1
|
Trier NH, Zivlaei N, Ostrowski SR, Sørensen E, Larsen M, Slibinskas R, Ciplys E, Frederiksen JL, Houen G. Virus-specific antibody responses in severe acute respiratory syndrome coronavirus 2-infected and vaccinated individuals. Immunol Lett 2025; 274:107004. [PMID: 40157431 DOI: 10.1016/j.imlet.2025.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can have a serious course with many complications, especially in immunocompromised individuals. In such persons, other latent virus infections may contribute to disease pathology, in particular viruses which infect immune cells such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV). METHODS In this study, serology-based assays were conducted to analyse antibody responses to SARS-CoV-2 spike protein (SP), EBV Epstein-Barr nuclear antigen (EBNA)-1 and CMV phosphoprotein (pp)52 in naturally SARS-CoV-2-infected individuals, non-infected healthy controls (HCs) and vaccinated healthy controls (VHCs) to identify an association between SARS-CoV-2 antibodies and EBV and CMV antibodies in order to determine whether latent EBV and CMV infected individuals are more prone to become infected with SARS-CoV-2. Moreover, SARS-CoV-2, EBV, and CMV antibody responses were characterized in serum from patients with relapsing-remitting multiple sclerosis (RRMS), a chronic inflammatory disease strongly associated with EBV infections, to determine whether the serologic virus antibody profile varies in immunocompromised RRMS individuals upon SARS-CoV-2 vaccinations compared to VHCs. RESULTS Significantly elevated SP IgG, IgM and IgA levels were identified in SARS-CoV-2-infected immunocompetent individuals when compared to non-infected HCs. However, no correlation was found to serum antibodies between SARS-CoV-2, EBV, and CMV in individuals infected with SARS-CoV-2 and in VHCs, suggesting that latent infections with neither EBV nor CMV associates to SARS-CoV-2 infection. Moreover, no significant difference in SP IgG, IgA and IgM levels was observed between vaccinated RRMS patients and VHCs, indicating that the immune system of immune deficient RRMS patients and VHCs respond identical to SARS-CoV-2 vaccinations. CONCLUSION Collectively, SARS-CoV-2 SP antibody levels reflect the vaccination and infection history and do not associate with EBV and CMV serostatus.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Nadia Zivlaei
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Margit Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55 5230 Odense M, Denmark.
| |
Collapse
|
2
|
Wang Q, Peng Z, Chu P, Gui B, Li Y, Liao L, Zhu Z, Ke F, Wang Y, He L. Type II grass carp reovirus utilizes autophagosomes for viroplasm formation and subclinical persistent infection. J Virol 2025; 99:e0035225. [PMID: 40172227 PMCID: PMC12090803 DOI: 10.1128/jvi.00352-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Grass carp reovirus (GCRV) is the most virulent pathogen within the genus Aquareovirus, belonging to the family Spinareoviridae. GCRV is categorized into three genotypes, with type II (GCRV-II) being the predominant strain circulating in China. Reoviruses are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, information regarding the formation of GCRV-II viroplasms and their specific roles in virus infection remains largely unknown. In this study, we investigated the formation and characteristics of viroplasms during GCRV-II infection. Immunofluorescence and confocal microscopy indicate that GCRV-II infection induces the formation of viroplasms, with the nonstructural protein NS79 being the key protein responsible for this process. Live-cell imaging and fluorescence recovery after photobleaching assays reveal that GCRV-II viroplasms lack liquid-like properties. Transmission electron microscopy confirms that GCRV-II viroplasms are membranous structures. Notably, we demonstrate that GCRV-II infection induces autophagy and the formation of autophagosomes and that GCRV-II utilizes these autophagosomes for viroplasm formation and virion assembly. Furthermore, we found that GCRV-II uses autophagosomes to evade the host immune system, establishing subclinical persistent infection. GCRV-II also employs autophagosomes for nonlytic release and viral spread. Collectively, these findings highlight distinctive characteristics of GCRV-II viroplasms compared to those of other animal reoviruses, offering valuable insights for the prevention and control of this virus.IMPORTANCEGrass carp reovirus (GCRV) is categorized into three genotypes, with GCRV-II being the most prevalent in China. Despite reoviruses being known for their replication and assembly in viroplasms, the specifics of GCRV-II viroplasm formation and its role in infection were unclear. Our study demonstrates that GCRV-II infection triggers the formation of viroplasms, primarily mediated by the nonstructural protein NS79. GCRV-II viroplasms are membranous structures that lack liquid-like properties, which are significantly different from the viroplasms of other reoviruses. Notably, our research unveils that GCRV-II infection induces autophagy and utilizes autophagosomes for viroplasm formation and virion assembly. Furthermore, we also confirm that GCRV-II utilizes autophagosomes for subclinical persistent infection, nonlytic release, and viral spread. Our results indicate that GCRV-II hijacks autophagosomes to form viroplasms and complete its life cycle. The characteristics of GCRV-II are significantly different from those of other animal reoviruses, providing important information for prevention and control of this virus.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zichao Peng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bin Gui
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Liu J, Hua L, Wang F, Chen M, Sun Y, Hu Z, Shu L, He A, Liu M, Yang Q, Zhu J, Qian Y. Comparison of four MRI diffusion models to differentiate benign from metastatic retropharyngeal lymph nodes. Eur Radiol Exp 2025; 9:50. [PMID: 40358858 PMCID: PMC12075726 DOI: 10.1186/s41747-025-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Conventional magnetic resonance diffusion-weighted imaging (DWI) and morphological features have limitations in distinguishing benign from metastatic retropharyngeal lymph nodes (RLNs). We aimed to compare the value of continuous-time random walk (CTRW), fractional-order calculus (FROC), stretched-exponential model (SEM), and conventional DWI, in combination with morphological features, for differentiating between the two groups. METHODS Fifty-nine patients with 68 RLNs (23 benign and 45 metastatic) were enrolled. All patients underwent DWI with 12 b-values. Diffusion data were reconstructed using conventional DWI, SEM, FROC, and CTRW models, yielding nine parameters: apparent diffusion coefficient (ADC), distributed diffusion coefficient (DDC)SEM, αSEM, DFROC, βFROC, μFROC, DCTRW, αCTRW, and βCTRW. Diffusion parameters and morphological features were compared using Mann-Whitney U, independent sample t, or χ2 tests. Logistic regression analysis was performed to identify the best diffusion indicator for classification and to develop a multiparameter model combining morphological features. Area under the receiver operating curve (AUC) and DeLong tests were used. RESULTS Significant differences in diffusion parameters were found between benign and metastatic RLNs, except for αCTRW (p ≤ 0.022). Benign RLNs exhibited higher ADC, DDCSEM, DFROC, and DCTRW, while metastatic RLNs had higher αSEM, βFROC, μFROC, and βCTRW. Multivariate logistic regression analysis identified βCTRW as the optimal single diffusion indicator (AUC = 0.913). The combined model of βCTRW with morphological features further improved diagnostic performance and yielded an AUC of 0.948. CONCLUSION βCTRW is an effective noninvasive biomarker for distinguishing between benign and metastatic RLNs. Thus, combining βCTRW with morphological features enhances diagnostic efficiency. RELEVANCE STATEMENT This study demonstrates that βCTRW, derived from the continuous-time random walk diffusion model, when integrated with morphological features, offers a reliable, noninvasive diagnostic approach for differentiating between benign and metastatic retropharyngeal lymph nodes. KEY POINTS Non-Gaussian diffusion metrics outperformed conventional DWI. βCTRW was the best indicator for distinguishing benign from metastatic lymph nodes. Combining βCTRW with minimal axial diameter further improved diagnostic efficiency.
Collapse
Affiliation(s)
- Jun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Li Hua
- Department of Laboratory Medicine, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Fei Wang
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Ming Chen
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Yinan Sun
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Zhi Hu
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Luqing Shu
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Andong He
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China
| | - Mengxiao Liu
- MR Search & Marketing Department, Siemens Healthineers Co., Ltd., Shanghai, China
| | - Qing Yang
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China.
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Juan Zhu
- Department of Medical Imaging, Anqing Medical Center of Anhui Medical University, Anqing, China.
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Zhang Y, Wu Y, Ding B, Li Q, Chen X, Liu H, Xu M, Lan Y, Li Y. TNF-α inhibits Epstein Barr virus reactivation through the GPX4 mediated glutathione pathway. Sci Rep 2025; 15:16448. [PMID: 40355596 PMCID: PMC12069636 DOI: 10.1038/s41598-025-98679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Epstein-Barr virus (EBV) is a carcinogenic γ-herpesvirus that remains latent in more than 95% of adults. The virus can undergo lytic activation when immune function is suppressed or when stimulated by drugs or pathogens. EBV reactivation poses a significant threat to human health and is closely associated with various cancers, such as Burkitt's lymphoma and nasopharyngeal carcinoma. Inhibiting EBV reactivation is a current clinical challenge. Tumour necrosis factor-α (TNF-α), an important cytokine, has different effects on various viruses. It also exerts varying effects on the same virus depending on the type of infected cell. This study aimed to investigate the impact of TNF-α on EBV reactivation and its underlying mechanisms. Our experimental research revealed that TNF-α significantly inhibits EBV reactivation and that this inhibitory effect is mediated primarily through its receptor TNFR1. Furthermore, TNF-α affects the expression of the GPX4 protein and regulates the potential ferroptosis state of cells. Using transmission electron microscopy and other methods, we observed typical characteristics of ferroptosis, such as changes in mitochondrial morphology and Fe2 + accumulation. Additionally, we established stable GPX4-knockdown cell lines, which demonstrated the crucial role of GPX4 in the process of TNF-α-mediated inhibition of EBV reactivation. Overall, TNF-α acts on the TNFR1 receptor, thereby affecting the GPX4 protein and the ferroptosis pathway to achieve its inhibitory effect on EBV reactivation. These findings provide new insights into the mechanisms of EBV reactivation and may offer new perspectives for the early treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Youyu Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yilin Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Beining Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qian Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuenuo Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huiling Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingyan Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yinghua Lan
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Tarasco MC, Iacomino N, Mantegazza R, Cavalcante P. COVID-19, Epstein-Barr virus reactivation and autoimmunity: Casual or causal liaisons? JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00076-3. [PMID: 40175252 DOI: 10.1016/j.jmii.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus infection, has been associated with a substantial risk of autoimmune disease development or exacerbation. The postulated pathophysiological mechanisms linking COVID-19 with autoimmunity include reactivation of latent Epstein-Barr virus (EBV), whose dysregulated infection in the host can trigger or promote an autoimmune response. This review summarizes recent studies highlighting a potential immunopathogenetic link between SARS-CoV-2 infection and EBV reactivation, which could underlie autoimmunity onset or worsening, as well as immune-related long COVID manifestations in COVID-19 patients. We offer our perspective on the direction that research should take to disentangle the nature (whether causal or casual) of the "COVID-19-EBV-autoimmunity" liaisons. Further advances in this research area may be crucial for designing strategies to prevent or treat EBV reactivation-related autoimmune conditions in COVID-19 patients, or patients with inflammatory co-infectious diseases, at the same time promising to improve our knowledge on the viral contribution to autoimmune phenomena.
