1
|
Issa H, Singh L, Lai KS, Parusheva-Borsitzky T, Ansari S. Dynamics of inflammatory signals within the tumor microenvironment. World J Exp Med 2025; 15:102285. [DOI: 10.5493/wjem.v15.i2.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tumor stroma, or tumor microenvironment (TME), has been in the spotlight during recent years for its role in tumor development, growth, and metastasis. It consists of a myriad of elements, including tumor-associated macrophages, cancer-associated fibroblasts, a deregulated extracellular matrix, endothelial cells, and vascular vessels. The release of proinflammatory molecules, due to the inflamed microenvironment, such as cytokines and chemokines is found to play a pivotal role in progression of cancer and response to therapy. This review discusses the major key players and important chemical inflammatory signals released in the TME. Furthermore, the latest breakthroughs in cytokine-mediated crosstalk between immune cells and cancer cells have been highlighted. In addition, recent updates on alterations in cytokine signaling between chronic inflammation and malignant TME have also been reviewed.
Collapse
Affiliation(s)
- Hala Issa
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Sciences, Jumla 21200, Karnali, Nepal
| | - Kok-Song Lai
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Tina Parusheva-Borsitzky
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Shamshul Ansari
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| |
Collapse
|
2
|
Foik IP, Shu R, Abbondante S, Kasallis SJ, Urban LA, Huang AP, Duong L, Marshall ME, Pearlman E, Downing TL, Siryaporn A. Bacteria detect neutrophils via a system that responds to hypochlorous acid and flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2022.02.01.478687. [PMID: 40475492 PMCID: PMC12139993 DOI: 10.1101/2022.02.01.478687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Neutrophils respond to the presence of bacteria by producing oxidative molecules that are lethal to bacteria, including hypochlorous acid (HOCl). However, the extent to which bacteria detect activated neutrophils or the HOCl that neutrophils produce, has not been understood. Here we report that the opportunistic bacterial pathogen Pseudomonas aeruginosa upregulates expression of its fro operon in response to stimulated neutrophils. This operon was previously shown to be activated by shear rate of fluid flow in the environment. We show that fro is specifically upregulated by HOCl, while other oxidative factors that neutrophils produce including H2O2, do not upregulate fro. The fro-dependent response to HOCl upregulates the expression of multiple methionine sulfoxide reductases, which relieve oxidative stress that would otherwise inhibit growth. Our findings suggest a model in which the detection of shear rate or HOCl activates the fro operon, which serves as an early and sensitive host-detection system for P. aeruginosa that improves its own survival against neutrophil-mediated host defenses. In support of this model, we found that the fro operon is activated in an infection model where flow and neutrophils are present. This response could promote the bacterium's pathogenicity, colonization of tissue, and persistence in infections.
Collapse
Affiliation(s)
- Ilona P. Foik
- Department of Physics & Astronomy, University of California Irvine, USA
- Institute of Physical Chemistry, Polish Academy of Sciences, Poland
| | - Runhang Shu
- Department of Molecular Biology & Biochemistry, University of California Irvine, USA
| | - Serena Abbondante
- Department of Ophthalmology, University of California Irvine, USA
- Department of Physiology and Biophysics, University of California Irvine, USA
| | | | - Lauren A. Urban
- Department of Microbiology & Molecular Genetics, University of California Irvine, USA
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, USA
| | - Andy P. Huang
- School of Biological Sciences, University of California Irvine, USA
| | - Leora Duong
- Department of Molecular Biology & Biochemistry, University of California Irvine, USA
| | - Michaela E. Marshall
- Department of Ophthalmology, University of California Irvine, USA
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California Irvine, USA
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Timothy L. Downing
- Department of Microbiology & Molecular Genetics, University of California Irvine, USA
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, USA
- Department of Biomedical Engineering, University of California Irvine, USA
| | - Albert Siryaporn
- Department of Physics & Astronomy, University of California Irvine, USA
- Department of Molecular Biology & Biochemistry, University of California Irvine, USA
| |
Collapse
|
3
|
Park JH, Yoo KC, Lee SB, Park M, Kim HB, Kang M, Choi SP, Kim JW, Park S, Jang WI, Lee HJ, Shim S, Jang H. AZD 9668, a neutrophil elastase inhibitor, promotes wound healing in the irradiated skin by inhibiting NET-derived vascular dysfunction. Int Immunopharmacol 2025; 159:114860. [PMID: 40403508 DOI: 10.1016/j.intimp.2025.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
Despite the increasing awareness of the health risks associated with radiation exposure such as radiotherapy and accidents, effective treatments remain limited except for bone marrow damage. Radiation-induced skin damage is a critical concern as it is often accompanied by severe inflammation and delayed wound healing. Endothelial cells have emerged as a promising therapeutic target for addressing such radiation-induced damage. Neutrophils, as key mediators of the early inflammatory response, play a pivotal role in this process. The formation of neutrophil extracellular trap (NET) is particularly noteworthy, as it may directly contribute to exacerbating vascular damage. However, studies specifically exploring the role of NETs in radiation-induced skin injury and their impact on endothelial barrier function are limited. Therefore, this study aimed to evaluate the use of AZD9668, an orally administered NE inhibitor, as a therapeutic agent to mitigate NET-induced endothelial and skin damage. Irradiated skin showed increased neutrophil infiltration, NET formation, and vascular permeability in the mouse model. Neutrophil elastase (NE) inhibitor, AZD9668, decreased NET formation and NET-derived NE activity. And AZD9668 treatment restored endothelial dysfunction and regulated antioxidative factors in NET-treated irradiated HUVECs. In mouse model of radiation-induced skin injury, oral administration of AZD9668 improved endothelial tight junction expression, vascular leakage, and inflammatory reaction. Therefore, skin wound healing accelerated in the AZD9668-treated group. This study highlights the critical role of NET in radiation-induced skin damage and endothelial barrier disruption, addressing a previously underexplored area. AZD9668 effectively mitigated radiation-induced damage by preventing NET formation, preserving tight junction integrity, and reducing inflammation. These findings underscore the therapeutic potential of NET and NET-derived NE in the management of radiation-induced vascular and skin injuries.
Collapse
Affiliation(s)
- Jung Hwan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Ki-Chun Yoo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea; Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Seung Bum Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea; Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Mineon Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Han Byul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Minji Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Sang-Pil Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Jeong-Won Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Hae-June Lee
- College of Veterinary medicine, Jeju National University, Jeju, Republic of Korea
| | - Sehwan Shim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea; Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea.
| | - Hyosun Jang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea; Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical center, Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea.
| |
Collapse
|
4
|
Moldovan A, Wagner F, Schumacher F, Wigger D, Kessie DK, Rühling M, Stelzner K, Tschertok R, Kersting L, Fink J, Seibel J, Kleuser B, Rudel T. Chlamydia trachomatis exploits sphingolipid metabolic pathways during infection of phagocytes. mBio 2025; 16:e0398124. [PMID: 40249190 PMCID: PMC12077188 DOI: 10.1128/mbio.03981-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
Chlamydiae are obligate intracellular pathogens that utilize host cell metabolites for catabolic and anabolic processes. The bacteria replicate in epithelial cells from which they take up sphingolipids (SL) and incorporate them into the chlamydial membrane and the vacuole (termed inclusion). SL uptake is essential for Chlamydia trachomatis (Ctr) in epithelial cells; however, they can also infect phagocytes, but the consequences for the SL metabolism have not yet been investigated in these cells. We performed a quantitative sphingolipidome analysis of infected primary neutrophils, macrophages, and immortalized fallopian tube epithelial cells. Sphingosine (Sph) levels are elevated in primary M2-like macrophages and human neutrophils infected with C. trachomatis. Human neutrophils respond to the pathogen by markedly upregulating sphingosine kinase 1 (SPHK1). We show in M2-like macrophages, by RNAseq, that two counteracting pathways involving upregulation of SPHK1, but also sphingosine-1-phosphate phosphatases 1 and 2 (SGPP1 and SGPP2) and sphingosine-1-phosphate lyase (SGPL1), maintain a steady pool of S1P. Using click chemistry, we show that exogenously added sphingomyelin (SM) and ceramide (Cer) are efficiently taken up into the chlamydial inclusion and are integrated into bacterial membranes in infected M2-like macrophages. Exogenous Sph reduces chlamydial infectivity, is transported into the inclusion lumen, and integrates into chlamydial membranes, suggesting that this particular SL species could represent a host defense mechanism. Taken together, our data indicate an important role for Sph/Sph kinase vs S1P/S1P phosphatase balance in infected phagocytes and a previously unrecognized role for sphingosine in the immune defense against chlamydial infection.IMPORTANCEChlamydia trachomatis (Ctr) is the leading cause of sexually transmitted diseases worldwide. Left untreated, it can cause severe complications such as blindness, pelvic inflammatory disease, or infertility. To date, no vaccines are available, and antibiotic treatment represents the only therapeutic approach to cure the infection. Limited access to antibiotics and displaced antibiotic intake increase the risk of developing recurring infections. Immune cells which fail to clear the infection and serve as a niche for chlamydial survival and replication, favor this outcome. Our research aims to elucidate the influence of sphingolipids (SL) during chlamydial infection, especially of phagocytic cells. Identifying relevant targets offers new strategies to develop alternative treatment methods.
