT-PCR and Soluble collagen assay were used to assess the intracellular oxidant, the fibrosis pathway and the soluble collagen in LX2 cells. The activity of HO-1 was inhibited using Tin Mesoporphyrin IX (SnMP). Our study demonstrates that a non-functional HO system results in an increased lipid storage and collagen release in hepatocytes. Consequently, an increase of HO-1 levels may provide a therapeutic approach to address the metabolic alterations associated with NAFLD and its progression to NASH.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Maria Licari
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Salvatore S Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
29
|
Raffaele M, Bellner L, Singh SP, Favero G, Rezzani R, Rodella LF, Falck JR, Abraham NG, Vanella L. Epoxyeicosatrienoic intervention improves NAFLD in leptin receptor deficient mice by an increase in HO-1-PGC1α mitochondrial signaling. Exp Cell Res 2019; 380:180-187. [DOI: 10.1016/j.yexcr.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
|
30
|
Xue R, Yang J, Jia L, Zhu X, Wu J, Zhu Y, Meng Q. Mitofusin2, as a Protective Target in the Liver, Controls the Balance of Apoptosis and Autophagy in Acute-on-Chronic Liver Failure. Front Pharmacol 2019; 10:601. [PMID: 31231215 PMCID: PMC6561379 DOI: 10.3389/fphar.2019.00601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Aim: Acute-on-chronic liver failure (ACLF) is closely related to mitochondrial dysfunction. Previous studies showed the vital role of mitofusin2 (Mfn2) in the regulation of mitochondrial function. However, the effect of Mfn2 on ACLF remains unknown. As one of mitochondrial-related pathways, BNIP3-mediated pathway controls the balance between apoptosis and autophagy. However, the relationship between Mfn2 and BNIP3-mediated pathway in ACLF is still obscure. The aim of our study is to clarify the effect of Mfn2 and potential molecular mechanisms in ACLF. Methods: We collected liver tissue from ACLF patients and constructed an ACLF animal model and a hepatocyte autophagy injury model, using adenovirus and lentivirus to deliver Mfn2 and Mfn2-siRNA to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. We explored the biological mechanisms of Mfn2-induced autophagy and apoptosis of ACLF through Western blotting, Quantitative Real-Time PCR (RT-PCR), transmission electron microscopy, immunofluorescence, immunohistochemical staining, and hematoxylin-eosin staining. Results: Compared with the normal liver tissue, the expressions of Mfn2, Atg5, Beclin1, and LC3-II/I were significantly decreased and the expression of P62 was much higher in patients with ACLF. Mfn2 significantly attenuated ACLF, characterized via microscopic histopathology and reduced serum AST and ALT levels. Mfn2 promoted the expressions of ATP synthase β, Atg5, Beclin1, LC3-II/I, and Bcl2 and reduced the expressions of P62, Bax, and BNIP3. Conclusions: Mfn2 plays a protective role in the progression of ACLF. BNIP3-mediated signaling pathway is not the only factor associated with Mfn2 controlling the balance of apoptosis and autophagy in ACLF. Mfn2 will provide a promising therapeutic target for patients with ACLF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Raffaele M, Pittalà V, Zingales V, Barbagallo I, Salerno L, Li Volti G, Romeo G, Carota G, Sorrenti V, Vanella L. Heme Oxygenase-1 Inhibition Sensitizes Human Prostate Cancer Cells towards Glucose Deprivation and Metformin-Mediated Cell Death. Int J Mol Sci 2019; 20:ijms20102593. [PMID: 31137785 PMCID: PMC6566853 DOI: 10.3390/ijms20102593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
High levels of heme oxygenase (HO)-1 have been frequently reported in different human cancers, playing a major role in drug resistance and regulation of cancer cell redox homeostasis. Metformin (MET), a drug widely used for type 2 diabetes, has recently gained interest for treating several cancers. Recent studies indicated that the anti-proliferative effects of metformin in cancer cells are highly dependent on glucose concentration. The present work was directed to determine whether use of a specific inhibitor of HO-1 activity, alone or in combination with metformin, affected metastatic prostate cancer cell viability under different concentrations of glucose. MTT assay and the xCELLigence system were used to evaluate cell viability and cell proliferation in DU145 human prostate cancer cells. Cell apoptosis and reactive oxygen species were analyzed by flow cytometry. The activity of HO-1 was inhibited using a selective imidazole-based inhibitor; genes associated with antioxidant systems and cell death were evaluated by qRT-PCR. Our study demonstrates that metformin suppressed prostate cancer growth in vitro and increased oxidative stress. Disrupting the antioxidant HO-1 activity, especially under low glucose concentration, could be an attractive approach to potentiate metformin antineoplastic effects and could provide a biochemical basis for developing HO-1-targeting drugs against solid tumors.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Veronica Zingales
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
32
|
Peterson SJ, Rubinstein R, Faroqui M, Raza A, Boumaza I, Zhang Y, Stec D, Abraham NG. Positive Effects of Heme Oxygenase Upregulation on Adiposity and Vascular Dysfunction: Gene Targeting vs. Pharmacologic Therapy. Int J Mol Sci 2019; 20:ijms20102514. [PMID: 31121826 PMCID: PMC6566770 DOI: 10.3390/ijms20102514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Heme oxygenase (HO-1) plays a critical role in adipogenesis and it is important to understand its function in obesity. Many studies have shown that upregulation of HO-1 can affect the biologic parameters in obesity-mediated diabetes, hypertension and vascular endothelial cell function. Thus, we aimed to explore the hypothesis that upregulation of HO-1, using a pharmacologic approach as well as gene targeting, would improve both adiposity and endothelial cell dysfunction by direct targeting of endothelial cells. Our second aim was to compare the short-term effect of a HO-1 inducer, cobalt-protoporphrin IX (CoPP), with the long-term effects of gene targeted therapy on vascular and adipocyte stem cells in obese mice. Method: We examined the effect of CoPP on fat pre-adipocytes and mesenchymal stem cells (MSC) in mice fed a high-fat diet (HFD). We also used a lentiviral construct that