1
|
Chidambaram K, Rekha A, Goyal A, Rana M. Targeting KRAS-G12C in lung cancer: The emerging role of PROTACs in overcoming resistance. Pathol Res Pract 2025; 270:155954. [PMID: 40233529 DOI: 10.1016/j.prp.2025.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
In lung cancer, KRAS mutations, especially the G12C, favor aggressive tumor growth and resistance to standard therapies. Although first-generation inhibitors of KRAS G12C, such as sotorasib and adagrasib, are highly effective in early-phase studies, resistance invariably develops under selective inhibition pressure and rarely leads to sustained long-term treatment benefits. As a novel approach to targeting KRAS mutations in lung cancer, PROTAC (Proteolysis Targeting Chimera) technology is explored in this review. The PROTACs take advantage of the cell's ubiquitin-proteasome system to selectively degrade KRAS proteins, overcoming the dilemma of a lack of traditional binding sites and the means of resistance. We review recent progress with KRAS-specific PROTACs and their mechanisms, clinical application, and effectiveness at targeting primary KRAS oncogenes and secondary drivers and signaling pathways contributing to therapeutic resistance. Also, the synergies between PROTACs and immunotherapies or chemotherapies are further amplified. This review also underscores PROTAC technology's promise to advance precision medicine by providing durable treatment options for KRAS-driven lung cancers. It addresses future directions for optimizing PROTAC efficacy, bioavailability, and patient-specific applications.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - A Rekha
- Dr DY Patil Medical college , Hospital and Research Centre, Pimpri , Pune, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
2
|
Blair AB, Zheng L, Soares KC. The Landmark Series: Therapeutic Cancer Vaccine Strategies for Cold Tumors. Ann Surg Oncol 2025:10.1245/s10434-025-17281-1. [PMID: 40325301 DOI: 10.1245/s10434-025-17281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Immunologically cold tumors present a significant challenge in cancer treatment due to their limited baseline immune infiltration and resistance to immunotherapy. Cancer vaccines offer a promising strategy to overcome this barrier by introducing high-quality, tumor-relevant antigens that can stimulate an effective anti-tumor immune response. Therapeutic cancer vaccines are being explored in the neoadjuvant, adjuvant, and minimal residual disease contexts to enhance immune activation and promote immune cell infiltration and function, with the goal to eradicate malignant cells and improve patient survival. Critical hurdles remain in optimizing antigen selection, determining the most effective vaccine formulations, and defining the ideal clinical setting for vaccine use. Moreover, rational combinations of cancer vaccines with other immune modulators (e.g., adjuvants, immune checkpoint inhibitors, and cytokines) may hold the key to enhancing vaccine efficacy and expanding therapeutic options for difficult-to-treat malignancies. This review examines current advancements in cancer vaccines and their utilization for immunologically cold tumors in the perioperative setting, highlighting ongoing challenges and future directions in this evolving field.
Collapse
Affiliation(s)
- Alex B Blair
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lei Zheng
- Mays Cancer Center at the University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
- Department of Oncology and Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin C Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Bold N, Buyanbat K, Enkhtuya A, Myagmar N, Batbayar G, Sandag Z, Damdinbazar D, Oyunbat N, Boldbaatar T, Enkhbaatar A, Baatarjav G, Nanzaddorj T, Oyunsuren T, Davaakhuu G. High-Frequency Mutations in TP53, AXIN1, CTNNB1, and KRAS, and Polymorphisms in JAK1 Genes Among Mongolian HCC Patients. Cancer Rep (Hoboken) 2025; 8:e70227. [PMID: 40344393 PMCID: PMC12062512 DOI: 10.1002/cnr2.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Mongolia has the highest incidence of liver cancer worldwide, largely driven by a high prevalence of hepatitis virus infections. Mutations in oncogenes and tumor suppressor genes provide valuable insights into the molecular mechanisms of hepatocellular carcinoma (HCC). AIMS This study aimed to investigate the prevalence of mutations in key oncogenes and tumor suppressor genes in Mongolian HCC patients and to explore their molecular mechanisms, particularly in relation to hepatitis virus infections. METHODS AND RESULTS We analyzed 55 tumor tissue samples from Mongolian HCC patients (2019-2021), identifying mutations in TP53, CTNNB1, AXIN1, KRAS, and JAK1 through sequencing. Western blotting was used to assess β-catenin and p53 protein levels. Our findings showed p53 overexpression in tumors with TP53 mutations (F270I and S362S), while mutations such as R213* and a short-sequence deletion upstream of intron 7 produced premature stop codons, resulting in truncated p53 and loss of tumor suppressor function. β-catenin accumulation was observed in tumors with CTNNB1 mutations (D32N/Y, S33C/Y, S34V, S37P, T41A, and S45P). CCND1 expression, a key target of the Wnt/β-catenin pathway, was significantly upregulated in tumors harboring CTNNB1 and AXIN1 mutations (p = 0.02213). Statistical analysis revealed a positive correlation between β-catenin and CCND1 expression levels (r = 0.42703). Hepatitis virus infections were significantly associated with these mutations (p < 0.01), suggesting a link between viral infection and genetic alterations in HCC development. Compared to TCGA data, our cohort displayed a significantly higher mutation frequency (p < 0.001 and p < 0.05), indicating potential regional genetic and environmental influences. CONCLUSION This study provides insights into the molecular mechanisms of HCC in Mongolia, highlighting distinct mutational patterns in TP53, CTNNB1, AXIN1, and KRAS. The association between hepatitis virus infections and these mutations underscores their potential oncogenic impact and may inform future therapeutic strategies for HCC in this population.
Collapse
Affiliation(s)
- Nomin Bold
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Khurelsukh Buyanbat
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Ariya Enkhtuya
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Nomin Myagmar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Gerelsuren Batbayar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Zolzaya Sandag
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Dolgion Damdinbazar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Nomuun Oyunbat
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Tuul Boldbaatar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | | | | | - Taivan Nanzaddorj
- Department of General SurgerySecond State Central HospitalUlaanbaatarMongolia
| | - Tsendsuren Oyunsuren
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Gantulga Davaakhuu
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| |
Collapse
|
4
|
Clowers MJ, Rahal Z, Cho SN, Krishna A, Yuan B, Hamana Zorrilla LG, Eckols TK, Kasembeli MM, Liu S, Peng S, Ramos-Castaneda M, Thompson AL, Rodriguez Reyna CI, Larsen KE, Grimaldo MT, Deng S, Karimi N, Chou C, Velasco WV, Zarghooni M, Alekseev S, Solis Soto LM, Ostrin EJ, Kadara H, Ekmekcioglu S, Tweardy DJ, Moghaddam SJ. Selective inhibition of canonical STAT3 signaling suppresses K-ras mutant lung tumorigenesis and reinvigorates anti-tumor immunity. Front Immunol 2025; 16:1575181. [PMID: 40356899 PMCID: PMC12066534 DOI: 10.3389/fimmu.2025.1575181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction K-ras mutant lung adenocarcinoma (KM-LUAD) is a difficult-to-treat cancer subtype in which chronic inflammation pervades the tumor immune microenvironment (TIME). Pro-inflammatory pathways dampen the response to treatments, including immune checkpoint inhibitors, necessitating therapies that target this inflammatory signaling network in the TIME. One of the lynchpins of chronic inflammation in KM-LUAD is signal transducer and activator of transcription 3 (STAT3). Methods Here, we tested the anti-tumor and early immunotherapeutic efficacy of TTI-101, a selective small-molecule inhibitor of canonical STAT3 signaling, in a K-rasG12D mutant lung cancer mouse model (CC-LR). Results Treatment of CC-LR mice with TTI-101 resulted in reduced tumor burden while increasing dendritic cell (DC) and T helper 1 (Th1) infiltration into the TIME. TTI-101 treatment decreased pY-STAT3 expression in tumors with accompanying increases in several NF-κB anti-tumor target genes including CXCL9, a chemokine for primed T cells. Transcriptional profiling of the TIME revealed improved immune activation and anti-tumor skewing, as well as B cell signaling enrichment. Analysis of human LUAD data demonstrated negative correlations between STAT3 and Th1/DC infiltration, with DC infiltration also conferring improved survival in LUAD patients with low STAT3. Discussion Our results highlight the importance of STAT3 in driving early tumorigenesis and offer a preventative treatment window for high-risk individuals and patients with early-stage KM-LUAD.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sung-Nam Cho
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Avantika Krishna
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Bo Yuan
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Leticia G. Hamana Zorrilla
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - T. Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Moses M. Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samuel Liu
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen Peng
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annamarie L. Thompson
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Katherine E. Larsen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria T. Grimaldo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Shanshan Deng
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nastaran Karimi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cody Chou
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Walter V. Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melody Zarghooni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sayan Alekseev
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin J. Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Humam Kadara
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Suhendan Ekmekcioglu
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David J. Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
de Souza Barbosa I, Pilotto Heming C, Moura Neto V, Aran V. The Role of RAS in CNS Tumors: A Key Player or an Overlooked Oncogene? Int J Mol Sci 2025; 26:4104. [PMID: 40362343 PMCID: PMC12071703 DOI: 10.3390/ijms26094104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
This review examines the prevalence, molecular mechanisms, and clinical implications of RAS mutations in Central Nervous System (CNS) tumors, with a particular focus on glioblastoma. We summarize the current understanding of RAS-driven oncogenic pathways, their contribution to tumor progression, and potential therapeutic strategies targeting RAS and its downstream effectors. Although direct RAS mutations are rare in primary CNS tumors, alterations in RAS signaling, such as NF-1 loss and aberrant receptor tyrosine kinase activation, contribute to malignant progression. Furthermore, emerging evidence links RAS mutations to brain metastases, highlighting their significance in CNS oncology. We also discuss recent clinical trials investigating RAS-targeted therapies, including covalent inhibitors, MEK inhibitors, and novel combination approaches. Given the increasing recognition of RAS pathway alterations in CNS malignancies, further research is needed to elucidate their role in tumor biology and explore targeted therapeutic interventions.