Collapse
Affiliation(s)
- Adriana Moldovan
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Fabienne Wagner
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Berlin, Germany
| | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Berlin, Germany
| | - David Komla Kessie
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Marcel Rühling
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Kathrin Stelzner
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Regina Tschertok
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Bavaria, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Bavaria, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Bavaria, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, University of Würzburg, Würzburg, Bavaria, Germany
| |
Collapse
|
5
|
Labrecque MM, Allard MÈ, Murru A, Paré G, Acker JP, Lesage S, Girard M, Fernandes MJ. Prolonging neutrophil room-temperature storage with clinically approved solutions: implications for granulocyte transfusion. J Leukoc Biol 2025; 117:qiae258. [PMID: 39716952 DOI: 10.1093/jleuko/qiae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024] Open
Abstract
Granulocyte concentrates (GCs) are leukocyte preparations enriched in neutrophils that can potentially save neutropenic patients from life-threatening, antimicrobial-resistant infections. The main challenge of GC transfusions is preserving the viability and antimicrobial activity of neutrophils beyond 24 h to reduce the logistical burden on collection centers and increase the availability of this cell therapy. Thus, the aim of this study was to explore extending the ex vivo viability and antimicrobial activity of GC neutrophils up to 72 h with a unique combination of the clinically approved additives Plasma-Lyte (PL), SAGM, AS-3, and Alburex. Neutrophils isolated from healthy donors were resuspended in autologous plasma at the same concentration as in GCs, diluted with various combinations of PL, SAGM, AS-3, and/or Alburex with or without the addition of buffers, and stored at room temperature for up to 72 h. During storage, neutrophil viability, phagocytosis, and intracellular reactive oxygen species production were measured by flow cytometry. Extracellular reactive oxygen species production was measured by spectrophotometry and chemotaxis by the number of calcein-stained neutrophils that migrated toward the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLF). The same assays were performed on pooled, residual leukocyte units generated by the Reveos system, after storage in the additive combination that most effectively preserved the viability and function of isolated neutrophils. The additive combination that best performed in the majority of the assays contained PL, buffers, and AS-3. Neutrophil viability was preserved for a maximum of 48 h and phagocytosis of opsonized bacteria and reactive oxygen species production up to 72 h of storage at room temperature. In contrast, fMLF-induced chemotaxis decreased by 20% after 24-h storage while extracellular reactive oxygen species production increased significantly within the same time period. Supplementing GCs prepared from pooled, residual leukocyte units with this storage solution after the standard 16- to 24-h processing period as per the blood center guidelines, did not significantly improve the preservation of neutrophil viability and function. Our findings provide proof of concept that mixtures of clinically approved additives can be tailored to significantly prolong the viability and function of freshly isolated neutrophils during room-temperature storage. The unique additive composition of this storage solution that we developed for freshly isolated neutrophils requires further optimization for use with pooled, residual leukocyte units as well as the timepoint at which the solution is added during processing to prolong the viability and functions of neutrophils in this blood product.
Collapse
Affiliation(s)
- Marie-Michèle Labrecque
- Infectious and Immune Diseases Division, CHU de Québec Research Center, 2705 Blvd. Laurier, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Department of Microbiology, Infectious Diseases and Immunology, Laval University, 1050 Av. de la Médecine, Québec, QC, G1V 0A6, Canada
- Medical Affairs and Innovation, Hema-Québec, 1070 Ave des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Marie-Ève Allard
- Medical Affairs and Innovation, Hema-Québec, 1070 Ave des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Andréa Murru
- Infectious and Immune Diseases Division, CHU de Québec Research Center, 2705 Blvd. Laurier, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Department of Microbiology, Infectious Diseases and Immunology, Laval University, 1050 Av. de la Médecine, Québec, QC, G1V 0A6, Canada
- Medical Affairs and Innovation, Hema-Québec, 1070 Ave des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Guillaume Paré
- Infectious and Immune Diseases Division, CHU de Québec Research Center, 2705 Blvd. Laurier, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Department of Microbiology, Infectious Diseases and Immunology, Laval University, 1050 Av. de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, 331 Canadian Blood Services, 8249 114 St NW, Edmonton, AB, T6G 2R8, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, 2-51B South Academic Building, 11328 - 89 Ave NW, Edmonton, AB, T6G 2J7, Canada
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, 5415 Bd de l'Assomption, Montréal, QC, H1T 2M4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Mélissa Girard
- Medical Affairs and Innovation, Hema-Québec, 1070 Ave des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Maria J Fernandes
- Infectious and Immune Diseases Division, CHU de Québec Research Center, 2705 Blvd. Laurier, Québec, QC, G1V 4G2, Canada
- Faculty of Medicine, Department of Microbiology, Infectious Diseases and Immunology, Laval University, 1050 Av. de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Sugimoto K, Yang C, Ono M, Shirazaki M, Katada R, Matsumoto H. Neutrophils induce astrocytic AQP4 expression via IL-1α and TNF, contributing to cerebral oedema in ischaemic stroke rats. Sci Rep 2025; 15:13923. [PMID: 40263535 PMCID: PMC12015259 DOI: 10.1038/s41598-025-98758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
During the acute phase (1-3 days) of cerebral infarction, neutrophils and macrophages accumulate at the infarction site, inducing inflammation and cerebral oedema. However, the role of neutrophils in oedema formation after ischaemic stroke remains unclear. This study examined neutrophil involvement in cerebral oedema using a transient middle cerebral artery occlusion (tMCAO) rat model, primary cultured neutrophils, and astrocytes. Brain specimens were stained with myeloperoxidase (MPO) and lymphocyte antigen 6 complexes, locus G (Ly6G), and the number of MPO+/Ly6G+ cells was counted. Neutrophil infiltration began in the leptomeninges at 3 h, reaching the ischaemic cortex by 6 h and the striatum by 24 h, peaking at 24-48 h before declining. Neutrophils attached to endothelial walls and infiltrated the brain parenchyma, correlating with oedema severity. Infiltrating neutrophils strongly expressed IL-1α and TNF in the ischaemic brain. Co-culturing LPS-activated neutrophils with astrocytes increased Aqp4 mRNA and protein expression, which was inhibited by IL-1RI and TNF antagonists. These findings suggest that activated neutrophils exacerbate cerebral oedema by inducing astrocytic AQP4 expression via IL-1α and TNF in peri-infarct and ischaemic core tissues.
Collapse
Affiliation(s)
- Kana Sugimoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Chihpin Yang
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miharu Ono
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mai Shirazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ryuichi Katada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Matsumoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Education and Research Institute for Death Control and Prevention, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Vafajoo M, Shahidi M, Shahriyary F, Amirzargar MR, Kooshari A. Resveratrol decreases extracellular traps (ETs) in acute promyelocytic leukemia (NB4) cells. PLoS One 2025; 20:e0321221. [PMID: 40245018 PMCID: PMC12005550 DOI: 10.1371/journal.pone.0321221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Activated neutrophils can create structures known as neutrophil extracellular traps (NETs/ETs) consisting of nuclear components and granules. The ETOsis phenomenon leads to activating the platelets and coagulation factors. Accordingly, coagulation and fibrinolysis can be promoted. Resveratrol (RSV) is a botanical antioxidant with anti-inflammatory and anti-leukemia effects. The present study was conducted to assess the effect of RSV on the occurrence of ETOsis in the NB4 cell line. METHODS Human acute promyelocytic leukemia cell line (NB4) were stimulated and treated by lipopolysaccharides (LPS) and RSV, respectively. Sytox green and a fluorescent microscope were used to assess the ETOsis in NB4 cells. Furthermore, the expression level of peptidylarginine deiminase 4 (PAD4) gene and the occurrence of ETOsis in NB4 cells were evaluated by real-time PCR and flow cytometry, respectively. Moreover, an enzyme-linked immunosorbent assay (ELISA) kit was utilized to measure tumor necrosis factor-α (TNF-α) cytokine. RESULTS Following treatment with RSV, a significant decrease in PAD4 gene expression and TNF-α cytokine concentration in the supernatant of NB4 cell line culture medium was observed. Besides, the amount of ETOsis in the NB4 cells treated with LPS and RSV decreased. CONCLUSION The findings demonstrated that RSV can inhibit the process of ETOsis in NB4 cells. By inhibiting the process of ETOsis, RSV may be able to reduce the bleeding and, consequently, the failure after treatment in acute promyelocytic leukemia (APL) patients.
