1
|
Li D, Ho V, Teng CF, Tsai HW, Liu Y, Bae S, Ajoyan H, Wettengel JM, Protzer U, Gloss BS, Rockett RJ, Al Asady R, Li J, So S, George J, Douglas MW, Tu T. Novel digital droplet inverse PCR assay shows that natural clearance of hepatitis B infection is associated with fewer viral integrations. Emerg Microbes Infect 2025; 14:2450025. [PMID: 39749570 PMCID: PMC11731057 DOI: 10.1080/22221751.2025.2450025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Hepatitis B virus (HBV) DNA integration into the host cell genome is reportedly a major cause of liver cancer, and a source of hepatitis B surface antigen (HBsAg). High HBsAg levels can alter immune responses which therefore contributes to the progression of HBV-related disease. However, to what extent integration leads to the persistent circulating HBsAg is unclear. Here, we aimed to determine if the extent of HBV DNA integration is associated with the persistence of circulating HBsAg in people exposed to HBV. We established a digital droplet quantitative inverse PCR (dd-qinvPCR) method to quantify integrated HBV DNA in patients who had been exposed to HBV (anti-HBc positive and HBeAg-negative). Total DNA extracts from both liver resections (n = 32; 14 HBsAg-negative and 18 HBsAg-positive) and fine-needle aspirates (FNA, n = 10; 2 HBsAg-negative and 8 HBsAg-positive) were analysed. Using defined in vitro samples for assay establishment, we showed that dd-qinvPCR could detect integrations within an input of <80 cells. The frequency of integrated HBV DNA in those who had undergone HBsAg loss (n = 14, mean ± SD of 1.514 × 10-3 ± 1.839 × 10-3 integrations per cell) was on average 9-fold lower than those with active HBV infection (n = 18, 1.16 × 10-2 ± 1.76 × 10-2 integrations per cell; p = 0.0179). In conclusion, we have developed and validated a highly precise, sensitive and quantitative PCR-based method for the quantification of HBV integrations in clinical samples. Natural clearance of HBV is associated with fewer viral integrations. Future studies are needed to determine if dynamics of integrated HBV DNA can inform the development of curative therapies.
Collapse
Affiliation(s)
- Dong Li
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Vikki Ho
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Chiao-Fang Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yuanyuan Liu
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Sarah Bae
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Harout Ajoyan
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Brian S. Gloss
- Scientific Platforms, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Rafid Al Asady
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia
| | - Jane Li
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia
| | - Simon So
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Mark W. Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| | - Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
2
|
Abbas SA, Cha HM, Nayak S, Ahn S, Gowda J, Lieknina I, Dislers A, Kim IS, Jo I, Kim M, Kim H, Ko C, Han SB. Development of sulfamoylbenzamide-based capsid assembly modulators for hepatitis B virus capsid assembly. Eur J Med Chem 2025; 290:117430. [PMID: 40184774 DOI: 10.1016/j.ejmech.2025.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/07/2025]
Abstract
Hepatitis B virus (HBV) is a leading cause of chronic hepatitis and remains a significant global public health concern due to the lack of effective treatments. HBV replicates through reverse transcription within the viral capsid, making capsid assembly a promising antiviral target. However, no approved therapies currently target this process. In our previous study, we optimized the structure-activity relationship (SAR) of NVR 3-778 by modifying the A and B rings, leading to the identification of KR-26556 and Compound 3. In this study, we further synthesized derivatives to modify the C ring, resulting in the discovery of KR019 and KR026. These compounds exhibited over 170-fold higher selectivity than the reference compound while demonstrating potent antiviral activity in HBV-replicating cells. Mechanistic studies revealed that KR019 binds to the hydrophobic pocket at the core protein dimer-dimer interface, misdirecting capsid assembly into genome-free capsids and thereby inhibiting viral replication. Additionally, pharmacokinetic profiling confirmed favorable stability and safety. These findings highlight the strong antiviral potential of KR019 and KR026 and provide a foundation for further in vivo investigation.
Collapse
Affiliation(s)
- Syed Azeem Abbas
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyeon-Min Cha
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sandesha Nayak
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Sujin Ahn
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jayaraj Gowda
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia.
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Inseong Jo
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hyejin Kim
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chunkyu Ko
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Liu T, Shi Y, Wu J, Qin L, Qi Y. Predictive value of serum HBV RNA on HBeAg seroconversion in treated chronic hepatitis B patients. Eur J Gastroenterol Hepatol 2025; 37:738-744. [PMID: 39975994 PMCID: PMC12043266 DOI: 10.1097/meg.0000000000002946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/26/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE To investigate the predictive value of serum hepatitis B virus (HBV) RNA on HBeAg seroconversion in treated chronic hepatitis B (CHB) patients. METHODS Sixty-four HBeAg-positive CHB patients were selected. They were divided into HBeAg seroconversion group including 11 cases and HBeAg non-seroconversion group including 53 cases. HBV RNA levels and other laboratory results were measured at baseline and week 12, 24, 48, 72 during treatment in both groups. The predictive value of HBV RNA level for the seroconversion of HBeAg in patients treated for hepatitis B was analyzed. RESULTS Significant differences existed in serum HBV DNA and HBV RNA levels between the two groups at baseline while there was no significant difference in HBsAg. The correlation between HBV RNA and HBV DNA was significantly high ( r = 0.707, P < 0.05), while the correlation between HBV DNA and HBsAg ( r = 0.474, P < 0.05) or HBV RNA and HBsAg was poor ( r = 0.372, P < 0.05). Patients with younger age and higher HBV RNA levels at baseline and week 24 were less likely to have HBeAg seroconversion. HBV RNA was better than HBV DNA and HBsAg in predicting HBeAg seroconversion whether at baseline or week 12 and week 24. The area under the curve of HBV RNA level at 24th week was the highest, which was 0.942, and the cutoff value was 4.145 log 10 copies/ml. CONCLUSION HBV RNA level may be a suitable serum marker to predict whether HBeAg seroconversion can occur. CHB patients with serum HBV RNA level lower than 4.145 log 10 copies/ml at week 24 were more likely to achieve HBeAg seroconversion.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuru Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Linghan Qin
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingjie Qi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Kissi-Twum AA, Pionek K, Loeb DD. The HBV variant CpF97L supports the secretion of pgRNA-containing virions at a level much greater than WT HBV. J Virol 2025; 99:e0010025. [PMID: 40231820 PMCID: PMC12090816 DOI: 10.1128/jvi.00100-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Viruses in the Hepadnaviridae family, including hepatitis B virus (HBV), replicate their double-stranded DNA (dsDNA) genomes through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA), in the viral capsid within an infected cell. In the cell, capsids containing pgRNA, single-stranded DNA (ssDNA), and dsDNA are present. However, capsids containing dsDNA (referred to as mature genomes) are preferentially secreted in virions while only small amounts of capsids with pgRNA and ssDNA (referred to as immature genomes) are enveloped and secreted. The naturally occurring HBV core protein variant, CpF97L, is an exception; HBV CpF97L secretes high levels of ssDNA-containing virions in addition to dsDNA virions. We asked whether HBV CpF97L is capable of secreting pgRNA-containing virions as well. We found that HBV CpF97L secretes high levels of pgRNA-containing virions compared to wild-type (WT) HBV when reverse transcription was inhibited by entecavir or by the Y63F change in P protein. We detected pgRNA virions in Huh7 and HepG2 cell lines, indicating that RNA virion secretion was independent of the cell line used in virion propagation. More importantly, pgRNA virions were detected when dsDNA virions were synthesized as well. Our findings suggest that the capsids of CpF97L are constitutively matured, allowing for virions with immature genomes (ssDNA and pgRNA) to be secreted in addition to dsDNA virions.IMPORTANCEFinding a cure for hepatitis B is critical, as over 250 million people live with a hepatitis B virus (HBV) infection. HBV replicates through a series of nascent RNA and DNA intermediates in capsids, resulting in the secretion of a DNA virion to propagate the infection. HBV infections have been managed with nucleos(t)ide analogs (NAs), which terminate DNA synthesis during replication. During NA treatment, DNA levels plummet, RNA-containing capsids accumulate in infected cells and are secreted, albeit inefficiently, as virions. RNA virions in serum have therefore been proposed to be used as an indicator for covalently closed circular DNA (cccDNA) (HBV's minichromosome in hepatocytes) to determine patients who can be withdrawn from NAs without virological rebound. However, it is unknown if RNA virions are efficiently secreted by the frequent HBV variants that secrete high levels of ssDNA-containing virions, as these will lead to an erroneous overestimate of the cccDNA reservoir; hence, the need for our study.