Collapse
Affiliation(s)
- Isabel de Souza Barbosa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde, Rio de Janeiro 20261-901, Brazil; (I.d.S.B.); (C.P.H.); (V.M.N.)
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| | - Carlos Pilotto Heming
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde, Rio de Janeiro 20261-901, Brazil; (I.d.S.B.); (C.P.H.); (V.M.N.)
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| | - Vivaldo Moura Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde, Rio de Janeiro 20261-901, Brazil; (I.d.S.B.); (C.P.H.); (V.M.N.)
| | - Veronica Aran
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
6
|
Kaiser KM, Raabe J, ToVinh M, Hack G, Ahmad S, Müller N, Cassella J, Walravens SI, Alfaro P, Arias Garcia L, Kaczmarek DJ, Marwitz T, Goeser F, Nischalke HD, Lutz P, Sommer N, Vilz T, Toma M, Steiner S, Hommerding O, Oldenburg J, Hölzel M, Kadzik S, Maas A, Eckrich J, Zumfelde P, Shakeri F, Nesic S, Buness A, De Caro E, Becker M, Beyer MD, Ulas T, Aschenbrenner AC, Steinheuer LM, Thurley K, Kroh S, Uecker R, Hauser AE, Gohr FN, Schmidt FI, Wang D, Held K, Baranov O, Geldmacher C, Strassburg CP, Hüneburg R, Krämer B, Nattermann J. IL-17A-producing NKp44(-) group 3 innate lymphoid cells accumulate in Familial Adenomatous Polyposis duodenal tissue. Nat Commun 2025; 16:3873. [PMID: 40280932 PMCID: PMC12032359 DOI: 10.1038/s41467-025-58907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited gastrointestinal syndrome associated with duodenal adenoma formation. Even among carriers of the same genetic variant, duodenal phenotypes vary, indicating that additional factors, such as the local immune system, play a role. We observe an increase in duodenal IL-17A(+)NKp44(-) innate lymphoid type 3 cell (ILC3) in FAP, localized near the epithelium and enriched in adenomas and carcinomas. Elevated IL1B, IL23A, and DLL4 transcript levels correlate with IL-17A(+)NKp44(-)ILC3 accumulation, and in vitro studies with duodenal organoids confirmed this relationship. Bulk RNA sequencing reveals upregulated Reactive oxygen species (ROS)-inducing enzymes DUOX2 and DUOXA2 in FAP adenomas. IL-17A-stimulated FAP organoids show increased DUOX2/DUOXA2 expression, Duox2 protein, and ROS production, leading to DNA damage, suggesting a mechanism by which these immune cells promote tumorigenesis. These findings suggest IL-17A(+)NKp44(-)ILC3s may contribute to a local environment that makes the epithelium more submissive for oncogenic transformation in FAP.
Collapse
Affiliation(s)
- Kim M Kaiser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael ToVinh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Sarah Ahmad
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Niko Müller
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Julia Cassella
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Sofia I Walravens
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Paula Alfaro
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Dominik J Kaczmarek
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Tim Marwitz
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Felix Goeser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Philipp Lutz
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Nils Sommer
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Tim Vilz
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Marieta Toma
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Susanne Steiner
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Oliver Hommerding
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Kadzik
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Alexander Maas
- Department of Otorhinolaryngology, University Hospital Bonn, Bonn, Germany
| | - Jonas Eckrich
- Department for Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Mainz, Germany
| | | | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Svetozar Nesic
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Buness
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emilia De Caro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc D Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Lisa M Steinheuer
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Kevin Thurley
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Sandy Kroh
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Ralf Uecker
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, 10117, Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, 10117, Berlin, Germany
| | - Florian N Gohr
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Danni Wang
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), Bonn, Germany.
| |
Collapse
|
7
|
Mannino D, Basilotta R, De Luca F, Casili G, Esposito E, Paterniti I. KRAS-SOS-1 Inhibition as New Pharmacological Target to Counteract Anaplastic Thyroid Carcinoma (ATC). Int J Mol Sci 2025; 26:2579. [PMID: 40141222 PMCID: PMC11942110 DOI: 10.3390/ijms26062579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer. Tumor cells have been shown to activate alternative signaling pathways, making treatments less effective. One of the major proteins involved in the progression of ATC is the proto-oncogene KRAS that belongs to a group of small guanosine triphosphate (GTP)-binding proteins. Despite its recognized importance in cancer malignancy, KRAS is considered non-druggable and has never been studied in the field of ATC. In this context, a new synthetic molecule, BAY-293, has recently been developed that selectively inhibits the KRAS-SOS-1 interaction. Based on these findings, the aim of this study was to evaluate for the first time the antitumor effect of BAY-293 using in vitro and in vivo models of ATC. The in vitro model included different thyroid cancer (TC) cell lines used to study the effect of BAY-293 on the modulation of mitogen-activated protein kinase (MAPK) pathways, apoptosis, and cell migration. To confirm the in vitro findings and better mimic the complex tumor microenvironment, an in vivo orthotopic model of ATC was used. The results of the study indicate that BAY-293, both in vitro and in vivo, effectively blocked the KRAS/MAPK/ERK pathway and β-catenin, which act as downstream effectors essential for cell migration, and increased the apoptotic process by slowing the progression of ATC. In conclusion, this study demonstrated that KRAS/SOS-1 inhibition could be a promising therapeutic target for the treatment of ATC and highlighted BAY-293 as an innovative molecule that needs further research to fully evaluate its efficacy in the field of thyroid cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (R.B.); (F.D.L.); (G.C.); (E.E.)
| |
Collapse
|
8
|
Chatterjee M, Nag S, Gupta S, Mukherjee T, Shankar P, Parashar D, Maitra A, Das K. MicroRNAs in lung cancer: their role in tumor progression, biomarkers, diagnostic, prognostic, and therapeutic relevance. Discov Oncol 2025; 16:293. [PMID: 40067551 PMCID: PMC11896959 DOI: 10.1007/s12672-025-02054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which are associated with post-transcriptional regulation of gene expression. Dysfunction or aberrant expression of miRNAs is predominant in various malignancies including lung cancer. Lung cancer is one of the commonest causes of cancer-related death worldwide, with a five-year survival of only 10-20%. The present review summarizes the current understanding of the role of miRNAs in the development and progression of human lung cancer and their therapeutic potential. Also, we briefly discuss the canonical biogenetic pathway of miRNAs followed by a detailed illustration on how miRNAs regulate human lung cancer progression in various ways. Furthermore, we focus on how miRNAs contribute to the crosstalk between cancer cells and different cells in the tumor microenvironment in the context of lung cancer. Finally, we illustrate how different miRNAs are used as a prognostic and diagnostic biomarker for lung cancer and the ongoing miRNA-associated clinical trials. In conclusion, we discuss how targeting miRNAs can be a potential therapeutic means in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India
| | - Sayoni Nag
- Brainware University, Barasat, 700125, West Bengal, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, N.S.S., Kalyani, 741251, West Bengal, India.
| |
Collapse
|
9
|
Qiang H, Wang Y, Zhang Y, Li J, Zhang L, Du H, Ling X, Cao S, Zhou Y, Zhong R, Zhong H. Efficacy of first-line chemotherapy combined with immunotherapy or anti-angiogenic therapy in advanced KRAS-mutant non-small cell lung cancer. Transl Oncol 2025; 53:102317. [PMID: 39904280 PMCID: PMC11846584 DOI: 10.1016/j.tranon.2025.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Approximately 30 % non-small cell lung cancer (NSCLC) patients carry KRAS mutations in western countries. First-line chemotherapy combined with immunotherapy has been the standard therapeutic regimen for KRAS-mutant NSCLC patients. This population could also benefit from chemotherapy combined with anti-angiogenic therapy. However, few studies has reported on head-to-head efficacy comparisons between these two treatment strategies. METHODS We selected stage IV KRAS-mutated NSCLC patients diagnosed from 2017 to 2022. Their clinical baseline characteristics, first-line treatment strategy, whether combined TP53 or STK11 mutation, PD-L1 expression level, etc. were evaluated. The correlation between these factors and progression-free survival (PFS) and overall survival (OS) were analyzed. RESULTS A total of 273 patients received first-line systematic therapy. The most common mutation was KRAS G12C (34.3 %). First-line chemotherapy combined with immunotherapy brought significant survival benefits (mPFS: 11.0 months vs. 4.0 months, P = 0.0003; mOS: 17.0 months vs. 9.0 months, P = 0.0002) compared with first-line chemotherapy combined with anti-angiogenic therapy. Among the 203 patients who received first-line chemotherapy combined with immunotherapy, PD-L1 positive NSCLC patients responded better than PD-L1 negative patients (mPFS: 11.0 months vs. 4.0 months, P = 0.0004; mOS: 21.0 months vs. 11.0 months, P = 0.0005). ECOG PS score of 0-1 (HR=0.201, P = 0.001) and first-line chemotherapy combined with immunotherapy (HR=0.333, P = 0.009) were independent predictors of OS. CONCLUSIONS Compared with first-line chemotherapy combined with anti-angiogenic therapy, first-line chemotherapy combined with immunotherapy has brought significant survival benefit to advanced KRAS mutant NSCLC patients, especially for PD-L1 positive patients.