Collapse
Affiliation(s)
- Maria Cristina Tarasco
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Ph.D. Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Nicola Iacomino
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
6
|
Hassan STS. Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers. Molecules 2025; 30:1058. [PMID: 40076282 PMCID: PMC11902172 DOI: 10.3390/molecules30051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The Epstein-Barr virus (EBV), a member of the human gamma-herpesviruses, is intricately linked to various human malignancies. Current treatment options for EBV infection involve the use of acyclovir and its derivatives, which exhibit limited efficacy and are associated with drug resistance issues. Therefore, there is a critical need for new medications with more effective therapeutic actions and less susceptibility to resistance. This review explores the therapeutic promise of flavones and flavonols, naturally occurring molecules, against EBV and its correlated cancers. It thoroughly delves into the molecular mechanisms underlying the therapeutic efficacy of these compounds and scrutinizes their complex interplay in EBV-linked processes and cancer transformation by targeting key genes and proteins pivotal to both the viral life cycle and tumor development. Additionally, the review covers current research, highlights key findings, and discusses promising avenues for future investigations in the pursuit of targeted therapies against EBV and its related tumors.
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
7
|
Jiang J, Zhu X, Li S, Yan Q, Ma J. Building a Bridge Between the Mechanism of EBV Reactivation and the Treatment of EBV-Associated Cancers. J Med Virol 2025; 97:e70192. [PMID: 39868897 DOI: 10.1002/jmv.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Epstein-Barr virus (EBV) infection is closely associated with the development of various tumors such as lymphomas and epithelial cancers. EBV has a discrete life cycle with latency and lytic phases. In recent years, significant progress has been made in the understanding of the mechanism underlying the transition of EBV from latency to lytic replication. Multiple new lytic activation factors have been emerged and promoted our understanding of this field. In addition, we have comprehensively presented the existing therapeutic strategies and their relationship to the mechanism underlying the transition of EBV from latency to lytic replication in this review, such as lytic induction therapy and drugs to prevent EBV from entering the lytic phase fully utilize the EBV reactivation mechanisms. This year marks the 60th anniversary of the discovery of EBV, and building a bridge between the mechanism of EBV reactivation and the treatment may help us to design new approaches for treating EBV-associated diseases.
Collapse
Affiliation(s)
- Jialin Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Xinlei Zhu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Shukun Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
8
|
Athanassiou P, Athanassiou L, Kostoglou-Athanassiou I, Shoenfeld Y. Targeted Cellular Treatment of Systemic Lupus Erythematosus. Cells 2025; 14:210. [PMID: 39937001 PMCID: PMC11816398 DOI: 10.3390/cells14030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease affecting all organ systems. The disease preferentially affects females of childbearing age. It runs a variable course. It may run a mild course that may never lead to severe disease and manifestations from critical organ systems. However, it may also run an undulating course with periods of mild and severe disease. It may run as a mild disease, quickly deteriorating to severe disease and affecting multiple organ systems. Various immune pathways related both to the innate and adaptive immune response are involved in the pathogenesis of SLE. Various drugs have been developed targeting cellular and molecular targets in these pathways. Interferons are involved in the pathogenesis of SLE, and various drugs have been developed to target this pathway. T and B lymphocytes are involved in the pathophysiology of SLE. Various treatment modalities targeting cellular targets are available for the treatment of SLE. These include biologic agents targeting B lymphocytes. However, some patients have disease refractory to these treatment modalities. For these patients, cell-based therapies may be used. Hematopoietic stem cell transplantation involving autologous cells is an option in the treatment of refractory SLE. Mesenchymal stem cells are also applied in the treatment of SLE. Chimeric antigen receptor (CAR)-T cell therapy is a novel treatment also used in SLE management. This novel treatment method holds major promise for the management of autoimmune diseases and, in particular, SLE. Major hurdles to be overcome are the logistics involved, as well as the need for specialized facilities. This review focuses on novel treatment modalities in SLE targeting cellular and molecular targets in the immune system.
Collapse
Affiliation(s)
| | - Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, 16673 Athens, Greece;
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzliya 4610101, Israel;
| |
Collapse
|
9
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Tian Y, Dai J, Yang Y, Guo X, Wang W, Li F, Wang J, Liu R. Relationship between the risk of intestinal mucosal Epstein-Barr virus and/or cytomegalovirus infection and peripheral blood NK cells numbers in patients with ulcerative colitis: a cross-sectional study in Chinese population. Front Microbiol 2024; 15:1498483. [PMID: 39697654 PMCID: PMC11652489 DOI: 10.3389/fmicb.2024.1498483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Objective This study aimed to analyze the relationship between the risk of common opportunistic pathogens Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infection in intestinal mucosal tissues of Ulcerative Colitis (UC) patients and the number of peripheral blood NK cells. Methods UC patients admitted to a third-grade class-A hospital from January 2018 to December 2023 were selected as research population. Clinical data of the patients were collected from the electronic medical record system. Additionally, samples of intestinal mucosal tissues were obtained for real-time fluorescence quantitative PCR to detect and analyze the viral load of CMV and EBV. Blood samples were collected for lymphocyte subsets analysis. Multivariable logistic regression models analyses was used to determine the odds ratio (OR) and 95% confidence interval (95% CI) for the independent association between NK cells and EBV/CMV infections in UC. We further applied the restricted cubic spline analysis and smooth curve fitting to examine the non-linear relationship between them. Results 378 UC patients were enrolled. Of these patients, there were 194 patients (51.32%) with EBV /CMV infection. In multivariable logistic regression analyses NK cells was independently associated with EBV and/or CMV infection after adjusted potential confounders (OR 8.24, 95% CI 3.75-18.13, p < 0.001). A nonlinear relationship was found between NK cells and EBV/CMV infections, which had a threshold around 10.169. The effect sizes and CIs below and above the threshold were 0.535 (0.413-0.692), p < 0.001 and 1.034 (0.904-1.183), p > 0.05, respectively. Conclusion There was a non-linear relationship between NK cells and EBV/CMV infections. The risk for EBV/CMV infections was not increased with increasing NK cells in individuals with NK cells ≥ 10.169%, whereas the risk for EBV and/or CMV infection was increased with an decreasing NK cells in those with NK cells < 10.169%. The risk of EBV/CMV infections increases when NK cells were below a certain level.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Jinghua Dai
- School of Nursing, Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yunfeng Yang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Xiaofeng Guo
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Fengxia Li
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, National Clinical Research Center for Digestive Diseases, Shanxi Inflammatory Bowel Disease Center, Taiyuan, China
| | - Juzi Wang
- Nursing Department, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Ruiyun Liu
- Shanxi Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Yu M, Mi T, Lu J, Cui L, Xue Q, Xiong H, Li Y. Construction of rBCG carrying the IL-2-BZLF1 fusion gene and its immunological function. Appl Microbiol Biotechnol 2024; 108:19. [PMID: 38170315 DOI: 10.1007/s00253-023-12851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 01/05/2024]
Abstract
In this research, a recombinant Bacillus Calmette Guerin (rBCG) vector vaccine carrying a human IL-2 and EBV BZLF1 fusion gene (IL-2-BZLF1-rBCG) was constructed. The IL-2-BZLF1-rBCG construct was successfully generated and stably expressed the IL-2 and BZLF1 proteins. IL-2-BZLF1-rBCG activated the immune system and promoted the secretion of IFN-γ and TNF-α by CD4+ and CD8+ T cells. IL-2-BZLF1-rBCG activated lymphocytes to effectively kill EBV-positive NPC cells in vitro. Additionally, IL-2-BZLF1-rBCG stimulated the proliferation of NK cells and lymphocytes in vivo, activated related immune responses, and effectively treated EBV-positive NPC. The immune response to and pharmacological effect of IL-2-BZLF1-rBCG were explored in vitro and in vivo to provide a theoretical and experimental basis for the prevention and treatment of EBV-positive tumors with an rBCG vector vaccine. KEY POINTS: • rBCG with human IL-2 and BZLF1 of EB virus was constructed • The IL-2-BZLF1 fusion gene was stably expressed with rBCG • rBCG with IL-2-BZLF1 has an obvious immune response in vitro and in vivo.
