1
|
Otani S, Louise Jespersen M, Brinch C, Duus Møller F, Pilgaard B, Egholm Bruun Jensen E, Leekitcharoenphon P, Aaby Svendsen C, Aarestrup AH, Sonda T, Sylvina TJ, Leach J, Piel A, Stewart F, Sapountzis P, Kazyoba PE, Kumburu H, Aarestrup FM. Genomic and functional co-diversification imprint African Hominidae microbiomes to signal dietary and lifestyle adaptations. Gut Microbes 2025; 17:2484385. [PMID: 40164980 PMCID: PMC11959905 DOI: 10.1080/19490976.2025.2484385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
In the diverse landscape of African hominids, the obligate relationship between the host and its microbiome narrates signals of adaptation and co-evolution. Sequencing 546 African hominid metagenomes, including those from indigenous Hadza and wild chimpanzees, identified similar bacterial richness and diversity surpassing those of westernized populations. While hominids share core bacterial communities, they also harbor distinct, population-specific bacterial taxa tailored to specific diets, ecology and lifestyles, differentiating non-indigenous and indigenous humans and chimpanzees. Even amongst shared bacterial communities, several core bacteria have co-diversified to fulfil unique dietary degradation functions within their host populations. These co-evolutionary trends extend to non-bacterial elements, such as mitochondrial DNA, antimicrobial resistance, and parasites. Our findings indicate that microbiome-host co-adaptations have led to both taxonomic and within taxa functional displacements to meet host physiological demands. The microbiome, in turn, transcends its taxonomic interchangeable role, reflecting the lifestyle, ecology and dietary history of its host.
Collapse
Affiliation(s)
- Saria Otani
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Marie Louise Jespersen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Brinch
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Frederik Duus Møller
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Bo Pilgaard
- Department of Biotechnology and Biomedicine, Section for Protein Chemistry and Enzyme Technology, Technical University of Denmark, Lyngby, Denmark
| | - Emilie Egholm Bruun Jensen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Christina Aaby Svendsen
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Amalie H. Aarestrup
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Tolbert Sonda
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania
- Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
- Department of Microbiology, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Teresa J. Sylvina
- National Academies of Sciences, Engineering and Medicine, Washington, DC, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, State College, PA, USA
| | - Jeff Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexander Piel
- Department of Human Origins, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Fiona Stewart
- Department of Human Origins, Max Planck Institute of Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Paul E. Kazyoba
- National Institute for Medical Research, Dar-Es-Salaam, Tanzania
| | - Happiness Kumburu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute (KCRI), Moshi, Tanzania
| | - Frank M. Aarestrup
- Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Palmas V, Deledda A, Heidrich V, Sanna G, Cambarau G, Fosci M, Puglia L, Cappai EA, Lai A, Loviselli A, Manzin A, Velluzzi F. Impact of Ketogenic and Mediterranean Diets on Gut Microbiota Profile and Clinical Outcomes in Drug-Naïve Patients with Diabesity: A 12-Month Pilot Study. Metabolites 2025; 15:22. [PMID: 39852366 PMCID: PMC11766981 DOI: 10.3390/metabo15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Managing type 2 diabetes mellitus (T2DM) and obesity requires a multidimensional, patient-centered approach including nutritional interventions (NIs) and physical activity. Changes in the gut microbiota (GM) have been linked to obesity and the metabolic alterations typical of T2DM and obesity, and they are strongly influenced by diet. However, few studies have evaluated the effects on the GM of a very-low-calorie ketogenic diet (VLCKD) in patients with T2DM, especially in the mid-term and long-term. This longitudinal study is aimed at evaluating the mid-term and long-term impact of the VLCKD and Mediterranean diet (MD) on the GM and on the anthropometric, metabolic, and lifestyle parameters of 11 patients with T2DM and obesity (diabesity). This study extends previously published results evaluating the short-term (three months) impact of these NIs on the same patients. Methods: At baseline, patients were randomly assigned to either a VLCKD (KETO group) or a Mediterranean diet (MEDI group). After two months, the KETO group gradually shifted to a Mediterranean diet (VLCKD-MD), according to current VLCKD guidelines. From the fourth month until the end of the study both groups followed a similar MD. Previous published results showed that VLCKD had a more beneficial impact than MD on several variables for 3 months of NI. In this study, the analyses were extended until six (T6) and twelve months (T12) of NI by comparing data prospectively and against baseline (T0). The GM analysis was performed through next-generation sequencing. Results: Improvements in anthropometric and metabolic parameters were more pronounced in the KETO group at T6, particularly for body mass index (-5.8 vs. -1.7 kg/m2; p = 0.006) and waist circumference (-15.9 vs. -5.2 cm; p = 0.011). At T6, a significant improvement in HbA1c (6.7% vs. 5.5% p = 0.02) and triglyceride (158 vs. 95 mg/dL p = 0.04) values compared to T0 was observed only in the KETO group, which maintained the results achieved at T3. The VLCKD-MD had a more beneficial impact than the MD on the GM phenotype. A substantial positive modulatory effect was observed especially up to the sixth month of the NI in KETO due to the progressive increase in bacterial markers of human health. After the sixth month, most markers of human health decreased, though they were still increased compared with baseline. Among them, the Verrucomicrobiota phylum was identified as the main biomarker in the KETO group, together with its members Verrucomicrobiae, Akkermansiaceae, Verrucomicrobiales, and Akkermansia at T6 compared with baseline. Conclusions: Both dietary approaches ameliorated health status, but VLCKD, in support of the MD, has shown greater improvements on anthropometric and metabolic parameters, as well as on GM profile, especially up to T6 of NI.
Collapse
Affiliation(s)
- Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (G.S.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| | - Vitor Heidrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil;
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (G.S.)
| | - Giulia Cambarau
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| | - Michele Fosci
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (L.P.); (A.L.)
| | - Lorenzo Puglia
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (L.P.); (A.L.)
| | - Enrico Antonio Cappai
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| | - Alessio Lai
- Diabetologia, P.O. Binaghi, ASSL Cagliari, 09126 Cagliari, Italy;
| | - Andrea Loviselli
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (L.P.); (A.L.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (G.S.)
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (G.C.); (E.A.C.); (F.V.)
| |
Collapse
|
4
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Morris AH, Bohannan BJM. Estimates of microbiome heritability across hosts. Nat Microbiol 2024; 9:3110-3119. [PMID: 39548346 DOI: 10.1038/s41564-024-01865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Microbiomes contribute to variation in many plant and animal traits, suggesting that microbiome-mediated traits could evolve through selection on the host. However, for such evolution to occur, microbiomes must exhibit sufficient heritability to contribute to host adaptation. Previous work has attempted to estimate the heritability of a variety of microbiome attributes. Here we show that most published estimates are limited to vertebrate and plant hosts, but significant heritability of microbiome attributes has been frequently reported. This indicates that microbiomes could evolve in response to host-level selection, but studies across a wider range of hosts are necessary before general conclusions can be made. We suggest future studies focus on standardizing heritability measurements for the purpose of meta-analyses and investigate the role of the environment in contributing to heritable microbiome variation. This could have important implications for the use of microbiomes in conservation, agriculture and medicine.
Collapse
Affiliation(s)
- Andrew H Morris
- Institute of Ecology & Evolution, University of Oregon, Eugene, OR, USA.
| | | |
Collapse
|
6
|
Passmore JAS, Ngcapu S, Gitome S, Kullin BR, Welp K, Martin DP, Potloane D, Manhanzva MT, Obimbo MM, Gill K, Fevre ML, Happel AU, Jaspan HB, Kasaro M, Bukusi EA. Ecology meets reproductive medicine in HIV prevention: the case for geography-informed approaches for bacterial vaginosis in Africa. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1431306. [PMID: 39665036 PMCID: PMC11631894 DOI: 10.3389/frph.2024.1431306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose of review Women in Africa bear the burden of the HIV epidemic, which has been associated with the high prevalence of bacterial vaginosis (BV) in the region. However, little progress has been made in finding an effective cure for BV. Drawing on advances in microbiome-directed therapies for gastrointestinal disorders, similar live-biotherapeutic based approaches for BV treatment are being evaluated. Here, we summarize current knowledge regarding vaginal microbiota in BV, explore geographical differences in vaginal microbiota, and argue that novel BV therapeutics should be tailored specifically to meet the needs of African women. Recent findings Cervicovaginal microbiota dominated by Lactobacillus crispatus are optimal, although these are uncommon in African women. Besides socio-behavioural and environmental influences on the vaginal microbiota, host and microbial genetic traits should be considered, particularly those relating to glycogen metabolism. Novel microbiome-directed approaches being developed to treat BV should employ transfers of multiple microbial strains to ensure sustained colonization and BV cure. Summary Improving the efficacy and durability of BV treatment with microbiome-directed therapies by appropriately accounting for host and microbial genetic factors, could potentially reduce the risk of HIV infection in African women.
Collapse
Affiliation(s)
- Jo-Ann S. Passmore
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service (NHLS), Cape Town, South Africa
- Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Serah Gitome
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Brian R. Kullin
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Kirsten Welp
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Disebo Potloane
- Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Monalisa T. Manhanzva
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Moses M. Obimbo
- Department of Human Anatomy and Medical Physiology, University of Nairobi, Nairobi, Kenya
| | - Katherine Gill
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Mellissa Le Fevre
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Anna-Ursula Happel
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Heather B. Jaspan
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Hospital, Seattle, WA, United States
| | - Margaret Kasaro
- University of North Carolina Global Projects Zambia, Lusaka, Zambia
- Department of Obstetrics and Gynaecology, University of Zambia School of Medicine, Lusaka, Zambia
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Elizabeth A. Bukusi
- Centre for Microbiology Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Departments of Global Health and Obstetrics and Gynaecology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Jin Z, Liu M, Zhao H, Xie J, Yin W, Zheng M, Cai D, Liu H, Liu J. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:3388. [PMID: 39517172 PMCID: PMC11544810 DOI: 10.3390/foods13213388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity-induced insulin resistance (IR) can precipitate metabolic disorders such as diabetes. Zeaxanthin, a crucial member of the carotenoid family, has been found to mitigate the damage caused by obesity. However, reports on the effects of zeaxanthin on obesity-induced IR are lacking. Our objective was to examine the metabolic regulatory impacts of zeaxanthin on mice subjected to a high-fat diet (HFD) that triggered IR and to explore their influence on gut microbiota regulation. This study constructed a mouse model of metabolic dysfunction caused by lipid-rich nutritional patterns to investigate physiological and biochemical indices, liver pathway expression, and the intestinal microbiota. The mechanisms by which zeaxanthin improved both IR and glucose metabolic disorders were elucidated. The results demonstrate that zeaxanthin effectively suppressed obesity. The fasting blood glucose, area under curve of oral glucose tolerance test and insulin tolerance test, and homeostatic model assessment-insulin resistance (HOMA-IR) indices in the HFDZEA group decreased by 14.9%, 25.2%, 28.9%, and 29.8%. Additionally, zeaxanthin improved the lipid metabolism and alleviated damage to the liver and pancreas while also activating the PI3K/Akt pathway, regulating hepatic gluconeogenesis and the glycogen metabolism. The number of OTUs in the HFDZEA group increased by 29.04%. Zeaxanthin improved the structure and profile of the gastrointestinal microbiome and enhanced its diversity, increasing probiotics abundance, decreasing pathogen abundance, and thereby ameliorating the dysbiosis of enteric microbial communities in rodents with obesity resulting from excessive fat consumption. The outcomes of our analysis provide a rational basis for advancing zeaxanthin-based nutritional products.