Collapse
Affiliation(s)
- Huiping Qiang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lincheng Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huawei Du
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xuxinyi Ling
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuhui Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
10
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2025; 83:e1295-e1310. [PMID: 39181121 PMCID: PMC11819494 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Deck SL, Xu M, Milano SK, Cerione RA. Revealing Functional Hotspots: Temperature-Dependent Crystallography of K-RAS Highlights Allosteric and Druggable Sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.639303. [PMID: 40060414 PMCID: PMC11888411 DOI: 10.1101/2025.02.27.639303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
K-RAS mutations drive oncogenesis in multiple cancers, yet the lack of druggable sites has long hindered therapeutic development. Here, we use multi-temperature X-ray crystallography (MT-XRC) to capture functionally relevant K-RAS conformations across a temperature gradient, spanning cryogenic to physiological and even "fever" conditions, and show how cryogenic conditions may obscure key dynamic states as targets for new drug development. This approach revealed a temperature-dependent conformational landscape of K-RAS, shedding light on the dynamic nature of key regions. We identified significant conformational changes occurring at critical sites, including known allosteric and drug-binding pockets, which were hidden under cryogenic conditions but later discovered to be critically important for drug-protein interactions and inhibitor design. These structural changes align with regions previously highlighted by large-scale mutational studies as functionally significant. However, our MT-XRC analysis provides precise structural snapshots, capturing the exact conformations of these potentially important allosteric sites in unprecedented detail. Our findings underscore the necessity of advancing tools like MT-XRC to visualize conformational transitions that may be important in signal propagation which are missed by standard cryogenic XRC and to address hard-to-drug targets through rational drug design. This approach not only provides unique structural insights into K-RAS signaling events and identifies new potential sites to target with drug candidates but also establishes a powerful framework for discovering therapeutic opportunities against other challenging drug targets.
Collapse
Affiliation(s)
- Samuel L Deck
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Megan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Salas LC, Mielczarski B, Rivero RC, da Cunha Filho JSL, Savaris RF. BCL6 (B-cell lymphoma 6) expression in adenomyosis, leiomyomas and normal myometrium. PLoS One 2025; 20:e0317136. [PMID: 39903727 PMCID: PMC11793761 DOI: 10.1371/journal.pone.0317136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Adenomyosis and leiomyomas are common benign uterine disorders characterized by abnormal cellular proliferation. The BCL6 protein, a transcriptional repressor implicated in cell proliferation and oncogenesis, has been linked to the pathogenesis of endometriosis. This study investigates BCL6 expression in adenomyosis, leiomyomas, and normal myometrium using immunohistochemistry and deep learning neural networks. We analyzed paraffin blocks from total hysterectomies performed between 2009 and 2017, confirming diagnoses through pathological review. Immunohistochemistry was conducted using an automated system, and BCL6 expression was quantified using Fiji-ImageJ software. A supervised deep learning neural network was employed to classify samples based on DAB staining. Our results show that BCL6 expression is significantly higher in leiomyomas compared to adenomyosis and normal myometrium. No significant difference in BCL6 expression was observed between adenomyosis and controls. The deep learning neural network accurately classified samples with a high degree of precision, supporting the immunohistochemical findings. These findings suggest that BCL6 plays a role in the pathogenesis of leiomyomas, potentially contributing to abnormal smooth muscle cell proliferation. The study highlights the utility of automated immunohistochemistry and deep learning techniques in quantifying protein expression and classifying uterine pathologies. Future studies should investigate the expression of BCL6 in adenomyosis and endometriosis to further elucidate its role in uterine disorders.
Collapse
Affiliation(s)
- Loreta Canivilo Salas
- Postgraduate Program in Medicine, Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Mielczarski
- Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raquel Camara Rivero
- Postgraduate Program in Medicine, Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Ricardo Francalacci Savaris
- Postgraduate Program in Medicine, Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Kavishahi NN, Khojini JY, Duruh MK, Babaei B, Sheikhha MH. Association between P53 Gene Mutations and Colorectal Cancer in the Iranian Population: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2025; 54:309-320. [PMID: 40225261 PMCID: PMC11992903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/19/2024] [Indexed: 04/15/2025]
Abstract
Background Colorectal cancer (CRC) is the fourth most common cancer and one of the most significant cancers affecting the Iranian population. This systematic review aimed to investigate the association between mutations in the P53 gene and CRC. Methods We conducted a search of six databases, including; Scopus, PubMed, Web of Science, Cochrane Library, SID, and Magiran up to Aug 10, 2024. Concepts in the search strategy were Iran, P53, and "Colorectal cancer". Original articles written in English or Persian that investigated the association between P53 gene mutations and CRC in the Iranian population were included. Results Out of 313 articles, 17 articles were included in the study. Six case-control studies investigated the association between the codon 72 polymorphism of the P53 gene and colorectal cancer. Three studies found a significant difference in genotype frequencies of this polymorphism between CRC patients and healthy individuals. Exon 6 was shown to be one of the most common mutated exons in colorectal cancer. Mutations in exon 7 were associated with poor prognosis. The most common type of mutation was G to A mutation from exons 5 to 8 CpG sites. Conclusion The present study suggests a potential association between the presence of the Arg allele at codon 72 within the P53 gene and a heightened susceptibility for developing and metastasizing CRC within the Iranian population. Furthermore, exons 5 to 8 of the P53 gene suggests that mutations localized at these sites may portend a poor prognosis.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrazin Khamespanah Duruh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Benjamin Babaei
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hasan Sheikhha
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Vicini F, Shah C, Mittal K, Abraham J, Kruse M, Weinmann S, Leo M, Rabinovitch R, Wärnberg F, Whitworth PW, Czerniecki BJ, Shivers SC, Bremer T. A 7-Gene Biosignature for Ductal Carcinoma in situ of the Breast Identifies Subpopulations of HER2-positive Patients With Distinct Recurrence Rates After Breast-Conserving Surgery and Radiation Therapy. Clin Breast Cancer 2025; 25:e152-e158.e1. [PMID: 39353799 DOI: 10.1016/j.clbc.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE A subpopulation of women with ductal carcinoma in situ (DCIS) remains at risk for in-breast recurrence (IBR) following breast-conserving surgery (BCS) and radiation therapy (RT). The NSABP B-43 trial evaluated the role of concurrent RT and trastuzumab in patients with HER2-positive DCIS but did not reach the prespecified endpoint. We hypothesized that a 7-gene biosignature (DCISionRT) with its Residual Risk subtype (RRt) could identify 2 groups of HER2(3+) patients with significantly different IBR risks after BCS plus RT. PATIENTS AND METHODS All patients with HER2(3+) DCIS (n = 178) treated with BCS plus RT were selected from a combined multinational patient cohort. Treatment decisions were neither randomized nor strictly rules-based. Biosignature testing was performed on all patients and stratified with previously defined groups: (1) Combined Low Risk group (DS ≤ 2.8) and Elevated Risk group (DS > 2.8) without RRt or (2) Residual Risk subtype. Kaplan-Meier analysis was used to compute IBR curves. RESULTS Sixty-three percent of HER2(3+) patients (113/178) were classified into the Residual Risk subtype. These patients had significantly higher 10-year rates of IBR compared to the nonresidual risk group (16.2% vs. 1.6%, P = .01). The Residual Risk subtype had more nuclear grade 3 disease (87% vs. 63%, P < .001), but age, size, and grade were not associated with IBR rate (P = NS) on univariate and multivariable analysis. Only the Residual Risk group was associated with IBR (P = .05) in multivariate analysis. CONCLUSION The 7-gene biosignature with RRt identified a subset of HER2(3+) patients with greater IBR rates following BCS and RT beyond traditional clinical and pathologic features. Consideration of therapies to reduce these elevated IBR rates should be evaluated, including the incorporation of HER2-targeted therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Mastectomy, Segmental
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/epidemiology
- Middle Aged
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/therapy
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Aged
- Adult
- Biomarkers, Tumor/genetics
- Combined Modality Therapy
- Prognosis
- Radiotherapy, Adjuvant
- Follow-Up Studies
- Trastuzumab/therapeutic use
Collapse
Affiliation(s)
- Frank Vicini
- Michigan Healthcare Professionals, Farmington Hills, MI.
| | - Chirag Shah
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | | | - Jame Abraham
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Megan Kruse
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | | | - Michael Leo
- Kaiser Permanente Northwest Research Center, Portland, OR
| | | | | | | | | | | | | |
Collapse
|
15
|
Izadi N, Solár P, Hašanová K, Zamani A, Akbar MS, Mrázová K, Bartošík M, Kazda T, Hrstka R, Joukal M. Breaking boundaries: role of the brain barriers in metastatic process. Fluids Barriers CNS 2025; 22:3. [PMID: 39780275 PMCID: PMC11708195 DOI: 10.1186/s12987-025-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood-brain barrier (BBB).The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.