Collapse
Affiliation(s)
- Meimei Yu
- School of Basic Medical, Jining Medical University, Jining, 272067, Shandong, China
- Laboratory Department, Qingdao Geriatric Hospital, Qingdao, 266002, Shandong, China
| | - Tian Mi
- School of Basic Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Jiaqi Lu
- School of Basic Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Lixian Cui
- School of Basic Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Qingjie Xue
- School of Basic Medical, Jining Medical University, Jining, 272067, Shandong, China.
| | - Huabao Xiong
- School of Basic Medical, Jining Medical University, Jining, 272067, Shandong, China.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Yinlong Li
- School of Public Health, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
12
|
Díez-Vidal A, Arroyo-Acosta C, Elvira-Lafuente C, Díaz-Pollán B, Grandioso-Vas D, Loeches B, Azores-Moreno J, Marcelo-Calvo C, Martínez-Martín P, González-García ME. Epstein-Barr Virus Infection Presenting With Acute Gastrointestinal Involvement. Report of Two Cases of Epstein-Barr Virus Colitis in Kidney-Transplant Recipients and Scoping Review of the Literature. J Med Virol 2024; 96:e70121. [PMID: 39688020 DOI: 10.1002/jmv.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Epstein-Barr virus (EBV) is a herpesvirus capable of establishing lifelong latent infections, leading to a wide spectrum of diseases. It can affect multiple organs, including the gastrointestinal tract, typically through lymphoproliferative syndromes or gastric cancer, while acute gastrointestinal disease is rare and poorly understood. Two cases of EBV-induced acute colitis in kidney transplant recipients were described. Additionally, a scoping review of the literature was conducted to identify all reported cases of EBV infection presenting with acute gastrointestinal involvement. A total of 11 174 articles from PubMed and Embase were analyzed, from which 30 articles were ultimately selected, encompassing 33 cases. Two distinct patient profiles emerged. Patients with gastric-limited disease were typically healthy women and exhibited a benign course, characterized by a more acute presentation and complete recovery in all cases. In contrast, patients with intestinal disease were often immunocompromised, presenting with deep colonic ulcers frequently associated with rectal bleeding, high rates of perforation, frequent need for surgical intervention, and significant mortality. Antiviral therapy and reduction of immunosuppression were commonly employed, although no specific treatment approach demonstrated a clear benefit in reducing mortality or complications. In conclusion, EBV-related gastrointestinal disease varies by patient immunocompetence and the site of involvement. Gastric-limited disease usually has a favorable prognosis, while intestinal involvement in immunocompromised patients is linked to severe complications and higher mortality. Individualized treatment strategies and vigilant long-term follow-up are needed due to the lack of standardized treatment protocols and the risk of relapse or development of EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Alejandro Díez-Vidal
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, Madrid, Spain
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | | | - Beatriz Díaz-Pollán
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, Madrid, Spain
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
- CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - David Grandioso-Vas
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Department of Microbiology, La Paz University Hospital, Madrid, Spain
| | - Belén Loeches
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, Madrid, Spain
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
- CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | | | - Cristina Marcelo-Calvo
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, Madrid, Spain
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
- CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Patricia Martínez-Martín
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, Madrid, Spain
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
- CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - María Elena González-García
- IdiPAZ Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Department of Nephrology, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
13
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch’ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. PLoS Pathog 2024; 20:e1012341. [PMID: 39446925 PMCID: PMC11563402 DOI: 10.1371/journal.ppat.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in three B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Lauren E. Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - James Ch’ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
15
|
Kang SH, Lee YH, Myong JP, Kwon M. The Impact of Infectious Mononucleosis History on the Risk of Developing Lymphoma and Nasopharyngeal Carcinoma: A Retrospective Large-Scale Cohort Study Using National Health Insurance Data in South Korea. Cancer Res Treat 2024; 56:1077-1083. [PMID: 38665055 PMCID: PMC11491254 DOI: 10.4143/crt.2023.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 10/16/2024] Open
Abstract
PURPOSE This study aimed to assess the long-term risks associated with a history of infectious mononucleosis (IM), primarily caused by the Epstein-Barr virus (EBV). Specifically analyzing the potential increase in developing nasopharyngeal cancer (NPC) and lymphoma in patients with a history of IM and exploring the prevalence of other EBV-associated conditions. MATERIALS AND METHODS The Korean National Health Insurance Service (NHIS) database was utilized for a retrospective analysis, covering data from 2002 to 2021. A total of 25,582 IM patients and controls were included, with 1:1 propensity score matching. The study monitored outcomes, including lymphoma, NPC, gastric cancer, multiple sclerosis, and all-cause mortality. RESULTS Patients with a history of IM demonstrated a significantly higher incidence of lymphoma (hazard ratio [HR], 5.320; 95% confidence interval [CI], 3.208 to 8.820; p < 0.001) and NPC (HR, 7.116; 95% CI, 1.617 to 31.314; p=0.009) during the follow-up period compared with the control group. Additionally, the IM group showed an increased rate of all-cause mortality (HR, 2.225; 95% CI, 1.858 to 2.663; p < 0.001). CONCLUSION This study suggests that individuals with a history of IM have an elevated risk of developing lymphoma and NPC in South Korea, emphasizing the importance of vigilant follow-up and monitoring. The results advocate for heightened awareness and potential national monitoring policies to address the long-term health implications of EBV infection and to implement preventive measures.
Collapse
Affiliation(s)
- So Hee Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun-Hee Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minsu Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Obraitis D, Li D. Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities. Curr Opin Virol 2024; 68-69:101437. [PMID: 39537445 PMCID: PMC11795702 DOI: 10.1016/j.coviro.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.
Collapse
Affiliation(s)
- Dominic Obraitis
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neuroscience and Behavior Program, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Dawei Li
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Mouat IC, Zhu L, Aslan A, McColl BW, Allan SM, Smith CJ, Buckwalter MS, McCulloch L. Evidence of aberrant anti-epstein-barr virus antibody response, though no viral reactivation, in people with post-stroke fatigue. J Inflamm (Lond) 2024; 21:30. [PMID: 39135051 PMCID: PMC11321160 DOI: 10.1186/s12950-024-00402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Fatigue is a common complication of stroke that has a significant impact on quality of life. The biological mechanisms that underly post-stroke fatigue are currently unclear, however, reactivation of latent viruses and their impact on systemic immune function have been increasingly reported in other conditions where fatigue is a predominant symptom. Epstein-Barr virus (EBV) in particular has been associated with fatigue, including in long-COVID and myalgic encephalomyelitis/chronic fatigue syndrome, but has not yet been explored within the context of stroke. AIMS We performed an exploratory analysis to determine if there is evidence of a relationship between EBV reactivation and post-stroke fatigue. METHODS In a chronic ischemic stroke cohort (> 5 months post-stroke), we assayed circulating EBV by qPCR and measured the titres of anti-EBV antibodies by ELISA in patients with high fatigue (FACIT-F < 40) and low fatigue (FACIT-F > 41). Statistical analysis between two-groups were performed by t-test when normally distributed according to the Shapiro-Wilk test, by Mann-Whitney test when the data was not normally distributed, and by Fisher's exact test for categorical data. RESULTS We observed a similar incidence of viral reactivation between people with low versus high levels of post-stroke fatigue (5 of 22 participants (24%) versus 6 of 22 participants (27%)). Although the amount of circulating EBV was similar, we observed an altered circulating anti-EBV antibody profile in participants with high fatigue, with reduced IgM against the Viral Capsid Antigen (2.244 ± 0.926 vs. 3.334 ± 2.68; P = 0.031). Total IgM levels were not different between groups indicating this effect was specific to anti-EBV antibodies (3.23 × 105 ± 4.44 × 104 high fatigue versus 4.60 × 105 ± 9.28 × 104 low fatigue; P = 0.288). CONCLUSIONS These data indicate that EBV is not more prone to reactivation during chronic stroke recovery in those with post-stroke fatigue. However, the dysregulated antibody response to EBV may be suggestive of viral reactivation at an earlier stage after stroke.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, Institute for Regeneration and Repair South, University of Edinburgh, Edinburgh, UK
| | - Li Zhu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - Alperen Aslan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Division of Neuroscience, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and Repair South, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
Lu M, Gao C, Zhang R, Yuan L, Chen X, Zhang B. Association of partial infections with the risk of psoriasis: A two-sample Mendelian randomization study. Skin Res Technol 2024; 30:e70002. [PMID: 39167023 PMCID: PMC11337910 DOI: 10.1111/srt.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND As a common chronic recurrent inflammatory skin disease, psoriasis is characterized by erythema and scaly skin lesions, with infection as an integral part of the pathogenesis of many diseases. Many previous cases reported the impact of psoriasis on infection. However, the existing research fails to completely clarify the infection factors associated with the potential of these diseases and causality. MATERIALS AND METHODS Thirteen kinds of pathogens and their immune responses and psoriasis in the phenotype of 46 species of SNPs data were respectively obtained from the GWAS catalog database and the UK biobank database. With the help of R software, three methods of inverse variance weighted (IVW), weighted median (WME), and MR-Egger regression were used to analyze the causality of the dataset. RESULTS According to the results of IVW analysis, there is a causal relationship between anti-Epstein Barr virus antibody and psoriasis (OR: 1.003, 95% CI: 1.001∼1.006, P = 0.046) with a positive correlation. CONCLUSION Based on the results of MR analysis, there is a causal relationship between psoriasis and EBV infection, which indicates that EBV infection can increase the risk or severity of psoriasis. Therefore, in clinical scenarios, patients afflicted with psoriasis should be prevented from contracting the infection and recurrence of EBV as well as symptoms of psoriasis. The underlying immunological mechanism also provides a new perspective for experimental research.
Collapse
Affiliation(s)
- Minghui Lu
- Dongzhimen Hospital, Beijing University of Traditional Chinese MedicineBeijingChina
| | - Changyong Gao
- Dongzhimen Hospital, Beijing University of Traditional Chinese MedicineBeijingChina
| | - Runtian Zhang
- Dongzhimen Hospital, Beijing University of Traditional Chinese MedicineBeijingChina
| | - Lingling Yuan
- Dongzhimen Hospital, Beijing University of Traditional Chinese MedicineBeijingChina
| | - Xi Chen
- Tongzhou BranchDongzhimen Hospital, Beijing University of Chinese MedicineBeijingChina
| | - Boping Zhang
- Dongzhimen Hospital, Beijing University of Traditional Chinese MedicineBeijingChina
| |
Collapse
|
19
|
Tologkos S, Papadatou V, Lampropoulou V, Pagonopoulou O, Alexiadi CA, Alexiadis T, Trypsianis G, Meditskou S, Lambropoulou M. Viral Deregulation of Apoptotic Pathways and Its Correlation With Adverse Pregnancy Outcomes. Cureus 2024; 16:e68095. [PMID: 39347169 PMCID: PMC11437592 DOI: 10.7759/cureus.68095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE Our objective was to correlate parvovirus-B19 and Epstein-Barr virus (EBV) infections with apoptotic biomarker levels in tissues from placentas from spontaneous abortions and cases of elective termination of pregnancy. We also explored if viral presence could cause spontaneous abortions by trying to associate the levels of pro-apoptotic markers with adverse pregnancy outcomes. MATERIALS AND METHODS We used 194 placental samples, of which 152 came from spontaneous abortions and were the study group and 42 controls came from cases of elective pregnancy termination. Hematoxylin and eosin (H&E) staining was performed to investigate morphological changes in the tissues, and then indirect immunohistochemistry to evaluate the expression of B19, EBV, M30, terminal deoxynucleotidyl transferase assay (TUNEL), and nuclear factor kappa B (NF-kB). Statistical analysis was performed using SPSS v. 19.0 (IBM). RESULTS Higher levels of apoptosis were observed in the spontaneous abortion group (p<0.001) with statistical significance and their presence was also correlated with statistical significance with viral infection (p<0.001). Also, viral infections were observed only in cases of spontaneous abortion. When simple and multivariate logistic regression was performed we confirmed that viral presence remained an independent prognostic factor for high expression of all apoptotic biomarkers with statistical significance (p<0.001). CONCLUSIONS Our results indicate that viral presence can lead to deregulation of apoptotic pathways within the maternal-fetal environment and thus work as a trigger event for spontaneous abortions.