expressed heme oxygenase (HO-1) that was under the control of an endothelium specific promoter, vascular endothelium cadherin (VECAD) heme oxygenase (VECAD-HO-1). We targeted endothelial cells using vascular endothelium cadherin/green fluorescent protein fusion construct (VECAD-GFP) as the control. Conditioned media (CM) from endothelial cells (EC) was added to fat derived adipocytes. Additionally, we treated renal interlobar arteries with phenylephrine and dosed cumulative increments of acetylcholine both with and without exposure to CoPP. We did the same vascular reactivity experiments with VECAD-HO-1 lentiviral construct compared to the control. Results: CoPP improved vascular reactivity and decreased adipogenesis compared to the control. MSCs exposed to CM from EC transfected with VECAD-HO-1 showed decreased adipogenesis, smaller lipid droplet size and decreased PPAR-γ, C/EBP and increased Wnt 10b compared to the control. HO-1 upregulation had a direct effect on reducing adipogenesis. This effect was blocked by tin mesoporphrin (SnMP). EC treated with VECAD-HO-1 expressed lower levels of ICAM and VCAM compared to the control, suggesting improved EC function. This also improved ACH induced vascular reactivity. These effects were also reversed by SnMP. The effect of viral transfection was much more specific and sustained than the effects of pharmacologic therapy, CoPP. Conclusion: This study demonstrates that a pharmacological inducer of HO-1 such as CoPP improves endothelial cell function while dampening adipogenesis, but long-term HO-1 expression by direct targeting of endothelial cells by gene transfer therapy may offer a more specific and ideal solution. This was evidenced by smaller healthier adipocytes that had improved insulin sensitivity, suggesting increased adiponectin levels. HO-1 upregulation reestablished the “crosstalk” between perivascular adipose tissue and the vascular system that was lost in the chronic inflammatory state of obesity. This study demonstrates that gene targeting of EC may well be the future direction in treating obesity induced EC dysfunction, with the finding that targeting the vasculature had a direct and sustained effect on adipogenesis.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA.
| | - Rochelle Rubinstein
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | - Mouzam Faroqui
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA.
| | - Adnan Raza
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA.
| | - Imene Boumaza
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA.
| | - Yilun Zhang
- Tufts University School of Medicine, Boston, MA 02111, USA.
| | - David Stec
- Department of Physiology and Biophysics at the University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan Edwards School of Medicine, Huntington, WV 25701, USA.
| |
Collapse
|
33
|
Hu SJ, Jiang SS, Zhang J, Luo D, Yu B, Yang LY, Zhong HH, Yang MW, Liu LY, Hong FF, Yang SL. Effects of apoptosis on liver aging. World J Clin Cases 2019; 7:691-704. [PMID: 30968034 PMCID: PMC6448073 DOI: 10.12998/wjcc.v7.i6.691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 02/05/2023] Open
Abstract
As an irreversible and perennial process, aging is accompanied by functional and morphological declines in organs. Generally, aging liver exhibits a decline in volume and hepatic blood flow. Even with a preeminent regenerative capacity to restore its functions after liver cell loss, its biosynthesis and metabolism abilities decline, and these are difficult to restore to previous standards. Apoptosis is a programmed death process via intrinsic and extrinsic pathways, in which Bcl-2 family proteins and apoptosis-related genes, such as p21 and p53, are involved. Apoptosis inflicts both favorable and adverse influences on liver aging. Apoptosis eliminates transformed abnormal cells but promotes age-related liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and liver cancer. We summarize the roles of apoptosis in liver aging and age-related liver diseases.
Collapse
Affiliation(s)
- Shao-Jie Hu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sha-Sha Jiang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dan Luo
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bo Yu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Yan Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Hua Zhong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Li-Yu Liu
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Fen-Fang Hong
- Experimental Teaching Center, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
34
|
Cimini FA, Arena A, Barchetta I, Tramutola A, Ceccarelli V, Lanzillotta C, Fontana M, Bertoccini L, Leonetti F, Capoccia D, Silecchia G, Di Cristofano C, Chiappetta C, Di Domenico F, Baroni MG, Perluigi M, Cavallo MG, Barone E. Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1490-1501. [PMID: 30826467 DOI: 10.1016/j.bbadis.2019.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Biliverdin reductase-A (BVR-A) is a serine/threonine/tyrosine kinase involved in the regulation of insulin signaling. In vitro studies have demonstrated that BVR-A is a substrate of the insulin receptor and regulates IRS1 by avoiding its aberrant activation, and in animal model of obesity the loss of hepatic BVR-A has been associated with glucose/insulin alterations and fatty liver disease. However, no studies exist in humans. Here, we evaluated BVR-A expression levels and activation in peripheral blood mononuclear cells (PBMC) from obese subjects and matched lean controls and we investigated the related molecular alterations of the insulin along with clinical correlates. We showed that BVR-A levels are significantly reduced in obese subjects and associated with a hyper-activation of the IR/IRS1/Akt/GSK-3β/AS160/GLUT4 pathway. Low BVR-A levels also associate with the presence of obesity, metabolic syndrome, NASH and visceral adipose tissue inflammation. These data suggest that the reduction of BVR-A may be responsible for early alterations of the insulin signaling pathway in obesity and in this context may represent a novel molecular target to be investigated for the comprehension of the process of insulin resistance development in obesity.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Mario Fontana
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Danila Capoccia
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|