Collapse
Affiliation(s)
- Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Hongyu Zhao
- Key Laboratory of TCM Pharmacology, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China;
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
| | - Jingsheng Liu
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
8
|
Karanth S, Pradhan AK. Advanced data analytics and "omics" techniques to control enteric foodborne pathogens. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:383-422. [PMID: 40023564 DOI: 10.1016/bs.afnr.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Enteric pathogens, particularly bacterial pathogens, are associated with millions of cases of foodborne illness in the U.S. and worldwide, necessitating the identification and development of methods to control and minimize their impact on public health. Predictive modeling and quantitative microbial risk assessment are two such methods that analyze data on microbial behavior, particularly as a response to changes in the food matrix, to predict and control the presence and prevalence of these pathogens in food. However, a number of these bacterial enteric pathogens, including Escherichia coli, Listeria monocytogenes, and Salmonella enterica, have inherent genetic and phenotypic differences among their subtypes and variants. This has led to an increasing reliance on "omics" technologies, including genomics, proteomics, transcriptomics, and metabolomics, to identify and characterize pathogenic microorganisms and their behavior in food systems. With this exponential increase in available data on these enteric pathogens, comes a need for the development of novel strategies to analyze this data. Advanced data analysis/analytics is a means to extract value from these large data sources, and is considered the core of data processing. In the past few years, advanced data analytics methods such as machine learning and artificial intelligence have been increasingly used to extract meaningful, actionable knowledge from these data sources to help mitigate food safety issues caused by enteric pathogens. This chapter reviews the latest in research into the use of advanced data analytics, particularly machine learning, to analyze "omics" data of enteric bacterial pathogens, and identifies potential future uses of these techniques in mitigating the risk of these pathogens on public health.
Collapse
Affiliation(s)
- Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Abani K Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, United States.
| |
Collapse
|
9
|
Kang HJ, Kim SW, Kim SM, La TM, Hyun JE, Lee SW, Kim JH. Altered Gut Microbiome Composition in Dogs with Hyperadrenocorticism: Key Bacterial Genera Analysis. Animals (Basel) 2024; 14:2883. [PMID: 39409832 PMCID: PMC11476382 DOI: 10.3390/ani14192883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hyperadrenocorticism (HAC) is a common endocrine disorder in dogs, which is associated with diverse metabolic abnormalities. We hypothesized that elevated cortisol levels in dogs with HAC disrupt the gut microbiome (GM), and this disruption persists even after trilostane treatment. This study explored GM composition in dogs with HAC. We included 24 dogs, 15 with HAC and 9 healthy controls, and followed up with 5 dogs with HAC who received trilostane treatment. The GM analysis revealed significant compositional changes in dogs with HAC, including reduced microbiome diversity compared to healthy controls, particularly in rare taxa, as indicated by the Shannon index (p = 0.0148). Beta diversity analysis further showed a distinct clustering of microbiomes in dogs with HAC, separating them from healthy dogs (p < 0.003). Specifically, an overrepresentation of Proteobacteria (Pseudomonadota), Actinobacteria, Bacteroides, Enterococcus, Corynebacterium, Escherichia, and Proteus populations occurred alongside a decreased Firmicutes (Bacillota) population. Despite trilostane treatment, gut dysbiosis persisted in dogs with HAC at a median of 41 d post treatment, suggesting its potential role in ongoing metabolic issues. We identified GM dysbiosis in dogs with HAC by examining key bacterial genera, offering insights into potential interventions like probiotics or fecal microbiota transplants for better HAC management.
Collapse
Affiliation(s)
- Hee-Jun Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-J.K.); (S.-W.K.); (J.-E.H.)
| | - Sang-Won Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-J.K.); (S.-W.K.); (J.-E.H.)
| | - Seon-Myung Kim
- KR Lab Bio Incorporation, Suwon 16429, Republic of Korea;
| | - Tae-Min La
- Department of Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (T.-M.L.); (S.-W.L.)
| | - Jae-Eun Hyun
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-J.K.); (S.-W.K.); (J.-E.H.)
| | - Sang-Won Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (T.-M.L.); (S.-W.L.)
| | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-J.K.); (S.-W.K.); (J.-E.H.)
| |
Collapse
|
10
|
Kukaev E, Kirillova E, Tokareva A, Rimskaya E, Starodubtseva N, Chernukha G, Priputnevich T, Frankevich V, Sukhikh G. Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. Int J Mol Sci 2024; 25:10636. [PMID: 39408965 PMCID: PMC11477200 DOI: 10.3390/ijms251910636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that impacts both the endocrine and metabolic systems, often resulting in infertility, obesity, insulin resistance, and cardiovascular complications. The aim of this study is to investigate the role of intestinal flora and its metabolites, particularly short-chain fatty acids (SCFAs), in the development of PCOS, and to assess the effects of metformin therapy on these components. SCFA levels in fecal and blood samples from women with PCOS (n=69) and healthy controls (n=18) were analyzed using Gas Chromatography-Mass Spectrometry (GC/MS) for precise measurement. Fecal microbiota were quantitatively detected by real-time polymerase chain reaction (PCR). To assess the efficacy of six months of metformin treatment, changes in the microbiota and SCFAs in the PCOS group (n=69) were also evaluated. The results revealed that women with PCOS exhibited a significant reduction in beneficial bacteria (namely, the C. leptum group and Prevotella spp.) alongside a notable overgrowth of opportunistic microorganisms (C. perfringens, C. difficile, Staphylococcus spp., and Streptococcus spp.). An overproduction of acetic acid (AA, FC=0.47, p<0.05) and valeric acid (VA, FC=0.54, p<0.05) suggests a link between elevated SCFAs and the development of obesity and PCOS. Interestingly, AA in the bloodstream might offer a protective effect against PCOS by ameliorating key symptoms such as high body mass index (r=-0.33, p=0.02), insulin resistance (r=-0.39, p=0.02), and chronic inflammation. Although serum SCFA levels showed non-significant changes following metformin treatment (p>0.05), the normalization of AA in the gut underscores that metformin exerts a more pronounced effect locally within the gastrointestinal tract. Furthermore, the study identified the most effective model for predicting the success of metformin therapy, based on serum concentrations of butyric acid (BA) and VA, achieving a 91% accuracy rate, 100% sensitivity, and 80% specificity. These promising findings highlight the potential for developing targeted interventions and personalized treatments, ultimately improving clinical outcomes for women with PCOS.
Collapse
Affiliation(s)
- Evgenii Kukaev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina Kirillova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Elena Rimskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Galina Chernukha
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Tatiana Priputnevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| |
Collapse
|
11
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
12
|
Xu X, Jin H, Li X, Yan C, Zhang Q, Yu X, Liu Z, Liu S, Zhu F. Fecal Microbiota Transplantation Regulates Blood Pressure by Altering Gut Microbiota Composition and Intestinal Mucosal Barrier Function in Spontaneously Hypertensive Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10344-x. [PMID: 39172216 DOI: 10.1007/s12602-024-10344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Hypertension is accompanied by gut microbiota imbalance, but the role of bacteria in the pathogenesis of hypertension requires further study. In this study, we used fecal microbiota transplantation to determine the impact of microbiota composition on blood pressure in spontaneous hypertensive rats (SHRs), using normotensive Wistar Kyoto (WKY) rats as controls. SHRs were randomly divided into two groups (n = 10/group), SHR and SHR-T (SHR plus fecal transplantation) and WKY into WKY and WKY-T (WKY plus fecal transplantation). SHR-T received fecal transplantation from WKY, while WKY-T received fecal transplantation from SHR. Blood pressure was measured from the tail artery in conscious rats. 16S rDNA gene amplicon sequencing was used to analyze bacterial composition. Circulating levels of diamine oxidase, D-lactate, FITC-Dextrans, and lipopolysaccharide were determined. Hematoxylin and eosin (H&E) staining was used to observe structural changes in the intestinal mucosa. Immunofluorescence, Western blot, and RT-PCR were utilized to determine changes in the expression of tight junction proteins. Following cross fecal transplantation, blood pressure decreased in SHR and increased in WKY. Significant differences in gut microbial composition were found between hypertensive and normotensive rats, specifically regarding the relative abundance of lactic and butyric acid-producing bacteria. Changes in gut microbiota composition also impacted the intestinal mucosal barrier integrity. Moreover, fecal transplantation affected the expression of tight junction proteins that may impact intestinal mucosal permeability and structural integrity. Blood pressure may be associated with butyric acid-producing intestinal microbiota and its function in regulating the integrity of intestinal mucosal barrier.
Collapse
Affiliation(s)
- Xinghua Xu
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hua Jin
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Xiaoling Li
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Chunlu Yan
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Qiuju Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiaoying Yu
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730020, China
| | - Zhijun Liu
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730020, China
| | - Shuangfang Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Feifei Zhu
- Tianshui Municipal Hospital of Traditional Chinese Medicine, Tianshui, 741000, Gansu, China
| |
Collapse
|
13
|
Grahnemo L, Kambur O, Lahti L, Jousilahti P, Niiranen T, Knight R, Salomaa V, Havulinna AS, Ohlsson C. Associations between gut microbiota and incident fractures in the FINRISK cohort. NPJ Biofilms Microbiomes 2024; 10:69. [PMID: 39143108 PMCID: PMC11324742 DOI: 10.1038/s41522-024-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is unknown. We used Cox regression models to determine whether the GM composition is associated with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases, median follow-up time 18 years) with information on GM composition and functionality from shotgun metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard ratio [HR] 0.92 per standard deviation increase in Shannon index, 95% confidence interval 0.87-0.96). For beta diversity, the first principal component was associated with fracture risk (Aitchison distance, HR 0.90, 0.85-0.96). In predefined phyla analyses, we observed that the relative abundance of Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07-1.20), while the relative abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85-0.96). Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed that pathways related to amino acid metabolism and lipopolysaccharide biosynthesis associated with fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate synthesis. In conclusion, the overall GM composition was associated with incident fractures. The relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with increased fracture risk, while the relative abundance of Tenericutes was associated with decreased fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may underlie these associations.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oleg Kambur
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
14
|
Akhlaghi E, Salari E, Mansouri M, Shafiei M, Kalantar-Neyestanaki D, Aghassi H, Fasihi Harandi M. Identification and comparison of intestinal microbial diversity in patients at different stages of hepatic cystic echinococcosis. Sci Rep 2024; 14:18912. [PMID: 39143364 PMCID: PMC11324937 DOI: 10.1038/s41598-024-70005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
There is a significant focus on the role of the host microbiome in different outcomes of human parasitic diseases, including cystic echinococcosis (CE). This study was conducted to identify the intestinal microbiome of patients with CE at different stages of hydatid cyst compared to healthy individuals. Stool samples from CE patients as well as healthy individuals were collected. The samples were divided into three groups representing various stages of hepatic hydatid cyst: active (CE1 and CE2), transitional (CE3), and inactive (CE4 and CE5). One family member from each group was selected to serve as a control. The gut microbiome of patients with different stages of hydatid cysts was investigated using metagenomic next-generation amplicon sequencing of the V3-V4 region of the 16S rRNA gene. In this study, we identified 4862 Operational Taxonomic Units from three stages of hydatid cysts in CE patients and healthy individuals with a combined frequency of 2,955,291. The most abundant genera observed in all the subjects were Blautia, Agathobacter, Faecalibacterium, Bacteroides, Bifidobacterium, and Prevotella. The highest microbial frequency was related to inactive forms of CE, and the lowest frequency was observed in the group with active forms. However, the lowest OTU diversity was found in patients with inactive cysts compared with those with active and transitional cyst stages. The genus Agatobacter had the highest OTU frequency. Pseudomonas, Gemella, and Ligilactobacillus showed significant differences among the patients with different stages of hydatid cysts. Additionally, Anaerostipes and Candidatus showed significantly different reads in CE patients compared to healthy individuals. Our findings indicate that several bacterial genera can play a role in the fate of hydatid cysts in patients at different stages of the disease.