Collapse
Affiliation(s)
- Stylianos Tologkos
- Histology-Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| | - Vasiliki Papadatou
- Histology-Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| | | | - Olga Pagonopoulou
- Department of Physiology, Democritus University of Thrace, Alexandroupolis, GRC
| | - Christina Angelika Alexiadi
- Laboratory of Histology-Embryology, School of Medicine, Democritus University of Thrace, Alexandroupolis, GRC
| | - Triantafyllos Alexiadis
- Laboratory of Histology-Embryology, School of Medicine, Democritus University of Thrace, Alexandroupolis, GRC
| | - Gregory Trypsianis
- Biostatistics, School of Medicine, Democritus University of Thrace, Alexandroupolis, GRC
| | - Soultana Meditskou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Maria Lambropoulou
- Histology-Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| |
Collapse
|
20
|
Mao S, Wu L. Coinfection of viruses in children with community-acquired pneumonia. BMC Pediatr 2024; 24:457. [PMID: 39014398 PMCID: PMC11250944 DOI: 10.1186/s12887-024-04939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Virus, particularly respiratory tract virus infection is likely to co-occur in children with community-acquired pneumonia (CAP). Study focusing on the association between common viruses coinfection and children with CAP is rare. We aimed to study the association between seven common viruses coinfection and clinical/laboratory indexes in children with CAP. METHODS Six hundred and eighty-four CAP cases from our hospital were enrolled retrospectively. Seven common viruses, including influenza A (FluA), influenza B (FluB), human parainfluenza virus (HPIV), Esptein-Barr virus (EBV), coxsackie virus (CoxsV), cytomegalovirus (CMV), and herpes simplex virus (HSV) were investigated for their associations with CAP. We analyzed the differences of hospitalization days, white blood cell (WBC), c-reactive protein (CRP), platelet (PLT), erythrocyte sedimentation rate (ESR), procalcitonin (PCT), urine red blood cell (uRBC), blood urea nitrogen (BUN), serum creatinine (Scr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase isoenzyme (CKMB) among different viruses coinfection groups by using one-way ANOVA analysis. The differences of clinical/laboratory indexes between ordinary and severe pneumonia groups, as well as non-virus vs multi co-infection viruses groups, and single vs multi co-infection viruses groups by using independent samples T test. Receiver operating characteristic (ROC) curve analyses were applied to test the the predictive value of the clinical/laboratory parameters for the risk of viruses coinfections among CAP. Binary logistic analysis was performed to test the association between various indexes and viruses co-infection. RESULTS Eighty-four multiple viruses coinfections yielded different prognosis compared with that in 220 single virus coinfection. CMV coinfection was associated with longest hospitalization days, highest ALT, AST and CKMB level. HSV coinfection was associated with highest WBC count, CRP, ESR, and BUN. EBV coinfection was associated with highest PLT and PCT level. FluB coinfection was associated with highest Scr level. CoxsV coinfection was associated with highest uRBC, LDH and CK level. ROC curve analyses showed that CK had the largest area under the curve (AUC: 0.672, p < 10-4) for the risk of viruses coinfections risk in CAP. Significant association between PLT, uRBC, BUN, CK, and CKMB and virus coinfection risk in CAP was observed. CONCLUSIONS Multiple viruses coinfections indicated different prognosis. Different viruses coinfection yielded varying degrees of effects on the cardiac, liver, kidney and inflamatory injury in CAP. The alterations of clinical/laboratory parameters, particularly CK may be associated with the risk of viruses coinfections in CAP.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liangxia Wu
- Department of Pediatrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem Pharmacol 2024; 225:116270. [PMID: 38734316 DOI: 10.1016/j.bcp.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.
Collapse
Affiliation(s)
- Martyna Pociupany
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch’ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598975. [PMID: 38915538 PMCID: PMC11195279 DOI: 10.1101/2024.06.14.598975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in two B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Lauren E. Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James Ch’ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| |
Collapse
|
23
|
Pereira LMS, dos Santos França E, Costa IB, Lima IT, Jorge EVO, de Souza Mendonça Mattos PJ, Freire ABC, de Paula Ramos FL, Monteiro TAF, Macedo O, Sousa RCM, Freitas FB, Costa IB, Vallinoto ACR. DRB1 locus alleles of HLA class II are associated with modulation of the immune response in different serological profiles of HIV-1/Epstein-Barr virus coinfection in the Brazilian Amazon region. Front Med (Lausanne) 2024; 11:1408290. [PMID: 38933108 PMCID: PMC11199549 DOI: 10.3389/fmed.2024.1408290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Background Epstein-Barr virus (EBV) infection involves distinct clinical and serological profiles. We evaluated the frequency of alleles of locus DRB1 of HLA class II in different serological profiles of EBV infection among HIV-1 infected patients. Methods We recruited 19 patients with primary infection, 90 with serological transition and 467 with past infection by EBV, HIV-1 co-infection was 100% in primary infection and approximately 70% in other serological profiles. EBV viral load was quantified by real-time PCR, T lymphocyte quantification and cytokine level analysis were performed by flow cytometry, and HLA locus genotyping was performed by PCR-SSO. Results The DRB1*09 allele was associated with primary infection (p: 0.0477), and carriers of the allele showed changes in EBV viral load (p: 0.0485), CD8(+) T lymphocyte counts (p: 0.0206), double-positive T lymphocyte counts (p: 0.0093), IL-4 levels (p: 0.0464) and TNF levels (p: 0.0161). This allele was also frequent in HIV-coinfected individuals (p: 0.0023) and was related to the log10 HIV viral load (p: 0.0176) and CD8(+) T lymphocyte count (p: 0.0285). In primary infection, the log10 HIV viral load was high (p: 0.0060) and directly proportional to the EBV viral load (p: 0.0412). The DRB1*03 allele correlated with serological transition (p: 0.0477), EBV viral load (p: 0.0015), CD4(+) T lymphocyte count (p: 0.0112), CD8(+) T lymphocyte count (p: 0.0260), double-negative T lymphocyte count (p: 0.0540), IL-4 levels (p: 0.0478) and IL-6 levels (p: 0.0175). In the serological transition group, the log10 HIV viral load was high (p: 0.0060), but it was not associated with the EBV viral load (p: 0.1214). Past infection was related to the DRB1*16 allele (p: 0.0477), with carriers displaying IgG levels (p: 0.0020), CD4(+) T lymphocyte counts (p: 0.0116) and suggestive CD8(+) T count alterations (p: 0.0602). The DRB01*16 allele was also common in HIV-1 patients with past EBV infection (p: 0.0192); however, the allele was not associated with clinical markers of HIV-1 infection. Conclusion Our results suggest that HLA class II alleles may be associated with the modulation of the serological profiles of the immune response to Epstein-Barr virus infection in patients coinfected with HIV-1.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Eliane dos Santos França
- Virology Unit, Epstein-Barr Virus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | - Iran Barros Costa
- Virology Unit, Epstein-Barr Virus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | - Igor Tenório Lima
- Virology Unit, Epstein-Barr Virus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Olinda Macedo
- Virology Unit, Retrovirus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rita Catarina Medeiros Sousa
- Virology Unit, Epstein-Barr Virus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
- School of Medicine, Federal University of Pará, Belém, Brazil
| | - Felipe Bonfim Freitas
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Virology Unit, Retrovirus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
| | - Igor Brasil Costa
- Virology Unit, Epstein-Barr Virus Laboratory, Evandro Chagas Institute, Ananindeua, Brazil
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
24
|
Nay S, Möhn N, Grote-Levi L, Bonifacius A, Saßmann ML, Karacondi K, Tischer-Zimmermann S, Pöter H, Mahmoudi N, Wattjes MP, Maecker-Kolhoff B, Höglinger G, Eiz-Vesper B, Skripuletz T. Combined treatment with allogeneic Epstein-Barr- and human polyomavirus 1 specific T-cells in progressive multifocal leukoencephalopathy and EBV infection: a case report. Ther Adv Neurol Disord 2024; 17:17562864241253917. [PMID: 38813521 PMCID: PMC11135084 DOI: 10.1177/17562864241253917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Opportunistic viral infections in individuals with severe immunodeficiency can lead to fatal conditions such as progressive multifocal leukoencephalopathy (PML), for which treatment options are limited. These infections pose significant risks, especially when co-infections with other viruses occur. We describe a combined therapy approach using directly isolated allogeneic Human Polyomavirus 1 (also known as BKV) and Epstein-Barr virus (EBV) specific cytotoxic T-cells for the treatment of PML in conjunction with identified EBV in the cerebrospinal fluid (CSF) of a male patient infected with human immunodeficiency virus (HIV). A 53-year-old HIV-positive male, recently diagnosed with PML, presented with rapidly worsening symptoms, including ataxia, tetraparesis, dysarthria, and dysphagia, leading to respiratory failure. The patient developed PML even after commencing highly active antiretroviral therapy (HAART) 3 months prior. Brain magnetic resonance imaging (MRI) revealed multifocal demyelination lesions involving the posterior fossa and right thalamus suggestive of PML. In addition to the detection of human polyomavirus 2 (also known as JCV), analysis of CSF showed positive results for EBV deoxyribonucleic acid (DNA). His neurological condition markedly deteriorated over the following 2 months. Based on MRI, there was no evidence of Immune Reconstitution Inflammatory Syndrome contributing to this decline. The patient did not have endogenous virus-specific T-cells. We initiated an allogeneic, partially human leukocyte antigen-matched transfer of EBV and utilizing the cross-reactivity between BKV and JCV-BKV specific T-cells. This intervention led to notable neurological improvement and partial resolution of the MRI lesions within 6 weeks. Our case of a patient with acquired immune deficiency syndrome demonstrates that PML and concurrent EBV co-infection can still occur despite undergoing HAART treatment. This innovative experimental therapy, involving a combination of virus-specific T-cells, was demonstrated to be an effective treatment option in this patient.