Collapse
Affiliation(s)
- Mahshid Vafajoo
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kooshari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
9
|
Hou Y, Lv Z, Hu Q, Zhu A, Niu H. The immune mechanisms of the urinary tract against infections. Front Cell Infect Microbiol 2025; 15:1540149. [PMID: 40308964 PMCID: PMC12040696 DOI: 10.3389/fcimb.2025.1540149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Urinary tract infection (UTI), a common clinical infectious disease, is marked by high incidence and frequent recurrence. Recurrent UTIs can cause severe complications, negatively affecting health. The emergence and spread of drug-resistant bacteria present significant challenges to UTI treatment. This article systematically reviews the key immune mechanisms in the body's defense against UTI pathogens. It discusses various immune response components, such as the urinary tract mucosal epithelium, neutrophils, macrophages, dendritic cells, mast cells, innate lymphocytes, T cells, and B cells, with the aim of providing insights for future UTI research.
Collapse
Affiliation(s)
- Yilin Hou
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoxuan Lv
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanjie Hu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aisong Zhu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongxia Niu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Rijal R, Gomer RH. Pharmacological inhibition of host pathways enhances macrophage killing of intracellular bacterial pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.06.647500. [PMID: 40291742 PMCID: PMC12026824 DOI: 10.1101/2025.04.06.647500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
After ingestion into macrophage phagosomes, some bacterial pathogens such as Mycobacterium tuberculosis ( Mtb ) evade killing by preventing phagosome acidification and fusion of the phagosome with a lysosome. Mtb accumulates extracellular polyphosphate (polyP), and polyP inhibits macrophage phagosome acidification and bacterial killing. In Dictyostelium discoideum , polyP also inhibits bacterial killing, and we identified some proteins in D. discoideum that polyP requires to suppress the killing of ingested bacteria. Here, we find that pharmacological inhibition of human orthologues of the D. discoideum proteins, including P2Y1 receptors, mammalian Target of Rapamycin (mTOR), and inositol hexakisphosphate kinase, enhances the killing of Mtb , Legionella pneumophila , and Listeria monocytogenes by human macrophages. Mtb inhibits phagosome acidification, expression of the proinflammatory marker CD54, and autophagy, and increases expression of the anti-inflammatory marker CD206. In Mtb -infected macrophages, the polyP-degrading enzyme polyphosphatase (ScPPX) and inhibitors reversed these effects, with ScPPX increasing CD54 expression more in female macrophages compared to male macrophages. In addition, Mtb inhibits proteasome activity, and some, but not all, inhibitors reversed these effects. While the existence of a dedicated polyP signaling pathway remains uncertain, our findings suggest that pharmacological inhibition of select host proteins can restore macrophage function and enhances the killing of intracellular pathogens. Importance Human macrophages engulf bacteria into phagosomes, which then fuse with lysosomes to kill the bacteria. However, after engulfment, pathogenic bacteria such as Mycobacterium tuberculosis , Legionella pneumophila , and Listeria monocytogenes can block phagosome-lysosome fusion, allowing their survival. Here, we show that pharmacological inhibition of specific macrophage proteins reverses these effects and enhances bacterial killing. These findings suggest that targeting host factors involved in these processes may provide a therapeutic strategy to improve macrophage function against infections such as tuberculosis, Legionnaires' disease, and listeriosis.
Collapse
|
11
|
Lew SQ, Chong SY, Lau GW. Modulation of pulmonary immune functions by the Pseudomonas aeruginosa secondary metabolite pyocyanin. Front Immunol 2025; 16:1550724. [PMID: 40196115 PMCID: PMC11973339 DOI: 10.3389/fimmu.2025.1550724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic Gram-negative bacterial pathogen. One of its key virulence factors is pyocyanin, a redox-active phenazine secondary metabolite that plays a crucial role in the establishment and persistence of chronic infections. This review provides a synopsis of the mechanisms through which pyocyanin exacerbates pulmonary infections. Pyocyanin induces oxidative stress by generating reactive oxygen and nitrogen species which disrupt essential defense mechanisms in respiratory epithelium. Pyocyanin increases airway barrier permeability and facilitates bacterial invasion. Pyocyanin also impairs mucociliary clearance by damaging ciliary function, resulting in mucus accumulation and airway obstruction. Furthermore, it modulates immune responses by promoting the production of pro-inflammatory cytokines, accelerating neutrophil apoptosis, and inducing excessive neutrophil extracellular trap formation, which exacerbates lung tissue damage. Additionally, pyocyanin disrupts macrophage phagocytic function, hindering the clearance of apoptotic cells and perpetuating inflammation. It also triggers mucus hypersecretion by inactivating the transcription factor FOXA2 and enhancing the IL-4/IL-13-STAT6 and EGFR-AKT/ERK1/2 signaling pathways, leading to goblet cell metaplasia and increased mucin production. Insights into the role of pyocyanin in P. aeruginosa infections may reveal potential therapeutic strategies to alleviate the severity of infections in chronic respiratory diseases including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
| | | | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
12
|
Temme S, Kleimann P, Tiren ZB, Bouvain P, Zielinski A, Dollmeyer W, Poth S, Görges J, Flögel U. Imaging of Thromboinflammation by Multispectral 19F MRI. Int J Mol Sci 2025; 26:2462. [PMID: 40141106 PMCID: PMC11942564 DOI: 10.3390/ijms26062462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The close interplay between thrombotic and immunologic processes plays an important physiological role in the immune defence after tissue injury and has the aim to reduce damage and to prevent the spread of invading pathogens. However, the uncontrolled or exaggerated activation of these processes can lead to pathological thromboinflammation. Thromboinflammation has been shown to worsen the outcome of cardiovascular, autoinflammatory, or even infectious diseases. Imaging of thromboinflammation is difficult because many clinically relevant imaging techniques can only visualize either inflammatory or thrombotic processes. One interesting option for the noninvasive imaging of thromboinflammation is multispectral 19F magnetic resonance imaging (MRI). Due to the large chemical shift range of the 19F atoms, it is possible to simultaneously visualize immune cells as well as thrombus components with specific 19F tracer that have individual spectral 19F signatures. Of note, the 19F signal can be easily quantified and a merging of the 19F datasets with the anatomical 1H MRI images enables precise anatomical localization. In this review, we briefly summarize the background of 19F MRI for inflammation imaging, active targeting approaches to visualize thrombi and specific immune cells, introduce studies about multispectral 19F MRI, and summarize one study that imaged thromboinflammation by multispectral 19F MRI.
Collapse
Affiliation(s)
- Sebastian Temme
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Zeynep-Büsra Tiren
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Arthur Zielinski
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - William Dollmeyer
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Sarah Poth
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Juliana Görges
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| |
Collapse
|
13
|
Li H, Li C, Fu C, Wang Y, Liang T, Wu H, Wu C, Wang C, Sun T, Liu S. Innovative nanoparticle-based approaches for modulating neutrophil extracellular traps in diseases: from mechanisms to therapeutics. J Nanobiotechnology 2025; 23:88. [PMID: 39915767 PMCID: PMC11800495 DOI: 10.1186/s12951-025-03195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Neutrophil extracellular traps (NETs) participate in both host defense and the pathogenesis of various diseases, such as infections, thrombosis, and tumors. While they help capture and eliminate pathogens, NETs' excessive or dysregulated formation can lead to tissue damage and disease progression. Therapeutic strategies targeting NET modulation have shown potential, but challenges remain, particularly in achieving precise drug delivery and maintaining drug stability. Nanoparticle (NP)-based drug delivery systems offer innovative solutions for overcoming the limitations of conventional therapies. This review explores the biological mechanisms of NET formation, their interactions with NPs, and the therapeutic applications of NP-based drug delivery systems for modulating NETs. We discuss how NPs can be designed to either promote or inhibit NET formation and provide a comprehensive analysis of their potential in treating NET-related diseases. Additionally, we address the current challenges and future prospects for NP-based therapies in NET research, aiming to bridge the gap between nanotechnology and NET modulation for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Can Li
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chenxi Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
14
|
Hou L, Hsu A, Luo H, Yuki K. IQGAP1 Influences Neutrophil Maturation and Its Effector Functions. Eur J Immunol 2025; 55:e202451349. [PMID: 39931750 DOI: 10.1002/eji.202451349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 05/08/2025]
Abstract
IQ motif containing GTPase activating protein 1 (IQGAP1) is a protein scaffold that integrates signals regulating various cellular functions. Recently, utilizing proteomics as a discovery tool and co-immunoprecipitation as a validation method, we reported IQGAP1 as a potential ligand for CD11c, an adhesion molecule that was highly expressed in the intracellular components of neutrophils and regulated the maturation, survival, and function of neutrophils. To date, the role of IQGAP1 in inflammation and immune response is largely unknown. In this study, we reported the direct binding of CD11c with IQGAP1 through various methods. In addition, we investigated the role of IQGAP1 in neutrophil functions by using IQGAP1 knockout (KO) mice. We discovered that IQGAP1 deficiency led to impaired bone marrow neutrophil maturation, reactive oxygen species (ROS) generation, phagocytosis, and neutrophil extracellular traps formation. Thus, for the first time, we reported the essential role of IQGAP1 in neutrophil development.