Collapse
Affiliation(s)
- Elham Akhlaghi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Salari
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shafiei
- Research Center for Hydatid Disease in Iran, Department of Surgery, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Aghassi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Department of Medical Parasitology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Chen Z, Xiao L, Sun Q, Chen Q, Hua W, Zhang J. Effects of Acremonium terricola Culture on Lactation Performance, Immune Function, Antioxidant Capacity, and Intestinal Flora of Sows. Antioxidants (Basel) 2024; 13:970. [PMID: 39199216 PMCID: PMC11352107 DOI: 10.3390/antiox13080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to determine the effects of different doses of Acremonium terricola culture (ATC) on lactation performance, immune function, antioxidant capacity, and intestinal flora of sows. Forty-five Landrace sows (3-6 parity) were randomly assigned to the following three treatments from 85 days of gestation to 21 days after farrowing: a control diet (CON, basal diet), a low-dose Acremonium terricola culture diet (0.2% ATC, basal diet + 0.2% ATC), and a high-dose Acremonium terricola culture diet (0.4% ATC, basal diet + 0.4% ATC). Compared with the CON group, the supplementation of 0.2% ATC increased the average daily milk yield of sows by 4.98%, increased milk fat, total solids, and freezing point depression on day 1 postpartum (p < 0.05), increased serum concentration of Triiodothyronine, Thyroxin, and Estradiol on day 21 postpartum (p < 0.05). Compared with the CON group, the supplementation of 0.4% ATC increased the average daily milk yield of sows by 9.38% (p < 0.05). Furthermore, the supplementation of 0.2% ATC increased serum concentration of IgG, IgM, and IFN-γ, CD4 on day 1 postpartum (p < 0.05) and increased serum concentration of immunoglobulin A ( IgA), immunoglobulin G (IgG), immunoglobulin M ( IgM), complement 3 (C3), cluster of differentiation 4 (CD4), cluster of differentiation 8 (CD8), interferon-γ (IFN-γ) on day 21 postpartum (p < 0.05), while the supplementation of 0.4% ATC reduced serum concentration of IL-2 on day 21 postpartum (p < 0.05). Moreover, the supplementation of 0.4% ATC significantly increased serum concentration of catalase (CAT) (p < 0.05). Additionally, the supplementation of ATC affected the relative abundance of the intestinal flora at different taxonomic levels in sows and increased the abundance of beneficial bacteria such as in the norank_f__Eubacterium_coprostanoligenes group, Eubacterium_coprostanoligenes group, and Lachnospiraceae_XPB1014 group of sows, while reducing the abundance of harmful bacteria such as Phascolarctobacterium and Clostridium_sensu_stricto_1. These data revealed that the supplementation of ATC during late gestation and lactation can improve lactation performance, immune function, antioxidant capacity, and the gut microbiota. Compared with supplementation of 0.4% ATC, 0.2% ATC enhances the levels of thyroid-related hormones, specific antibodies, and cytokines in serum, promotes the diversity of beneficial gut microbiota, beneficial bacteria in the intestine, reduces the population of harmful bacteria, and thereby bolsters the immunity of sows. Hence, 0.2% ATC is deemed a more optimal concentration.
Collapse
Affiliation(s)
- Zhirong Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Qian Sun
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Weidong Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| |
Collapse
|
16
|
Cyphert EL, Liu C, Morales AL, Nixon JC, Blackford E, Garcia M, Cevallos N, Turnbaugh PJ, Brito IL, Booth SL, Hernandez CJ. Effects of high dose aspartame-based sweetener on the gut microbiota and bone strength in young and aged mice. JBMR Plus 2024; 8:ziae082. [PMID: 39011468 PMCID: PMC11247189 DOI: 10.1093/jbmrpl/ziae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
In a recent study examining the effects of manipulating the gut microbiome on bone, a control group of mice in which the microbiome was altered using a non-caloric, aspartame-based sweetener resulted in whole bone strength being 40% greater than expected from geometry alone, implicating enhanced bone tissue strength. However, the study was not designed to detect changes in bone in this control group and was limited to young male mice. Here we report a replication study examining how changes in the gut microbiome caused by aspartame-based sweetener influence bone. Male and female C57Bl/6 J mice were untreated or treated with a high dose of sweetener (10 g/L) in their drinking water from either 1 to 4 mo of age (young cohort; n = 80) or 1 to 22 mo of age (aged cohort; n = 52). Sweetener did not replicate the modifications to the gut microbiome observed in the initial study and did not result in an increase in bone tissue strength in either sex at either age. Aged male mice dosed with sweetener had larger bones (+17% femur section modulus, p<.001) and greater whole bone strength (+22%, p=.006) but the increased whole bone strength was explained by the associated increase in body mass (+9%, p<.001). No differences in body mass, whole bone strength, or femoral geometry were associated with sweetener dosing in males from the young cohort or females at either age. As we were unable to replicate the gut microbiota observed in the initial experiment, it remains unclear if changes in the gut microbiome can enhance bone tissue strength. Although prior work studying gut microbiome-induced changes in bone with oral antibiotics has been highly repeatable, the current study highlights the variability of nutritional manipulations of the gut microbiota in mice.
Collapse
Affiliation(s)
- Erika L Cyphert
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Chongshan Liu
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Angie L Morales
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Jacob C Nixon
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Emily Blackford
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Matthew Garcia
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
- Chan Zuckerberg Biohub, San Francisco, CA 94143, United States
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853, United States
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, United States
| | - Christopher J Hernandez
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
- Chan Zuckerberg Biohub, San Francisco, CA 94143, United States
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
17
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Hou D, Yang Y. Genetically predicted elevated circulating 3,4-dihydroxybutyrate levels mediate the association between family Christensenellaceae and osteoporosis risk: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1388772. [PMID: 39086901 PMCID: PMC11288937 DOI: 10.3389/fendo.2024.1388772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective To investigate the impact of gut microbiota on osteoporosis and identify the mediating role of blood metabolites in this process. Methods This two-sample Mendelian randomization (MR) study utilized summary level data from genome-wide association studies (GWAS). Gut microbiota GWAS data were obtained from the MiBio-Gen consortium meta-analysis (n=13,266), while osteoporosis summary statistics were sourced from the FinnGen consortium R9 release data (7300 cases and 358,014 controls). Metabolite data, including 1400 metabolites or metabolite ratios, were derived from a study involving 8,299 unrelated individuals. The primary MR method employed was the inverse variance weighted (IVW) method. Reverse MR analysis was conducted on bacteria causally associated with osteoporosis in forward MR. The gut microbiota with the smallest p-value was selected as the top influencing factor for subsequent mediation analysis. A two-step MR approach quantified the proportion of the blood metabolite effect on gut microbiota influencing osteoporosis. IVW and Egger methods were used to assess heterogeneity and horizontal pleiotropy. Results IVW estimates indicated a suggestive effect of family Christensenellaceae on osteoporosis (odds ratio(OR) = 1.292, 95% confidence interval(CI): 1.110-1.503, P =9.198 × 10-4). Reverse MR analysis revealed no significant causal effect of osteoporosis on family Christensenellaceae (OR = 0.947, 95% CI: 0.836-1.072, P =0.386). The proportion of the effect of family Christensenellaceae on osteoporosis mediated by circulating levels of 3,4-dihydroxybutyrate was 9.727%. No significant heterogeneity or horizontal pleiotropy was detected in the instrumental variables used for MR analysis. Conclusion This study establishes a causal link between family Christensenellaceae and osteoporosis, with a minor proportion of the effect mediated by elevated circulating levels of 3,4-dihydroxybutyrate. Further randomized controlled trials (RCTs) are warranted to validate this conclusion.
Collapse
Affiliation(s)
- Dalong Hou
- Department of Orthopaedics and Traumatology, Shandong Provincial Third Hospital, Shandong University, Shandong, China
| | - Yang Yang
- Jinan No. 3 People’s Hospital, Jinan, Shandong, China
| |
Collapse
|
19
|
Liu Z, Dai J, Liu R, Shen Z, Huang A, Huang Y, Wang L, Chen P, Zhou Z, Xiao H, Chen X, Yang X. Complex insoluble dietary fiber alleviates obesity and liver steatosis, and modulates the gut microbiota in C57BL/6J mice fed a high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5462-5473. [PMID: 38348948 DOI: 10.1002/jsfa.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Obesity has been demonstrated as a risk factor that seriously affects health. Insoluble dietary fiber (IDF), as a major component of dietary fiber, has positive effects on obesity, inflammation and diabetes. RESULTS In this study, complex IDF was prepared using 50% enoki mushroom IDF, 40% carrot IDF, and 10% oat IDF. The effects and potential mechanism of complex IDF on obesity were investigated in C57BL/6 mice fed a high-fat diet. The results showed that feeding diets containing 5% complex IDF for 8 weeks significantly reduced mouse body weight, epididymal lipid index, and ectopic fat deposition, and improved mouse liver lipotoxicity (reduced serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), fatty liver, and short-chain fatty acid composition. High-throughput sequencing of 16S rRNA and analysis of fecal metabolomics showed that the intervention with complex IDF reversed the high-fat-diet-induced dysbiosis of gut microbiota, which is associated with obesity and intestinal inflammation, and affected metabolic pathways, such as primary bile acid biosynthesis, related to fat digestion and absorption. CONCLUSION Composite IDF intervention can effectively inhibit high-fat-diet-induced obesity and related symptoms and affect the gut microbiota and related metabolic pathways in obesity. Complex IDF has potential value in the prevention of obesity and metabolic syndrome. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zurui Liu
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ruijia Liu
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Ziyi Shen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Ai Huang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Zheng Zhou
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu, People's Republic of China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu, People's Republic of China
| |
Collapse
|
20
|
Rodriguez CI, Isobe K, Martiny JBH. Short-term dietary fiber interventions produce consistent gut microbiome responses across studies. mSystems 2024; 9:e0013324. [PMID: 38742890 PMCID: PMC11237734 DOI: 10.1128/msystems.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify generally (on average) consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2,564 fecal samples from 538 subjects across all interventions. Short-term increases in dietary fiber consumption resulted in highly consistent gut bacterial community responses across studies. Increased fiber consumption explained an average of 1.5% of compositional variation (vs 82% of variation attributed to the individual), reduced alpha-diversity, and resulted in phylogenetically conserved responses in relative abundances among bacterial taxa. Additionally, we identified bacterial clades, at approximately the genus level, that were highly consistent in their response (on average, increasing or decreasing in their relative abundance) to dietary fiber interventions across the studies. IMPORTANCE Our study is an example of the power of synthesizing and reanalyzing 16S rRNA microbiome data from many intervention studies. Despite high inter-individual variation of the composition of the human gut microbiome, dietary fiber interventions cause a consistent response both in the degree of change and the particular taxa that respond to increased fiber.