Collapse
Affiliation(s)
- Sandra Nay
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Mieke L. Saßmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Kevin Karacondi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Henning Pöter
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Department of Neuroradiology, Charité Berlin, Corporate Member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mike P. Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Department of Neuroradiology, Charité Berlin, Corporate Member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
25
|
Baumeier C, Harms D, Altmann B, Aleshcheva G, Wiegleb G, Bock T, Escher F, Schultheiss HP. Epstein-Barr Virus Lytic Transcripts Correlate with the Degree of Myocardial Inflammation in Heart Failure Patients. Int J Mol Sci 2024; 25:5845. [PMID: 38892033 PMCID: PMC11172318 DOI: 10.3390/ijms25115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The Epstein-Barr virus (EBV) is frequently found in endomyocardial biopsies (EMBs) from patients with heart failure, but the detection of EBV-specific DNA has not been associated with progressive hemodynamic deterioration. In this paper, we investigate the use of targeted next-generation sequencing (NGS) to detect EBV transcripts and their correlation with myocardial inflammation in EBV-positive patients with heart failure with reduced ejection fraction (HFrEF). Forty-four HFrEF patients with positive EBV DNA detection and varying degrees of myocardial inflammation were selected. EBV-specific transcripts from EMBs were enriched using a custom hybridization capture-based workflow and, subsequently, sequenced by NGS. The short-read sequencing revealed the presence of EBV-specific transcripts in 17 patients, of which 11 had only latent EBV genes and 6 presented with lytic transcription. The immunohistochemical staining for CD3+ T lymphocytes showed a significant increase in the degree of myocardial inflammation in the presence of EBV lytic transcripts, suggesting a possible influence on the clinical course. These results imply the important role of EBV lytic transcripts in the pathogenesis of inflammatory heart disease and emphasize the applicability of targeted NGS in EMB diagnostics as a basis for specific treatment.
Collapse
Affiliation(s)
- Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany
| | - Dominik Harms
- Robert Koch Institute, Unit 15: Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany
| | - Britta Altmann
- Robert Koch Institute, Unit 15: Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany
| | - Gordon Wiegleb
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany
| | - Thomas Bock
- Robert Koch Institute, Unit 15: Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany
| | - Felicitas Escher
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12200 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | | |
Collapse
|
26
|
Witte H, Künstner A, Gebauer N. Update: The molecular spectrum of virus-associated high-grade B-cell non-Hodgkin lymphomas. Blood Rev 2024; 65:101172. [PMID: 38267313 DOI: 10.1016/j.blre.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The vast spectrum of aggressive B-cell non-Hodgkin neoplasms (B-NHL) encompasses several infrequent entities occurring in association with viral infections, posing diagnostic challenges for practitioners. In the emerging era of precision oncology, the molecular characterization of malignancies has acquired paramount significance. The pathophysiological comprehension of specific entities and the identification of targeted therapeutic options have seen rapid development. However, owing to their rarity, not all entities have undergone exhaustive molecular characterization. Considerable heterogeneity exists in the extant body of work, both in terms of employed methodologies and the scale of cases studied. Presently, therapeutic strategies are predominantly derived from observations in diffuse large B-cell lymphoma (DLBCL), the most prevalent subset of aggressive B-NHL. Ongoing investigations into the molecular profiles of these uncommon virus-associated entities are progressively facilitating a clearer distinction from DLBCL, ultimately paving the way towards individualized therapeutic approaches. This review consolidates the current molecular insights into aggressive and virus-associated B-NHL, taking into consideration the recently updated 5th edition of the WHO classification of hematolymphoid tumors (WHO-5HAEM) and the International Consensus Classification (ICC). Additionally, potential therapeutically targetable susceptibilities are highlighted, offering a comprehensive overview of the present scientific landscape in the field.
Collapse
Affiliation(s)
- H Witte
- Department of Hematology and Oncology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - A Künstner
- University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany; Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - N Gebauer
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
27
|
Chávez EE, Arce JCD, Perea EDB, Pedraza AG, Ávila AIJ, Quezada DEA, Suárez PDG. Primary central nervous system lymphoma: A mirror type presentation in an immunocompetent patient. Surg Neurol Int 2024; 15:143. [PMID: 38741983 PMCID: PMC11090529 DOI: 10.25259/sni_65_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Background Primary central nervous system (CNS) lymphoma is a very rare extranodal non-Hodgkin lymphoma. The bilateral pattern, as we call it "mirror type", has been identified in other CNS lesions such as gliomas, metastases, and demyelinating lesions, so the differential diagnosis includes imaging studies such as magnetic resonance imaging contrasted with spectroscopy, ruling out immunodeficiency or metastatic disease. Case Description A 65-year-old female presented progressing headache, loss of memory and language alterations, as well as sensory alterations. Neuroimaging showed the presence of two equidistant periventricular lesions at the level of both ventricular atria, a spectroscopy study suggestive of malignancy. Serological studies showed no evidence of immunodeficiency or the presence of positive tumor markers; however, a biopsy was performed, which revealed a histopathological result of primary lymphoma of the CNS. Conclusion In neuro-oncology, primary CNS tumors with multiple lesions are rare, even more, the "mirror type" lesions. Lymphomas are lesions that can present in different ways on imaging and clinical presentation. These tumors that present a vector effect due to their size, perilesional edema, or that lead to loss of neurological function are highly discussed in diagnostic and surgical treatment. Due to their prognosis, action on diagnosis and treatment must be taken as quickly as hospital resources allow.
Collapse
Affiliation(s)
- Elizabeth Escamilla Chávez
- Department of Neurosurgery, Arturo Montiel Rojas Medical Center, Instituto de Seguridad Social del Estado de México y Municipios, Metepec, Mexico
| | - Julio César Delgado Arce
- Department of Neurosurgery, Arturo Montiel Rojas Medical Center, Instituto de Seguridad Social del Estado de México y Municipios, Metepec, Mexico
| | - Edinson David Berrio Perea
- Department of Neurosurgery, Arturo Montiel Rojas Medical Center, Instituto de Seguridad Social del Estado de México y Municipios, Metepec, Mexico
| | - Abraham Gallegos Pedraza
- Department of Neurosurgery, Arturo Montiel Rojas Medical Center, Instituto de Seguridad Social del Estado de México y Municipios, Metepec, Mexico
| | - Ana Itiel Jimenez Ávila
- Department of Neurosurgery, Arturo Montiel Rojas Medical Center, Instituto de Seguridad Social del Estado de México y Municipios, Metepec, Mexico
| | | | - Pablo David Guerrero Suárez
- Department of Neurosurgery, Arturo Montiel Rojas Medical Center, Instituto de Seguridad Social del Estado de México y Municipios, Metepec, Mexico
| |
Collapse
|
28
|
Keski-Säntti N, Waltimo E, Mäkitie A, Hagström J, Söderlund-Venermo M, Atula T, Haglund C, Sinkkonen ST, Jauhiainen M. Viral DNA in submandibular gland tissue with an inflammatory disorder. J Oral Microbiol 2024; 16:2345941. [PMID: 38711909 PMCID: PMC11073405 DOI: 10.1080/20002297.2024.2345941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Background The etiology behind different types of chronic sialadenitis (CS), some of which exhibit IgG4 overexpression, is unknown. Further, IgG4-related disease (IgG4-RD) commonly affects the submandibular gland, but its relationship to IgG4-overexpressing CS, and the antigen triggering IgG4 overexpression, remain unknown. Materials and Methods By qPCR, we assessed the presence of 21 DNA-viruses causing IgG4 overexpression in submandibular gland tissue from patients with IgG4-positive and IgG4-negative CS. Healthy submandibular glands and glands with sialolithiasis without CS were used as controls. We examined the distribution of HHV-7, HHV-6B and B19V DNA, within virus PCR-positive tissues with RNAscope in-situ hybridization (RISH). Results We detected DNA from seven viruses in 48/61 samples. EBV DNA was more prevalent within the IgG4-positive samples (6/29; 21%) than the IgG4-negative ones (1/19; 5.3%). B19V DNA was more prevalent within the IgG4-negative samples (5/19; 26%) than the IgG4-positive ones (4/29; 14%). The differences in virus prevalence were not statistically significant. Of the IgG4-RD samples (n = 3) one contained HHV-6B DNA. RISH only showed signals of HHV-7. Conclusions None of the studied viruses are implicated as triggering IgG4-overexpression in CS. Although our results do not confirm viral etiology in the examined conditions, they provide valuable information on the prevalence of viruses in both diseased and healthy submandibular gland tissue.
Collapse
Affiliation(s)
- Noora Keski-Säntti
- Department of Virology, University of Helsinki, Helsinki, Finland
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- The Doctoral Programme in Clinical Research, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elin Waltimo
- The Doctoral Programme in Clinical Research, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and radiology, University of Turku, Turku, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | | | - Timo Atula
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saku T. Sinkkonen
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Jauhiainen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- The Doctoral Programme in Clinical Research, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
30
|
Xu Y, Chen Y, Yang Q, Lu Y, Zhou R, Liu H, Tu Y, Shao L. Novel plasma microRNA expression features in diagnostic use for Epstein-Barr virus-associated febrile diseases. Heliyon 2024; 10:e26810. [PMID: 38444478 PMCID: PMC10912469 DOI: 10.1016/j.heliyon.2024.e26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Background Epstein-Barr virus (EBV) is widely infected in humans and causes various diseases. Among them, microRNAs of EBV play a key role in the progression of EBV-associated febrile diseases. There're few specific indicators for rapid differential diagnosis of various febrile diseases associated with EBV, and the lack of more reliable screening methods with high diagnostic utility has led to spaces for improvement in the accurate diagnosis and efficient treatment of relevant patients, making EBV infection a complicated clinical problem. With recent advances in plasma microRNA testing, the apparent presence of EBV microRNAs in plasma can help screen for EBV infection. The gene networks targeted by these microRNAs can also indicate potential biomarkers of EBV-associated febrile diseases. This study aimed to identify some novel miRNAs as potential biomarkers for early diagnosis of respectively EBV-associated febrile diseases. Materials and methods A total of 110 participants were recruited for this task. First, we performed high-throughput sequencing and preliminary PCR validation of differentially expressed miRNAs in 15 participants with EBV-associated fever (divided into common EBV carriers), infectious mononucleosis (IM) and chronic active EBV infection (CAEBV), EBV-associated Hemophagocytic Lymphohistiocytosis group (EBV-HLH), and 3 healthy individuals. After a comprehensive analysis, 10 miRNAs with abnormal expression were screened, and then qRT-PCR was performed in the rest of 95 participants to detect the validation of miRNAs expression in plasma samples. Thereafter, we further investigated their potential for clinical application in EBV-related febrile diseases by using a combination of Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Protein-protein interaction network analysis. Results Through identification and detailed analysis of the obtained data, we found significant differences in the expression of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in blood samples from patients with different EBV-related febrile diseases. We found that the expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in plasma are indicative of determining different disease types of EBV-related febrile diseases, while EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets. Conclusion The expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p suggest that they may be used as transcriptional features for early differential diagnosis of EBV-related febrile diseases, and EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets.