Collapse
Affiliation(s)
- Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, St Anne University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Klaudia Hašanová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Maryam Shahidian Akbar
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Klára Mrázová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Martin Bartošík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Tomáš Kazda
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
16
|
Kumar D, Suchitra, Mundlia J, Yadav SK, Yadav D, Aggarwal N, Chopra H, Kumar V, Kamal MA. Anticancer Potential of Pineapple and its Bioactive Compound Bromelain. Curr Pharm Des 2025; 31:461-483. [PMID: 39279108 DOI: 10.2174/0113816128303910240713180835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 09/18/2024]
Abstract
Various ailments have been treated with pineapple (Ananas comosus (L.) Merr.) throughout medicinal history. Pineapple and its bioactive compound bromelain possess health-promoting benefits. Detailed information on the chemotherapeutic activities of pineapple and its bioactive compound bromelain is provided in this review, which analyses the current literature regarding their therapeutic potential in cancer. Research on disease models in cell cultures is the focus of much of the existing research. Several studies have demonstrated the benefits of pineapple extract and bromelain for in vitro and in vivo cancer models. Preliminary animal model results show promise, but they must be translated into the clinical setting. Research on these compounds represents a promising future direction and may be well-tolerated.
Collapse
Affiliation(s)
- Davinder Kumar
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Suchitra
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Jyoti Mundlia
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Shiv Kumar Yadav
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana 121004, India
| | - Deepika Yadav
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana 121004, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Virender Kumar
- College of Pharmacy, Pt BD Sharma University of Health Sciences, Rohtak 124001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Frontiers Science Center for Disease- related Molecular Network, Institutes for Systems Genetics and West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
17
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
18
|
Wang X, Yin X, Li Y, Zhang S, Hu M, Wei M, Li Z. Novel insight and perspectives of nanoparticle-mediated gene delivery and immune-modulating therapies for pancreatic cancer. J Nanobiotechnology 2024; 22:771. [PMID: 39696302 DOI: 10.1186/s12951-024-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Current standard-of-care therapies have failed to improve the survival of patients with metastatic pancreatic cancer (PCA). Therefore, exploring novel therapeutic approaches for cancer targeting is of utmost need. During the past few years, many efforts have been made to develop conventional treatment strategies to reduce chemotherapy resistance. However, critical challenges have impeded current cancer management outcomes, and limited clinical responses have been achieved due to unfavorable off-target effects. Advances in nanotechnology-based gene and immune-modulator delivery systems have excellent advantages for improving the therapeutic efficacy of PCA and provide promising avenues for overcoming the immunosuppressive tumor microenvironment and enhancing patient treatment outcomes. This review article provides insight into the challenges, opportunities, and future perspectives of these novel emerging nanoparticles based on lipid, polymer, and inorganic metal carriers to modulate genes and immunotherapy paradigms for PCA anticancer activity.
Collapse
Affiliation(s)
- Xinqiao Wang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, P.R. China
| | - Xue Yin
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Yuxin Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Shuhui Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Meie Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| |
Collapse
|
19
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
20
|
Aljuhani TA, Shaik NA, Alqawas RT, Bokhary RY, Al-Mutadares M, Al Mahdi HB, Al-Rayes N, El-Harouni AA, Elango R, Banaganapalli B, Awan ZA. Exploring somatic mutations in BRAF, KRAS, and NRAS as therapeutic targets in Saudi colorectal cancer patients through massive parallel sequencing and variant classification. Front Pharmacol 2024; 15:1498295. [PMID: 39635441 PMCID: PMC11614610 DOI: 10.3389/fphar.2024.1498295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Colorectal cancer (CRC) is the leading cancer among Saudis, and mutations in BRAF, KRAS, and NRAS genes are therapeutically significant due to their association with pathways critical for cell cycle regulation. This study evaluates the prevalence and frequency of somatic mutations in these actionable genes in Saudi CRC patients and assesses their pathogenicity with bioinformatics methods. Methodology The study employed the TruSight Tumor 15 next-generation sequencing (NGS) panel on 86 colorectal cancer (CRC) samples to detect somatic mutations in BRAF, KRAS, and NRAS genes. Bioinformatic analyses of NGS sequences included variant annotation with ANNOVAR, pathogenicity prediction, variant reclassification with CancerVar, and extensive structural analysis. Additionally, molecular docking assessed the binding of Encorafenib to wild-type and mutant BRAF proteins, providing insights into the therapeutic relevance of pathogenic variants. Results Out of 86 tumor samples, 40 (46.5%) harbored somatic mutations within actionable genes (BRAF: 2.3%, KRAS: 43%, NRAS: 2.3%). Fourteen missense variants were identified (BRAF: n = 1, KRAS: n = 11, NRAS: n = 2). Variants with strong clinical significance included BRAF V600E (2.32%) and KRAS G12D (18.60%). Variants with potential clinical significance included several KRAS and an NRAS mutation, while variants of unknown significance included KRAS E49K and NRAS R102Q. One variant was novel: NRAS R102Q, and two were rare: KRAS E49K and G138E. We further extended the CancerVar prediction capability by adding new pathogenicity prediction tools. Molecular docking demonstrated that Encorafenib inhibits the V600E variant BRAF protein less effectively compared to its wild-type counterpart. Conclusion Overall, this study highlights the importance of comprehensive molecular screening and bioinformatics in understanding the mutational landscape of CRC in the Saudi population, ultimately improving targeted drug treatments.
Collapse
Affiliation(s)
- Thamer Abdulhamid Aljuhani
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf Talal Alqawas
- Molecular Diagnostic Laboratory at King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Rana Y. Bokhary
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Al-Mutadares
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nuha Al-Rayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier Ahmad Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Luo FX, Arter ZL. Adagrasib in KRYSTAL-12 has Broken the KRAS G12C Enigma Code in Non-Small Cell Lung Carcinoma. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:161-167. [PMID: 39502188 PMCID: PMC11534526 DOI: 10.2147/lctt.s490942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C-mutant non-small cell lung carcinoma (NSCLC) accounts for approximately 10-13% of advanced nonsquamous NSCLC cases in Western populations, presenting a significant therapeutic challenge owing to the difficulty of directly targeting KRAS. Adagrasib, an oral small-molecule covalent inhibitor, irreversibly and selectively targets KRASG12C in its inactive state. It received accelerated Food and Drug Administration (FDA) approval on December 12, 2022, following the KRYSTAL-1 Phase II trial. The Phase III KRYSTAL-12 trial demonstrated that adagrasib significantly improved median progression-free survival (mPFS) compared with docetaxel (HR, 0.58; 95% CI: 0.45-0.76; P<0.0001) and increased the intracranial objective response rate (ORR) to 40% in the central nervous system (CNS) evaluable population. This paper evaluates the clinical efficacy of adagrasib in KRAS G12C-mutated advanced NSCLC discussing its potential advantages over other inhibitors such as sotorasib. Despite not reaching the 6-month mPFS benchmark, adagrasib offers significant clinical benefits, particularly for the management of CNS metastases. In this pros and cons debate, we argue that adagrasib has broken the KRAS G12C enigma code in NSCLC.
Collapse
Affiliation(s)
- Faustine X Luo
- University of California Irvine School of Medicine, Orange, CA, 92868, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, 92868, USA
| | - Zhaohui Liao Arter
- University of California Irvine School of Medicine, Orange, CA, 92868, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, 92868, USA
| |
Collapse
|
22
|
Rastogi V, Chaurasia S, Maddheshiya N, Dhungel D. Title of the article: diagnostic markers for odontogenic tumors: an insight: a review. Discov Oncol 2024; 15:558. [PMID: 39404913 PMCID: PMC11480304 DOI: 10.1007/s12672-024-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/13/2024] [Indexed: 10/19/2024] Open
Abstract
Odontogenic tumors are a group of tumors that originate from the tissues associated with tooth development and are classified into benign or malignant based on their behavior and characteristics. Tumor markers are substances that can be found in the blood, urine, or tissues of individuals with cancer. They are the substances produced either by tumor cells itself or by the body in response to tumor growth, can sometimes be used in the diagnosis, prognosis, and monitoring of various types of tumors. However, the use of tumor markers in odontogenic tumors is not as common as it is in other types of cancers, and their utility in this context is limited. Tumor markers are not the main tools for diagnosing cancer; instead, they serve as supplementary laboratory tests to aid in the diagnosis. Researchers continue to investigate potential biomarkers to improve our understanding of these tumors and their behavior. With this concept in mind, the objective of this study is to elucidate the key diagnostic markers essential for diagnosing odontogenic tumors.