Collapse
Affiliation(s)
- Cynthia I. Rodriguez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
21
|
Mozafari S, Ashoori M, Emami Meybodi SM, Solhi R, Mirjalili SR, Firoozabadi AD, Soltani S. Association between APOA5 polymorphisms and susceptibility to metabolic syndrome: a systematic review and meta-analysis. BMC Genomics 2024; 25:590. [PMID: 38867151 PMCID: PMC11167842 DOI: 10.1186/s12864-024-10493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The association between Apolipoprotein A5 (APOA5) genetic polymorphisms and susceptibility to metabolic syndrome (MetS) has been established by many studies, but there have been conflicting results from the literature. We performed a meta-analysis of observational studies to evaluate the association between APOA5 gene polymorphisms and the prevalence of MetS. METHODS PubMed, Web of Science, Embase, and Scopus were searched up to April 2024. The random effects model was used to estimate the odds ratios (ORs) and 95% confidence intervals (CI) of the association between APOA5 gene polymorphisms and the prevalence of MetS development. The potential sources of heterogeneity were evaluated by subgroup analyses and sensitivity analyses. RESULTS A total of 30 studies with 54,986 subjects (25,341 MetS cases and 29,645 healthy controls) were included. The presence of rs662799 and rs651821 polymorphisms is associated with an approximately 1.5-fold higher likelihood of MetS prevalence (OR = 1.42, 95% CI: 1.32, 1.53, p < 0.001; I2 = 67.1%; P-heterogeneity < 0.001; and OR = 1.50, 95% CI: 1.36-1.65, p < 0.001), respectively. MetS is also more prevalent in individuals with the genetic variants rs3135506 and rs2075291. There was no evidence of a connection with rs126317. CONCLUSION The present findings suggest that polymorphisms located in the promoter and coding regions of the APOA5 gene are associated with an increased prevalence of MetS in the adult population. Identifying individuals with these genetic variations could lead to early disease detection and the implementation of preventive strategies to reduce the risk of MetS and its related health issues. However, because the sample size was small and there was evidence of significant heterogeneity for some APOA5 gene polymorphisms, these results need to be confirmed by more large-scale and well-designed studies.
Collapse
Affiliation(s)
- Sima Mozafari
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Marziyeh Ashoori
- Rasool Akram Medical Complex, Clinical Research Development Center, Tehran, Iran
| | - Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Seyed Reza Mirjalili
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Ali Dehghani Firoozabadi
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Afshar Hospital, Jomhouri Blvd., Yazd, 8917945556, Iran.
| |
Collapse
|
22
|
Ray AK, Shukla A, Yadav A, Kaur U, Singh AK, Mago P, Bhavesh NS, Chaturvedi R, Tandon R, Shalimar, Kumar A, Malik MZ. A Comprehensive Pilot Study to Elucidate the Distinct Gut Microbial Composition and Its Functional Significance in Cardio-Metabolic Disease. Biochem Genet 2024:10.1007/s10528-024-10847-w. [PMID: 38839647 DOI: 10.1007/s10528-024-10847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cardio-metabolic disease is a significant global health challenge with increasing prevalence. Recent research underscores the disruption of gut microbial balance as a key factor in disease susceptibility. We aimed to characterize the gut microbiota composition and function in cardio-metabolic disease and healthy controls. For this purpose, we collected stool samples of 18 subjects (12 diseased, 6 healthy) and we performed metagenomics analysis and functional prediction using QIIME2 and PICRUSt. Furthermore, we carried out assessments of microbe-gene interactions, gene ontology, and microbe-disease associations. Our findings revealed distinct microbial patterns in the diseased group, particularly evident in lower taxonomic levels with significant variations in 14 microbial features. The diseased cohort exhibited an enrichment of Lachnospiraceae family, correlating with obesity, insulin resistance, and metabolic disturbances. Conversely, reduced levels of Clostridium, Gemmiger, and Ruminococcus genera indicated a potential inflammatory state, linked to compromised butyrate production and gut permeability. Functional analyses highlighted dysregulated pathways in amino acid metabolism and energy equilibrium, with perturbations correlating with elevated branch-chain amino acid levels-a known contributor to insulin resistance and type 2 diabetes. These findings were consistent across biomarker assessments, microbe-gene associations, and gene ontology analyses, emphasizing the intricate interplay between gut microbial dysbiosis and cardio-metabolic disease progression. In conclusion, our study unveils significant shifts in gut microbial composition and function in cardio-metabolic disease, emphasizing the broader implications of microbial dysregulation. Addressing gut microbial balance emerges as a crucial therapeutic target in managing cardio-metabolic disease burden.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alka Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Urvinder Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
23
|
Lee S, Tejesvi MV, Hurskainen E, Aasmets O, Plaza-Díaz J, Franks S, Morin-Papunen L, Tapanainen JS, Ruuska TS, Altmäe S, Org E, Salumets A, Arffman RK, Piltonen TT. Gut bacteriome and mood disorders in women with PCOS. Hum Reprod 2024; 39:1291-1302. [PMID: 38614956 PMCID: PMC11145006 DOI: 10.1093/humrep/deae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
STUDY QUESTION How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S Lee
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - M V Tejesvi
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - E Hurskainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - O Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - J Plaza-Díaz
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - S Franks
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - L Morin-Papunen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of and University of Fribourg, Fribourg, Switzerland
| | - T S Ruuska
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - S Altmäe
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - E Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - A Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - R K Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Yan J, Wang Z, Bao G, Xue C, Zheng W, Fu R, Zhang M, Ding J, Yang F, Sun B. Causal effect between gut microbiota and metabolic syndrome in European population: a bidirectional mendelian randomization study. Cell Biosci 2024; 14:67. [PMID: 38807189 PMCID: PMC11134679 DOI: 10.1186/s13578-024-01232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Observational studies have reported that gut microbiota composition is associated with metabolic syndrome. However, the causal effect of gut microbiota on metabolic syndrome has yet to be confirmed. METHODS We performed a bidirectional Mendelian randomization study to investigate the causal effect between gut microbiota and metabolic syndrome in European population. Summary statistics of gut microbiota were from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium. The summary statistics of outcome were obtained from the most comprehensive genome-wide association studies of metabolic syndrome (n = 291,107). The inverse-variance weighted method was applied as the primary method, and the robustness of the results was assessed by a series of sensitivity analyses. RESULTS In the primary causal estimates, Actinobacteria (OR = 0.935, 95% CI = 0.878-0.996, P = 0.037), Bifidobacteriales (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Bifidobacteriaceae (OR = 0.928, 95% CI = 0.868-0.992, P = 0.028), Desulfovibrio (OR = 0.920, 95% CI = 0.869-0.975, P = 0.005), and RuminococcaceaeUCG010 (OR = 0.882, 95% CI = 0.803-0.969, P = 0.009) may be associated with a lower risk of metabolic syndrome, while Lachnospiraceae (OR = 1.130, 95% CI = 1.016-1.257, P = 0.025), Veillonellaceae (OR = 1.055, 95% CI = 1.004-1.108, P = 0.034) and Olsenella (OR = 1.046, 95% CI = 1.009-1.085, P = 0.015) may be linked to a higher risk for metabolic syndrome. Reverse MR analysis demonstrated that abundance of RuminococcaceaeUCG010 (OR = 0.938, 95% CI = 0.886-0.994, P = 0.030) may be downregulated by metabolic syndrome. Sensitivity analyses indicated no heterogeneity or horizontal pleiotropy. CONCLUSIONS Our Mendelian randomization study provided causal relationship between specific gut microbiota and metabolic syndrome, which might provide new insights into the potential pathogenic mechanisms of gut microbiota in metabolic syndrome and the assignment of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiawu Yan
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhongyuan Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guojian Bao
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Cailin Xue
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, the Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Rao Fu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Minglu Zhang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jialu Ding
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Yang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
25
|
Li J, Wang M, Ma S, Jin Z, Yin H, Yang S. Association of gastrointestinal microbiome and obesity with gestational diabetes mellitus-an updated globally based review of the high-quality literatures. Nutr Diabetes 2024; 14:31. [PMID: 38773069 PMCID: PMC11109140 DOI: 10.1038/s41387-024-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVES The purpose of this review is to investigate the relationship between gastrointestinal microbiome, obesity, and gestational diabetes mellitus (GDM) in an objective manner. METHODS We conducted a thorough and comprehensive search of the English language literatures published in PubMed, Web of Science, and the Cochrane Library from the establishment of the library until 12 December 2023. Our search strategy included both keywords and free words searches, and we strictly applied inclusion and exclusion criteria. Meta-analyses and systematic reviews were prepared. RESULTS Six high-quality literature sources were identified for meta-analysis. However, after detailed study and analysis, a certain degree of heterogeneity was found, and the credibility of the combined analysis results was limited. Therefore, descriptive analyses were conducted. The dysbiosis of intestinal microbiome, specifically the ratio of Firmicutes/Bacteroides, is a significant factor in the development of metabolic diseases such as obesity and gestational diabetes. Patients with intestinal dysbiosis and obesity are at a higher risk of developing GDM. CONCLUSIONS During pregnancy, gastrointestinal microbiome disorders and obesity may contribute to the development of GDM, with all three factors influencing each other. This finding could aid in the diagnosis and management of patients with GDM through further research on their gastrointestinal microbiome.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Min Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Shuai Ma
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhong Jin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Haonan Yin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
26
|
Yang K, Zeng J, Wu H, Liu H, Ding Z, Liang W, Wu L, Lin Z, Huang W, Xu J, Dong F. Nonalcoholic Fatty Liver Disease: Changes in Gut Microbiota and Blood Lipids. J Clin Transl Hepatol 2024; 12:333-345. [PMID: 38638378 PMCID: PMC11022063 DOI: 10.14218/jcth.2023.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/10/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024] Open
Abstract
Background and Aims The global prevalence of nonalcoholic fatty liver disease (NAFLD) is 25%. This study aimed to explore differences in the gut microbial community and blood lipids between normal livers and those affected by NAFLD using 16S ribosomal deoxyribonucleic acid sequencing. Methods Gut microbiome profiles of 40 NAFLD and 20 non-NAFLD controls were analyzed. Information about four blood lipids and 13 other clinical features was collected. Patients were divided into three groups by ultrasound and FibroScan, those with a normal liver, mild FL (FL1), and moderate-to-severe FL (FL2). FL1 and FL2 patients were divided into two groups, those with either hyperlipidemia or non-hyperlipidemia based on their blood lipids. Potential keystone species within the groups were identified using univariate analysis and a specificity-occupancy plot. Significant difference in biochemical parameters ion NAFLD patients and healthy individuals were identified by detrended correspondence analysis and canonical correspondence analysis. Results Decreased gut bacterial diversity was found in patients with NAFLD. Firmicutes/Bacteroidetes decreased as NAFLD progressed. Faecalibacterium and Ruminococcus 2 were the most representative fatty-related bacteria. Glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count were selected as the most significant biochemical indexes. Calculation of areas under the curve identified two microbiomes combined with the three biochemical indexes that identified normal liver and FL2 very well but performed poorly in diagnosing FL1. Conclusions Faecalibacterium and Ruminococcus 2, combined with glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count distinguished NAFLD. We speculate that regulating the health of gut microbiota may release NAFLD, in addition to providing new targets for clinicians to treat NAFLD.