Collapse
Affiliation(s)
- Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, USA
- Broad Institute of MIT and Harvard, Boston, USA
| | - Alan Hsu
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - Hongbo Luo
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, USA
- Broad Institute of MIT and Harvard, Boston, USA
| |
Collapse
|
15
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
16
|
Hu X, Li S, Huang R, Fu Z, Ma C, Cheng Z, Hu H, Zhou Q, Petersen F, Yu X, Zheng J. The autoimmune disease risk variant NCF1-His90 is associated with a reduced risk of tuberculosis in women. Front Immunol 2025; 16:1514296. [PMID: 39917298 PMCID: PMC11799249 DOI: 10.3389/fimmu.2025.1514296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction The neutrophil cytosolic factor 1 (NCF1) rs201802880 polymorphism is a missense mutation resulting in an amino acid substitution from arginine to histidine at position 90, which impairs the function of NADPH oxidase. This casual variant confers an increased risk for multiple autoimmune disorders, including primary Sjögren's syndrome and systemic lupus erythematosus. Given the high prevalence of this autoimmune disease risk variant in East Asia, we hypothesized that it may confer an evolutionary advantage by providing protection against infectious diseases. Methods To test this hypothesis, we investigated whether the NCF1 rs201802880 variant offers a protective effect against tuberculosis (TB), a historically significant and deadly infectious disease. Our study included 490 healthy controls and 492 TB patients who were genotyped for the NCF1 rs201802880 polymorphism. Results Our results showed that the NCF1 rs201802880 AA genotype was associated with a reduced risk of TB in women (OR= 0.25, 95% CI: 0.09-0.68, p=0.0023). Additionally, healthy individuals with the NCF1 rs201802880 AA genotype had significantly lower circulating white blood cell (5.56 ± 1.78 vs 6.43 ± 1.59, p=0.003) and neutrophil (3.23 ± 1.20 vs 3.74 ± 1.23, p = 0.02) counts compared to those with the GG or GA genotypes, with this difference being more pronounced in women than in men. Conclusion This study demonstrates that the autoimmune disease-causal NCF1 variant is associated with a protective effect against TB infection.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Henan University of Science and Technology, Henan Medical Key Laboratory of Gastrointestinal Microecology and Hepatology, Luoyang, China
| | - Shasha Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Renliang Huang
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Ziwei Fu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Chenyu Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Henan University of Science and Technology, Henan Medical Key Laboratory of Gastrointestinal Microecology and Hepatology, Luoyang, China
| | - Zheng Cheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Hongjun Hu
- Department of Surgical Oncology, Xinxiang Central Hospital, The Fourth Clinical of Xinxiang Medical University, Xinxiang, China
| | - Qiaomiao Zhou
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xinhua Yu
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
- Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junfeng Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
19
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Pettersson C, Wu R, Demirel I. Estrogen-stimulated uropathogenic E. coli mediate enhanced neutrophil responses. Sci Rep 2024; 14:23030. [PMID: 39362931 PMCID: PMC11449900 DOI: 10.1038/s41598-024-74863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections worldwide and the most common cause is uropathogenic Escherichia coli (UPEC). Current research is mostly focused on how UPEC affects host factors, whereas the effect of host factors on UPEC is less studied. Our previous studies have shown that estrogen alters UPEC virulence. However, the effect of this altered UPEC virulence on neutrophils is unknown. The aim of the present study was to investigate how the altered UPEC virulence mediated by estrogen modulates neutrophil responses. We found that estradiol-stimulated CFT073 increased neutrophil phagocytosis, NETs formation and intracellular ROS production. We observed that the total ROS production from neutrophils was reduced by estradiol-stimulated CFT073. We also found that estradiol-stimulated CFT073 induced less cytotoxicity in neutrophils. Additionally, we found that several cytokines and chemokines like IL-8, IL-1β, CXCL6, MCP-1 and MCP-4 were increased upon estradiol-stimulated CFT073 infection. In conclusion, this study demonstrates that the estrogen-mediated alterations to UPEC virulence modulates neutrophil responses, most likely in a host-beneficial manner.
Collapse
Affiliation(s)
- Carolina Pettersson
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden.
| |
Collapse
|
21
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
22
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U. Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Molly H. Anderson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
23
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
24
|
Stiel L, Gaudet A, Thietart S, Vallet H, Bastard P, Voiriot G, Oualha M, Sarton B, Kallel H, Brechot N, Kreitmann L, Benghanem S, Joffre J, Jouan Y. Innate immune response in acute critical illness: a narrative review. Ann Intensive Care 2024; 14:137. [PMID: 39227416 PMCID: PMC11371990 DOI: 10.1186/s13613-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Activation of innate immunity is a first line of host defense during acute critical illness (ACI) that aims to contain injury and avoid tissue damages. Aberrant activation of innate immunity may also participate in the occurrence of organ failures during critical illness. This review aims to provide a narrative overview of recent advances in the field of innate immunity in critical illness, and to consider future potential therapeutic strategies. MAIN TEXT Understanding the underlying biological concepts supporting therapeutic strategies modulating immune response is essential in decision-making. We will develop the multiple facets of innate immune response, especially its cellular aspects, and its interaction with other defense mechanisms. We will first describe the pathophysiological mechanisms of initiation of innate immune response and its implication during ACI. We will then develop the amplification of innate immunity mediated by multiple effectors. Our review will mainly focus on myeloid and lymphoid cellular effectors, the major actors involved in innate immune-mediated organ failure. We will third discuss the interaction and integration of innate immune response in a global view of host defense, thus considering interaction with non-immune cells through immunothrombosis, immunometabolism and long-term reprogramming via trained immunity. The last part of this review will focus on the specificities of the immune response in children and the older population. CONCLUSIONS Recent understanding of the innate immune response integrates immunity in a highly dynamic global vision of host response. A better knowledge of the implicated mechanisms and their tissue-compartmentalization allows to characterize the individual immune profile, and one day eventually, to develop individualized bench-to-bedside immunomodulation approaches as an adjuvant resuscitation strategy.
Collapse
Affiliation(s)
- Laure Stiel
- Department of Intensive Care Medicine, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France.
- Lipness Team, INSERM Research Team, LNC UMR 1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.