Collapse
Affiliation(s)
- Varun Rastogi
- Department of Oral & Maxillofacial Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal.
| | - Sandhya Chaurasia
- Department of Oral & Maxillofacial Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal
| | | | - Dilasha Dhungel
- Department of Oral & Maxillofacial Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal
| |
Collapse
|
23
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
25
|
Gu G, Liu C, Zhu X, Yang Y, Song S, Zhao Y, Sun G. Clinical characteristics of KRAS mutation subtypes in non-small cell lung cancer population in Xinjiang, China, and their impact on the prognosis of immunotherapy. J Cancer Res Clin Oncol 2024; 150:413. [PMID: 39244518 PMCID: PMC11380640 DOI: 10.1007/s00432-024-05932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a highly fatal malignancy. The Kirsten rat sarcoma viral oncogene (KRAS) gene profoundly impacts patient prognosis. This study aims to explore the correlation between KRAS mutation subtypes, clinical data, and the impact of these subtypes on immunotherapy. MATERIALS AND METHODS Tumor samples from 269 NSCLC patients at the Affiliated Cancer Hospital of Xinjiang Medical University were analyzed. Patients received first- or second-line therapy without targeted therapy. Molecular and clinical data were used to analysis KRAS mutation subtypes and treatment outcomes. RESULTS KRAS mutations predominantly included G12C, G12D, and G12V subtypes. TP53 had the highest mutation frequency among KRAS mutations, followed by MST1, STK11, and KMT2C. Gender differences were noted among KRAS mutation subtypes, with G12C and G12V mutations prevalent in males, while G12D mutations were less common among males. Smokers exhibited varied KRAS mutation subtypes, with G12C and G12V prevalent in smokers and G12D in nonsmokers. KRAS mutations were mainly in lung adenocarcinoma. TTF-1 and PD-L1 expression differed significantly among KRAS mutations. Patients with G12C and G12V mutations showed higher TMB levels and better immunotherapy outcomes compared to those without KRAS mutations. Conversely, patients with G12D mutations had poorer immunotherapy responses. CONCLUSIONS KRAS mutation subtypes exhibit distinct clinical and molecular characteristics and varying responses to immunotherapy. G12C and G12V mutations correlate with better immunotherapy outcomes, while G12D mutations are associated with poorer responses.
Collapse
Affiliation(s)
- Guomin Gu
- Department of Pulmonary Medicine, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China
| | - Chunling Liu
- Department of Pulmonary Medicine, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China
| | - Yan Yang
- Department of Pulmonary Medicine, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China
| | - Shuming Song
- Education and Research Management Office, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China
| | - Yan Zhao
- Department of Pulmonary Medicine, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xincheng District, Urumqi, Xinjiang, 830011, China.
- Xinjiang Cancer Center/Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
26
|
Kolokotronis T, Majchrzak-Stiller B, Buchholz M, Mense V, Strotmann J, Peters I, Skrzypczyk L, Liffers ST, Menkene LM, Wagner M, Glanemann M, Betsou F, Ammerlaan W, Schmidt R, Schröder C, Uhl W, Braumann C, Höhn P. Differential miRNA and Protein Expression Reveals miR-1285, Its Targets TGM2 and CDH-1, as Well as CD166 and S100A13 as Potential New Biomarkers in Patients with Diabetes Mellitus and Pancreatic Adenocarcinoma. Cancers (Basel) 2024; 16:2726. [PMID: 39123454 PMCID: PMC11311671 DOI: 10.3390/cancers16152726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Early detection of PDAC remains challenging due to the lack of early symptoms and the absence of reliable biomarkers. The aim of the present project was to identify miRNA and proteomics signatures discriminating PDAC patients with DM from nondiabetic PDAC patients. Proteomics analysis and miRNA array were used for protein and miRNA screening. We used Western blotting and Real-Time Quantitative Reverse Transcription polymerase chain reaction (qRT-PCR) for protein and miRNA validation. Comparisons between experimental groups with normal distributions were performed using one-way ANOVA followed by Tukey's post hoc test, and pairwise tests were performed using t-tests. p ≤ 0.05 was considered statistically significant. Protein clusters of differentiation 166 (CD166), glycoprotein CD63 (CD63), S100 calcium-binding protein A13 (S100A13), and tumor necrosis factor-β (TNF-β) were detected in the proteomics screening. The miRNA assay revealed a differential miRNA 1285 regulation. Previously described target proteins of miR-1285 cadherin-1 (CDH-1), cellular Jun (c-Jun), p53, mothers against decapentaplegic homolog 4 (Smad4), human transglutaminase 2 (TGM2) and yes-associated protein (YAP), were validated via Western blotting. miR-1285-3p was successfully validated as differentially regulated in PDAC + DM via qRT-PCR. Overall, our data suggest miRNA1285-3p, TGM2, CDH-1, CD166, and S100A13 as potential meaningful biomarker candidates to characterize patients with PDAC + DM. Data are available via ProteomeXchange with the identifier PXD053169.
Collapse
Affiliation(s)
- Theodoros Kolokotronis
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Britta Majchrzak-Stiller
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Marie Buchholz
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Vanessa Mense
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Johanna Strotmann
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Ilka Peters
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Lea Skrzypczyk
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Sven-Thorsten Liffers
- University Hospital Essen, Bridging Institute for Experimental Tumor Therapy, West German Tumor Center Essen, Hufelandstr. 55, 45147 Essen, Germany;
| | - Louise Massia Menkene
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Mathias Wagner
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Matthias Glanemann
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Fay Betsou
- CRBIP, Institut Pasteur, Université Paris Cite, 25 rue du Dr Roux, 75015 Paris, France;
| | - Wim Ammerlaan
- IBBL (Integrated BioBank of Luxembourg), 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg;
| | - Ronny Schmidt
- Sciomics GmbH, Karl-Landsteiner Str. 6, 69151 Heidelberg, Germany; (R.S.); (C.S.)
| | - Christoph Schröder
- Sciomics GmbH, Karl-Landsteiner Str. 6, 69151 Heidelberg, Germany; (R.S.); (C.S.)
| | - Waldemar Uhl
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Chris Braumann
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
- Department of General, Visceral and Vascular Surgery, EvK Gelsenkirchen, University Duisburg-Essen, Munckelstr. 27, 45879 Gelsenkirchen, Germany
| | - Philipp Höhn
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| |
Collapse
|
27
|
Jasmine F, Almazan A, Khamkevych Y, Bissonnette M, Ahsan H, Kibriya MG. Association of KRAS Mutation and Gene Pathways in Colorectal Carcinoma: A Transcriptome- and Methylome-Wide Study and Potential Implications for Therapy. Int J Mol Sci 2024; 25:8094. [PMID: 39125664 PMCID: PMC11311678 DOI: 10.3390/ijms25158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Kirsten Rat Sarcoma (KRAS) is the most commonly mutated oncogene in colorectal carcinoma (CRC). We have previously reported the interactions between microsatellite instability (MSI), DNA promoter methylation, and gene expression. In this study, we looked for associations between KRAS mutation, gene expression, and methylation that may help with precision medicine. Genome-wide gene expression and DNA methylation were done in paired CRC tumor and surrounding healthy tissues. The results suggested that (a) the magnitude of dysregulation of many major gene pathways in CRC was significantly greater in patients with the KRAS mutation, (b) the up- and down-regulation of these dysregulated gene pathways could be correlated with the corresponding hypo- and hyper-methylation, and (c) the up-regulation of CDKN2A was more pronounced in tumors with the KRAS mutation. A recent cell line study showed that there were higher CDKN2A levels in 5-FU-resistant CRC cells and that these could be down-regulated by Villosol. Our findings suggest the possibility of a better response to anti-CDKN2A therapy with Villosol in KRAS-mutant CRC. Also, the more marked up-regulation of genes in the proteasome pathway in CRC tissue, especially with the KRAS mutation and MSI, may suggest a potential role of a proteasome inhibitor (bortezomib, carfilzomib, or ixazomib) in selected CRC patients if necessary.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA; (A.A.); (Y.K.); (H.A.); (M.G.K.)
| | - Armando Almazan
- Institute for Population and Precision Health, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA; (A.A.); (Y.K.); (H.A.); (M.G.K.)
| | - Yuliia Khamkevych
- Institute for Population and Precision Health, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA; (A.A.); (Y.K.); (H.A.); (M.G.K.)
| | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Habibul Ahsan
- Institute for Population and Precision Health, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA; (A.A.); (Y.K.); (H.A.); (M.G.K.)
- Department of Public Health Sciences, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA; (A.A.); (Y.K.); (H.A.); (M.G.K.)
- Department of Public Health Sciences, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Mondal K, Posa MK, Shenoy RP, Roychoudhury S. KRAS Mutation Subtypes and Their Association with Other Driver Mutations in Oncogenic Pathways. Cells 2024; 13:1221. [PMID: 39056802 PMCID: PMC11274496 DOI: 10.3390/cells13141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS mutation stands out as one of the most influential oncogenic mutations, which directly regulates the hallmark features of cancer and interacts with other cancer-causing driver mutations. However, there remains a lack of precise information on their cooccurrence with mutated variants of KRAS and any correlations between KRAS and other driver mutations. To enquire about this issue, we delved into cBioPortal, TCGA, UALCAN, and Uniport studies. We aimed to unravel the complexity of KRAS and its relationships with other driver mutations. We noticed that G12D and G12V are the prevalent mutated variants of KRAS and coexist with the TP53 mutation in PAAD and CRAD, while G12C and G12V coexist with LUAD. We also noticed similar observations in the case of PIK3CA and APC mutations in CRAD. At the transcript level, a positive correlation exists between KRAS and PIK3CA and between APC and KRAS in CRAD. The existence of the co-mutation of KRAS and other driver mutations could influence the signaling pathway in the neoplastic transformation. Moreover, it has immense prognostic and predictive implications, which could help in better therapeutic management to treat cancer.