Collapse
Affiliation(s)
| | | | - Huaiyu Wu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Huiyu Liu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Zhimin Ding
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Weiyu Liang
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Linghu Wu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Ziwei Lin
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Wenhui Huang
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,Guangdong, China
| |
Collapse
|
27
|
Kim J, Baek Y, Lee S. Consumption of dietary fiber and APOA5 genetic variants in metabolic syndrome: baseline data from the Korean Medicine Daejeon Citizen Cohort Study. Nutr Metab (Lond) 2024; 21:19. [PMID: 38581036 PMCID: PMC10998362 DOI: 10.1186/s12986-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Consumption of dietary fiber has been suggested as an important aspect of a healthy diet to reduce the risk of metabolic syndrome (MetS), including cardiovascular disease. The role of fiber intake in MetS might differ by individual genetic susceptibility. APOA5 encodes a regulator of plasma triglyceride levels, which impacts the related mechanisms of MetS. This study investigated the association between dietary fiber and the risk of MetS, assessing their associations according to APOA5 genetic variants. METHODS A total of 1985 participants aged 30-55 years were included from a cross-sectional study based on the Korean Medicine Daejeon Citizen Cohort study at baseline (2017-2019). Dietary fiber intake was measured using a semiquantitative food frequency questionnaire. The APOA5 polymorphisms (rs2266788 A > G, rs662799 A > G, and rs651821 T > C) were genotyped using the Asia Precision Medicine Research Array. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS A higher consumption of dietary fiber was associated with a lower prevalence of MetS (P = 0.025). Among the components of MetS, an inverse association with dietary fiber was observed in increased waist circumference (OR, 95% CI = 0.60, 0.41-0.88, P for trend = 0.009) and elevated triglycerides (OR, 95% CI = 0.69, 0.50-0.96, P for trend = 0.012). Regarding the interaction with APOA5 genetic variants, a stronger association with dietary fiber intake was shown in G allele carriers of rs662799 than in A/A carriers (OR, 95% CI = 2.34, 1.59-3.44, P for interaction = 0.024) and in C allele carriers of rs651821 than in T/T carriers (OR, 95% CI = 2.35, 1.59-3.46, P for interaction = 0.027). CONCLUSIONS The findings of this study suggest that the benefits of dietary fiber on the risk of MetS could be modified by genetic variants of the APOA5 gene, providing a more effective strategy for preventing MetS.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Food and Nutrition, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, 51140, Changwon, Gyeongnam, South Korea
| | - Younghwa Baek
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, 34054, Daejeon, South Korea
| | - Siwoo Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, 34054, Daejeon, South Korea.
| |
Collapse
|
28
|
Balvers M, de Goffau M, van Riel N, van den Born BJ, Galenkamp H, Zwinderman K, Nieuwdorp M, Levin E. Ethnic variations in metabolic syndrome components and their associations with the gut microbiota: the HELIUS study. Genome Med 2024; 16:41. [PMID: 38509598 PMCID: PMC10953122 DOI: 10.1186/s13073-024-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The occurrence of metabolic syndrome (MetS) and the gut microbiota composition are known to differ across ethnicities yet how these three factors are interwoven is unknown. Also, it is unknown what the relative contribution of the gut microbiota composition is to each MetS component and whether this differs between ethnicities. We therefore determined the occurrence of MetS and its components in the multi-ethnic HELIUS cohort and tested the overall and ethnic-specific associations with the gut microbiota composition. METHODS We included 16,209 treatment naïve participants of the HELIUS study, which were of Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish, and Moroccan descent to analyze MetS and its components across ethnicities. In a subset (n = 3443), the gut microbiota composition (16S) was associated with MetS outcomes using linear and logistic regression models. RESULTS A differential, often sex-dependent, prevalence of MetS components and their combinations were observed across ethnicities. Increased blood pressure was commonly seen especially in Ghanaians, while South-Asian Surinamese and Turkish had higher MetS rates in general and were characterized by worse lipid-related measures. Regarding the gut microbiota, when ethnic-independent associations were assumed, a higher α-diversity, higher abundance of several ASVs (mostly for waist and triglyceride-related outcomes) and a trophic network of ASVs of Ruminococcaceae, Christensenellaceae, and Methanobrevibacter (RCM) bacteria were associated with better MetS outcomes. Statistically significant ethnic-specific associations were however noticed for α-diversity and the RCM trophic network. Associations were significant in the Dutch but not always in all other ethnicities. In Ghanaians, a higher α-diversity and RCM network abundance showed an aberrant positive association with high blood pressure measures compared to the other ethnicities. Even though adjustment for socioeconomic status-, lifestyle-, and diet-related variables often attenuated the effect size and/or the statistical significance of the ethnic-specific associations, an overall similar pattern across outcomes and ethnicities remained. CONCLUSIONS The occurrence of MetS characteristics among ethnicities is heterogeneous. Both ethnic-independent and ethnic-specific associations were identified between the gut microbiota and MetS outcomes. Across multiple ethnicities, a one-size-fits-all approach may thus be reconsidered in regard to both the definition and/or treatment of MetS and its relation to the gut microbiota.
Collapse
Affiliation(s)
- Manon Balvers
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marcus de Goffau
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, The Netherlands
| | - Natal van Riel
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Koos Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, The Netherlands.
| |
Collapse
|
29
|
Wang Y, Ullah H, Deng T, Ren X, Zhao Z, Xin Y, Qiu J. Social isolation induces intestinal barrier disorder and imbalances gut microbiota in mice. Neurosci Lett 2024; 826:137714. [PMID: 38479554 DOI: 10.1016/j.neulet.2024.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Social isolation, a known stressor, can have detrimental effects on both physical and mental health. Recent scientific attention has been drawn to the gut-brain axis, a bidirectional communication system between the central nervous system and gut microbiota, suggesting that gut microbes may influence brain function. This study aimed to explore the impact of social isolation on the intestinal barrier and gut microbiota. 40 male BALB/c mice were either individually housed or kept in groups for 8 and 15 weeks. Socially isolated mice exhibited increased anxiety-like behavior, with significant differences between the 8-week and 15-week isolation groups (P < 0.05). After 8 weeks of isolation, there was a reduction in tight junction protein expression in the intestinal mechanical barrier. Furthermore, after 15 weeks of isolation, both tight junction protein and mucin expression, key components of the intestinal chemical barrier, decreased. This was accompanied by a substantial increase in inflammatory cytokines (IL-6 mRNA, IL-10, and TNF-α) in colon tissue in the 15-week isolated group (P < 0.05). Additionally, Illumina MiSequencing revealed significant alterations in the gut microbiota of socially isolated mice, including reduced Firmicutes and Bacteroides compared to the control group. Lactobacillus levels also decreased in the socially isolated mice.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Hidayat Ullah
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Ting Deng
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Xinxiu Ren
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Zinan Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
30
|
Lupu VV, Bratu RM, Trandafir LM, Bozomitu L, Paduraru G, Gimiga N, Ghiga G, Forna L, Ioniuc I, Petrariu FD, Puha B, Lupu A. Exploring the Microbial Landscape: Gut Dysbiosis and Therapeutic Strategies in Pancreatitis-A Narrative Review. Biomedicines 2024; 12:645. [PMID: 38540258 PMCID: PMC10967871 DOI: 10.3390/biomedicines12030645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
The gut microbiota is emerging as an important contributor to the homeostasis of the human body through its involvement in nutrition and metabolism, protection against pathogens, and the development and modulation of the immune system. It has therefore become an important research topic in recent decades. Although the association between intestinal dysbiosis and numerous digestive pathologies has been thoroughly researched, its involvement in pancreatic diseases constitutes a novelty in the specialized literature. In recent years, growing evidence has pointed to the critical involvement of the pancreas in regulating the intestinal microbiota, as well as the impact of the intestinal microbiota on pancreatic physiology, which implies the existence of a bidirectional connection known as the "gut-pancreas axis". It is theorized that any change at either of these levels triggers a response in the other component, hence leading to the evolution of pancreatitis. However, there are not enough data to determine whether gut dysbiosis is an underlying cause or a result of pancreatitis; therefore, more research is needed in this area. The purpose of this narrative review is to highlight the role of gut dysbiosis in the pathogenesis of acute and chronic pancreatitis, its evolution, and the prospect of employing the microbiota as a therapeutic intervention for pancreatitis.
Collapse
Affiliation(s)
| | - Roxana Mihaela Bratu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | - Gabriela Paduraru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Akbuğa-Schön T, Suzuki TA, Jakob D, Vu DL, Waters JL, Ley RE. The keystone gut species Christensenella minuta boosts gut microbial biomass and voluntary physical activity in mice. mBio 2024; 15:e0283623. [PMID: 38132571 PMCID: PMC10865807 DOI: 10.1128/mbio.02836-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
The gut bacteria of the family Christensenellaceae are consistently associated with metabolic health, but their role in promoting host health is not fully understood. Here, we explored the effect of Christensenella minuta amendment on voluntary physical activity and the gut microbiome. We inoculated male and female germ-free mice with an obese human donor microbiota together with live or heat-killed C. minuta for 28 days and measured physical activity in respirometry cages. Compared to heat-killed, the live-C. minuta treatment resulted in reduced feed efficiency and higher levels of physical activity, with significantly greater distance traveled for males and higher levels of small movements and resting metabolic rate in females. Sex-specific effects of C. minuta treatment may be in part attributable to different housing conditions for males and females. Amendment with live C. minuta boosted gut microbial biomass in both sexes, immobilizing dietary carbon in the microbiome, and mice with high levels of C. minuta lose more energy in stool. Live C. minuta also reduced within and between-host gut microbial diversity. Overall, our results showed that C. minuta acts as a keystone species: despite low relative abundance, it has a large impact on its ecosystem, from the microbiome to host energy homeostasis.IMPORTANCEThe composition of the human gut microbiome is associated with human health. Within the human gut microbiome, the relative abundance of the bacterial family Christensenellaceae has been shown to correlate with metabolic health and a lean body type. The mechanisms underpinning this effect remain unclear. Here, we show that live C. minuta influences host physical activity and metabolic energy expenditure, accompanied by changes in murine metabolism and the gut microbial community in a sex-dependent manner in comparison to heat-killed C. minuta. Importantly, live C. minuta boosts the biomass of the microbiome in the gut, and a higher level of C. minuta is associated with greater loss of energy in stool. These observations indicate that modulation of activity levels and changes to the microbiome are ways in which the Christensenellaceae can influence host energy homeostasis and health.