Collapse
Affiliation(s)
- Abena Adomah Kissi-Twum
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karolyn Pionek
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Li X, Sun W, Xu X, Jiang Q, Shi Y, Zhang H, Yu W, Shi B, Wan S, Liu J, Song W, Zhang J, Yuan Z, Li J. Hepatitis B virus surface antigen drives T cell immunity through non-canonical antigen presentation in mice. Nat Commun 2025; 16:4591. [PMID: 40382385 PMCID: PMC12085615 DOI: 10.1038/s41467-025-59985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large amounts of subviral particles containing its surface antigen (HBsAg). T cell immunity is crucial for controlling and clearing HBV infection. However, the intercellular processes underlying HBsAg presentation to T cells are incompletely understood. Here, using preclinical mouse models, we show that, following HBsAg expression, the intrahepatic Batf3+XCR1+CCR7- conventional dendritic cell subset cDC1 presents HBsAg by MHC-I cross-dressing, driving CD8+ T cell response. Meanwhile, upon HBsAg access to lymphoid tissues, B cells acquire HBsAg directly in the follicles of lymphoid tissues and initiate CD4+ T cell responses sequentially in the follicular and interfollicular regions, guided by chemoattractant receptors CCR5 and EBI2, respectively. Finally, we identify ALCAM, LFA-1, and CD80 as key co-stimulatory signals essential for optimal T cell responses. Thus, these findings reveal the roadmap of non-canonical antigen presentation that drives T cell immunity against HBsAg, advancing novel therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Xiaofang Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxuan Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolan Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qirong Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuheng Shi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huixi Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Bisheng Shi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simin Wan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Iyaniwura SA, Cassidy T, Ribeiro RM, Perelson AS. A multiscale model of the action of a capsid assembly modulator for the treatment of chronic hepatitis B. PLoS Comput Biol 2025; 21:e1012322. [PMID: 40327725 PMCID: PMC12121926 DOI: 10.1371/journal.pcbi.1012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 05/29/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound frequently occurs following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that the relative change of HBV RNA more accurately reflects the antiviral effectiveness of a CAM than the relative change in HBV DNA.
Collapse
Affiliation(s)
- Sarafa A. Iyaniwura
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tyler Cassidy
- School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
7
|
Feng C, Shi J, Chen Y, Chen S, Cui J, Zhang J, Zheng X, Wang Y, Li F. A hepatitis B virus-free cccDNA-producing stable cell for antiviral screening. Antiviral Res 2025; 237:106143. [PMID: 40090467 DOI: 10.1016/j.antiviral.2025.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
The covalently closed circular DNA (cccDNA) of the Hepatitis B virus (HBV) serves as a template for producing progeny viruses in virally infected hepatocytes. Promising cccDNA-targeting antiviral agents remain unavailable and unpredictable in the research and development pipelines, making sterile HBV elimination challenging at the current stage. The major challenge of discriminating trace amounts of cccDNA from the abundant HBV relaxed circular DNA (rcDNA), which is nearly identical to cccDNA in sequence, substantially discourages efforts to discover and directly screen cccDNA-targeting drugs. Therefore, an easy cccDNA cell culture system is required for high-throughput drug screening. In this study, we designed an HBV cccDNA self-generating stable cell culture system using a functional complementary concept and successfully generated an HBV cccDNA Gaussia luciferase reporter cell line in HepG2 and Huh7 cells. This design ensures that the Gluc signal is exclusively expressed upon cccDNA formation, allowing for the accurate and easy measurement of cccDNA levels via luminescent signals. Using this system, in conjunction with a firefly luciferase reporter to monitor cell activity, we screened 2074 drugs in the HepG2-HBV-cccDNA/Firefly cell line. Four compounds were selected for further experimentation and their anti-HBV effects were confirmed. Thus, this virus-free hepatitis B cccDNA cell culture system provides a valuable and convenient platform for the high-throughput screening of anti-HBV drugs.
Collapse
Affiliation(s)
- Chengqian Feng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Jingrong Shi
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yunfu Chen
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, China
| | - Sisi Chen
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Jianping Cui
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Jun Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Xiaowen Zheng
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yaping Wang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China; Scientific Research Center, Shanghai Public Health Clinical Center, Shanghai, 201508, China.
| |
Collapse
|
8
|
Ren S, Lin X, Wang W, Xiaoxiao W, Ma L, Zheng Y, Zheng S, Chen X. A greater frequency of circulating CCR7loPD-1hi follicular helper T cells indicates a durable clinical cure after Peg IFN-α therapy in chronic hepatitis B patients. Hepatol Commun 2025; 9:e0690. [PMID: 40227099 PMCID: PMC11999403 DOI: 10.1097/hc9.0000000000000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Emerging evidence indicates that the treatment duration of pegylated interferon-α and HBsAb may predict relapse in chronic hepatitis B (CHB) patients who achieved clinical cure. However, the host immunological mechanisms contributing to clinical relapse remain poorly characterized. OBJECTIVES This study aimed to identify the immunological factors associated with relapse in chronic hepatitis B (CHB) patients who achieved clinical cure based on pegylated interferon-alpha treatment. METHODS CHB patients who achieved HBsAg loss after discontinuing pegylated interferon-alpha therapy were enrolled and followed up for at least 96 weeks. HBcrAg and immunological markers, including the proportion of follicular helper T (Tfh) cells were assessed by flow cytometry. Peripheral blood cytokine levels were measured using a Luminex assay. The primary outcome was the correlation between immunological markers with relapse at the end of treatment (EOT) and end of follow-up (EOF). RESULTS A total of 456 CHB patients were included. During the 96-week follow-up period, 37 patients (8.11%) experienced a relapse. Propensity score matching was performed at a 1:2 ratio, resulting in the inclusion of 37 relapsed (R) and 74 non-relapsed (NR) patients. The NR group exhibited higher proportions of Tfh cells than the R group in both EOT and EOF (EOT: 12.52% vs. 8.78%, p=0.008; EOF: 11.38% vs. 8.29%, p=0.008). A significantly greater proportion of CCR7loPD-1hi Tfh cells was observed in the NR group at the EOT (9.4% vs. 4.5%, p=0.009). The frequency of CCR7loPD-1hi Tfh cells was significantly and positively correlated with anti-HB levels in EOT (p=0.015, r=0.392). Serum levels (median, pg/mL) of CTLA-4 (EOT: 14.87 vs. 7.84; EOF: 14.87 vs. 7.97), PD-1 (EOT: 321.44 vs. 203.96; EOF: 288.45 vs. 166.04), and TIM-3 (EOT:4487 vs. 21254; EOF:2973 vs. 1768) were significantly higher in the R group than in the NR group at both EOT and EOF (p<0.05). At EOT, the HBcrAg level was significantly greater in the R than in the NR group (3.45±0.94 vs. 2.63±0.80 log10 U/mL, p=0.003). CONCLUSIONS Higher frequencies of CCR7loPD-1hi Tfh cells, lower levels of sCTLA-4 as well as sPD-1 in EOT were protective factors for relapse among CHB patients who experienced HBsAg loss after pegylated interferon-alpha therapy. CCR7loPD-1hiTfh cells produced insufficient IL-21 in patients who experienced recurrent disease, which resulted in a decrease in the ability of B cells to produce anti-HBs.
Collapse
Affiliation(s)
- Shan Ren
- Department of Hepatology, Beijing Institute of Hepatology, Beijing You'An Hospital, Capital Medical University,China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shechter O, Sausen DG, Dahari H, Vaillant A, Cotler SJ, Borenstein R. Functional Cure for Hepatitis B Virus: Challenges and Achievements. Int J Mol Sci 2025; 26:3633. [PMID: 40332208 PMCID: PMC12026623 DOI: 10.3390/ijms26083633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The Hepatitis B Virus (HBV) presents a formidable global health challenge, impacting hundreds of millions worldwide and imposing a considerable burden on healthcare systems. The elusive nature of the virus, with its ability to establish chronic infection and evade immune detection, and the absence of curative agents have prompted efforts to develop novel therapeutic approaches beyond current antiviral treatments. This review addresses the challenging concept of a functional cure for HBV, a state characterized by the suppression of HBV and HBsAg, mitigating disease progression and transmission without a complete cure. We provide an overview of HBV epidemiology and its clinical impact, followed by an exploration of the current treatment landscape and its limitations. The immunological basis of a functional cure is then discussed, exploring the intricate interplay between the virus and the host immune response. Emerging therapeutic approaches, such as RNA interference-based interventions, entry inhibitors, nucleic acid polymers, and therapeutic vaccines, are discussed with regard to their success in achieving a functional cure. Lastly, the review underscores the urgent need for innovative strategies to achieve a functional cure for HBV.