Collapse
Affiliation(s)
- Koushik Mondal
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- Department of Cancer Immunology, SwasthyaNiketan Integrated Healthcare & Research Foundation, Koramangala, Bengaluru 560034, Karnataka, India
| | - Mahesh Kumar Posa
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur 302017, Rajasthan, India;
| | - Revathi P. Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Susanta Roychoudhury
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
29
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Pan H, Ho SE, Xue C, Cui J, Johanson QS, Sachs N, Ross LS, Li F, Solomon RA, Connolly ES, Patel VI, Maegdefessel L, Zhang H, Reilly MP. Atherosclerosis Is a Smooth Muscle Cell-Driven Tumor-Like Disease. Circulation 2024; 149:1885-1898. [PMID: 38686559 PMCID: PMC11164647 DOI: 10.1161/circulationaha.123.067587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Huize Pan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian E. Ho
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Jian Cui
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Quinian S. Johanson
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research, partner site: Munich Heart Alliance, 10785 Berlin, Germany
| | - Leila S. Ross
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fang Li
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert A. Solomon
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - E. Sander Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Virendra I. Patel
- Section of Vascular Surgery and Endovascular Interventions, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research, partner site: Munich Heart Alliance, 10785 Berlin, Germany
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
31
|
Gorlov IP, Gorlova OY, Tsavachidis S, Amos CI. Strength of selection in lung tumors correlates with clinical features better than tumor mutation burden. Sci Rep 2024; 14:12732. [PMID: 38831004 PMCID: PMC11148192 DOI: 10.1038/s41598-024-63468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA.
| | - Olga Y Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Spyridon Tsavachidis
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Tang G, Liu X, Cho M, Li Y, Tran DH, Wang X. Pan-cancer discovery of somatic mutations from RNA sequencing data. Commun Biol 2024; 7:619. [PMID: 38783092 PMCID: PMC11116503 DOI: 10.1038/s42003-024-06326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Identification of somatic mutations (SMs) is essential for characterizing cancer genomes. While DNA-seq is the prevalent method for identifying SMs, RNA-seq provides an alternative strategy to discover tumor mutations in the transcribed genome. Here, we have developed a machine learning based pipeline to discover SMs based on RNA-seq data (designated as RNA-SMs). Subsequently, we have conducted a pan-cancer analysis to systematically identify RNA-SMs from over 8,000 tumors in The Cancer Genome Atlas (TCGA). In this way, we have identified over 105,000 novel SMs that had not been reported in previous TCGA studies. These novel SMs have significant clinical implications in designing targeted therapy for improved patient outcomes. Further, we have combined the SMs identified by both RNA-seq and DNA-seq analyses to depict an updated mutational landscape across 32 cancer types. This new online SM atlas, OncoDB ( https://oncodb.org ), offers a more complete view of gene mutations that underline the development and progression of various cancers.
Collapse
Affiliation(s)
- Gongyu Tang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Minsu Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuanxiang Li
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dan-Ho Tran
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
33
|
Guan C, Zhang X, Yu L. A Review of Recent Advances in the Molecular Mechanisms Underlying Brain Metastasis in Lung Cancer. Mol Cancer Ther 2024; 23:627-637. [PMID: 38123448 DOI: 10.1158/1535-7163.mct-23-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Brain metastasis from lung cancer is a prevalent mode of treatment failure associated with a poor prognosis. The incidence of brain metastasis has recently shown a dramatic increase. The early detection and risk stratification of lung cancer-related brain metastasis would be highly advantageous for patients. However, our current knowledge and comprehension of the underlying mechanisms driving brain metastasis in lung cancer pose significant challenges. This review summarizes the mechanisms underlying brain metastasis, focusing on the intricate interplay between lung cancer-derived tumor cells and the unique characteristics of the brain, recent advancements in the identification of driver genes, concomitant genes, epigenetic features, including miRNAs and long noncoding RNAs, as well as the molecular characterization of brain metastasis originating from other organs, which may further enhance risk stratification and facilitate precise treatment strategies.
Collapse
Affiliation(s)
- Chao Guan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Fatima S, Pansuriya N, Lakhani A, Madhuri S, Ajmal R, Clementina R, Lakdawala Z, Shah K, Dilshana H, Andrea M, Mathew B, Raheja A. KRAS as a Prognostic and Predictive Marker in Metastatic Non-Small Cell Lung Carcinoma: A Systematic Review. Cureus 2024; 16:e60061. [PMID: 38860089 PMCID: PMC11162968 DOI: 10.7759/cureus.60061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
Metastatic non-small cell lung cancer (NSCLC) poses a significant clinical challenge, prompting a focused investigation into the role of KRAS mutations in prognosis and treatment response. Targeted therapies offer promising avenues for intervention, motivating a comprehensive analysis of existing evidence. Conducted in June 2023, our review delved into MEDLINE (Medical Literature Analysis and Retrieval System Online), Embase, Scopus, and the Cochrane Register of Controlled Trials. Rigorous inclusion and exclusion criteria guided the selection of 12 articles, comprising two randomized controlled trials (RCTs) and 10 observational studies. Multiple investigators independently executed data extraction, evaluating prognostic factors (overall and progression-free survival) and predictive outcomes (treatment and objective response). The Newcastle-Ottawa Scale (NOS) and modified Jadad scores were used for study quality assessment of observational studies and RCTs, respectively. From an initial pool of 120 articles, the 12 selected studies, spanning 2013 to 2022, encompassed 2,845 metastatic NSCLC patients. KRAS mutations, particularly the G12C variant, emerged as a pivotal factor influencing treatment response. Notably, KRAS wild type patients displayed enhanced responses to platinum-based chemotherapy, while those with KRAS mutations exhibited favourable outcomes with immune checkpoint inhibitors (ICIs). The role of KRAS mutations as prognostic indicators in metastatic NSCLC is underscored by this systematic review, with implications for both survival and treatment response. The discernment between KRAS wild type and mutant patients offers insights into tailored therapeutic strategies, with platinum-based chemotherapy and immune checkpoint inhibitors emerging as context-dependent options. Nevertheless, more research is required to solidify the predictive role of KRAS and explore the efficacy of KRAS inhibitors and other targeted therapies, paving the way for refined and personalized interventions in the management of metastatic NSCLC.