Collapse
Affiliation(s)
- Tanja Akbuğa-Schön
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Dennis Jakob
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Mass Spectrometry Facility, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Dai Long Vu
- Mass Spectrometry Facility, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jillian L. Waters
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Fortunato IM, Pereira QC, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Metabolic Insights into Caffeine's Anti-Adipogenic Effects: An Exploration through Intestinal Microbiota Modulation in Obesity. Int J Mol Sci 2024; 25:1803. [PMID: 38339081 PMCID: PMC10855966 DOI: 10.3390/ijms25031803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity, a chronic condition marked by the excessive accumulation of adipose tissue, not only affects individual well-being but also significantly inflates healthcare costs. The physiological excess of fat manifests as triglyceride (TG) deposition within adipose tissue, with white adipose tissue (WAT) expansion via adipocyte hyperplasia being a key adipogenesis mechanism. As efforts intensify to address this global health crisis, understanding the complex interplay of contributing factors becomes critical for effective public health interventions and improved patient outcomes. In this context, gut microbiota-derived metabolites play an important role in orchestrating obesity modulation. Microbial lipopolysaccharides (LPS), secondary bile acids (BA), short-chain fatty acids (SCFAs), and trimethylamine (TMA) are the main intestinal metabolites in dyslipidemic states. Emerging evidence highlights the microbiota's substantial role in influencing host metabolism and subsequent health outcomes, presenting new avenues for therapeutic strategies, including polyphenol-based manipulations of these microbial populations. Among various agents, caffeine emerges as a potent modulator of metabolic pathways, exhibiting anti-inflammatory, antioxidant, and obesity-mitigating properties. Notably, caffeine's anti-adipogenic potential, attributed to the downregulation of key adipogenesis regulators, has been established. Recent findings further indicate that caffeine's influence on obesity may be mediated through alterations in the gut microbiota and its metabolic byproducts. Therefore, the present review summarizes the anti-adipogenic effect of caffeine in modulating obesity through the intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
34
|
Ignatyeva O, Tolyneva D, Kovalyov A, Matkava L, Terekhov M, Kashtanova D, Zagainova A, Ivanov M, Yudin V, Makarov V, Keskinov A, Kraevoy S, Yudin S. Christensenella minuta, a new candidate next-generation probiotic: current evidence and future trajectories. Front Microbiol 2024; 14:1241259. [PMID: 38274765 PMCID: PMC10808311 DOI: 10.3389/fmicb.2023.1241259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background As the field of probiotic research continues to expand, new beneficial strains are being discovered. The Christensenellaceae family and its newly described member, Christensenella minuta, have been shown to offer great health benefits. We aimed to extensively review the existing literature on these microorganisms to highlight the advantages of their use as probiotics and address some of the most challenging aspects of their commercial production and potential solutions. Methods We applied a simple search algorithm using the key words "Christensenellaceae" and "Christensenella minuta" to find all articles reporting the biotherapeutic effects of these microorganisms. Only articles reporting evidence-based results were reviewed. Results The review showed that Christensenella minuta has demonstrated numerous beneficial properties and a wider range of uses than previously thought. Moreover, it has been shown to be oxygen-tolerant, which is an immense advantage in the manufacturing and production of Christensenella minuta-based biotherapeutics. The results suggest that Christensenellaceae and Christensenella munita specifically can play a crucial role in maintaining a healthy gut microbiome. Furthermore, Christensenellaceae have been associated with weight management. Preliminary studies suggest that this probiotic strain could have a positive impact on metabolic disorders like diabetes and obesity, as well as inflammatory bowel disease. Conclusion Christensenellaceae and Christensenella munita specifically offer immense health benefits and could be used in the management and therapy of a wide range of health conditions. In addition to the impressive biotherapeutic effect, Christensenella munita is oxygen-tolerant, which facilitates commercial production and storage.
Collapse
Affiliation(s)
- Olga Ignatyeva
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Biomedical Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
36
|
Cyphert EL, Liu C, Morales AL, Nixon JC, Blackford E, Garcia M, Cevallos N, Turnbaugh PJ, Brito IL, Booth SL, Hernandez CJ. Effects of long-term high dose aspartame on body mass, bone strength, femoral geometry, and microbiota composition in a young and aged cohort of male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573970. [PMID: 38260245 PMCID: PMC10802297 DOI: 10.1101/2024.01.02.573970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Recent reassessment of the safety of aspartame has prompted increased evaluation of its effect on the health of a range of tissues. The gut microbiome is altered by oral aspartame. One prior study suggested that changes in the microbiome caused by aspartame could influence the strength of bone in young skeletally developing mice. Here we ask how aspartame influences bone in mice of different age and sex. Objective The objective of this study was to determine the effect of aspartame on the bone strength and gut microbiota of young and aged mice. Methods Male and female C57Bl/6J mice were untreated or treated with a high dose of aspartame in their drinking water from 1 month of age until 4 (young cohort; n = 80) or 22 months (aged cohort; n = 52). Results In aged males, mice treated with aspartame had greater body mass, whole bone strength, and femoral geometry relative to untreated. Specifically, in aged males, aspartame led to 9% increase in body mass (p < 0.001), 22% increase in whole bone strength (p = 0.006), and 17% increase in section modulus (p < 0.001) relative to untreated mice. Aged males and females receiving aspartame had a different microbiota than untreated mice and a decreased abundance of Odoribacter. No differences in body mass, whole bone strength, or femoral geometry were associated with aspartame dosing in young males or young or aged females. Conclusions Aspartame treated aged males had greater whole bone strength and the effect appeared to be explained by greater body mass. Aspartame treatment did not alter whole bone strength in young males or young or aged females despite the aspartame having a similar effect on the microbiota of both aged males and females.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Orthopaedic Surgery, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Chongshan Liu
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Angie L. Morales
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Jacob C. Nixon
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Emily Blackford
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Matthew Garcia
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94143
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853
| | - Sarah L. Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, 711 Washington Street, Tufts University, Boston, MA 02111
| | - Christopher J. Hernandez
- Department of Orthopaedic Surgery, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94143
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94158
| |
Collapse
|
37
|
Jamieson PE, Smart EB, Bouranis JA, Choi J, Danczak RE, Wong CP, Paraiso IL, Maier CS, Ho E, Sharpton TJ, Metz TO, Bradley R, Stevens JF. Gut enterotype-dependent modulation of gut microbiota and their metabolism in response to xanthohumol supplementation in healthy adults. Gut Microbes 2024; 16:2315633. [PMID: 38358253 PMCID: PMC10878022 DOI: 10.1080/19490976.2024.2315633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.
Collapse
Affiliation(s)
- Paige E. Jamieson
- College of Health, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Eli B. Smart
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - John A. Bouranis
- College of Health, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robert E. Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Ines L. Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- College of Health, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Thomas J. Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR, USA
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| |
Collapse
|
38
|
Atzeni A, Nishi SK, Babio N, Belzer C, Konstanti P, Vioque J, Corella D, Castañer O, Vidal J, Moreno-Indias I, Torres-Collado L, Asensio EM, Fitó M, Gomez-Perez AM, Arias A, Ruiz-Canela M, Hu FB, Tinahones FJ, Salas-Salvadó J. Carbohydrate quality, fecal microbiota and cardiometabolic health in older adults: a cohort study. Gut Microbes 2023; 15:2246185. [PMID: 37610130 PMCID: PMC10449004 DOI: 10.1080/19490976.2023.2246185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
The impact of carbohydrate quality, measured by the carbohydrate quality index (CQI), on gut microbiota and health has been scarcely investigated. The aim of this study was to cross-sectionally and longitudinally explore the relationships between CQI, fecal microbiota, and cardiometabolic risk factors in an elderly Mediterranean population at high cardiovascular risk. At baseline and 1-year, CQI was assessed from food frequency questionnaires data, cardiometabolic risk factors were measured, and fecal microbiota profiled from 16S sequencing. Multivariable-adjusted linear regression models were fitted to assess the associations between tertiles of baseline CQI, fecal microbiota, and cardiometabolic risk factors at baseline, and between tertiles of 1-year change in CQI, 1-year change in fecal microbiota and cardiometabolic risk factors. Cross-sectionally, higher CQI was positively associated with Shannon alpha diversity index, and abundance of genera Faecalibacterium and Christensenellaceae R7 group, and negatively associated with the abundance of Odoribacter, and uncultured Rhodospirillales genera. Some of these genera were associated with higher glycated hemoglobin and lower body mass index. In addition, we observed a positive association between CQI, and some pathways related with the metabolism of butyrate precursors and plants-origin molecules. Longitudinally, 1-year improvement in CQI was associated with a concurrent increase in the abundance of genera Butyrivibrio. Increased abundance of this genera was associated with 1-year improvement in insulin status. These observations suggest that a better quality of carbohydrate intake is associated with improved metabolic health, and this improvement could be modulated by greater alpha diversity and abundance of specific genera linked to beneficial metabolic outcomes.