Collapse
Affiliation(s)
- Oren Shechter
- Eastern Virginia Medical School, Norfolk, VA 23501, USA;
| | | | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.D.); (S.J.C.)
| | - Andrew Vaillant
- Replicor Inc., 6100 Royalmount Ave., Montreal, QC H4P 2R2, Canada;
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.D.); (S.J.C.)
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.D.); (S.J.C.)
| |
Collapse
|
10
|
Yendewa GA, Elangovan A, Olasehinde T, Mulindwa F, Cater MG, Salata RA, Jacobson JM. Impact of hepatic steatosis on mortality, hepatocellular carcinoma, end-stage liver disease and HBsAg seroclearance in chronic hepatitis B: a United States cohort study. Front Immunol 2025; 16:1566925. [PMID: 40255390 PMCID: PMC12006825 DOI: 10.3389/fimmu.2025.1566925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Background Steatotic liver disease (SLD) is prevalent among individuals with chronic hepatitis B virus (CHB), yet its impact on clinical outcomes remains controversial. Methods We used electronic health record data from 98 US healthcare-delivery systems to compare adults with (CHB-SLD) and without SLD (CHB-wo-SLD) from 2000 to 2024. We applied 1: 1 propensity score matching to balance cohorts by demographic and clinical characteristics. We further performed sensitivity analyses in the presence or absence of cirrhosis. We compared incidence rates (IR) and hazard ratios (HRs) of all-cause mortality, hepatocellular carcinoma (HCC), end-stage liver disease (ESLD) events, and detectable HBsAg and HBeAg as markers of seroclearance. Results Among 124,932 individuals with CHB (12.43% CHB-SLD), there were 470,707 person-years of observations (median follow-up 2.95 years). Compared with CHB, individuals with CHB-SLD had a lower mortality risk (HR 0.44, 95% CI 0.40-0.48). Fibrosis risk was higher among those with CHB-SLD (vs CHB-wo-SLD) (HR 1.93, 95% CI 1.71-2.19); however, cirrhosis risk was comparable (HR 1.06, 95% CI 0.96-1.18) between cohorts, while HCC risk was lower in the CHB-SLD cohort (HR 0.83, 95% CI 0.70-0.96). The CHB-SLD cohort also had significantly reduced risks of ESLD events, including ascites, spontaneous bacterial peritonitis, variceal bleeding, hepatic encephalopathy, and hepatorenal syndrome (all p < 0.001). Additionally, detectable HBsAg and HBeAg IRs and HRs were lower among CHB-SLD compared to the CHB-wo-SLD cohort: 26.83 vs. 31.96 per 1,000 person-years (HR 0.80, 95% CI 0.73-0.87) and 8.52 vs. 11.36 per 1,000 person-years (HR 0.74, 95% CI 0.65-0.85), respectively. Sensitivity analyses stratified by cirrhosis status supported these findings. Conclusion CHB-SLD status was associated with more favorable outcomes, highlighting the complexity of CHB and SLD interactions.
Collapse
Affiliation(s)
- George A. Yendewa
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Abbinaya Elangovan
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Temitope Olasehinde
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Frank Mulindwa
- Department of Medicine, United Health Services Wilson Memorial Hospital, Johnson City, NY, United States
| | - Mackenzie G. Cater
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert A. Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Jeffrey M. Jacobson
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
11
|
Lok J, Harris JM, Carey I, Agarwal K, McKeating JA. Assessing the virological response to direct-acting antiviral therapies in the HBV cure programme. Virology 2025; 605:110458. [PMID: 40022943 DOI: 10.1016/j.virol.2025.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hepatitis B virus (HBV) is a global health problem with over 250 million people affected worldwide. Nucleos(t)ide analogues remain the standard of care and suppress production of progeny virions; however, they have limited effect on the viral transcriptome and long-term treatment is associated with off-target toxicities. Promising results are emerging from clinical trials and several drug classes have been evaluated, including capsid assembly modulators and RNA interfering agents. Whilst peripheral biomarkers are used to monitor responses and define treatment endpoints, they fail to reflect the full reservoir of infected hepatocytes. Given these limitations, consideration should be given to the merits of sampling liver tissue, especially in the context of clinical trials. In this review article, we will discuss methods for profiling HBV in liver tissue and their value to the HBV cure programme.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Lu L, Cai D, Wang J, Li W, Zhu X, Liu Y, Xin Z, Liu S, Wu X. Myricetin supresses HBV replication both in vitro and in vivo via inhibition of HBV promoter SP2. Biochem Biophys Res Commun 2025; 755:151560. [PMID: 40043611 DOI: 10.1016/j.bbrc.2025.151560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Hepatitis B virus (HBV) infection remains a significant global public health concern. Myricetin, a flavonoid compound widely distributed in natural plants, has demonstrated multiple biological functions in combating diseases such as cancer and inflammation. In this research, we explored the mechanism of myricetin against HBV replication. We employed various experiments such as ELISA, Southern Blot, Northern Blot, Western Blot, RT-qPCR, Dual luciferase reporter gene assay, ChIP, EMSA, IHC, Immunofluorescence, AAV infection, and isolation of primary human hepatocytes (PHH) in this study. Our results showed that myricetin significantly reduced the expression of HBV markers, including HBsAg, HBeAg and covalently closed circular DNA (cccDNA), in HepG2-NTCP cells and PHH. We further confirmed these findings using AAV-HBV cell and mouse models. Furthermore, we found that myricetin significantly downregulated HBV SP2 promoter activity. Mechanistically, myricetin reduced CEBPA expression, which in turn interfered with the binding of CEBPA to the HBV SP2 promoter, leading to an antiviral effect. In conclusion, myricetin exhibited promising antiviral activity against HBV, suggesting its potential for novel HBV treatment.
Collapse
Affiliation(s)
- LiLi Lu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - Duo Cai
- Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266500, PR China
| | - JiangNan Wang
- College of Laboratory Medicine and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Wei Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Shandong, 266003, PR China
| | - XiLin Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - ZhenHui Xin
- College of Laboratory Medicine and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China.
| | - ShiHai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266500, PR China.
| | - XiaoPan Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China.
| |
Collapse
|
13
|
Tan Z, Kong N, Zhang Q, Gao X, Shang J, Geng J, You R, Wang T, Guo Y, Wu X, Zhang W, Qu L, Zhang F. Predictive model for HBsAg clearance rate in chronic hepatitis B patients treated with pegylated interferon α-2b for 48 weeks. Hepatol Int 2025; 19:358-367. [PMID: 39702655 PMCID: PMC12003487 DOI: 10.1007/s12072-024-10764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIMS Chronic hepatitis B (CHB) is a major global health concern. This study aims to investigate the factors influencing hepatitis B surface antigen (HBsAg) clearance in CHB patients treated with pegylated interferon α-2b (Peg-IFNα-2b) for 48 weeks and to establish a predictive model. METHODS This analysis is based on the "OASIS" project, a prospective real-world multicenter study in China. We included CHB patients who completed 48 weeks of Peg-IFNα-2b treatment. Patients were randomly assigned to a training set and a validation set in a ratio of approximately 4:1 by spss 26.0, and were divided into clearance and non-clearance groups based on HBsAg status at 48 weeks. Clinical data were analyzed using SPSS 26.0, employing chi-square tests for categorical data and Mann-Whitney U tests for continuous variables. Significant factors (p < 0.05) were incorporated into a binary logistic regression model to identify independent predictors of HBsAg clearance. The predictive model's performance was evaluated using ROC curve analysis. RESULTS We included 868 subjects, divided into the clearance group (187 cases) and the non-clearance group (681 cases). They were randomly assigned to a training set (702 cases) and a validation set (166 cases). Key predictors included female gender (OR = 1.879), lower baseline HBsAg levels (OR = 0.371), and cirrhosis (OR = 0.438). The final predictive model was: Logit(P) = 0.92 + Gender (Female) * 0.66 - HBsAg (log) * 0.96 - Cirrhosis * 0.88. ROC analysis showed an AUC of 0.80 for the training set and 0.82 for the validation set, indicating good predictive performance. CONCLUSION Gender, baseline HBsAg levels, and cirrhosis are significant predictors of HBsAg clearance in CHB patients after 48 weeks of Peg-IFNα-2b therapy. The developed predictive model demonstrates high accuracy and potential clinical utility.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Infectious Diseases, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Nan Kong
- Department of Infectious Diseases, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohong Gao
- Department of Infectious Diseases, Yanan University Affiliated Hospital, Yan'an, Shaanxi, China
| | - Jia Shang
- Department of Infectious Disease and Hepatic Disease, Henan Provincial People's Hospital, Henan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruirui You
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Infectious Diseases, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ying Guo
- Deparment of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan, China.