| | - Alexandre Gaudet
- CHU Lille, Department of Intensive Care Medicine, Critical Care Center, Univ. Lille, 59000, Lille, France
- CIIL (Centre d'Infection et d'Immunité de Lille), Institut Pasteur de Lille, U1019-UMR9017, 59000, Lille, France
| | - Sara Thietart
- Département de Gériatrie, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
- Inserm, PARCC U970, F75, Université Paris Cité, Paris, France
| | - Hélène Vallet
- Department of Geriatric Medicine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Saint Antoine, Paris, France
- INSERM UMR1135, Centre d'immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Hôpitaux de Paris, Paris, France
- Centre de Recherche, Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Assistance Publique, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre-Paris University, Paris, France
| | - Benjamine Sarton
- Service de Réanimation Polyvalente Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- ToNIC Lab (Toulouse NeuroImaging Center) INSERM/UPS UMR 1214, 31300, Toulouse, France
| | - Hatem Kallel
- Service de Réanimation, Centre Hospitalier de Cayenne, Guyane, France
| | - Nicolas Brechot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Center for Interdisciplinary Research in Biology (CIRB)-UMRS, INSERM U1050-CNRS 7241, College de France, Paris, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Sarah Benghanem
- Service de Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jérémie Joffre
- Service de Réanimation Médicale, Hôpital de Saint Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint Antoine INSERM, U938, Sorbonne University, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France
- Services de Réanimation Chirurgicale Cardiovasculaire et de Chirurgie Cardiaque, CHRU Tours, Tours, France
- INSERM, U1100 Centre d'Etudes des Pathologies Respiratoires, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
25
|
Yada N, Zhang Q, Bignotti A, Ye Z, Zheng XL. ADAMTS13 or Caplacizumab Reduces the Accumulation of Neutrophil Extracellular Traps and Thrombus in Whole Blood of COVID-19 Patients under Flow. Thromb Haemost 2024; 124:725-738. [PMID: 38272066 PMCID: PMC11260255 DOI: 10.1055/a-2253-9359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Neutrophil NETosis and neutrophil extracellular traps (NETs) play a critical role in pathogenesis of coronavirus disease 2019 (COVID-19)-associated thrombosis. However, the extents and reserve of NETosis, and potential of thrombus formation under shear in whole blood of patients with COVID-19 are not fully elucidated. Neither has the role of recombinant ADAMTS13 or caplacizumab on the accumulation of NETs and thrombus in COVID-19 patients' whole blood under shear been investigated. METHODS Flow cytometry and microfluidic assay, as well as immunoassays, were employed for the study. RESULTS We demonstrated that the percentage of H3Cit + MPO+ neutrophils, indicative of NETosis, was dramatically increased in patients with severe but not critical COVID-19 compared with that in asymptomatic or mild disease controls. Upon stimulation with poly [I:C], a double strain DNA mimicking viral infection, or bacterial shigatoxin-2, the percentage of H3Cit + MPO+ neutrophils was not significantly increased in the whole blood of severe and critical COVID-19 patients compared with that of asymptomatic controls, suggesting the reduction in NETosis reserve in these patients. Microfluidic assay demonstrated that the accumulation of NETs and thrombus was significantly enhanced in the whole blood of severe/critical COVID-19 patients compared with that of asymptomatic controls. Like DNase I, recombinant ADAMTS13 or caplacizumab dramatically reduced the NETs accumulation and thrombus formation under arterial shear. CONCLUSION Significantly increased neutrophil NETosis, reduced NETosis reserve, and enhanced thrombus formation under arterial shear may play a crucial role in the pathogenesis of COVID-19-associated coagulopathy. Recombinant ADAMTS13 or caplacizumab may be explored for the treatment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kanas City, Kansas, United States
| |
Collapse
|
26
|
Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm (Beijing) 2024; 5:e647. [PMID: 39015554 PMCID: PMC11247337 DOI: 10.1002/mco2.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA studded with granule proteins, are released by neutrophils in response to both infectious and sterile inflammation. Beyond the canonical role in defense against pathogens, the extrusion of NETs also contributes to the initiation, metastasis, and therapeutic response of malignant diseases. Recently, NETs have been implicated in the development and therapeutic responses of various types of tumors. Although extensive work regarding inflammation in tumors has been reported, a comprehensive summary of how these web-like extracellular structures initiate and propagate tumor progression under the specific microenvironment is lacking. In this review, we demonstrate the initiators and related signaling pathways that trigger NETs formation in cancers. Additionally, this review will outline the current molecular mechanisms and regulatory networks of NETs during dormant cancer cells awakening, circulating tumor cells (CTCs) extravasation, and metastatic recurrence of cancer. This is followed by a perspective on the current and potential clinical potential of NETs as therapeutic targets in the treatment of both local and metastatic disease, including the improvement of the efficacy of existing therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Jielin Wei
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Wenshan He
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinghua Ren
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| |
Collapse
|
27
|
Naskar M, Choi HW. A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. Immune Netw 2024; 24:e31. [PMID: 39246616 PMCID: PMC11377947 DOI: 10.4110/in.2024.24.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.
Collapse
Affiliation(s)
- Manisha Naskar
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
28
|
Boothe PF, Kumar VP, Kong Y, Wang K, Levinson H, Mu D, Brown ML. Radiation Induced Skin Fibrosis (RISF): Opportunity for Angiotensin II-Dependent Intervention. Int J Mol Sci 2024; 25:8261. [PMID: 39125831 PMCID: PMC11312688 DOI: 10.3390/ijms25158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.
Collapse
Affiliation(s)
- Patricia F. Boothe
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Howard Levinson
- The Center for Plastic Surgery at Sentara, 301 Riverview Ave. #400, Norfolk, VA 23510, USA;
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
- Leroy T. Canoles Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
29
|
Li L, Ma L, Qian H, Wang Z, Chen M, Wang C, Gu W, Lv T, Jin J. GGPPS Negatively Regulates the Formation of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Acute Lung Injury. Inflammation 2024:10.1007/s10753-024-02104-4. [PMID: 39052180 DOI: 10.1007/s10753-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are life-threatening diseases. Neutrophil extracellular traps (NETs) play a key role in lung damage. Geranylgeranyl diphosphate synthase (GGPPS) is associated with the development of inflammatory diseases. We aimed to explore the role of GGPPS in NETs formation in ARDS/ALI. First, lung pathological changes in lipopolysaccharide (LPS)-induced ALI mice after myeloid-specific GGPPS deletion were evaluated. The level of NETs formation was analyzed by immunofluorescence, PicoGreen assay and Western blotting. Next, we determined the role of GGPPS in NETs formation and underlying mechanisms using immunofluorescence, flow cytometry, DCFH-DA, and SYTOX GREEN staining in vitro. Finally, the correlation between GGPPS expression incirculating neutrophils and dsDNA levels in plasma was evaluated. Myeloid-specific GGPPS deletion mice showed increased NETs deposition in lung tissue and aggravated histopathological damage of lung tissue. In vitro, GGPPS deficiency in neutrophils resulted in increased NETs formation by Phorbol-12-myristate-13-acetate (PMA), which was reversed by Geranylgeranyl diphosphate (GGPP). In addition, inhibitors blocking protein kinase C (PKC) and NADPH-oxidase (NOX) decreased NETs formation induced by GGPPS deletion. Importantly, GGPPS expression in circulating neutrophils was decreased in ARDS patients compared with the healthy control, and the level of dsDNA in plasma of ARDS patients was negatively correlated with the GGPPS expression. Taken together, GGPPS deficiency in neutrophils aggravates LPS-induced lung injury by promoting NETs formation via PKC/NOX signaling. Thus, neutrophil GGPPS could be a key therapeutic target for ARDS.
Collapse
Affiliation(s)
- Lulu Li
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, No. 305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, No. 68, Zhongshan Road, Wuxi, 214086, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China
| | - Zheng Wang
- Department of Science and Technology, Kangda College, Nanjing Medical University, No. 88, Chunhui Road, Lianyungang, 222000, China
| | - Meizi Chen
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, No. 102, Luojiajing Road, Chenzhou, 423000, China
- Department of Respiratory and Critical Care Medicine, Affiliated the First People's Hospital of Chenzhou, University of South China, No. 102, Luojiajing Road, Chenzhou, 423000, China
| | - Chunlei Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Nantong University, No. 37, Chenggang Road, Nantong, 226001, China
- Department of Endocrinology, The First People's Hospital of Yancheng, No. 66, South Renmin Road, Yancheng, 224006, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China.
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
30
|
Karthäuser JF, Gruhn D, Martínez Guajardo A, Kopecz R, Babel N, Stervbo U, Laschewsky A, Viebahn R, Salber J, Rosenhahn A. In vitro biocompatibility analysis of protein-resistant amphiphilic polysulfobetaines as coatings for surgical implants in contact with complex body fluids. Front Bioeng Biotechnol 2024; 12:1403654. [PMID: 39086500 PMCID: PMC11288920 DOI: 10.3389/fbioe.2024.1403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
The fouling resistance of zwitterionic coatings is conventionally explained by the strong hydrophilicity of such polymers. Here, the in vitro biocompatibility of a set of systematically varied amphiphilic, zwitterionic copolymers is investigated. Photocrosslinkable, amphiphilic copolymers containing hydrophilic sulfobetaine methacrylate (SPe) and butyl methacrylate (BMA) were systematically synthesized in different ratios (50:50, 70:30, and 90:10) with a fixed content of photo-crosslinker by free radical copolymerization. The copolymers were spin-coated onto substrates and subsequently photocured by UV irradiation. Pure pBMA and pSPe as well as the prepared amphiphilic copolymers showed BMA content-dependent wettability in the dry state, but overall hydrophilic properties a fortiori in aqueous conditions. All polysulfobetaine-containing copolymers showed high resistance against non-specific adsorption (NSA) of proteins, platelet adhesion, thrombocyte activation, and bacterial accumulation. In some cases, the amphiphilic coatings even outperformed the purely hydrophilic pSPe coatings.
Collapse
Affiliation(s)
- Jana F. Karthäuser
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Dierk Gruhn
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | | | - Regina Kopecz
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - André Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Jochen Salber
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Kyung HW, Lee S, Kwon H, Kim S, Kim JH, Song SH, Oh SH, Yang HJ, Ha Y. The Effect of Botulinum Toxin A on the NADPH Oxidase System and Ischemia-Reperfusion Injury. Plast Reconstr Surg 2024; 154:100e-111e. [PMID: 37537729 PMCID: PMC11195934 DOI: 10.1097/prs.0000000000010956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Despite the increasing popularity of various materials for ischemia-reperfusion (I/R) injury mitigation, research on botulinum toxin type A (BoNTA) remains limited. This study assesses BoNTA's efficacy in protecting flaps from I/R injury by inhibiting the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and reducing reactive oxygen species (ROS) production. METHODS Seventy-six Sprague-Dawley rats were studied. We examined the effects of BoNTA on superoxide production in four rats using a lucigenin-enhanced chemiluminescence assay (LECL). Another group of 60 rats had their superficial inferior epigastric artery (SIEA) flaps treated with either BoNTA or saline and clamped for 0, 1, and 4 hours before reperfusion. Flap survival and histological outcomes were assessed five days post-operation. ROS production in SIEA flaps and femoral vessels was analyzed in 12 additional rats, post-I/R injury. RESULTS The LECL results showed that the BoNTA group had significantly lower superoxide production compared to controls, with notable reductions at 4 hours. While no significant differences were noted at the 0 and 1-hour marks, the 4-hour mark showed significant protective effects in BoNTA-treated groups. The survival rate was 90% for BoNTA-treated rats versus 60% for controls ( P = 0.028). Significant reductions in ROS were also observed in the 4-hour I/R group. CONCLUSIONS BoNTA effectively protects against I/R injury by inhibiting the NADPH oxidase system and reducing ROS levels. These results support further investigation into the specific mechanisms of NADPH oxidase inhibition by BoNTA and its potential clinical applications, given its safety profile. CLINICAL RELEVANCE STATEMENT The findings from the present study are expected to provide a basis for clinical studies regarding this use of BoNTA.