Collapse
Affiliation(s)
- Alessandro Atzeni
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
- Human Nutrition Unit, Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Stephanie K. Nishi
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
- Human Nutrition Unit, Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Toronto 3D (Diet Digestive Tract and Disease) Knowledge Synthesis and Clinical Trials Unit, Toronto, Canada
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Unity Health Toronto, Toronto, Canada
| | - Nancy Babio
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
- Human Nutrition Unit, Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d’Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, the Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA-BIONAND Platform), University of Malaga, Malaga, Spain
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Eva M. Asensio
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), Barcelona, Spain
| | - Ana Maria Gomez-Perez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, the Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA-BIONAND Platform), University of Malaga, Malaga, Spain
| | - Alejandro Arias
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Frank B. Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Francisco J. Tinahones
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, the Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA-BIONAND Platform), University of Malaga, Malaga, Spain
| | - Jordi Salas-Salvadó
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
- Human Nutrition Unit, Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Venkidesh BS, Narasimhamurthy RK, Jnana A, Reghunathan D, Sharan K, Chandraguthi SG, Saigal M, Murali TS, Mumbrekar KD. Pelvic irradiation induces behavioural and neuronal damage through gut dysbiosis in a rat model. Chem Biol Interact 2023; 386:110775. [PMID: 37866488 DOI: 10.1016/j.cbi.2023.110775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Radiation exposure can cause gut dysbiosis and there is a positive correlation between gut microbial imbalance and radiation-induced side effects in cancer patients. However, the influence of radiation on the gut-brain axis (GBA) and its neurological consequences are not well understood. Therefore, this study aimed to investigate the impact of pelvic irradiation on gut microbiota and the brain. Sprague Dawley rats were irradiated with a single dose of 6 Gy, and faecal samples were collected at different time points (7 and 12-days post-irradiation) for microbial analysis. Behavioural, histological, and gene expression analysis were performed to assess the effect of microbial dysbiosis on the brain. The findings indicated alterations in microbial diversity, disrupted intestinal morphology and integrity, neuronal death-related brain changes, neuroinflammation and reduced locomotor activity. Hippocampal gene expression analysis also showed a reduced expression of neural plasticity-related genes. Overall, this study demonstrated that pelvic irradiation affects gut microbiota, intestinal morphology, integrity, brain neuronal maturation, neural plasticity gene expression, and behaviour.
Collapse
Affiliation(s)
- Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinidhi G Chandraguthi
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehreen Saigal
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thokur S Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
40
|
Chen Y, Zhao M, Ji K, Li J, Wang S, Lu L, Chen Z, Zeng J. Association of nicotine dependence and gut microbiota: a bidirectional two-sample Mendelian randomization study. Front Immunol 2023; 14:1244272. [PMID: 38022531 PMCID: PMC10664251 DOI: 10.3389/fimmu.2023.1244272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Nicotine dependence is a key factor influencing the diversity of gut microbiota, and targeting gut microbiota may become a new approach for the prevention and treatment of nicotine dependence. However, the causal relationship between the two is still unclear. This study aims to investigate the causal relationship between nicotine dependence and gut microbiota. Methods A two-sample bidirectional Mendelian randomization (MR) study was conducted using the largest existing gut microbiota and nicotine dependence genome-wide association studies (GWAS). Causal relationships between genetically predicted nicotine dependence and gut microbiota abundance were examined using inverse variance weighted, MR-Egger, weighted median, simple mode, weighted mode, and MR-PRESSO approaches. Cochrane's Q test, MR-Egger intercept test, and leave-one-out analysis were performed as sensitivity analyses to assess the robustness of the results. Multivariable Mendelian randomization analysis was also conducted to eliminate the interference of smoking-related phenotypes. Reverse Mendelian randomization analysis was then performed to determine the causal relationship between genetically predicted gut microbiota abundance and nicotine dependence. Results Genetically predicted nicotine dependence had a causal effect on Christensenellaceae (β: -0.52, 95% CI: -0.934-0.106, P = 0.014). The Eubacterium xylanophilum group (OR: 1.106, 95% CI: 1.004-1.218), Lachnoclostridium (OR: 1.118, 95% CI: 1.001-1.249) and Holdemania (OR: 1.08, 95% CI: 1.001-1.167) were risk factors for nicotine dependence. Peptostreptococcaceae (OR: 0.905, 95% CI: 0.837-0.977), Desulfovibrio (OR: 0.014, 95% CI: 0.819-0.977), Dorea (OR: 0.841, 95% CI. 0.731-0.968), Faecalibacterium (OR: 0.831, 95% CI: 0.735-0.939) and Sutterella (OR: 0.838, 95% CI: 0.739-0.951) were protective factor for nicotine dependence. The sensitivity analysis showed consistent results. Conclusion The Mendelian randomization study confirmed the causal link between genetically predicted risk of nicotine dependence and genetically predicted abundance of gut microbiota. Gut microbiota may serve as a biomarker and offer insights for addressing nicotine dependence.
Collapse
Affiliation(s)
- Yuexuan Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengjiao Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaisong Ji
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Li
- Department of Acupuncture, Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Shuxin Wang
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhu Chen
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingchun Zeng
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
41
|
Bruijning M, Ayroles JF, Henry LP, Koskella B, Meyer KM, Metcalf CJE. Relative abundance data can misrepresent heritability of the microbiome. MICROBIOME 2023; 11:222. [PMID: 37814275 PMCID: PMC10561453 DOI: 10.1186/s40168-023-01669-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any other complex trait, this important question can be addressed by estimating the heritability (h2) of the microbiome-the proportion of variance in the abundance in each taxon that is attributable to host genetic variation. However, unlike most complex traits, microbiome heritability is typically based on relative abundance data, where taxon-specific abundances are expressed as the proportion of the total microbial abundance in a sample. RESULTS We derived an analytical approximation for the heritability that one obtains when using such relative, and not absolute, abundances, based on an underlying quantitative genetic model for absolute abundances. Based on this, we uncovered three problems that can arise when using relative abundances to estimate microbiome heritability: (1) the interdependency between taxa can lead to imprecise heritability estimates. This problem is most apparent for dominant taxa. (2) Large sample size leads to high false discovery rates. With enough statistical power, the result is a strong overestimation of the number of heritable taxa in a community. (3) Microbial co-abundances lead to biased heritability estimates. CONCLUSIONS We discuss several potential solutions for advancing the field, focusing on technical and statistical developments, and conclude that caution must be taken when interpreting heritability estimates and comparing values across studies. Video Abstract.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands.
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA
| | - Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York City, 10003, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Kyle M Meyer
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
42
|
Salvador AC, Huda MN, Arends D, Elsaadi AM, Gacasan CA, Brockmann GA, Valdar W, Bennett BJ, Threadgill DW. Analysis of strain, sex, and diet-dependent modulation of gut microbiota reveals candidate keystone organisms driving microbial diversity in response to American and ketogenic diets. MICROBIOME 2023; 11:220. [PMID: 37784178 PMCID: PMC10546677 DOI: 10.1186/s40168-023-01588-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The gut microbiota is modulated by a combination of diet, host genetics, and sex effects. The magnitude of these effects and interactions among them is important to understanding inter-individual variability in gut microbiota. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed along with several QTLs for metabolic traits. In the current study, we searched for genetic variants underlying differences in the gut microbiota in response to American and ketogenic diets, which are high in fat and vary in carbohydrate composition, between C57BL/6 J (B6) and FVB/NJ (FVB) mouse strains. RESULTS Genetic mapping of microbial features revealed 18 loci under the QTL model (i.e., marginal effects that are not specific to diet or sex), 12 loci under the QTL by diet model, and 1 locus under the QTL by sex model. Multiple metabolic and microbial features map to the distal part of Chr 1 and Chr 16 along with eigenvectors extracted from principal coordinate analysis of measures of β-diversity. Bilophila, Ruminiclostridium 9, and Rikenella (Chr 1) were identified as sex- and diet-independent QTL candidate keystone organisms, and Parabacteroides (Chr 16) was identified as a diet-specific, candidate keystone organism in confirmatory factor analyses of traits mapping to these regions. For many microbial features, irrespective of which QTL model was used, diet or the interaction between diet and a genotype were the strongest predictors of the abundance of each microbial trait. Sex, while important to the analyses, was not as strong of a predictor for microbial abundances. CONCLUSIONS These results demonstrate that sex, diet, and genetic background have different magnitudes of effects on inter-individual differences in gut microbiota. Therefore, Precision Nutrition through the integration of genetic variation, microbiota, and sex affecting microbiota variation will be important to predict response to diets varying in carbohydrate composition. Video Abstract.
Collapse
Affiliation(s)
- Anna C Salvador
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Nazmul Huda
- Department of Nutrition, University of California Davis, Sacramento, CA, 95616, USA
- Obesity and Metabolism Unit, Western Human Nutrition Research Center, USDA-ARS, Davis, CA, 95616, USA
| | - Danny Arends
- Albrecht Daniel Thaer-Institut, 10115, Berlin, Germany
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Ahmed M Elsaadi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - C Anthony Gacasan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | | | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian J Bennett
- Department of Nutrition, University of California Davis, Sacramento, CA, 95616, USA
- Obesity and Metabolism Unit, Western Human Nutrition Research Center, USDA-ARS, Davis, CA, 95616, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
43
|
Bishehsari F, Drees M, Adnan D, Sharma D, Green S, Koshy J, Giron LB, Goldman A, Abdel-Mohsen M, Rasmussen HE, Miller GE, Keshavarzian A. Multi-omics approach to socioeconomic disparity in metabolic syndrome reveals roles of diet and microbiome. Proteomics 2023; 23:e2300023. [PMID: 37525324 DOI: 10.1002/pmic.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
The epidemy of metabolic syndrome (MetS) is typically preceded by adoption of a "risky" lifestyle (e.g., dietary habit) among populations. Evidence shows that those with low socioeconomic status (SES) are at an increased risk for MetS. To investigate this, we recruited 123 obese subjects (body mass index [BMI] ≥ 30) from Chicago. Multi-omic data were collected to interrogate fecal microbiota, systemic markers of inflammation and immune activation, plasma metabolites, and plasma glycans. Intestinal permeability was measured using the sugar permeability testing. Our results suggest a heterogenous metabolic dysregulation among obese populations who are at risk of MetS. Systemic inflammation, linked to poor diet, intestinal microbiome dysbiosis, and gut barrier dysfunction may explain the development of MetS in these individuals. Our analysis revealed 37 key features associated with increased numbers of MetS features. These features were used to construct a composite metabolic-inflammatory (MI) score that was able to predict progression of MetS among at-risk individuals. The MI score was correlated with several markers of poor diet quality as well as lower levels of gut microbial diversity and abnormalities in several species of bacteria. This study reveals novel targets to reduce the burden of MetS and suggests access to healthy food options as a practical intervention.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael Drees
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Aaron Goldman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Gregory E Miller
- Institute for Policy Research and Dept of Psychology, Northwestern Univ, Evanston, Illinois, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
44
|
Li Y, Cai H, Lin Y, Huang Z, Zhou A, Huang T, Zeng YE, Ye M, Guo G, Huang Z. Association of Apolipoprotein A5 Gene Variants with Hyperlipidemic Acute Pancreatitis in Southeastern China. Genet Test Mol Biomarkers 2023; 27:284-289. [PMID: 37768328 PMCID: PMC10541917 DOI: 10.1089/gtmb.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Background: Apolipoprotein A5 (APOA5) is involved in serum triglyceride (TG) regulation. Several studies have reported that the rs651821 locus in the APOA5 gene is associated with serum TG levels in the Chinese population. However, no research has been performed regarding the association between the variants of rs651821 and the risk of hyperlipidemic acute pancreatitis (HLAP). Methods: A case-control study was conducted and is reported following the STROBE guidelines. We enrolled a total of 88 participants in this study (60 HLAP patients and 28 controls). APOA5 was genotyped using PCR and Sanger sequencing. Logistic regression models were conducted to calculate odds ratios and a 95% confidence interval. Results: The genotype distribution of the rs651821 alleles in both groups follow the Hardy-Weinberg distribution. The frequency of the "C" allele in rs651821 was increased in HLAP patients compared to controls. In the recessive model, subjects with the "CC" genotype had an 8.217-fold higher risk for HLAP (OR = 8.217, 95% CI: 1.023-66.01, p = 0.046) than subjects with the "TC+TT" genotypes. After adjusting for sex, the association remained significant (OR = 9.898, 95% CI: 1.176-83.344, p = 0.035). Additionally, the "CC" genotype was related to an increased TG/apolipoprotein B (APOB) ratio and fasting plasma glucose (FPG) levels. Conclusions: Our findings suggest that the C allele of rs651821 in APOA5 increases the risk of HLAP in persons from Southeastern China.