Collapse
Affiliation(s)
- YiFei Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Ying Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Qingluan Yang
- Department of Infectious Diseases, National Medical Center for InfectiousDiseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety EmergencyResponse, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yuxiang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Rui Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Haohua Liu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Yanjie Tu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, National Medical Center for InfectiousDiseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety EmergencyResponse, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
31
|
Chen CJ. Epstein-Barr virus reactivation and disease flare of systemic lupus erythematosus. Taiwan J Obstet Gynecol 2024; 63:161-164. [PMID: 38485308 DOI: 10.1016/j.tjog.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 03/19/2024] Open
Abstract
SLE affects females rather than males with a ratio of about 9:1. Owing to the high morbidity with multiple organ involvement, SLE flare-up remains a challenge for women's health. In an accumulation of the past 70 years of studies globally, EBV has been found to be strongly associated with SLE. In the past two decades, EBV reactivation has been proven as prevalent in SLE patients as well as being strongly associated with higher SLE activity and higher prevalence of SLE flare. Hence, strategies to control EBV reactivation in SLE including pharmacological (such as Tenofovir prodrugs TDF and TAF) and non-pharmacological approaches are being developed. The heterogeneity of SLE constitutes clinical challenges, suggesting a stratification of SLE into subgroups based on EBV reactivation or non-reactivation is reasonable. Future-wise, adding anti-EBV reactivation medication to current immunosuppressants for the subgroup of SLE patients with EBV reactivation could be beneficial to achieve long-term remission of SLE.
Collapse
Affiliation(s)
- Chung-Jen Chen
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Malik S, Biswas J, Sarkar P, Nag S, Gain C, Ghosh Roy S, Bhattacharya B, Ghosh D, Saha A. Differential carbonic anhydrase activities control EBV-induced B-cell transformation and lytic cycle reactivation. PLoS Pathog 2024; 20:e1011998. [PMID: 38530845 PMCID: PMC10997083 DOI: 10.1371/journal.ppat.1011998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Samaresh Malik
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Joyanta Biswas
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Subhadeep Nag
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Chandrima Gain
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Shatadru Ghosh Roy
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Bireswar Bhattacharya
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Abhik Saha
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
33
|
Jia X, Zhou J, Xiao F, Huang X, He W, Hu W, Kong Y, Yan W, Ji J, Qi Y, Wang Y, Tai J. Multiple cross displacement amplification combined with nanoparticle-based lateral flow biosensor for rapid and sensitive detection of Epstein-Barr virus. Front Cell Infect Microbiol 2024; 13:1321394. [PMID: 38259964 PMCID: PMC10800922 DOI: 10.3389/fcimb.2023.1321394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) is a highly dangerous virus that is globally prevalent and closely linked to the development of nasopharyngeal cancer (NPC). Plasma EBV DNA analysis is an effective strategy for early detection, prognostication and monitoring of treatment response of NPC. Methods Here, we present a novel molecular diagnostic technique termed EBV-MCDA-LFB, which integrates multiple cross displacement amplification (MCDA) with nanoparticle-based lateral flow (LFB) to enable simple, rapid and specific detection of EBV. In the EBV-MCDA-LFB system, a set of 10 primers was designed for rapidly amplifying the highly conserved tandem repeat BamHI-W region of the EBV genome. Subsequently, the LFB facilitate direct assay reading, eliminating the use of extra instruments and reagents. Results The outcomes showed that the 65°C within 40 minutes was the optimal reaction setting for the EBV-MCDA system. The sensitivity of EBV-MCDA-LFB assay reached 7 copies per reaction when using EBV recombinant plasmid, and it showed 100% specificity without any cross-reactivity with other pathogens. The feasibility of the EBV-MCDA-LFB method for EBV detection was successfully validated by 49 clinical plasma samples. The complete detection process, consisting of rapid template extraction (15 minutes), MCDA reaction (65°C for 40 minutes), and LFB result reading (2 minutes), can be finalized within a 60-minutes duration. Discussion EBV-MCDA-LFB assay designed here is a fast, extremely sensitive and specific technique for detecting EBV in field and at the point-of-care (PoC), which is especially beneficial for countries and regions with a high prevalence of the disease and limited economic resources.
Collapse
Affiliation(s)
- Xinbei Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Wenqiang He
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Wen Hu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yaru Kong
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiheng Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Ji
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Children′s Hospital, Capital Medical University, National Center for Children′s Health, Beijing, China
| | - Yuwei Qi
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
35
|
Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, Tu YJ. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med 2024; 24:2-13. [PMID: 36411555 PMCID: PMC10825793 DOI: 10.2174/1566524023666221118122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.
Collapse
Affiliation(s)
- Wei-ting Wang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yun Yang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yang Zhang
- Information Center of Science and Technology, Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-ning Le
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai (200433), China
| | - Yu-lin Wu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-yi Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai (200032), China
| | - Yan-jie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| |
Collapse
|
36
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
37
|
Xu Y, Li T, Shen A, Bao X, Lin J, Guo L, Meng Q, Ruan D, Zhang Q, Zuo Z, Zeng Z. FTO up-regulation induced by MYC suppresses tumour progression in Epstein-Barr virus-associated gastric cancer. Clin Transl Med 2023; 13:e1505. [PMID: 38082402 PMCID: PMC10713874 DOI: 10.1002/ctm2.1505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Epstein-Barr virus-associated gastric cancer (EBVaGC) is regarded as a distinct molecular subtype of GC, accounting for approximately 9% of all GC cases. Clinically, EBVaGC patients are found to have a significantly lower frequency of lymph node metastasis and better prognosis than uninfected individuals. RNA N6-methyladenosine (m6A) modification has an indispensable role in modulating tumour progression in various cancer types. However, its impact on EBVaGC remains unclear. METHODS Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and m6A dot blot were conducted to compare the m6A modification levels between EBVaGC and EBV-negative GC (EBVnGC) cells. Western blot, real-time quantitative PCR (RT-qPCR) and immunohistochemistry were applied to explore the underlying mechanism of the reduced m6A modification in EBVaGC. The biological function of fat mass and obesity-associated protein (FTO) was determined in vivo and in vitro. The target genes of FTO were screened by MeRIP-seq, RT-qPCR and Western blot. The m6A binding proteins of target genes were verified by RNA pulldown and RNA immunoprecipitation assays. Chromatin immunoprecipitation and Luciferase report assays were performed to investigate the mechanism how EBV up-regulated FTO expression. RESULTS M6A demethylase FTO was notably increased in EBVaGC, leading to a reduction in m6A modification, and higher FTO expression was associated with better clinical outcomes. Furthermore, FTO depressed EBVaGC cell metastasis and aggressiveness by reducing the expression of target gene AP-1 transcription factor subunit (FOS). Methylated FOS mRNA was specifically recognized by the m6A 'reader' insulin-like growth factor 2 mRNA binding protein 1/2 (IGF2BP1/2), which enhanced its transcripts stability. Moreover, MYC activated by EBV in EBVaGC elevated FTO expression by binding to a specific region of the FTO promoter. CONCLUSIONS Mechanistically, our work uncovered a crucial suppressive role of FTO in EBVaGC metastasis and invasiveness via an m6A-FOS-IGF2BP1/2-dependent manner, suggesting a promising biomarker panel for GC metastatic prediction and therapy.
Collapse
Affiliation(s)
- Yun‐Yun Xu
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Ting Li
- Department of Gastroenterology and UrologyHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaP. R. China
| | - Ao Shen
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Xiao‐Qiong Bao
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Jin‐Fei Lin
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Li‐Zhen Guo
- Department of Traditional Chinese MedicineYuebei People's HospitalShaoguanP. R. China
| | - Qi Meng
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Dan‐Yun Ruan
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Qi‐Hua Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Zhi‐Xiang Zuo
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| | - Zhao‐lei Zeng
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouP. R. China
| |
Collapse
|
38
|
Yao S, He L, Zhang R, Liu M, Hua Z, Zou H, Wang Z, Wang Y. Improved hemophagocytic lymphohistiocytosis index predicts prognosis of adult Epstein-Barr virus-associated HLH patients. Ann Med 2023; 55:89-100. [PMID: 36533966 PMCID: PMC9766494 DOI: 10.1080/07853890.2022.2149850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a common subtype of HLH with heterogeneous clinical presentations from self-limited to death, of which adults are worse than children. OBJECTIVE To establish predictors of mortality risk in adult EBV-HLH patients for timely and appropriate treatment. METHODS Patients with confirmed EBV-HLH admitted to Beijing Friendship Hospital from January 2015 to December 2019 were enrolled and statistical analysis of their laboratory test results was performed. RESULTS Among 246 adult patients with EBV-HLH, the deceased were older (p < 0.05), with fewer blood cells (p < 0.05), poorer renal function (p < 0.01), higher levels of procalcitonin (PCT) (p < 0.01), as well as soluble interleukin-2 receptor (sCD25) (p < 0.01). The overall median survival time of patients was 135 days, 87 days for patients without transplantation and 294 days with transplantation (p < 0.001). A combined index of sCD25, PCT, and estimated glomerular filtration rate (eGFR) was obtained to predict prognosis, named the Improved HLH index (IH index), and patients were divided into three groups meeting IH- (i.e. sCD25 ≤ 18,000 pg/mL, PCT ≤ 1.8 ng/mL, eGFR ≥ 90 mL/min/1.73m2), IH1+ (i.e. only sCD25 > 18,000 pg/mL or only eGFR < 90 mL/min/1.73m2), and IH2+ (i.e. the rest), respectively. In patients with the HScore ≥ 169 or meeting HLH-04, those meeting IH2+ had significantly worse prognoses than those who met IH1+ or IH- (p < 0.001). In the group meeting IH + or IH2+, patients who received allo-HSCT had better prognoses than those who did not (p < 0.05), but there was still a significant difference in prognosis among the three groups in transplanted patients (p < 0.001). CONCLUSION The IH index can early identify adult patients with a poor prognosis of EBV-HLH, initiating timely and appropriate treatment.KEY MESSAGESA combined index of sCD25, PCT, and eGFR was obtained to predict prognosis, named the Improved Hemophagocytic Lymphohistiocytosis index (IH index).IH index can early identify adult patients with a poor prognosis of EBV-HLH, initiating timely and appropriate treatment.