Collapse
Affiliation(s)
- Hyun Woo Kyung
- From the Department of Plastic and Reconstructive Surgery, Chungnam National University Sejong Hospital
| | - Seokui Lee
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital
| | - Hyeokjae Kwon
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital
| | - Sunje Kim
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital
| | - Joo Hak Kim
- From the Department of Plastic and Reconstructive Surgery, Chungnam National University Sejong Hospital
| | - Seung Han Song
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital
- the Brain Research Institute, School of Medicine, Chungnam National University
| | - Ho Jik Yang
- From the Department of Plastic and Reconstructive Surgery, Chungnam National University Sejong Hospital
| | - Yooseok Ha
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital
| |
Collapse
|
32
|
Giese MA, Bennin DA, Schoen TJ, Peterson AN, Schrope JH, Brand J, Jung HS, Keller NP, Beebe DJ, Dinh HQ, Slukvin II, Huttenlocher A. PTP1B phosphatase dampens iPSC-derived neutrophil motility and antimicrobial function. J Leukoc Biol 2024; 116:118-131. [PMID: 38417030 PMCID: PMC11212797 DOI: 10.1093/jleuko/qiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.
Collapse
Affiliation(s)
- Morgan A Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, 1525 Linden Dr. Madison 53706, WI, United States
| | - David A Bennin
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - Taylor J Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Ashley N Peterson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, 1550 Engineering Dr. Madison 53706, WI, United States
| | - Josh Brand
- Cell and Molecular Pathology Graduate Program, University of Wisconsin–Madison, 1685 Highland Ave. Madison 53705, WI, United States
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Huy Q Dinh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, 600 Highland Ave. Madison 53705, WI, United States
| |
Collapse
|
33
|
Nemphos SM, Green HC, Prusak JE, Fell SL, Goff K, Varnado M, Didier K, Guy N, Moström MJ, Tatum C, Massey C, Barnes MB, Rowe LA, Allers C, Blair RV, Embers ME, Maness NJ, Marx PA, Grasperge B, Kaur A, De Paris K, Shaffer JG, Hensley-McBain T, Londono-Renteria B, Manuzak JA. Elevated Inflammation Associated with Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques. Viruses 2024; 16:1036. [PMID: 39066199 PMCID: PMC11281461 DOI: 10.3390/v16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmodium spp., are endemic in similar geographical locations. As a result, there is high potential for HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the immunological mechanisms underlying the exacerbated disease pathology observed in co-infected individuals are poorly understood. Moreover, there is limited data available on the impact of Plasmodium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque (RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the immunopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier permeability and microbial translocation and observed significant correlations between indicators of GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and function. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may underlie heightened SIV/P. fragile co-infection pathogenesis.
Collapse
Affiliation(s)
- Sydney M. Nemphos
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Hannah C. Green
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - James E. Prusak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Sallie L. Fell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Megan Varnado
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kaitlin Didier
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Natalie Guy
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Matilda J. Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Coty Tatum
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chad Massey
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mary B. Barnes
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lori A. Rowe
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Robert V. Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27559, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
34
|
Tambralli A, Harbaugh A, NaveenKumar SK, Radyk MD, Rysenga CE, Sabb K, Hurley JM, Sule GJ, Yalavarthi S, Estes SK, Hoy CK, Smith T, Sarosh C, Madison JA, Schaefer JK, Sood SL, Zuo Y, Sawalha AH, Lyssiotis CA, Knight JS. Neutrophil glucose flux as a therapeutic target in antiphospholipid syndrome. J Clin Invest 2024; 134:e169893. [PMID: 38869951 PMCID: PMC11290966 DOI: 10.1172/jci169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.
Collapse
Affiliation(s)
- Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | | | | | | | - Kaitlyn Sabb
- Division of Rheumatology, Department of Internal Medicine
| | | | - Gautam J. Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | - Tristin Smith
- Division of Rheumatology, Department of Internal Medicine
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jordan K. Schaefer
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suman L. Sood
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
35
|
Gao G, Liu R, Wu D, Gao D, Lv Y, Xu X, Fu B, Lin Z, Wang T, He A, Bai J. Risk score constructed with neutrophil extracellular traps-related genes predicts prognosis and immune microenvironment in multiple myeloma. Front Oncol 2024; 14:1365460. [PMID: 38919521 PMCID: PMC11196624 DOI: 10.3389/fonc.2024.1365460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Background Multiple myeloma (MM) exhibits considerable heterogeneity in treatment responses and survival rates, even when standardized care is administered. Ongoing efforts are focused on developing prognostic models to predict these outcomes more accurately. Recently, neutrophil extracellular traps (NETs) have emerged as a potential factor in MM progression, sparking investigation into their role in prognostication. Methods In this study, a multi-gene risk scoring model was constructed using the intersection of NTEs and differentially expressed genes (DEGs), applying the least absolute shrinkage and selection operator (LASSO) Cox regression model. A nomogram was established, and the prognostic model's effectiveness was determined via Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). The ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) were employed to evaluate the level of immune infiltration. The sensitivity of chemotherapy drugs was assessed using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Ultimately, the presence of the detected genes was confirmed through quantitative real-time polymerase chain reaction (qRT-PCR) analysis in MM cell specimens. Results 64 NETs-DEGs were yielded, and through univariate Cox regression and LASSO regression analysis, we constructed a risk score composed of six genes: CTSG, HSPE1, LDHA, MPO, PINK1, and VCAM1. MM patients in three independent datasets were classified into high- and low-risk groups according to the risk score. The overall survival (OS) of patients in the high-risk group was significantly reduced compared to the low-risk group. Furthermore, the risk score was an independent predictive factor for OS. In addition, interactions between the risk score, immune score, and immune cell infiltration were investigated. Further analysis indicated that patients in the high-risk group were more sensitive to a variety of chemotherapy and targeted drugs, including bortezomib. Moreover, the six genes provided insights into the progression of plasma cell disorders. Conclusion This study offers novel insights into the roles of NETs in prognostic prediction, immune status, and drug sensitivity in MM, serving as a valuable supplement and enhancement to existing grading systems.
Collapse
Affiliation(s)
- Gongzhizi Gao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dong Wu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Lv
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuezhu Xu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingjie Fu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zujie Lin
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of hematological diseases, Xi’an, China
| | - Ju Bai
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of hematological diseases, Xi’an, China
| |
Collapse
|
36
|
Kumar S, Dikshit M. Nitric Oxide: Regulation and Function in Neutrophil Immune Responses. Antioxid Redox Signal 2024; 40:998-1024. [PMID: 38251644 DOI: 10.1089/ars.2022.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
37
|
Bae M, Ngo H, Kang YJ, Lee SJ, Park W, Jo Y, Choi YM, Kim JJ, Yi HG, Kim HS, Jang J, Cho DW, Cho H. Laminin-Augmented Decellularized Extracellular Matrix Ameliorating Neural Differentiation and Neuroinflammation in Human Mini-Brains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308815. [PMID: 38161254 DOI: 10.1002/smll.202308815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Huyen Ngo
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - You Jung Kang
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, South Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Joeng Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyung-Seok Kim
- Department of Forensic medicine, Chonnam National University Medical School & Research Institute of Medical Sciences, Gwangju, 61469, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| |
Collapse
|
38
|
Kundu A, Ghosh P, Bishayi B. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3. Int Immunopharmacol 2024; 133:112153. [PMID: 38678669 DOI: 10.1016/j.intimp.2024.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, INDIA
| | - Pratiti Ghosh
- Lab of Lifestyle and Stress Physiology, Head, Department of Physiology, West Bengal State University, North 24 Parganas, Malikapur, Berunanpukuria, Barasat, Kolkata, West Bengal 700126, INDIA.
| | - Biswadev Bishayi
- Professor, Department of Physiology, University of Calcutta. West Bengal, INDIA.