Collapse
Affiliation(s)
- Yingyi Li
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Hehui Cai
- Clinical Laboratory, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yancheng Lin
- HI. Q Biomedical Laboratory, Taiwan Investment Zone, Quanzhou, China
| | - Zhipeng Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Apei Zhou
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Tianhao Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yue-e Zeng
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Meizhen Ye
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Guiyuan Guo
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zicheng Huang
- Department of Gastroenterology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
45
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
46
|
Rodriguez CI, Isobe K, Martiny JBH. Short-term dietary fiber interventions produce consistent gut microbiome responses across studies. RESEARCH SQUARE 2023:rs.3.rs-3283675. [PMID: 37674721 PMCID: PMC10479438 DOI: 10.21203/rs.3.rs-3283675/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2564 fecal samples from 538 subjects across all interventions. Results Short-term increases in dietary fiber consumption resulted in highly consistent gut microbiome responses across studies. Increased fiber consumption explained an average of 1.5% of compositional variation (versus 82% of variation attributed to the individual), reduced alpha diversity, and resulted in phylogenetically conserved responses in relative abundances among bacterial taxa. Additionally, we identified bacterial clades, at approximately the genus level, that were highly consistent in their response (increasing or decreasing in their relative abundance) to dietary fiber interventions across the studies. Conclusions Our study is an example of the power of synthesizing and reanalyzing microbiome data from many intervention studies. Despite high inter-individual variation of the composition of the human gut microbiome, dietary fiber interventions cause a consistent response both in the degree of change as well as the particular taxa that respond to increased fiber.
Collapse
|
47
|
Omotosho AO, Tajudeen YA, Oladipo HJ, Yusuff SI, AbdulKadir M, Muili AO, Egbewande OM, Yusuf RO, Faniran ZO, Afolabi AO, El‐Sherbini MS. Parkinson's disease: Are gut microbes involved? Brain Behav 2023; 13:e3130. [PMID: 37340511 PMCID: PMC10454343 DOI: 10.1002/brb3.3130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disorder that affects more than 10 million individuals worldwide. It is characterized by motor and sensory deficits. Research studies have increasingly demonstrated a correlation between Parkinson's disease and alternations in the composition of the gut microbiota in affected patients. Also, the significant role of prebiotics and probiotics in gastrointestinal and neurological conditions is imperative to understand their relation to Parkinson's disease. METHOD To explore the scientific interaction of the gut-microbiota-brain axis and its association with Parkinson's disease, a comprehensive narrative review of the relevant literature was conducted. Articles were retrieved systematically from reputable sources, including PubMed, Science Direct, World Health Organization (WHO), and Advanced Google Scholar. Key search terms included are "Parkinson's Disease", "Gut Microbiome", "Braak's Theory", "Neurological Disorders", and "Gut-brain axis". Articles included in our review are published in English and they provide detailed information on the relationship between Parkinson's disease and gut microbiota RESULTS: This review highlights the impact of gut microbiota composition and associated factors on the progression of Parkinson's disease. Evidence-based studies highlighting the existing evidence of the relationship between Parkinson's disease and alteration in gut microbiota are discussed. Consequently, the potential mechanisms by which the gut microbiota may affect the composition of the gut microbiota were revealed, with a particular emphasis on the role of the gut-brain axis in this interplay. CONCLUSION Understanding the complex interplay between gut microbiota and Parkinson's disease is a potential implication for the development of novel therapeutics against Parkinson's disease. Following the existing relationship demonstrated by different evidence-based studies on Parkinson's disease and gut microbiota, our review concludes by providing recommendations and suggestions for future research studies with a particular emphasis on the impact of the microbiota-brain axis on Parkinson's disease.
Collapse
Affiliation(s)
- Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied SciencesKwara State University, Malete‐IlorinIlorinNigeria
| | - Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life SciencesUniversity of IlorinIlorinNigeria
- Faculty of Pharmaceutical SciencesUniversity of IlorinIlorinNigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life SciencesUniversity of IlorinIlorinNigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical SciencesObafemi Awolowo UniversityIfeNigeria
| | - Muritala AbdulKadir
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | | | - Oluwaseyi Muyiwa Egbewande
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | - Rashidat Onyinoyi Yusuf
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of MedicineUniversity of IbadanIbadanNigeria
| | | | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and ImmunologyKampala International UniversityBushenyiUganda
| | - Mona Said El‐Sherbini
- Narrative Medicine and Planetary Health, Integrated Program of Kasr Al-Ainy (IPKA), Faculty of MedicineCairo UniversityCairoEgypt
- Invited Facultythe Nova Institute for HealthBaltimoreMDUSA
- Department of Medical Parasitology, Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
48
|
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother 2023; 164:114985. [PMID: 37311282 DOI: 10.1016/j.biopha.2023.114985] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiota is indispensable for maintaining host health by enhancing the host's digestive capacity, safeguarding the intestinal epithelial barrier, and preventing pathogen invasion. Additionally, the gut microbiota exhibits a bidirectional interaction with the host immune system and promotes the immune system of the host to mature. Dysbiosis of the gut microbiota, primarily caused by factors such as host genetic susceptibility, age, BMI, diet, and drug abuse, is a significant contributor to inflammatory diseases. However, the mechanisms underlying inflammatory diseases resulting from gut microbiota dysbiosis lack systematic categorization. In this study, we summarize the normal physiological functions of symbiotic microbiota in a healthy state and demonstrate that when dysbiosis occurs due to various external factors, the normal physiological functions of the gut microbiota are lost, leading to pathological damage to the intestinal lining, metabolic disorders, and intestinal barrier damage. This, in turn, triggers immune system disorders and eventually causes inflammatory diseases in various systems. These discoveries provide fresh perspectives on how to diagnose and treat inflammatory diseases. However, the unrecognized variables that might affect the link between inflammatory illnesses and gut microbiota, need further studies and extensive basic and clinical research will still be required to investigate this relationship in the future.
Collapse
Affiliation(s)
- Min'an Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayi Chu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shiyao Feng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Chuanhao Guo
- The Second School of Clinical Medicine of Jilin University, Changchun, Jilin 130041, China
| | - Baigong Xue
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
49
|
Chai W, Maskarinec G, Lim U, Boushey CJ, Wilkens LR, Setiawan VW, Le Marchand L, Randolph TW, Jenkins IC, Lampe JW, Hullar MA. Association of Habitual Intake of Probiotic Supplements and Yogurt with Characteristics of the Gut Microbiome in the Multiethnic Cohort Adiposity Phenotype Study. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e14. [PMID: 38468639 PMCID: PMC10927272 DOI: 10.1017/gmb.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Consumption of probiotics and/or yogurt could be a solution for restoring the balance of the gut microbiota. This study examined associations of regular intake of probiotic supplements or yogurt with the gut microbiota among a diverse population of older adults (N=1,861; 60-72 years). Fecal microbial composition was obtained from 16S rRNA gene sequencing (V1-V3 region). General Linear Models were used to estimate the associations of probiotic supplement or yogurt intake with microbiome measures adjusting for covariates. Compared to non-yogurt consumers (N=1,023), regular yogurt consumers (≥once/week, N=818) had greater Streptococcus (β=0.29, P=0.0003) and lower Odoribacter (β=-0.33, P<0.0001) abundance. The directions of the above associations were consistent across the five ethnic groups but stronger among Japanese Americans (Streptococcus: β=0.56, P=0.0009; Odoribacter: β=-0.62, P=0.0005). Regular intake of probiotic supplements (N=175) was not associated with microbial characteristics (i.e., alpha diversity and the abundance of 152 bacteria genera). Streptococcus is one of the predominant bacteria genera in yogurt products, which may explain the positive association between yogurt consumption and Streptococcus abundance. Our analyses suggest that changes in Odoribacter were independent of changes in Streptococcus abundance. Future studies may investigate whether these microbial genera and their sub-level species mediate potential pathways between yogurt consumption and health.
Collapse
Affiliation(s)
- Weiwen Chai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | | | - Unhee Lim
- University of Hawai’i Cancer Center, Honolulu, HI
| | | | | | - V. Wendy Setiawan
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
50
|
Wei L, Zeng B, Zhang S, Guo W, Li F, Zhao J, Li Y. Hybridization altered the gut microbiota of pigs. Front Microbiol 2023; 14:1177947. [PMID: 37465027 PMCID: PMC10350513 DOI: 10.3389/fmicb.2023.1177947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Mammalian gut microbiota plays an important role in the host's nutrient metabolism, growth, and immune regulation. Hybridization can enable a progeny to acquire superior traits of the parents, resulting in the hybridization advantage. However, studies on the effects of hybridization on the pigs' gut microbiota are lacking. Therefore, this study used multi-omics technologies to compare and analyze the gut microbiota of the primary wild boar and its offspring. The 16S rRNA gene sequencing results revealed that the gut microbiota of F4 exhibited a host-like dominance phenomenon with a significant increase in the abundance of Lactobacillus and Bifidobacterium. The beta diversity of Duroc was significantly different from those of F0, F2, and F4; after the host hybridization, the similarity of the beta diversity in the progeny decreased with the decrease in the similarity of the F0 lineage. The metagenomic sequencing results showed that the significantly enriched metabolic pathways in F4, such as environmental, circulatory system, fatty acid degradation adaptation, and fatty acid biosynthesis, were similar to those in F0. Moreover, it also exhibited similar significantly enriched metabolic pathways as those in Duroc, such as carbohydrate metabolism, starch and sucrose metabolism, starch-degrading CAZymes, lactose-degrading CAZymes, and various amino acid metabolism pathways. However, the alpha-amylase-related KOs, lipid metabolism, and galactose metabolism in F4 were significantly higher than those in Duroc and F0. Non-targeted metabolome technology analysis found that several metabolites, such as docosahexaenoic acid, arachidonic acid, and citric acid were significantly enriched in the F4 pigs as compared to those in F0. Based on Spearman correlation analysis, Lactobacillus and Bifidobacterium were significantly positively correlated with these metabolites. Finally, the combined metagenomic and metabolomic analysis suggested that the metabolic pathways, such as valine, leucine, and isoleucine biosynthesis and alanine aspartate and glutamate metabolism were significantly enriched in F4 pigs. In conclusion, the gut microbiota of F4 showed a similar host "dominance" phenomenon, which provided reference data for the genetics and evolution of microbiota and the theory of microbial-assisted breeding.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|