Collapse
Affiliation(s)
- Shuyan Yao
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingbo He
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruoxi Zhang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Menghan Liu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengjie Hua
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heshan Zou
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yini Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of General Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Xu L, Zhang M, Tu D, Lu Z, Lu T, Ma D, Zhou Y, Zhang S, Ma Y, Yan D, Wang X, Sang W. Chidamide Induces Epstein-Barr Virus (EBV) Lytic Infection and Acts Synergistically with Tenofovir to Eliminate EBV-Positive Burkitt Lymphoma. J Pharmacol Exp Ther 2023; 387:288-298. [PMID: 37875309 DOI: 10.1124/jpet.123.001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Epstein-Barr virus (EBV) is a type of human γ-herpesvirus, and its reactivation plays an important role in the development of EBV-driven Burkitt lymphoma (BL). Despite intensive chemotherapy, the prognosis of relapsed/refractory BL patients remains unfavorable, and a definitive method to completely eliminate latent EBV infection is lacking. Previous studies have demonstrated that histone deacetylase (HDAC) inhibitors can induce the transition of EBV from latency to the lytic phase. The lytic activation of EBV can be inhibited by tenofovir, a potent inhibitor of DNA replication. Herein, we explored the antitumor effect and EBV clearance potential of a novel HDAC inhibitor called chidamide, combined with tenofovir, in the treatment of EBV-positive BL. In the study, chidamide exhibited inhibitory activity against HDAC. Moreover, chidamide inhibited BL cell proliferation, arrested cell cycle progression, and induced BL cell apoptosis primarily by regulating the MAPK pathways. Additionally, chidamide promoted the transcription of lytic genes, including BZLF1, BMRF1, and BMLF1 Compared with chidamide alone, the addition of tenofovir further induced growth arrest and apoptosis in EBV-positive BL cells and inhibited the transcriptions of EBV lytic genes induced by chidamide alone. Furthermore, our in vivo data demonstrated that the combination of chidamide and tenofovir had superior tumor-suppressive effects in a mouse model of BL cell tumors. The aforementioned findings confirm the synergistic effect of chidamide combined with tenofovir in inducing growth inhibition and apoptosis in EBV-positive BL cells and provide an effective strategy for eliminating EBV and EBV-associated malignancies. SIGNIFICANCE STATEMENT: High levels of Epstein-Barr virus (EBV)-DNA have consistently been associated with unfavorable progression-free survival and overall survival in EBV-associated lymphomas. Therefore, identifying novel strategies to effectively eradicate tumor cells and eliminate EBV is crucial for lymphoma patients. This study confirmed, for the first time, the synergistic effect of chidamide combined with tenofovir in the treatment of Burkitt lymphoma and the eradication of EBV virus.
Collapse
Affiliation(s)
- Linyan Xu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongyun Tu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ziyi Lu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tianyi Lu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongshen Ma
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuo Zhang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuhan Ma
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongmei Yan
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangmin Wang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Chen B, Han N, Gao LY, Zhou TD, Zhang H, He P, Zhou Q. Comparison of immune responses in children with infectious mononucleosis caused by Epstein-Barr virus at different infection stages. Int J Lab Hematol 2023; 45:890-898. [PMID: 37501513 DOI: 10.1111/ijlh.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Infectious mononucleosis (IM) is a common infectious disease in children mainly caused by Epstein-Barr virus (EBV) infection, followed by abnormal immune response, and resulting in serious complications. However, there are few clinical analyses of immune responses in children with IM at different stages. METHODS This study combined EBV serological test and EBV DNA test to diagnose the infection status of children with IM, and the infection status was divided into primary acute IM infection (AIM), primary late IM infection (LIM) and reactivation IM infection (RIM). RESULTS The results revealed that the absolute numbers of leukocytes and CD8+ T lymphocytes in primary IM infection were significantly higher than those in reactivation infection, while the frequencies of CD4+ T lymphocytes and B cells were significantly lower than those in reactivation infection. In addition, the activities of ALT, AST, α-HBDH and LDH in liver function indicators in primary infection were significantly increased compared with reactivation infection. Similarly, the EBV DNA levels of the primary infection were significantly higher than that of the reactivation infection. CONCLUSION There are differences in immune response at different stages of infection, which can provide guidance for effective treatment in children with IM infection.
Collapse
Affiliation(s)
- Bing Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ning Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ling-Yu Gao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ting-Dong Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Hao Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Pei He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
41
|
Ford M, Orlando E, Amengual JE. EBV Reactivation and Lymphomagenesis: More Questions than Answers. Curr Hematol Malig Rep 2023; 18:226-233. [PMID: 37566338 DOI: 10.1007/s11899-023-00708-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE OF REVIEW Epstein-Barr Virus (EBV) is a ubiquitous herpesvirus that affects almost all humans and establishes lifelong infections by infecting B-lymphocytes leading to their immortalization. EBV has a discrete life cycle with latency and lytic reactivation phases. EBV can reactivate and cause lymphoproliferation in both immunocompetent and immunocompromised individuals. There is sparse literature on monitoring protocols for EBV reactivation and no standardized treatment protocols to treat EBV-driven lymphoproliferation. RECENT FINDINGS While there are no FDA-approved therapies to treat EBV, there are several strategies to inhibit EBV replication. These include immunosuppression reduction, nucleoside analogs, HDAC inhibitors, EBV-specific cytotoxic T-lymphocytes (CTLs), and monoclonal antibodies, such as rituximab. There is currently an open clinic trial combining the use of a HDAC inhibitor, nanatinostat, and ganciclovir to treat refractory/relapsed EBV lymphomas. Another novel therapy includes tabelecleucel, which is an allogenic EBV-directed T-cell immunotherapy that was approved by the European Medicines Agency, but is currently only available in the US for limited use in relapsed or refractory EBV-positive PTLD. Further research is needed to establish EBV monitoring protocols in high-risk populations, such as those with autoimmune disease, cancer, HIV, or receiving immunosuppressive therapy. Additionally, standardized treatments for both the prevention of EBV reactivation in high-risk populations and treatment of EBV reactivation and lymphoproliferation need to be established.
Collapse
Affiliation(s)
- Maegan Ford
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Evelyn Orlando
- Division of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer Effie Amengual
- Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
42
|
Huang WH, Su WM, Wang CW, Fang YH, Jian YW, Hsu HJ, Peng CW. Momordica anti-HIV protein MAP30 abrogates the Epstein-Barr virus nuclear antigen 1 dependent functions in host cells. Heliyon 2023; 9:e21486. [PMID: 38027600 PMCID: PMC10660024 DOI: 10.1016/j.heliyon.2023.e21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/07/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Originally extracted from Momordica charantia seeds, the antiviral and anti-tumor activities of Momordica anti-HIV protein MAP30 have become well known. Although MAP30 has been reported to possess antiviral activity against several human viruses, the current understanding of the MAP30-mediated antiviral response is mainly derived from the previous research work on anti-HIV herbal medicines; the mechanistic insight of its effects on other viruses remains largely unknown. In this study, we showed that both ectopically expressed and purified recombinant MAP30 (rMAP30) impeded Epstein-Barr virus Nuclear Antigen 1 (EBNA1)-mediated transcription from the viral latent replication origin. Mechanistically, in vivo and in vitro studies revealed that MAP30 caused EBNA1 to dissociate from the cognate binding sites, which disrupted downstream EBNA1-dependent viral epigenome accumulation and cell maintenance of Epstein-Barr virus (EBV)-associated neoplastic cells. Finally, mutational analysis indicated that the N-terminal ricin A homologous domain shared by ricin-like proteins was implicated in the anti-EBV response. Our study provides evidence to support that MAP30 has a unique property to combat EBV latent infection, suggesting a potential to develop this herbal protein to be an alternative medicine for EBV associated diseases.
Collapse
Affiliation(s)
- Wei-Hang Huang
- Department of Clinical Pathology Department of Hematology & Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002 Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Wen-Min Su
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Chung-Wei Wang
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Yue-Hao Fang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Yuan-Wei Jian
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Chih-Wen Peng
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| |
Collapse
|
43
|
Zhang W, Jiang M, Liao X, Li Y, Xin S, Yang L, Xin Y, Umar A, Lu J. IFIT3 inhibits Epstein-Barr virus reactivation via upregulating innate immunity. J Med Virol 2023; 95:e29237. [PMID: 37994186 DOI: 10.1002/jmv.29237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, can establish latent infection in B lymphocytes and certain epithelial cells after primary infection. Under certain circumstances, EBV can enter into lytic replication. However, the regulation of EBV latent-lytic infection remains largely unclear. The important immune molecule, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), was upregulated in EBV latently infected cells. When the lytic replication of EBV was induced, the expression of IFIT3 was further increased. In turn, IFIT3 overexpression dramatically inhibited the lytic replication of EBV, while IFIT3 knockdown facilitated EBV lytic replication. Moreover, upon the lytic induction, the ectopic IFIT3 expression promoted the activation of the interferon (IFN) pathway, including the production of IFN-stimulated genes (ISGs), IFNB1, and the phosphorylation of IFN-regulatory factor 3 (IRF3). In contrast, the depletion of IFIT3 led to decreased ISGs and IFNB1 expression. Mechanically, IFIT3 inhibited EBV lytic replication through IFN signaling. This study revealed that the host innate immune-related factor IFIT3 played an important role in regulating EBV latent-lytic homeostasis. The results implied that EBV has evolved well to utilize host factors to maintain latent infection.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Mingjuan Jiang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Xuefei Liao
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yujie Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Rzymski P, Szuster-Ciesielska A. Epstein-Barr virus and autoimmunity: effective preventive and therapeutic strategies are urgently needed. Reumatologia 2023; 61:327-330. [PMID: 37970114 PMCID: PMC10634406 DOI: 10.5114/reum/171506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
45
|
Hatayama Y, Watanabe K, Ichikawa H, Kawamura K, Fukuda T, Motokura T. Differential Reactivation of Cytomegalovirus and Epstein-Barr Virus in Patients with B Cell Lymphoma. Viral Immunol 2023; 36:520-525. [PMID: 37440168 DOI: 10.1089/vim.2023.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Although cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are considered latent viruses, their reactivation occurs in immunosuppressed conditions. We previously reported that CMV and EBV are reactivated in patients receiving immunosuppressive therapy and/or chemotherapy. This retrospective, single-center study aimed to determine the frequency of viral reactivation and clinical characteristics of patients with B cell lymphoma (B-ML) receiving chemotherapy. Twenty-four patients (mean age 73 years, range 40-87 years; male-to-female ratio, 15:9) with diffuse large B cell lymphoma (n = 15), follicular lymphoma (n = 8), or mantle cell lymphoma (n = 1) were enrolled. Serum CMV and EBV DNA levels were analyzed using quantitative real-time polymerase chain reaction in patients with B-ML receiving chemotherapy. We determined the cumulative reactivation of each virus and analyzed the relationship between viral reactivation and clinical characteristics. Three patients experienced relapse or refractory (R/R) disease and the others had de novo lymphomas. The frequencies of CMV and EBV reactivations were 54.2% and 37.5%, respectively. CMV reactivation occurred significantly earlier during chemotherapy courses in R/R patients than in de novo patients (p = 0.0038), while EBV reactivation was frequently found before treatment. Baseline serum levels of soluble interleukin-2 receptor were higher (4318.0 vs. 981.1 U/mL, p = 0.010) and hemoglobin levels were lower (11.1 vs. 13.0 g/dL, p = 0.0038) in patients with EBV reactivation than in those without reactivation. These findings were not observed in patients with CMV reactivation. CMV reactivation was associated with iatrogenic immunosuppression, whereas EBV reactivation was related to immunosuppression by lymphoma, indicating that the mechanisms of these viral reactivations differed.