| |
Collapse
|
39
|
Aliu C, Ajayi OO, Olawuyi TS, Gbadamosi OK, Barbosa F, Adedire CO, Adeyemi JA. Tissue Accumulation, Cytotoxicity, Oxidative Stress, and Immunotoxicity in African Catfish, Clarias gariepinus Exposed to Sublethal Concentrations of Hexavalent Chromium. Biol Trace Elem Res 2024; 202:2294-2307. [PMID: 37608130 DOI: 10.1007/s12011-023-03812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Hexavalent chromium (Cr6+) is one of the stable oxidation states of chromium that has been reported to elicit various toxic effects in aquatic organisms. However, the mechanisms of Cr6+ toxicity are still poorly understood. Thus, the present study investigated the tissue accumulation, cytotoxic, oxidative stress, and immunotoxic effects of Cr6+ in juvenile Clarias gariepinus. The fish were exposed to waterborne Cr6+ concentrations (0, 0.42, 0.84, and 1.68 mg/L) for 28 days, after which they were sacrificed and various organs were harvested for the determination of Cr6+ levels. Other parameters that were indicators of oxidative stress, cytotoxicity, and immunotoxicity were measured. Cr6+ accumulated more in the kidney and liver of the exposed fish, especially at the highest concentration. The levels of lipid peroxidation and DNA fragmentation increased significantly in the exposed fish. The activities of superoxide dismutase and lactate dehydrogenase increased significantly in exposed fish compared to the control. The total white blood cells, lymphocytes, and neutrophils counts were significantly higher in the exposed fish compared to the control fish. The respiratory burst activity decreased significantly in the exposed fish while the myeloperoxidase content did not differ significantly. There were upregulations of TNF-α and HSP 70 while CYP II and MHC 2 were downregulated in the exposed fish. Also, exposure to Cr6+ resulted in various histopathological alterations in the architecture of the head kidney. The results indicate concentration-dependent toxic effects of Cr6+ in C. gariepinus. The study reveals the potentials of Cr6+ to accumulate in the different tissues of fish and caused cytotoxic, oxidative stress, and immunotoxic effects in the exposed fish.
Collapse
Affiliation(s)
- Christian Aliu
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ogooluwa O Ajayi
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Toluwase S Olawuyi
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Oluyemi K Gbadamosi
- Department of Fisheries and Aquaculture Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Cafe´ s/no, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Cafe´ s/no, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
40
|
Cafora M, Rovelli S, Cattaneo A, Pistocchi A, Ferrari L. Short-term exposure to fine particulate matter exposure impairs innate immune and inflammatory responses to a pathogen stimulus: A functional study in the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123841. [PMID: 38521398 DOI: 10.1016/j.envpol.2024.123841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Short-term exposure to fine particulate matter (PM2.5) is associated with the activation of adverse inflammatory responses, increasing the risk of developing acute respiratory diseases, such as those caused by pathogen infections. However, the functional mechanisms underlying this evidence remain unclear. In the present study, we generated a zebrafish model of short-term exposure to a specific PM2.5, collected in the northern metropolitan area of Milan, Italy. First, we assessed the immunomodulatory effects of short-term PM2.5 exposure and observed that it elicited pro-inflammatory effects by inducing the expression of cytokines and triggering hyper-activation of both neutrophil and macrophage cell populations. Moreover, we examined the impact of a secondary infectious pro-inflammatory stimulus induced through the injection of Pseudomonas aeruginosa lipopolysaccharide (Pa-LPS) molecules after exposure to short-term PM2.5. In this model, we demonstrated that the innate immune response was less responsive to a second pro-inflammatory infectious stimulus. Indeed, larvae exhibited dampened leukocyte activation and impaired production of reactive oxygen species. The obtained results indicate that short-term PM2.5 exposure alters the immune microenvironment and affects the inflammatory processes, thus potentially weakening the resistance to pathogen infections.
Collapse
Affiliation(s)
- Marco Cafora
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sabrina Rovelli
- RAHH LAB, Department of Science and High Technology, University of Insubria, Como, Italy
| | - Andrea Cattaneo
- RAHH LAB, Department of Science and High Technology, University of Insubria, Como, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Unit of Occupational Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.
| |
Collapse
|
41
|
Feng D, Hwang S, Guillot A, Wang Y, Guan Y, Chen C, Maccioni L, Gao B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell Mol Gastroenterol Hepatol 2024; 18:101352. [PMID: 38697358 PMCID: PMC11234022 DOI: 10.1016/j.jcmgh.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
42
|
Fang H, Bo Y, Hao Z, Mang G, Jin J, Wang H. A promising frontier: targeting NETs for stroke treatment breakthroughs. Cell Commun Signal 2024; 22:238. [PMID: 38654328 PMCID: PMC11036592 DOI: 10.1186/s12964-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
Stroke is a prevalent global acute cerebrovascular condition, with ischaemic stroke being the most frequently occurring type. After a stroke, neutrophils accumulate in the brain and subsequently generate and release neutrophil extracellular traps (NETs). The accumulation of NETs exacerbates the impairment of the blood‒brain barrier (BBB), hampers neovascularization, induces notable neurological deficits, worsens the prognosis of stroke patients, and can facilitate the occurrence of t-PA-induced cerebral haemorrhage subsequent to ischaemic stroke. Alternative approaches to pharmacological thrombolysis or endovascular thrombectomy are being explored, and targeting NETs is a promising treatment that warrants further investigation.
Collapse
Affiliation(s)
- Huijie Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yunfei Bo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongfei Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
43
|
Wan Y, Fu X, Zhang T, Hua Y, Keep RF, Xi G. Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage. Fluids Barriers CNS 2024; 21:37. [PMID: 38654318 PMCID: PMC11036653 DOI: 10.1186/s12987-024-00538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CX3CR-1GFP mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response. METHODS This study had four parts all examining male adult CX3CR-1GFP mice. Part 1 examined naïve mice. In part 2, mice received an injection 30 µl of autologous blood into right ventricle and were euthanized at 24 h. In part 3, mice underwent intraventricular injection of saline, iron or peroxiredoxin 2 (Prx-2) and were euthanized at 24 h. In part 4, mice received intraventricular iron injection and were treated with either control or clodronate liposomes and were euthanized at 24 h. All mice underwent magnetic resonance imaging to quantify ventricular volume. The ChP immune cell response was examined by combining analysis of GFP(+) immune cells and immunofluorescence staining. RESULTS IVH and intraventricular iron or Prx-2 injection in CX3CR-1GFP mice all induced ventriculomegaly and activation of ChP immune cells. There were very marked increases in the numbers of ChP epiplexus macrophages, T lymphocytes and neutrophils. Co-injection of clodronate liposomes with iron reduced the ventriculomegaly which was associated with fewer epiplexus and stromal macrophages but not reduced T lymphocytes and neutrophils. CONCLUSION There is a marked immune cell response at the ChP in IVH involving epiplexus cells, T lymphocytes and neutrophils. The blood components iron and Prx-2 may play a role in eliciting that response. Reduction of ChP macrophages with clodronate liposomes reduced iron-induced ventriculomegaly suggesting that ChP macrophages may be a promising therapeutic target for managing IVH-induced hydrocephalus.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
- R5018 Biomedical Science Research Building, University of Michigan, 109 Zina Pitcher Place, 48109-2200, Ann Arbor, MI, USA.