Collapse
Affiliation(s)
- Sheereen Fatima
- Cancer Center, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, IND
| | - Nirav Pansuriya
- Medicine, Surat Municipal Institute of Medical Education and Research, Surat, IND
| | - Alisha Lakhani
- Research, Research MD, Vadodara, IND
- Medicine, Shantabaa Medical College And General Hospital, Amreli, IND
| | - Sai Madhuri
- Medicine, Indian Institute of Public Health, Hyderabad, IND
| | - Reshma Ajmal
- Medicine, K.S. (Kawdoor Sadananda) Hegde Medical Academy, Mangalore, IND
| | | | - Zahabiya Lakdawala
- Medicine, C.U. (Chimanlal Ujamshibhai) Shah Medical College and Hospital, Surendranagar, IND
| | - Kinjal Shah
- Medicine, Robert Wood Johnson University Hospital, Rahway, USA
| | - Husna Dilshana
- Pathology, Al Azhar Medical College, Kumaramangalam, IND
| | - Maya Andrea
- Medicine, American University of Integrative Science, Tucker, USA
| | - Bejoi Mathew
- Internal Medicine, Sri Devaraj Urs Medical College, Kolar, IND
| | - Aashna Raheja
- Medicine, BGS Global Institute of Medical Sciences, Bengaluru, IND
| |
Collapse
|
35
|
Hacisuleyman A, Erman B. Synergy and anti-cooperativity in allostery: Molecular dynamics study of WT and oncogenic KRAS-RGL1. Proteins 2024; 92:665-678. [PMID: 38153169 DOI: 10.1002/prot.26657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
This study focuses on investigating the effects of an oncogenic mutation (G12V) on the stability and interactions within the KRAS-RGL1 protein complex. The KRAS-RGL1 complex is of particular interest due to its relevance to KRAS-associated cancers and the potential for developing targeted drugs against the KRAS system. The stability of the complex and the allosteric effects of specific residues are examined to understand their roles as modulators of complex stability and function. Using molecular dynamics simulations, we calculate the mutual information, MI, between two neighboring residues at the interface of the KRAS-RGL1 complex, and employ the concept of interaction information, II, to measure the contribution of a third residue to the interaction between interface residue pairs. Negative II indicates synergy, where the presence of the third residue strengthens the interaction, while positive II suggests anti-cooperativity. Our findings reveal that MI serves as a dominant factor in determining the results, with the G12V mutation increasing the MI between interface residues, indicating enhanced correlations due to the formation of a more compact structure in the complex. Interestingly, although II plays a role in understanding three-body interactions and the impact of distant residues, it is not significant enough to outweigh the influence of MI in determining the overall stability of the complex. Nevertheless, II may nonetheless be a relevant factor to consider in future drug design efforts. This study provides valuable insights into the mechanisms of complex stability and function, highlighting the significance of three-body interactions and the impact of distant residues on the binding stability of the complex. Additionally, our findings demonstrate that constraining the fluctuations of a third residue consistently increases the stability of the G12V variant, making it challenging to weaken complex formation of the mutated species through allosteric manipulation. The novel perspective offered by this approach on protein dynamics, function, and allostery has potential implications for understanding and targeting other protein complexes involved in vital cellular processes. The results contribute to our understanding of the effects of oncogenic mutations on protein-protein interactions and provide a foundation for future therapeutic interventions in the context of KRAS-associated cancers and beyond.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Burak Erman
- Department of Chemical and Biological Engineering Koc University, Istanbul, Turkey
| |
Collapse
|
36
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
37
|
Carrión-Estrada DA, Aguilar-Rojas A, Huerta-Yepez S, Montecillo-Aguado M, Bello M, Rojo-Domínguez A, Arechaga-Ocampo E, Briseño-Díaz P, Meraz-Ríos MA, Thompson-Bonilla MDR, Hernández-Rivas R, Vargas M. Antineoplastic effect of compounds C14 and P8 on TNBC and radioresistant TNBC cells by stabilizing the K-Ras4B G13D/PDE6δ complex. Front Oncol 2024; 14:1341766. [PMID: 38571493 PMCID: PMC10989073 DOI: 10.3389/fonc.2024.1341766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4BG13D and its membrane transporter (PDE6δ). Methods The antitumor potential of C14 and P8 was assessed using TNBC cell lines, MDA-MB-231, and the radioresistant derivative MDA-MB-231RR, both carrying the K-Ras4B> G13D mutation. We investigated the compounds' effects on K-Ras signaling pathways, cell viability, and tumor growth in vivo. Results Western blotting analysis determined the negative impact of C14 and P8 on the activation of mutant K-Ras signaling pathways in MDA-MB-231 and MDA-MB-231RR cells. Proliferation assays demonstrated their efficacy as cytotoxic agents against K-RasG13D mutant cancer cells and in inducing apoptosis. Clonogenic assays proven their ability to inhibit TNBC and radioresistant TNBC cell clonogenicity. In In vivo studies, C14 and P8 inhibited tumor growth and reduced proliferation, angiogenesis, and cell cycle progression markers. Discussion These findings suggest that C14 and P8 could serve as promising adjuvant treatments for TNBC, particularly for non-responders to standard therapies. By targeting overactivated K-Ras and its membrane transporter, these compounds offer potential therapeutic benefits against TNBC, including its radioresistant form. Further research and clinical trials are warranted to validate their efficacy and safety as novel TNBC treatments.
Collapse
Affiliation(s)
- Dayan A. Carrión-Estrada
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-I.P.N.), Mexico City, Mexico
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, Mexican Social Security Institute (IMSS), High Specialty Medical Unit in Gynecology and Obstetrics No. 4 Dr. Luis Castelazo Ayala, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Research Unit in Oncological Diseases, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Mayra Montecillo-Aguado
- Research Unit in Oncological Diseases, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Martiniano Bello
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Unit, Mexico City, Mexico
| | - Elena Arechaga-Ocampo
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Unit, Mexico City, Mexico
| | - Paola Briseño-Díaz
- Department of Biochemistry of the Faculty of Medicine of the National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-I.P.N.), Mexico City, Mexico
| | - María del Rocío Thompson-Bonilla
- Biomedical and Transnational Research, Genomic Medicine Laboratory, Hospital 1° de Octubre, Institute of Security and Social Services of State Workers (ISSSTE), Mexico City, Mexico
| | - Rosaura Hernández-Rivas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-I.P.N.), Mexico City, Mexico
| | - Miguel Vargas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-I.P.N.), Mexico City, Mexico
| |
Collapse
|
38
|
Henderson EA, Ivey A, Choi SJ, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A streptococcal collagen-like protein 1 restricts tumor growth in murine pancreatic adenocarcinoma and inhibits cancer-promoting neutrophil extracellular traps. Front Immunol 2024; 15:1363962. [PMID: 38515758 PMCID: PMC10955053 DOI: 10.3389/fimmu.2024.1363962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Abby Ivey
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Stell Santiago
- Department of Pathology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Tracy W. Liu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
39
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Sahu P, Mitra A, Ganguly A. Targeting KRAS and SHP2 signaling pathways for immunomodulation and improving treatment outcomes in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:167-222. [PMID: 38782499 DOI: 10.1016/bs.ircmb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.
Collapse
Affiliation(s)
- Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| |
Collapse
|
41
|
Chhichholiya Y, Singh HV, Vashistha R, Singh S, Munshi A. Deciphering the role of KRAS gene in oncogenesis: Focus on signaling pathways, genetic alterations in 3'UTR, KRAS specific miRNAs and therapeutic interventions. Crit Rev Oncol Hematol 2024; 194:104250. [PMID: 38143047 DOI: 10.1016/j.critrevonc.2023.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer is a significant cause of death after cardiovascular disease. The genomic, epigenetic and environmental factors have been found to be the risk factor for the disease. The most important genes that develop cancer are oncogenes and tumor suppressor genes. Among oncogenes, KRAS has emerged as a significant player in the development of many cancers. Dysregulation of the RAS signaling pathway either on account of mutation in significant genes involved in the pathway or aberrant expression of different miRNAs targeting these genes including KRAS. The focus is also on the alterations in 3'UTR of the KRAS gene sequence as well as the changes in the miRNA encoding genes especially the one targeting the KRAS gene. Efforts are also being put in to target the dysregulated KRAS gene as a therapeutic approach to treat different cancers. However, there are some challenges like resistance to KRAS inhibitors that need to be addressed.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harsh Vikram Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
42
|
Fawzy MS, Ibrahiem AT, Osman DM, Almars AI, Alshammari MS, Almazyad LT, Almatrafi NDA, Almazyad RT, Toraih EA. Angio-Long Noncoding RNA MALAT1 (rs3200401) and MIAT (rs1061540) Gene Variants in Ovarian Cancer. EPIGENOMES 2024; 8:5. [PMID: 38390896 PMCID: PMC10885055 DOI: 10.3390/epigenomes8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The genotyping of long non-coding RNA (lncRNA)-related single-nucleotide polymorphisms (SNPs) could be associated with cancer risk and/or progression. This study aimed to analyze the angiogenesis-related lncRNAs MALAT1 (rs3200401) and MIAT (rs1061540) variants in patients with ovarian cancer (OC) using "Real-Time allelic discrimination polymerase chain reaction" in 182 formalin-fixed paraffin-embedded (FFPE) samples of benign, borderline, and primary malignant ovarian tissues. Differences in the genotype frequencies between low-grade ovarian epithelial tumors (benign/borderline) and malignant tumors and between high-grade malignant epithelial tumors and malignant epithelial tumors other than high-grade serous carcinomas were compared. Odds ratios (ORs)/95% confidence intervals were calculated as measures of the association strength. Additionally, associations of the genotypes with the available pathological data were analyzed. The heterozygosity of MALAT1 rs3200401 was the most common genotype (47.8%), followed by C/C (36.3%). Comparing the study groups, no significant differences were observed regarding this variant. In contrast, the malignant epithelial tumors had a higher frequency of the MIAT rs1061540 C/C genotype compared to the low-grade epithelial tumor cohorts (56.7% vs. 37.6, p = 0.031). The same genotype was significantly higher in high-grade serous carcinoma than its counterparts (69.4% vs. 43.8%, p = 0.038). Multivariate Cox regression analysis showed that the age at diagnosis was significantly associated with the risk of OC development. In contrast, the MIAT T/T genotype was associated with a low risk of malignant epithelial tumors under the homozygote comparison model (OR = 0.37 (0.16-0.83), p = 0.017). Also, MIAT T allele carriers were less likely to develop high-grade serous carcinoma under heterozygote (CT vs. CC; OR = 0.33 (0.12-0.88), p = 0.027) and homozygote (TT vs. CC; OR = 0.26 (0.07-0.90), p = 0.034) comparison models. In conclusion, our data provide novel evidence for a potential association between the lncRNA MIAT rs1061540 and the malignant condition of ovarian cancer, suggesting the involvement of such lncRNAs in OC development.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
- Unit of Medical Research and Postgraduate Studies, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| | - Dalia Mohammad Osman
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | | | - Renad Tariq Almazyad
- Faculty of Applied Medical Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
43
|
Henderson EA, Ivey A, Choi S, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A Streptococcal Collagen-like Protein 1 Restricts Tumor Growth in Murine Pancreatic Adenocarcinoma and Inhibits Cancer-Promoting Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576060. [PMID: 38293049 PMCID: PMC10827155 DOI: 10.1101/2024.01.17.576060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on streptococcal collagen-like protein 1 (Scl1), as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were negative toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Abby Ivey
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Soo Choi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Stell Santiago
- Department of Pathology, West Virginia University, Morgantown, WV
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Tracy W Liu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Brian A Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
- Department of Surgery, West Virginia University, Morgantown, WV
| |
Collapse
|
44
|
Tripathi P, Kumari R, Pathak R. Drugging the undruggable: Advances in targeting KRAS signaling in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:1-39. [PMID: 38663957 DOI: 10.1016/bs.ircmb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer remains the leading cause of global mortality, prompting a paradigm shift in its treatment and outcomes with the advent of targeted therapies. Among the most prevalent mutations in RAS-driven cancers, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for approximately 86% of cases worldwide, particularly in lung, pancreatic, and colon cancers, contributing to poor prognosis and reduced overall survival. Despite numerous efforts to understand the biology of KRAS mutants and their pivotal role in cancer development, the lack of well-defined drug-binding pockets has deemed KRAS an "undruggable" therapeutic target, presenting significant challenges for researchers and clinicians alike. Through significant biochemical and technological advances, the last decade has witnessed promising breakthroughs in targeted therapies for KRAS-mutated lung, colon, and pancreatic cancers, marking a critical turning point in the field. In this chapter, we provide an overview of the characteristics of KRAS mutations across various solid tumors, highlighting ongoing cutting-edge research on the immune microenvironment, the development of KRAS-driven mice models, and the recent progress in the exploration of specific KRAS mutant-targeted therapeutic approaches. By comprehensive understanding of the intricacies of KRAS signaling in solid tumors and the latest therapeutic developments, this chapter will shed light on the potential for novel therapeutic strategies to combat KRAS-driven tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States.