| | - Xiaoping Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lihong Qu
- Department of Infectious Diseases, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Fengdi Zhang
- Department of Infectious Diseases, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
14
|
Franzè MS, Saitta C, Lombardo D, Musolino C, Caccamo G, Filomia R, Pitrone C, Cacciola I, Pollicino T, Raimondo G. Long-term virological and clinical evaluation of chronic hepatitis B patients under nucleos(t)ide analogues therapy. Clin Res Hepatol Gastroenterol 2025; 49:102566. [PMID: 40043798 DOI: 10.1016/j.clinre.2025.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
INTRODUCTION AND OBJECTIVES Identifying hepatitis B virus (HBV) patients eligible for safe nucleos(t)ide analogues (NAs) discontinuation remains challenging. Discrepant data on combined HBV DNA and quantitative HBV surface antigen (qHBsAg) assessments are available. This study aimed to identify potential predictors for safe treatment discontinuation by evaluating clinical/virological outcomes in patients on long-term NA therapy. PATIENTS AND METHODS A retrospective cohort of 139 chronic hepatitis B (CHB) patients - who consecutively started Entecavir or Tenofovir from 2007 to 2011 - was evaluated. The study population was selected based on anti-HBe positivity, absence of prior antiviral treatment, absence of non-HBV-related liver diseases or hepatocellular carcinoma (HCC), and long-term clinical/ultrasonographic/laboratory evaluations post-NA initiation. Serum samples collected before starting NA (T0) and over ten years (T1-T10) were tested for HBV DNA and qHBsAg. RESULTS Twenty-two/139 (15.8 %) CHB patients (12 chronic hepatitis, 10 cirrhosis) met the inclusion criteria. All patients showed a significant decrease in liver stiffness values in the ten years of follow-up (p = 0.001), and no hepatic decompensation occurred. Three/22 (13.6 %) patients developed HCC. Ten/22 patients (45.5 %; group-A) had fluctuating HBV DNA, while other 10/22 (45.5 %; group-B) showed undetectable HBV DNA for 5-9 years with more significant qHBsAg decline (p = 0.04) than group-A. Two/22 (9.1 %) patients showed a critical qHBsAg decline up to seroconversion together with undetectable HBV DNA. CONCLUSIONS Persistent undetectable HBV DNA levels correlate with qHBsAg reduction and the potential HBsAg seroclearance, suggesting that long-term HBV DNA monitoring in NA-treated CHB patients might help identify candidates for treatment discontinuation.
Collapse
Affiliation(s)
- Maria Stella Franzè
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Division of Medicine and Hepatology, University Hospital of Messina, Messina, Italy
| | - Daniele Lombardo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Gaia Caccamo
- Division of Medicine and Hepatology, University Hospital of Messina, Messina, Italy
| | - Roberto Filomia
- Division of Medicine and Hepatology, University Hospital of Messina, Messina, Italy
| | - Concetta Pitrone
- Division of Medicine and Hepatology, University Hospital of Messina, Messina, Italy
| | - Irene Cacciola
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Division of Medicine and Hepatology, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Division of Medicine and Hepatology, University Hospital of Messina, Messina, Italy.
| |
Collapse
|
15
|
Xu J, Song H, Xu F, Gao Y, Jiang H, Tan G. RNF5 inhibits HBV replication by mediating caspase-3-dependent degradation of core protein. Front Microbiol 2025; 16:1548061. [PMID: 40236486 PMCID: PMC11996839 DOI: 10.3389/fmicb.2025.1548061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
The RING finger protein 5 (RNF5), an E3 ubiquitin ligase, has demonstrated significant antiviral activity against various viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Kaposi's sarcoma-associated herpesvirus (KSHV). However, its role in hepatitis B virus (HBV) replication has not been previously studied. In this study, we demonstrate that RNF5 effectively inhibits HBV replication by promoting the degradation of the HBV Core protein through a Caspase-3-dependent pathway. We first show that RNF5 expression is upregulated in HBV-infected cells and patient samples, suggesting a role in the host's antiviral response. Subsequently, we investigate the mechanism by which RNF5 mediates its antiviral effect, finding that RNF5 targets the Core protein for degradation independently of its E3 ubiquitin ligase activity. The degradation of Core protein is mediated through a Caspase-3-dependent mechanism rather than the proteasomal pathway. Interestingly, RNF5's antiviral function does not rely on ubiquitination, indicating an alternative pathway involving apoptosis-related processes. These findings highlight the multifunctional role of RNF5 and suggest that targeting RNF5 could serve as a novel therapeutic approach to control HBV replication, providing new insights into the development of antiviral therapies against HBV.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanli Gao
- Department of Pediatrics, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Hongyu Jiang
- Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025; 22:455-469. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
17
|
Hao B, Liu Y, Wang B, Wu H, Chen Y, Zhang L. Hepatitis B surface antigen: carcinogenesis mechanisms and clinical implications in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:44. [PMID: 40141002 PMCID: PMC11938626 DOI: 10.1186/s40164-025-00642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Liver cancer is the third leading cause of death globally, with hepatitis B virus (HBV) infection being identified as the primary risk factor for its development. The occurrence of HBV-related hepatocellular carcinoma (HCC) is attributed to various mechanisms, such as chronic inflammation and liver cell regeneration induced by the cytotoxic immune response triggered by the virus, abnormal activation of oncogenes arising from HBV DNA insertion mutations, and epigenetic alterations mediated by viral oncoproteins. The envelope protein of the HBV virus, known as hepatitis B surface antigen (HBsAg), is a key indicator of increased risk for developing HCC in HBsAg-positive individuals. The HBsAg seroclearance status is found to be associated with recurrence in HCC patients undergoing hepatectomy. Additional evidence indicates that HBsAg is essential to the entire process of tumor development, from initiation to advancement, and acts as an oncoprotein involved in accelerating tumor progression. This review comprehensively analyzes the extensive effects and internal mechanisms of HBsAg during the various stages of the initiation and progression of HCC. Furthermore, it highlights the importance and potential applications of HBsAg in the realms of HCC early diagnosis and personalized therapeutic interventions. An in-depth understanding of the molecular mechanism of HBsAg in the occurrence and development of HCC is provided, which is expected to develop more precise and efficient strategies for the prevention and management of HCC in the future.