Collapse
Affiliation(s)
- Yuki Hatayama
- Division of Clinical Laboratory, Tottori University Hospital, Yonago, Japan
| | - Kanako Watanabe
- Division of Clinical Laboratory, Tottori University Hospital, Yonago, Japan
| | - Hitomi Ichikawa
- Division of Clinical Laboratory, Tottori University Hospital, Yonago, Japan
| | - Koji Kawamura
- Division of Clinical Laboratory Medicine, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tetsuya Fukuda
- Division of Clinical Laboratory, Tottori University Hospital, Yonago, Japan
| | - Toru Motokura
- Division of Clinical Laboratory Medicine, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
46
|
Puello Yocum B, Mesa H, Maratt JK, Ermel AC, Manchanda N, Popnikolov N. EBV-Gastritis Preceded the Development of Nasopharyngeal EBV (+) Diffuse Large B Cell Lymphoma in a Patient With Ruxolitinib-Induced Immunosuppression. Int J Surg Pathol 2023; 31:1340-1346. [PMID: 36734083 DOI: 10.1177/10668969221137525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epstein-Barr virus (EBV) is acquired early in life as asymptomatic or symptomatic infectious mononucleosis (IM) and remains latent in a few B cells in most individuals. Pathologic EBV-reactivation affects immunosuppressed individuals and manifests as IM-like syndromes, polyclonal lymphoproliferative disorders, EBV-related lymphomas, and carcinomas. EBV-associated gastritis is an underrecognized and very rarely reported entity. We report a case of a 65-year-old woman with ruxolitinib-treated polycythemia vera, who developed EBV viremia and EBV gastritis. The patient improved after the ruxolitinib dose reduction and administration of antiviral therapy. A few months after discontinuation of the antiviral therapy the gastric symptoms recurred, numerous gastric ulcers were identified, and a nasopharyngeal mass was detected. A biopsy of the nasopharynx showed an EBV (+) diffuse large B cell lymphoma. Ruxolitinib was discontinued and the patient was started on rituximab monotherapy with a resolution of symptoms and pathologic improvement. Our case supports earlier reports of an association of ruxolitinib therapy with EBV complications. An early diagnosis of EBV gastritis in immunocompromised patients is important since the gastric infection may precede or co-exist with a developing EBV-associated malignancy. Our case and existing literature suggest that EBV gastritis in symptomatic patients with iatrogenic immunosuppression requires discontinuation of immunosuppressive therapy if feasible, treatment with antivirals, and close surveillance for possible evolving/concurrent EBV (+) malignancy.
Collapse
Affiliation(s)
- Bianca Puello Yocum
- Department of Laboratory Medicine & Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hector Mesa
- Department of Laboratory Medicine & Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer K Maratt
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aaron C Ermel
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naveen Manchanda
- Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nikolay Popnikolov
- Department of Laboratory Medicine & Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Qin A, Wang XJ, Fu J, Shen A, Huang X, Chen Z, Wu H, Jiang Y, Wang Q, Chen F, Xiang AP, Yu X. hMSCs treatment attenuates murine herpesvirus-68 (MHV-68) pneumonia through altering innate immune response via ROS/NLRP3 signaling pathway. MOLECULAR BIOMEDICINE 2023; 4:27. [PMID: 37704783 PMCID: PMC10499773 DOI: 10.1186/s43556-023-00137-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023] Open
Abstract
Immunocompromised individuals are particularly vulnerable to viral infections and reactivation, especially endogenous herpes viruses such as Epstein-Barr virus (EBV), a member of oncogenic gamma-herpesviruses, which are commonly linked to pneumonia and consequently significant morbidity and mortality. In the study of human and animal oncogenic gammaherpesviruses, the murine gamma-herpesviruses-68 (MHV-68) model has been applied, as it can induce pneumonia in immunocompromised mice. Mesenchymal stem cell (MSC) treatment has demonstrated therapeutic potential for pneumonia, as well as other forms of acute lung injury, in preclinical models. In this study, we aim to investigate the therapeutic efficacy and underlying mechanisms of human bone marrow-derived MSC (hMSC) on MHV-68-induced pneumonia. We found that intravenous administration of hMSCs significantly reduced lung damages, diminished inflammatory mediators and somehow inhibited MHV-68 replication. Furthermore, hMSCs treatment can regulate innate immune response and induce macrophage polarization from M1 to M2 phenotype, could significantly alter leukocyte infiltration and reduce pulmonary fibrosis. Our findings with co-culture system indicated that hMSCs effectively reduced the secretion of of inflammation-related factors and induced a shift in macrophage polarization, consistent with in vivo results. Further investigations revealed that hMSCs treatment suppressed the activation of macrophage ROS/NLRP3 signaling pathway in vivo and in vitro. Moreover, administration of MCC950, a selective NLRP3 inhibitor has been shown to effectively reduce ROS production and subsequently alleviate inflammation induced by MHV-68. Taken together, our work has shown that hMSCs can effectively protect mice from lethal MHV-68 pneumonia, which may throw new light on strategy for combating human EBV-associated pneumonia.
Collapse
Affiliation(s)
- Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Juan Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jijun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaotao Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhida Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiting Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, China
| | - Fei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
48
|
Bernal KDE, Whitehurst CB. Incidence of Epstein-Barr virus reactivation is elevated in COVID-19 patients. Virus Res 2023; 334:199157. [PMID: 37364815 PMCID: PMC10292739 DOI: 10.1016/j.virusres.2023.199157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
COVID-19, an infectious respiratory illness, is caused by infection with the SARS-CoV-2 virus. Individuals with underlying medical conditions are at increased risk of developing serious illnesses such as long COVID. Recent studies have observed Epstein-Barr virus (EBV) reactivation in patients with severe illness or long COVID, which may contribute to associated symptoms. We determined the frequency of EBV reactivation in COVID-19 positive patients compared to COVID-19 negative patients. 106 blood plasma samples were collected from COVID-19 positive and negative patients and EBV reactivation was determined by detection of EBV DNA and antibodies against EBV lytic genes in individuals with previous EBV infection. 27.1% (13/48) of EBV reactivations, based on qPCR detection of EBV genomes, are from the COVID positive group while only 12.5% (6/48) of reactivations belonged to the negative group. 20/52 (42.30%) of the COVID PCR negative group had detectable antibodies against SARS-CoV-2 nucleoprotein (Np); indicative of past infection. A significantly higher SARS-CoV-2 Np protein level was found in the COVID-19 positive group. In conclusion, COVID-19 patients experienced increased reactivation of EBV in comparison to COVID negative patients.
Collapse
Affiliation(s)
- Keishanne Danielle E Bernal
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Sciences Building, 15 Dana Rd. Valhalla, NY 10595; Westlake High School, 825 Westlake Dr., Thornwood, NY 10594
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Sciences Building, 15 Dana Rd. Valhalla, NY 10595.
| |
Collapse
|
49
|
Fang LZ, Dong YH, Yan ZJ, Zhou CM, Yu XJ, Qin XR. Reactivation of Epstein-Barr virus in SFTSV infected patients. INFECTIOUS MEDICINE 2023; 2:195-201. [PMID: 38073887 PMCID: PMC10699715 DOI: 10.1016/j.imj.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 10/16/2024]
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by a tick-borne bunyavirus SFTSV with case fatality up to 30%. The reactivation of Epstein-Barr virus (EBV) has been proven to occur in individuals with various immune suppression conditions. Methods Here, we diagnosed 22 SFTSV infected patients with PCR in a hospital in Shandong Province, China in 2020. To understand the consequences of SFTSV infection leading to EBV reactivation, we examined EBV reactivation in SFTSV-infected patients with PCR and RT-PCR. Results We found that EBV was reactivated in 18.2% (4/22) of SFTS patients, suggesting that EBV reactivation is common in SFTS patients. Compared with SFTS patients without EBV reactivation, SFTS patients with EBV-reactivation had a significantly lower median level of serum albumin (32.45 g/L vs. 26.95 g/L, p = 0.03) and a significantly higher median number of urine red blood cells (0 cells/μL vs. 9 cells/μL, p = 0.04). Conclusion SFTS infection can reactivate EBV in patients, which may make the clinical condition of patients worsen.
Collapse
Affiliation(s)
- Li-Zhu Fang
- Qingdao City Center for Disease Control and Prevention, Qingdao 266033, China
| | | | | | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiang-Rong Qin
- Department of Clinical Laboratory, the Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
50
|
Lin KM, Weng LF, Chen SYJ, Lin SJ, Tsai CH. Upregulation of IQGAP2 by EBV transactivator Rta and its influence on EBV life cycle. J Virol 2023; 97:e0054023. [PMID: 37504571 PMCID: PMC10506479 DOI: 10.1128/jvi.00540-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|