| | - Xiongjie Fu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Tianjie Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Wang G, Li J, Wang L, Yang Y, Wu J, Tang W, Lei H, Cheng L. Manganese-Doped Potassium Chloride Nanoelectrodes to Potentiate Electrochemical Immunotherapy. ACS NANO 2024; 18:10885-10901. [PMID: 38587876 DOI: 10.1021/acsnano.4c01132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Hypochlorous acid (HClO), as a powerful oxidizer, is obtained from the oxidation of Cl- ions during the electrochemical therapy (EChT) process for cancer therapy. However, the extracellular generated HClO is inadequate to inhibit effective tumor cell death. Herein, manganese-doped potassium chloride nanocubes (MPC NCs) fabricated and modified with amphipathic polymer PEG (PMPC NCs) to function as massive three-dimensional nanoelectrodes (NEs) were developed to enhance the generation of HClO for electrochemical immunotherapy under an alternating electric field. Under an square-wave alternating current (AC) electric field, the generation of HClO was boosted by PMPC NEs due to the enlarged active surface area, enhanced mass transfer rate, and improved electrocatalytic activity. Notably, PMPC NEs upregulated the intracellular HClO concentration to induce robust immunogenic cell death (ICD) under an AC electric field. Meanwhile, the electric-triggered release of Mn2+ effectively stimulated dendritic cells (DCs) maturation. In vivo results illustrated that PMPC-mediated EChT inhibited tumor growth and triggered the promotion of the immune response to regulate the tumor immune microenvironment. Based on the potent antitumor immunity, PMPC-mediated EChT was further combined with an immune checkpoint inhibitor (αCTLA-4) to realize combined EChT-immunotherapy, which demonstrated enhanced tumor inhibition of the primary tumors and an abscopal effect on distant tumors. To summarize, our work highlights the application of electrochemical-immunotherapy technology in tumor therapy.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
45
|
Zhan ZY, Zhang ZH, Sun RH, Wu YL, Nan JX, Lian LH. A therapeutic strategy of parthenolide in improving imiquimod-induced psoriasis-like skin inflammation targeting IL-36/NETs through skin transdermal therapeutic system. Int Immunopharmacol 2024; 131:111824. [PMID: 38461633 DOI: 10.1016/j.intimp.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1β and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Rong-Hui Sun
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
46
|
Dewitt S, Green J, Laffafian I, Lewis KJ, Hallett MB. Intraphagosomal Free Ca 2+ Changes during Phagocytosis. Int J Mol Sci 2024; 25:4254. [PMID: 38673839 PMCID: PMC11050620 DOI: 10.3390/ijms25084254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Phagocytosis (and endocytosis) is an unusual cellular process that results in the formation of a novel subcellular organelle, the phagosome. This phagosome contains not only the internalised target of phagocytosis but also the external medium, creating a new border between extracellular and intracellular environments. The boundary at the plasma membrane is, of course, tightly controlled and exploited in ionic cell signalling events. Although there has been much work on the control of phagocytosis by ions, notably, Ca2+ ions influxing across the plasma membrane, increasing our understanding of the mechanism enormously, very little work has been done exploring the phagosome/cytosol boundary. In this paper, we explored the changes in the intra-phagosomal Ca2+ ion content that occur during phagocytosis and phagosome formation in human neutrophils. Measuring Ca2+ ion concentration in the phagosome is potentially prone to artefacts as the intra-phagosomal environment experiences changes in pH and oxidation. However, by excluding such artefacts, we conclude that there are open Ca2+ channels on the phagosome that allow Ca2+ ions to "drain" into the surrounding cytosol. This conclusion was confirmed by monitoring the translocation of the intracellularly expressed YFP-tagged C2 domain of PKC-γ. This approach marked regions of membrane at which Ca2+ influx occurred, the earliest being the phagocytic cup, and then the whole cell. This paper therefore presents data that have novel implications for understanding phagocytic Ca2+ signalling events, such as peri-phagosomal Ca2+ hotspots, and other phenomena.
Collapse
Affiliation(s)
- Sharon Dewitt
- Biomaterials Group, School of Dentistry, College of Biological Life Sciences, Cardiff University, Cardiff CF14 4XY, UK;
| | - Joanna Green
- Neutrophil Signalling Group, School of Medicine, College of Biological Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Iraj Laffafian
- Neutrophil Signalling Group, School of Medicine, College of Biological Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Kimberly J. Lewis
- Neutrophil Signalling Group, School of Medicine, College of Biological Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Maurice B. Hallett
- Neutrophil Signalling Group, School of Medicine, College of Biological Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
47
|
Li K, Dong L, Gao S, Zhang J, Feng Y, Gu L, Yang J, Liu X, Wang Y, Mao Z, Jiang D, Xia Z, Zhang G, Tang J, Ma P, Zhang W. Safety, tolerability, pharmacokinetics and neutrophil elastase inhibitory effects of Sivelestat: A randomized, double-blind, placebo-controlled single- and multiple-dose escalation study in Chinese healthy subjects. Eur J Pharm Sci 2024; 195:106723. [PMID: 38336251 DOI: 10.1016/j.ejps.2024.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND OBJECTIVE Neutrophil elastase has been identified as a potential therapeutic target for acute lung injury or acute respiratory distress syndrome, and Sivelestat is a selective, reversible and competitive neutrophil elastase inhibitor. This study was designed to investigate the safety, tolerability, pharmacokinetics and neutrophil elastase inhibitory effects of Sivelestat in healthy Chinese subjects. METHODS A randomized, double-blind, placebo-controlled single- and multiple-dose escalation clinical trial was carried out. Briefly, healthy volunteers in twelve cohorts with 8 per cohort received 1.0-20.2 mg/kg/h Sivelestat or placebo in an intravenous infusion manner for two hours, and healthy volunteers in four cohorts received two hours intravenous infusion of 2.0-5.0 mg/kg/h Sivelestat or placebo with an interval of twelve hours for seven times. The safety and tolerability were evaluated and serial blood samples were collected for pharmacokinetics and neutrophil elastase inhibitory effects analysis at the specified time-point. RESULTS A total of 128 subjects were enrolled and all participants completed the study except one. Sivelestat exhibited satisfactory safety and tolerability up to 20.2 mg/kg/h in single-dose cohorts and 5.0 mg/kg/h in multiple-dose cohorts. Even so, more attention should be paid to the safety risks when using high doses. The Cmax and AUC of Sivelestat increased in a dose dependent manner, and Tmax was similar for different dose cohorts. In multiple-dose cohorts, the plasma concentrations reached steady state 48 h after first administration and the accumulation of Cmax and AUC was not obvious. Furthermore, the Cmin_ss of 5.0 mg/kg/h dose cohort could meet the needs of clinical treatment. For some reason, the pharmacodynamics data revealed that the inhibitory effect of Sivelestat on neutrophil elastase content in healthy subjects was inconclusive. CONCLUSION Sivelestat was safe and well tolerated with appropriate pharmacokinetic parameters, which provided support for more diverse dosing regimen in clinical application. CLINICAL TRIAL REGISTRATION www.chinadrugtrials.org.cn identifier is CTR20210072.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Lingfang Dong
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Shan Gao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Jingying Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Yinghua Feng
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Li Gu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Jie Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Xing Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Yaqin Wang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Guoliang Zhang
- Shanghai Precise Biotechnology Co., Ltd, Shanghai, China
| | - Jingwen Tang
- Shanghai Huilun Pharmaceutical Co., Ltd, Shanghai, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
48
|
Wang M, Jin Z, Huang H, Cheng X, Zhang Q, Tang Y, Zhu X, Zong Z, Li H, Ning Z. Neutrophil hitchhiking: Riding the drug delivery wave to treat diseases. Drug Dev Res 2024; 85:e22169. [PMID: 38477422 DOI: 10.1002/ddr.22169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xifu Cheng
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Tang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoping Zhu
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhikun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
49
|
Zerbe CS, Holland SM. Functional neutrophil disorders: Chronic granulomatous disease and beyond. Immunol Rev 2024; 322:71-80. [PMID: 38429865 PMCID: PMC10950525 DOI: 10.1111/imr.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Since their description by Metchnikoff in 1905, phagocytes have been increasingly recognized to be the entities that traffic to sites of infection and inflammation, engulf and kill infecting organisms, and clear out apoptotic debris all the while making antigens available and accessible to the lymphoid organs for future use. Therefore, phagocytes provide the gateway and the first check in host protection and immune response. Disorders in killing and chemotaxis lead not only to infection susceptibility, but also to autoimmunity. We aim to describe chronic granulomatous disease and the leukocyte adhesion deficiencies as well as myeloperoxidase deficiency and G6PD deficiency as paradigms of critical pathways.
Collapse
Affiliation(s)
- Christa S Zerbe
- Laboratory of Clinical Immunology, National Institutes of Allergy and Infectious Disease, The National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Chandra HB, Lalhmangaihzuali L, Shome A, Sahoo R, Irungbam K, Mahawar M. Comparative analysis reveals the trivial role of MsrP in defending oxidative stress and virulence of Salmonella Typhimurium in mice. Free Radic Biol Med 2024; 213:322-326. [PMID: 38262547 DOI: 10.1016/j.freeradbiomed.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Sulphur containing amino acids, methionine and cysteine are highly prone to oxidation. Reduction of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) enhances the survival of bacterial pathogens under oxidative stress conditions. S. Typhimurium encodes two types (cytoplasmic and periplasmic) of Msrs. Periplasmic proteins, due to their location are highly vulnerable to host-generated oxidants. Therefore, the periplasmic Msr (MsrP) mediated repair (as compared to the cytoplasmic counterpart) might play a more imperative role in defending host-generated oxidants. Contrary to this, we show that in comparison to the ΔmsrP strain, the mutant strains in the cytoplasmic Msrs (ΔmsrA and ΔmsrAC strains) showed many folds more susceptibility to chloramine-T and neutrophils. Further ΔmsrA and ΔmsrAC strains accumulated higher levels of ROS and showed compromised fitness in mice spleen and liver. Our data suggest the pivotal role of cytoplasmic Msrs in oxidative stress survival of S. Typhimurium.
Collapse
Affiliation(s)
- Hari Balaji Chandra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - L Lalhmangaihzuali
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Raj Sahoo
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Karuna Irungbam
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India.
| |
Collapse
|