Collapse
Affiliation(s)
- Bingyan Hao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Chen
- Department of Paediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Liu YH, Xu HQ, Zhu SS, Hong YF, Li XW, Li HX, Xiong JP, Xiao H, Bu JH, Zhu F, Tao L. ASVirus: A Comprehensive Knowledgebase for the Viral Alternative Splicing. J Chem Inf Model 2025; 65:2722-2729. [PMID: 40063927 DOI: 10.1021/acs.jcim.4c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Viruses are significant human pathogens responsible for pandemic outbreaks and seasonal epidemics. Viral infectious diseases impose a devastating global burden and have a profound impact on public health systems. During viral infections, alternative splicing (AS) plays a crucial role in regulating immune responses, altering the host's cellular environment, expanding viral genetic material, and facilitating viral replication. As research on AS in viral infections expands, it is crucial to consolidate data on virus-related splicing changes to improve our understanding of these viruses and associated diseases. To address this need, we created ASVirus (https://bddg.hznu.edu.cn/asvirus/), a comprehensive database of virus-associated AS events and their regulatory factors. ASVirus uniquely combines high-confidence, experimentally validated splicing data and investigates upstream regulatory mechanisms through a gene-splicing factor interaction network. Its user-friendly web interface offers detailed information into AS events from various viral families and the resulting mis-splicing in host genes, aiding the exploration of novel viral infection mechanisms and the identification of critical therapeutic targets for viral diseases.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong-Quan Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Si-Si Zhu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiu-Wen Li
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong-Xiu Li
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun-Peng Xiong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Huan Xiao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Hui Bu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
19
|
Zhou F, Deng S, Luo Y, Liu Z, Liu C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025; 17:1101. [PMID: 40218859 PMCID: PMC11990830 DOI: 10.3390/nu17071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The liver, as the primary metabolic organ, is susceptible to an array of factors that can harm liver cells and give rise to different liver diseases. Epigallocatechin gallate (EGCG), a natural compound found in green tea, exerts numerous beneficial effects on the human body. Notably, EGCG displays antioxidative, antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. This review specifically highlights the pivotal role of EGCG in liver-related diseases, focusing on viral hepatitis, autoimmune hepatitis, fatty liver disease, and hepatocellular carcinoma. EGCG not only inhibits the entry and replication of hepatitis B and C viruses within hepatocytes, but also mitigates hepatocytic damage caused by hepatitis-induced inflammation. Furthermore, EGCG exhibits significant therapeutic potential against hepatocellular carcinoma. Combinatorial use of EGCG and anti-hepatocellular carcinoma drugs enhances the sensitivity of drug-resistant cancer cells to chemotherapeutic agents, leading to improved therapeutic outcomes. Thus, the combination of EGCG and anti-hepatocellular carcinoma drugs holds promise as an effective approach for treating drug-resistant hepatocellular carcinoma. In conclusion, EGCG possesses hepatoprotective properties against various forms of liver damage and emerges as a potential drug candidate for liver diseases.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Sengwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| | - Yong Luo
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| |
Collapse
|
20
|
Yi M, Dai S, Fang L, Pan B, Fan B, Pan Y, Liu Z. Influence of Occult Hepatitis B Infection on Blood Transfusion Safety and Its Countermeasures. Pathogens 2025; 14:301. [PMID: 40333041 PMCID: PMC12030072 DOI: 10.3390/pathogens14040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 05/09/2025] Open
Abstract
Occult hepatitis B infection (OBI) is a serious public health issue. Although a number of effective hepatitis B vaccines are available, hepatitis B still poses a threat to global public health. Patients with OBI are usually asymptomatic, but there may be active HBV DNA present in their blood, leading to the risk of virus transmission during blood transfusions or organ transplantation, constituting a hazard to the health of recipients and increasing the risk of liver cirrhosis and liver cancer. Although China has progressed in the development of blood-screening technology, OBI is still a significant hidden danger to blood transfusion safety. Therefore, in blood screening and blood transfusion, strengthening the monitoring and management of OBI is crucial to ensure blood safety and protect public health.
Collapse
Affiliation(s)
- Meng Yi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
| | - Shuchang Dai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Lin Fang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Bin Fan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
21
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
22
|
Zheng H, Xu B, Fan Y, Tuekprakhon A, Stamataki Z, Wang F. The role of immune regulation in HBV infection and hepatocellular carcinogenesis. Front Immunol 2025; 16:1506526. [PMID: 40160817 PMCID: PMC11949809 DOI: 10.3389/fimmu.2025.1506526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a well-documented independent risk factor for developing hepatocellular carcinoma (HCC). Consequently, extensive research has focused on elucidating the mechanisms by which HBV induces hepatocarcinogenesis. The majority of studies are dedicated to understanding how HBV DNA integration into the host genome, viral RNA expression, and the resulting protein transcripts affect cellular processes and promote the malignant transformation of hepatocytes. However, considering that most acute HBV infections are curable, immune suppression potentially contributes to the critical challenges in the treatment of chronic infections. Regulatory T cells (Tregs) are crucial in immune tolerance. Understanding the interplay of Tregs within the liver microenvironment following HBV infection could offer novel therapeutic approaches for treating HBV infections and preventing HBV-related HCC. Two viewpoints to targeting Tregs in the liver microenvironment include means of reducing their inhibitory function and decreasing Treg frequency. As these strategies may disrupt the immune balance and lead to autoimmune responses, careful and comprehensive profiling of the patient's immunological status and genetic factors is required to successfully employ this promising therapeutic approach.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bingchen Xu
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yiyu Fan
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Aekkachai Tuekprakhon
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Fei Wang
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
23
|
Lau DTY, Kim ES, Wang Z, King WC, Kleiner DE, Ghany MG, Hinerman AS, Liu Y, Chung RT, Sterling RK, Cloherty G, Lin SY, Liu HN, Su YH, Guo H. Differential Intrahepatic Integrated HBV DNA Patterns Between HBeAg-Positive and HBeAg-Negative Chronic Hepatitis B. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.28.25322668. [PMID: 40093236 PMCID: PMC11908316 DOI: 10.1101/2025.02.28.25322668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background HBsAg can be derived from intrahepatic cccDNA and integrated HBV DNA (iDNA). We examined the iDNA from liver tissues of 24 HBeAg(+) and 32 HBeAg(-) treatment-naive CHB participants. Methods Liver tissues were obtained from the North American Hepatitis B Research Network (HBRN). For cccDNA analysis, DNA was heat-denatured and digested by plasmid-safe ATP-dependent DNase to remove rcDNA and iDNA prior to qPCR. For iDNA detection, total DNA was subjected to HBV hybridization-targeted next generation sequencing (HBV-NGS) assay. The HBV-host junction sequences were identified by ChimericSeq. Comparison of HBV cccDNA and iDNA with serum and intrahepatic virological parameters were assessed. Results Intrahepatic cccDNA, serum HBV DNA, HBV RNA, HBcrAg and qHBsAg were higher among the HBeAg(+) participants. Among the HBeAg(+) samples, 87% had positive intrahepatic HBcAg staining compared to 13% of HBeAg(-) samples (p<0.0001). HBsAg staining, in contrast, was present in over 85% of both HBeAg(+) and (-) livers. 23 (95.8%) HBeAg(+) participants had ≤50% iDNA of total HBV DNA whereas 25 (78.1%) HBeAg(-) participants had >50% iDNA in their livers. The iDNA junction-breakpoint distributions for the HBeAg(+) group were random with 15.9% localized to the DR2-DR1 region. In contrast, 52.4% of the iDNA were clustered at DR2-DR1 region among the HBeAg(-) participants. Microhomology-mediated end joining (MMEJ) patterns of dslDNA HBV integration was more frequent in HBeAg (+) livers. Conclusion Serum RNA and HBcrAg reflect the intrahepatic cccDNA concentrations. HBeAg(-) CHB participants had high levels of intrahepatic iDNA and HBsAg despite lower cccDNA levels suggesting that iDNA is the primary source of HBsAg in HBeAg(-) CHB.
Collapse
|
24
|
Singh R, Ramakrishna G, Sharma MK, Kumar R, Gupta E, Rastogi A, Tanwar P, Sarin SK, Trehanpati N. Droplet digital PCR technique is ultrasensitive for the quantification of covalently closed circular DNA in the blood of chronic HBV-infected patients. Clin Res Hepatol Gastroenterol 2025; 49:102531. [PMID: 39832728 DOI: 10.1016/j.clinre.2025.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Covalently closed circular DNA (cccDNA) is a stable, episomal form of HBV DNA. cccDNA is a true marker for the intrahepatic events in controlled CHB infection. Quantifying cccDNA is critical for monitoring disease progression, and efficacy of anti-viral therapies. METHODS To standardize the method, total HBV DNA was isolated from HepAD38 cells and digested with three exonuclease enzymes to remove linear and relaxed circular HBV DNA. Purified cccDNA quantification used ddPCR with specific primers. Treatment-naive chronic hepatitis B virus patients (nCHBV, n=36) with detectable HBV DNA and HBsAg were grouped by HBsAg levels: Group I (HBsAglo < 2000 IU/ml, n=11) and Group II (HBsAghi > 2000 IU/ml, n=25). cccDNA, HBV DNA and HBsAg were quantified in plasma and compared between groups. Correlation with clinical/histopathological features was done. RESULTS Non-digested 3.6^10⁶ tet-ve HepAD38 cells showed 316 copies/µl of total viral DNA. After digesting the linear, integrated, and relaxed circular DNA with triple enzymes, 15 copies/µl of cccDNA were detected. Similarly, after DNA digestion, HBsAglo patients showed a median of 8.5 copies/µl (IQR 2.75-9.75 copies/µl), and HBsAghi gave a median of 11 copies/µl (IQR 4-16 copies/µl) but with no significant difference between groups (p=0.093). Further, HBsAglo patients with low cccDNA copy numbers showed significantly higher fibrosis grades than HBsAghi (p=0.036). CONCLUSIONS We conclude that employing a combined approach utilizing three exonucleases, cccDNA-specific primers, and ddPCR enables the detection of cccDNA copies even in patients exhibiting low levels of HBsAg and HBV DNA. This integrated method offers additional validation as a surrogate diagnostic tool.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rahul Kumar
- Laboratory Oncology Unit, Dr. B. R. A. Institute Rotary Cancer Hospital (Cancer Centre), All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B. R. A. Institute Rotary Cancer Hospital (Cancer Centre), All India Institute of Medical Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
25
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
26
|
Idres YM, Idris A, Gao W. Preclinical testing of antiviral siRNA therapeutics delivered in lipid nanoparticles in animal models - a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01815-x. [PMID: 40000558 DOI: 10.1007/s13346-025-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The advent of RNA interference (RNAi) technology through the use of short-interfering RNAs (siRNAs) represents a paradigm shift in the fight against viral infections. siRNAs, with their ability to directly target and silence specific posttranscriptional genes, offer a novel mechanism of action distinct from that of traditional pharmacotherapeutics. This review delves into the growing field of siRNA therapeutics against viral infections, highlighting their critical role in contemporary antiviral strategies. Importantly, this review will solely focus on the use of lipid nanoparticles (LNPs) as the ideal antiviral siRNA delivery agent for use in vivo. We discuss the challenges of siRNA delivery and how LNPs have emerged as a pivotal solution to enhance antiviral efficacy. Specifically, this review focuses on work that have preclinically tested LNP formulated siRNA on virus infection animal models. Since the COVID-19 pandemic, we have witnessed a resurgence in the field of RNA-based therapies, including siRNAs against viruses including, SARS-CoV-2. Notably, the critical importance of LNPs as the ideal carrier for precious 'RNA cargo' can no longer be ignored with the advent of mRNA-LNP based COVID-19 vaccines. siRNA-based therapeutics represents an emerging class of anti-infective drugs with a foreseeable future as suitable antiviral agents.