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|
45
|
Chhichholiya Y, Singh HV, Singh S, Munshi A. Genetic variations in tumor-suppressor miRNA-encoding genes and their target genes: focus on breast cancer development and possible therapeutic strategies. Clin Transl Oncol 2024; 26:1-15. [PMID: 37093457 DOI: 10.1007/s12094-023-03176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/26/2023] [Indexed: 04/25/2023]
Abstract
MicroRNAs (miRNAs) negatively affect gene expression by binding to their specific mRNAs resulting in either mRNA destruction or translational repression. The aberrant expression of various miRNAs has been associated with a number of human cancer. Oncogenic or tumor-suppressor miRNAs regulate a variety of pathways involved in the development of breast cancer (BC), including cell proliferation, apoptosis, metastasis, cancer recurrence, and chemoresistance. Variations in miRNA-encoding genes and their target genes lead to dysregulated gene expression resulting in the development and progression of BC. The various therapeutic approaches to treat the disease include chemotherapy, radiation therapy, surgical removal, hormone therapy, chemotherapy, and targeted biological therapy. The purpose of the current review is to explore the genetic variations in tumor-suppressor miRNA-encoding genes and their target genes in association with the disease development and prognosis. The therapeutic interventions targeting the variants for better disease outcomes have also been discussed.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harsh Vikram Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
46
|
Tripathi PK, Mittal KR, Jain N, Sharma N, Jain CK. KRAS Pathways: A Potential Gateway for Cancer Therapeutics and Diagnostics. Recent Pat Anticancer Drug Discov 2024; 19:268-279. [PMID: 37038676 DOI: 10.2174/1574892818666230406085120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 04/12/2023]
Abstract
One of the major disturbing pathways within cancer is "The Kirsten rat sarcoma viral oncogene homolog (KRAS) pathway", and it has recently been demonstrated to be the most crucial in therapies and diagnostics. KRAS pathway includes numerous genes. This multi-component signaling system promotes cell growth, division, survival, and death by transferring signals from outside the cell to its interior. KRAS regulates the activation of a variety of signaling molecules. The KRAS oncogene is a key player in advancing a wide range of malignancies, and the mutation rank of this gene is a key feature of several tumors. For some malignancies, the mutation type of the gene may offer information about prognostic, clinical, and predictive. KRAS belongs to the RAS oncogene family, which consists of a compilation of minor GTP-binding proteins that assimilate environmental inputs and trigger internal signaling pathways that control survival, cell differentiation, and proliferation. This review aims to examine the recent and fascinating breakthroughs in the identification of new therapies that target KRAS, including the ever-expanding experimental approaches for reducing KRAS activity and signaling as well as direct targeting of KRAS. A literature survey was performed. All the relevant articles and patents related to the KRAS pathway, the mutation in the KRAS gene, cancer treatment, and diagnostics were found on PubMed and Google Patents. One of the most prevalent causes of cancer in humans is a mutation in the K-RAS protein. It is extremely difficult to decipher KRAS-mediated signaling. It allows transducing signals to go from the cell's outer surface to its nucleus, having an influence on a variety of crucial cellular functions including cell chemotaxis, division, dissemination, and cell death. Other involved signaling pathways are RAF, and the phosphatidylinositol 3 kinase also known as AKT. The EGFR pathway is incomplete without KRAS. The activation of PI3K significantly contributes to acquiring resistance to a mixture of MEK inhibitors and anti-EGFR in colorectal cancer cell lines which are mutated by KRAS. A series of recent patent studies towards cancer diagnostics and therapeutics reveals the paramount importance of mutated protein KRAS as an extensive driver in human tumors. For the prognosis, diagnosis, and treatment of colorectal cancer, KRAS plays a critical role. This review concludes the latest and vowing developments in the discovery of novel techniques for diagnosis and drugs that target KRAS, the advancements in experimental techniques for signaling and inhibiting KRAS function, and the direct targeting of KRAS for cancer therapeutics.
Collapse
Affiliation(s)
- Pankaj Kumar Tripathi
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Khushi R Mittal
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Nandini Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Naveen Sharma
- Divion of Bioinformatics, Indian Council of Medical Research, New Delhi, 110029, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| |
Collapse
|
47
|
Kim J. Nucleic Acid-Based Approaches to Tackle KRAS Mutant Cancers. Int J Mol Sci 2023; 24:16933. [PMID: 38069255 PMCID: PMC10707712 DOI: 10.3390/ijms242316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Activating mutations in KRAS are highly relevant to various cancers, driving persistent efforts toward the development of drugs that can effectively inhibit KRAS activity. Previously, KRAS was considered 'undruggable'; however, the recent advances in our understanding of RNA and nucleic acid chemistry and delivery formulations have sparked a paradigm shift in the approach to KRAS inhibition. We are currently witnessing a large wave of next-generation drugs for KRAS mutant cancers-nucleic acid-based therapeutics. In this review, we discuss the current progress in targeting KRAS mutant tumors and outline significant developments in nucleic acid-based strategies. We delve into their mechanisms of action, address existing challenges, and offer insights into the current clinical trial status of these approaches. We aim to provide a thorough understanding of the potential of nucleic acid-based strategies in the field of KRAS mutant cancer therapeutics.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Life Sciences, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
48
|
Chen G, Kong D, Lin Y. Neo-Antigen-Reactive T Cells Immunotherapy for Colorectal Cancer: A More Personalized Cancer Therapy Approach. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200186. [PMID: 37970536 PMCID: PMC10632666 DOI: 10.1002/gch2.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/09/2023] [Indexed: 11/17/2023]
Abstract
Colorectal cancer (CRC) is the second most common malignancy in women and the third most frequent cancer in men. Evidence has revealed that the survival of patients with metastatic CRC is very low, between one and three years. Neoantigens are known proteins encoded by mutations in tumor cells. It is theorized that recognizing neoantigens by T cells leads to T cell activation and further antitumor responses. Neoantigen-reactive T cells (NRTs) are designed against the mentioned neoantigens expressed by tumor cells. NRTs selectively kill tumor cells without damage to non-cancerous cells. Identifying patient-specific and high immunogen neoantigens is important in NRT immunotherapy of patients with CRC. However, the main challenges are the side effects and preparation of NRTs, as well as the effectiveness of these cells in vivo. This review summarized the properties of neoantigens as well as the preparation and therapeutic outcomes of NRTs for the treatment of CRC.
Collapse
Affiliation(s)
- Guan‐Liang Chen
- Department of Gastroenterology SurgeryAffiliated Hospital of Shaoxing UniversityShaoxing312000China
| | - De‐Xia Kong
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| | - Yan Lin
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| |
Collapse
|
49
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
50
|
Jones A, Townes FW, Li D, Engelhardt BE. Alignment of spatial genomics data using deep Gaussian processes. Nat Methods 2023; 20:1379-1387. [PMID: 37592182 PMCID: PMC10482692 DOI: 10.1038/s41592-023-01972-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Spatially resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals and technologies. Here, we propose a probabilistic model that aligns spatially-resolved samples onto a known or unknown common coordinate system (CCS) with respect to phenotypic readouts (for example, gene expression). Our method, Gaussian Process Spatial Alignment (GPSA), consists of a two-layer Gaussian process: the first layer maps observed samples' spatial locations onto a CCS, and the second layer maps from the CCS to the observed readouts. Our approach enables complex downstream spatially aware analyses that are impossible or inaccurate with unaligned data, including an analysis of variance, creation of a dense three-dimensional (3D) atlas from sparse two-dimensional (2D) slices or association tests across data modalities.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - F William Townes
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Didong Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara E Engelhardt
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|