Collapse
Affiliation(s)
- Yusuf M Idres
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wenqing Gao
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
27
|
Turnham RE, Pitea A, Jang GM, Xu Z, Lim HC, Choi AL, Von Dollen J, Levin RS, Webber JT, McCarthy E, Hu J, Li X, Che L, Singh A, Yoon A, Chan G, Kelley RK, Swaney DL, Zhang W, Bandyopadhyay S, Theis FJ, Eckhardt M, Chen X, Shokat KM, Ideker T, Krogan NJ, Gordan JD. HBV Remodels PP2A Complexes to Rewire Kinase Signaling in Hepatocellular Carcinoma. Cancer Res 2025; 85:660-674. [PMID: 39652575 PMCID: PMC11949624 DOI: 10.1158/0008-5472.can-24-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) infections promote liver cancer initiation by inducing inflammation and cellular stress. Despite a primarily indirect effect on oncogenesis, HBV is associated with a recurrent genomic phenotype in hepatocellular carcinoma (HCC), suggesting that it impacts the biology of established HCC. Characterization of the interaction of HBV with host proteins and the mechanistic contributions of HBV to HCC initiation and maintenance could provide insights into HCC biology and uncover therapeutic vulnerabilities. In this study, we used affinity purification mass spectrometry to comprehensively map a network of 145 physical interactions between HBV and human proteins in HCC. A subset of the host factors targeted by HBV proteins were preferentially mutated in non-HBV-associated HCC, suggesting that their interaction with HBV influences HCC biology. HBV interacted with proteins involved in mRNA splicing, mitogenic signaling, and DNA repair, with the latter set interacting with the HBV oncoprotein X (HBx). HBx remodeled the PP2A phosphatase complex by excluding striatin regulatory subunits from the PP2A holoenzyme, and the HBx effects on PP2A caused Hippo kinase activation. In parallel, HBx activated mTOR complex 2, which can prevent YAP degradation. mTOR complex 2-mediated upregulation of YAP was observed in human HCC specimens and mouse HCC models and could be targeted with mTOR kinase inhibitors. Thus, HBV interaction with host proteins rewires HCC signaling rather than directly activating mitogenic pathways, providing an alternative paradigm for the cellular effects of a tumor-promoting virus. Significance: Integrative proteomic and genomic analysis of HBV/host interactions illuminated modifiers of hepatocellular carcinoma behavior and key signaling mechanisms in advanced disease, which suggested that HBV may have therapeutically actionable effects.
Collapse
Affiliation(s)
- Rigney E Turnham
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Adriana Pitea
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Zhong Xu
- Department of Bioengineering, University of California, San Francisco CA
| | - Huat Chye Lim
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex L Choi
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - John Von Dollen
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Rebecca S. Levin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - James T Webber
- Department of Bioengineering, University of California, San Francisco CA
| | - Elizabeth McCarthy
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Junjie Hu
- Department of Bioengineering, University of California, San Francisco CA
| | - Xiaolei Li
- Department of Bioengineering, University of California, San Francisco CA
| | - Li Che
- Department of Bioengineering, University of California, San Francisco CA
| | - Ananya Singh
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex Yoon
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Gary Chan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Robin K Kelley
- Division of Hematology/Oncology, University of California, San Francisco CA
| | - Danielle L Swaney
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Fabian J Theis
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manon Eckhardt
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - Xin Chen
- Department of Bioengineering, University of California, San Francisco CA
| | - Kevan M Shokat
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Howard Hughes Medical Institute, University of California, San Francisco CA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - John D Gordan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| |
Collapse
|
28
|
Zhang H, Long Q, Liu Y, Marchetti AL, Liu CD, Sun N, Guo H. Host 3' flap endonuclease Mus81 plays a critical role in trimming the terminal redundancy of hepatitis B virus relaxed circular DNA during covalently closed circular DNA formation. PLoS Pathog 2025; 21:e1012918. [PMID: 39913382 PMCID: PMC11801639 DOI: 10.1371/journal.ppat.1012918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Hepatitis B virus (HBV) relaxed circular DNA (rcDNA) possesses an 8-9 nucleotide-long terminal redundancy (TR, or r) on the negative (-) strand DNA derived from the reverse transcription of viral pregenomic RNA (pgRNA). It remains unclear whether the TR forms a 5' or 3' flap structure on HBV rcDNA and which TR copy is removed during covalently closed circular DNA (cccDNA) formation. To address these questions, a mutant HBV cell line HepDES-C1822G was established with a C1822G mutation in the pgRNA coding sequence, altering the sequence of 3' TR of (-) strand DNA while the 5' TR remained wild type (wt). The production of HBV rcDNA and cccDNA in HepDES-C1822G cells was comparable to wt levels. Next-generation sequencing (NGS) analysis revealed that the positive (+) strand DNA of rcDNA and both strands of cccDNA predominantly carried the wt nt1822 residue, indicating that the 5' TR of (-) strand DNA serves as the template during rcDNA replication, forming a duplex with the (+) strand DNA, while the 3' TR forms a flap-like structure, which is subsequently removed during cccDNA formation. In a survey of known cellular flap endonucleases using a loss-of-function study, we found that the 3' flap endonuclease Mus81 plays a critical role in cccDNA formation in wild-type HBV replicating cells, alongside the 5' flap endonuclease FEN1. Additionally, we have mapped the potential Mus81 and FEN1 cleavage sites within the TR of nuclear DP-rcDNA by RACE-NGS analyses. The overlapping function between Mus81 and FEN1 in cccDNA formation indicates that the putative 5' and 3' flap formed by TR are dynamically interchangeable on rcDNA precursor. These findings shed light on HBV rcDNA structure and cccDNA formation mechanisms, contributing to our understanding of HBV replication cycle.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Quanxin Long
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuanjie Liu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander L. Marchetti
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheng-Der Liu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ning Sun
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
29
|
Woodson ME, Walden HF, Mottaleb MA, Makri M, Prifti GM, Moianos D, Pardali V, Zoidis G, Tavis JE. Efficacy and in vitro pharmacological assessment of novel N-hydroxypyridinediones as hepatitis B virus ribonuclease H inhibitors. Antimicrob Agents Chemother 2025; 69:e0145524. [PMID: 39601549 PMCID: PMC11784145 DOI: 10.1128/aac.01455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
We previously reported N-hydroxypyridinedione (HPD) compounds with mid-nanomolar efficacy and selectivity indexes around 300 against hepatitis B virus (HBV) replication. However, they lack pharmacological evaluation. Here, we report in vitro anti-HBV efficacy, cytotoxicity, and pharmacological characterization of 29 novel HPDs within seven subgroups. The best two compounds had EC50s of 61 and 190 nM and selectivity indexes of 526 and 1,071. Compounds with one halogen on the major R group were most effective and compounds with large ether R groups were most cytotoxic. Compounds were not cytotoxic in primary human hepatocytes. All compounds were freely soluble in pHs reflecting plasma (7.4) and the gastrointestinal tract (5 and 6.5). Almost all highly soluble compounds were passively permeable at pH 5.0 and 7.4. Only 2 of 11 compounds tested were likely to be effluxed by p-glycoprotein. The most potent HPDs inhibited HBV replication over human ribonuclease H1 activity by 10-fold. Four of 19 compounds inhibited CYP2D6 >50%, but their CYP2D6 IC50s were >8× higher than their anti-HBV EC50. No compound substantially inhibited CYP3A4. Thirteen of 15 compounds had human microsomal half-lives >30 min with medium to low rates of intrinsic clearance. Eleven of 12 compounds bound plasma proteins by ≥80%; however, effects against HBV replication for only one would likely be physiologically relevant. These results identify two lead candidate HPDs with pharmacological characteristics resembling commercially available drugs that are suitable for in vivo pharmacological and efficacy studies.
Collapse
Affiliation(s)
- Molly E. Woodson
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
- Institute for Drug and Biotherapeutic Innovation, St. Louis University, St. Louis, Missouri, USA
| | - Holly F. Walden
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
- Institute for Drug and Biotherapeutic Innovation, St. Louis University, St. Louis, Missouri, USA
| | - M. Abdul Mottaleb
- Institute for Drug and Biotherapeutic Innovation, St. Louis University, St. Louis, Missouri, USA
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Georgia-Myrto Prifti
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Dimitrios Moianos
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Vasiliki Pardali
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
- Institute for Drug and Biotherapeutic Innovation, St. Louis University, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Qiu Y, Tang Q, Liu XQ, Xue YL, Zeng Y, Hu P. Hepatitis B core-related antigen as a promising serological marker for monitoring hepatitis B virus cure. World J Hepatol 2025; 17:98658. [PMID: 39871916 PMCID: PMC11736480 DOI: 10.4254/wjh.v17.i1.98658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a global health concern. The current sequential endpoints for the treatment of HBV infection include viral suppression, hepatitis B e antigen (HBeAg) seroconversion, functional cure, and covalently closed circular DNA (cccDNA) clearance. Serum hepatitis B core-related antigen (HBcrAg) is an emerging HBV marker comprising three components: HBeAg, hepatitis B core antigen, and p22cr. It responds well to the transcriptional activity of cccDNA in the patient's liver and is a promising alternative marker for serological testing. There is a strong correlation, and a decrease in its level corresponds to sustained viral suppression. In patients with chronic hepatitis B (CHB), serum HBcrAg levels are good predictors of HBeAg seroconversion (both spontaneous and after antiviral therapy), particularly in HBeAg-positive patients. Both low baseline HBcrAg levels and decreasing levels early in antiviral therapy favored HBsAg seroconversion, which may serve as a good surrogate option for treatment endpoints. In this review, we summarize the role of serum HBcrAg in the treatment of CHB. Therefore, long-term continuous monitoring of serum HBcrAg levels contributes to the clinical management of patients with CHB and optimizes the choice of treatment regimen, making it a promising marker for monitoring HBV cure.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiao Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiao-Qing Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun-Ling Xue
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zeng
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
31
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
32
|
Yang F, Hu F, Song H, Li T, Xu F, Xu J, Wang L, Wang F, Zhu Y, Huang M, Gao Y, Rao M, Ma H, Tan G. Cholesterol metabolism regulator SREBP2 inhibits HBV replication via suppression of HBx nuclear translocation. Front Immunol 2025; 15:1519639. [PMID: 39872518 PMCID: PMC11769810 DOI: 10.3389/fimmu.2024.1519639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
The intricate link between cholesterol metabolism and host immune responses is well recognized, but the specific mechanisms by which cholesterol biosynthesis influences hepatitis B virus (HBV) replication remain unclear. In this study, we show that SREBP2, a key regulator of cholesterol metabolism, inhibits HBV replication by interacting directly with the HBx protein, thereby preventing its nuclear translocation. We also found that inhibiting the ER-to-Golgi transport of the SCAP-SREBP2 complex or blocking SREBP2 maturation significantly enhances HBV suppression. Notably, we demonstrate that the C-terminal domain (CTD) of SREBP2, rather than its N-terminal domain (NTD), mediates this inhibition by interacting with HBx and promoting its extracellular secretion, thus reducing nuclear HBx accumulation. These findings reveal a novel regulatory pathway that links cholesterol metabolism to HBV replication via SREBP2-mediated control of HBx localization. This insight provides a potential basis for new therapeutic strategies against HBV infection, addressing an important global health issue.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tie Li
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Wang
- Department of Pediatrics, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Yujia Zhu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mian Huang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanli Gao
- Department of Pediatrics, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Boonstra A, Sari G. HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication. Biomolecules 2025; 15:62. [PMID: 39858456 PMCID: PMC11763949 DOI: 10.3390/biom15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment. They fail to eradicate the HBV viral reservoir, called covalently closed circular DNA (cccDNA), which replicates in the nucleus of liver cells. The cccDNA serves as the sole template for viral replication, as it generates the pregenomic RNA (pgRNA) necessary for producing new viral genomes. This stable form of viral DNA can reactivate the virus when treatment is stopped. HBV cccDNA is therefore one of the main challenges in curing chronic HBV infections. By targeting steps such as cccDNA formation, capsid assembly, or particle secretion, researchers continue to seek ways to interfere with HBV replication and to reduce its persistence, ultimately to eradicate HBV as a global health problem. This review provides an overview of what is currently known about cccDNA formation and biogenesis and the ongoing efforts to target and eradicate it to cure chronic HBV infections.
Collapse
Affiliation(s)
| | - Gulce Sari
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| |
Collapse
|
34
|
Zhao K, Wang J, Wang Z, Wang M, Li C, Xu Z, Zhan Q, Guo F, Cheng X, Xia Y. Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome. PLoS Pathog 2025; 21:e1012824. [PMID: 39752632 PMCID: PMC11734937 DOI: 10.1371/journal.ppat.1012824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/15/2025] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors. However, the detailed mechanisms are not well characterized. To dissect the biogenesis of cccDNA, we took advantage of an in vitro rcDNA repair system to precipitate host factors interacting with rcDNA and identified co-precipitated proteins by mass spectrometry. Results revealed the MRE11-RAD50-NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. Chromatin immunoprecipitation assay further validated the interaction of MRN complex and HBV DNA. However, MRN knockdown after HBV infection showed no effect on viral replication, which indicated that MRN complex inhibited the formation of cccDNA without affecting its stability or transcriptional activity. Interestingly, Mirin, a MRN complex inhibitor which can inhibit the exonuclease activity of MRE11 and MRN-dependent activation of ATM, but not ATM kinase inhibitor KU55933, could decrease cccDNA level. Likewise, the MRE11 endonuclease activity inhibitor PFM01 treatment decreased cccDNA. MRE11 nuclease assays indicated that rcDNA is a substrate of MRE11. Furthermore, the inhibition of ATR-CHK1 pathway, which is known to be involved in cccDNA formation, impaired the effect of MRN complex on cccDNA. Similarly, inhibition of MRE11 endonuclease activity mitigated the effect of ATR-CHK1 pathway on cccDNA. These findings indicate that MRN complex cooperates with ATR-CHK1 pathway to regulate the formation of HBV cccDNA. In summary, we identified host factors, specifically the MRN complex, regulating cccDNA formation during HBV infection. These findings provide insights into how HBV hijacks host enzymes to establish chronic infection and reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jingjing Wang
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zichen Wang
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Mengfei Wang
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Chen Li
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Qiong Zhan
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Fangteng Guo
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| |
Collapse
|
35
|
Jacobs R, Singh P, Smith T, Arbuthnot P, Maepa MB. Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Ther 2025; 32:8-15. [PMID: 35606493 DOI: 10.1038/s41434-022-00342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Available treatment for chronic hepatitis B virus (HBV) infection offers modest functional curative efficacy. The viral replicative intermediate comprising covalently closed circular DNA (cccDNA) is responsible for persistent chronic HBV infection. Hence, current efforts have focused on developing therapies that disable cccDNA. Employing gene editing tools has emerged as an attractive strategy, with the end goal of establishing permanently inactivated cccDNA. Although anti-HBV designer nucleases are effective in vivo, none has yet progressed to clinical trial. Lack of safe and efficient delivery systems remains the limiting factor. Several vectors may be used to deliver anti-HBV gene editor-encoding sequences, with viral vectors being at the forefront. Despite the challenges associated with packaging large gene editor-encoding sequences into viral vectors, advancement in the field is overcoming such limitations. Translation of viral vector-mediated gene editing against HBV to clinical application is within reach. This review discusses the prospects of delivering HBV targeted designer nucleases using viral vectors.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
36
|
Kang N, Liu N, Liu M, Zhang S, Yang Y, Hou J, Tan D, Gao Z, Xie Y, Shen Z, Liu J. Identification and characterization of host factor VCPIP1 as a multi-functional positive regulator of hepatitis B virus. J Virol 2024; 98:e0158124. [PMID: 39494904 DOI: 10.1128/jvi.01581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains an important public health challenge. Viral covalently closed circular DNA (cccDNA) persists in infected hepatocytes and serves as the template for transcribing all viral RNA species. HBV regulatory protein X (HBx) interacts with other viral and cellular proteins to play diverse functions in viral life cycle, including modulation of cccDNA transcription activity. Here, we used proximity labeling coupled with proteomic analysis to screen for HBx-interacting host proteins. One of the identified candidates, deubiquitinating enzyme valosin-containing protein-interacting protein 1 (VCPIP1), directly binds HBx and stabilizes HBx by reducing its proteasomal degradation, which corroborated a recent report. VCPIP1-mediated upregulation of HBV transcription, antigen expression, and genome replication was demonstrated using a series of HBV replication and infection models. More importantly, VCPIP1 was found to upregulate HBV in the absence of HBx. Mechanistic studies revealed that VCPIP1 HBx-independently associates with HBV enhancer I/X promoter (EnI/Xp) and positively modulates both its promoter and enhancer activities, partially through promoting the binding of YY1 transcription factor to EnI/Xp. Results presented here expand the recently described role of VCPIP1 in HBV life cycle and establish it as a multi-functional positive regulator of this virus. IMPORTANCE Hepatitis B virus (HBV) encodes the regulatory protein HBx that plays crucial roles in viral life cycle and cellular processes through interacting with viral and cellular proteins. Identifying HBx-interacting proteins may reveal novel aspects of host-virus interactions. In this work, proximity labeling coupled with proteomic analysis identified multiple HBx-interacting host factors, and among these, valosin-containing protein-interacting protein 1 (VCPIP1) was confirmed to directly bind HBx and reduce its proteasomal degradation, corroborating a recent report. In addition to upregulating HBx-expressing HBV, we showed that VCPIP1 also positively regulates mutant HBV lacking HBx expression. This novel HBx-independent function of VCPIP1 was shown to involve its association with one viral promoter/enhancer element, which upregulated the latter's promoter and enhancer activities. These results establish VCPIP1 as a positive regulator of HBV that acts through multiple, diverse mechanisms and might also contribute toward revealing novel cellular functions of VCPIP1.
Collapse
Affiliation(s)
- Ning Kang
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Liu
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shimei Zhang
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Hou
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Children's Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
He W, Zheng Z, Zhao Q, Zhang R, Zheng H. Targeting HBV cccDNA Levels: Key to Achieving Complete Cure of Chronic Hepatitis B. Pathogens 2024; 13:1100. [PMID: 39770359 PMCID: PMC11728772 DOI: 10.3390/pathogens13121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able to effectively limit the progression of CHB, complete CHB cure requires directly targeting HBV cccDNA. In this review, we discuss strategies that may achieve a complete cure of CHB, including inhibition of cccDNA de novo synthesis, targeting cccDNA degradation through host factors and small molecules, CRISP-Cas9-based cccDNA editing, and silencing cccDNA epigenetically.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhijin Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; (W.H.); (Z.Z.)
- MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, Collaborative Innovation Center of Hematology, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), School of Medicine, Soochow University, Suzhou 215123, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
38
|
Hu K, Zai W, Xu M, Wang H, Song X, Huang C, Liu J, Chen J, Deng Q, Yuan Z, Chen J. Augmented epigenetic repression of hepatitis B virus covalently closed circular DNA by interferon-α and small-interfering RNA synergy. mBio 2024; 15:e0241524. [PMID: 39570046 PMCID: PMC11633095 DOI: 10.1128/mbio.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state. IFNα2 treatment alone reduced HBV RNAs, HBeAg, and HBsAg levels by approximately 50%, accompanied by a low-level reconstitution of SMC5/6-a chromatin modulator that restricts cccDNA transcription. HBx-targeting siRNA (siHBx) achieved significant suppression of viral antigens and reconstitution of SMC5/6, but this effect could be reversed by the deacetylase inhibitor Belinostat. The combination of IFN with siHBx resulted in over 95% suppression of virological markers, reduction in epigenetic activation modifications (H3Ac and H4Ac) on cccDNA, and further reduced cccDNA accessibility, with the effect not reversible by Belinostat. In an extracellular humanized IFNAR C57BL/6 mouse model harboring recombinant cccDNA, the effect of combination of clinically used pegylated IFNα2 and GalNac-siHBx was further clarified, indicating a higher and more durable suppression of cccDNA activity compared to either therapy alone. In conclusion, the combination of IFNα and siRNA achieves a more potent and durable epigenetic inhibition of cccDNA activity in cell and mouse models, compared to monotherapy. These findings deepen the understanding of cccDNA modulation and strengthen the scientific basis for the potential of combination therapy. IMPORTANCE Since there are currently no approved drugs targeting and silencing covalently closed circular DNA (cccDNA), achieving a "functional cure" remains difficult. This study aims to comprehensively compare the effects of IFNα, small-interfering RNA targeting hepatitis B virus (HBV), and their combination on the activity, accessibility, and epigenetic modifications of cccDNA minichromosomes in cell models. A more durable and stable inhibition of HBV RNAs and antigens expression by IFNα and HBx-targeting siRNA (siHBx) synergy was observed, associated with augmented epigenetic repression of the cccDNA minichromosome. Besides, in an extracellular humanized IFNAR mouse model harboring recombinant cccDNA with an intact response to human IFNα, the synergistic effect of clinically used pegylated IFNα2 and in-house-developed GalNac-siHBx was further clarified.
Collapse
Affiliation(s)
- Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Mingzhu Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases (MOE), Chongqing Medical University, Chongqing, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
39
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
40
|
Kumar J, Singh A, Tyagi P, Sharma D, Sarin SK, Kumar V. New thiourea derivatives that target the episomal silencing SMC5 protein to inhibit HBx-dependent viral DNA replication and gene transcription. Virusdisease 2024; 35:577-588. [PMID: 39677840 PMCID: PMC11635082 DOI: 10.1007/s13337-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024] Open
Abstract
Antivirals such as nucleotide analogs (NAs) are potent inhibitors of hepatitis B virus (HBV) replication. However, NAs fail to diminish the signaling and mitogenic activities of the transactivator HBx protein. Earlier we have shown that thiourea derivative IR-415 (DSA-00) targeted HBx to down-regulate its target viral and host genes. However, the molecular mechanism of its antiviral action is poorly understood. Here we investigated the anti-HBV properties of DSA-00 and its new derivatives in cell culture models. DSA-00 and its derivatives DSA-02 and DSA-09 not only suppressed HBV DNA levels similar to well-known antiviral Entecavir but also diminished the expression of pgRNA and secretion of HBsAg and HBeAg. Apparently, the three DSA derivatives inhibited the viral pregenomic RNA expression by stabilizing the episomal DNA silencing protein SMC5, suppressed transcription from viral and host gene promoters, and normalized intracellular CDK2 activity. As none the compounds are reportedly cytotoxic, thiourea derivatives could be good candidates for developing future antivirals for a functional cure of hepatitis B infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00895-6.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Deepti Sharma
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
- Present address: Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, New Delhi, 110054 India
| |
Collapse
|
41
|
Li Z, Rahman N, Bi C, Mohallem R, Pattnaik A, Kazemian M, Huang F, Aryal UK, Andrisani O. RNA Helicase DDX5 in Association With IFI16 and the Polycomb Repressive Complex 2 Silences Transcription of the Hepatitis B Virus by Interferon. J Med Virol 2024; 96:e70118. [PMID: 39679735 DOI: 10.1002/jmv.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
RNA helicase DDX5 is a host restriction factor for hepatitis B virus (HBV) biosynthesis. Mass spectrometry (LC-MS/MS) identified significant DDX5-interacting partners, including interferon-inducible protein 16 (IFI16) and RBBP4/7, an auxiliary subunit of polycomb repressive complex 2 (PRC2). DDX5 co-eluted with IFI16, RBBP4/7, and core PRC2 subunits in size exclusion chromatography fractions derived from native nuclear extracts. Native gel electrophoresis of DDX5 immunoprecipitants revealed a 750 kDa DDX5/IFI16/PRC2 complex, validated by nanoscale co-localization via super-resolution microscopy. Prior studies demonstrated that IFI16 suppresses HBV transcription by binding to the interferon-sensitive response element of covalently closed circular DNA (cccDNA), reducing H3 acetylation and increasing H3K27me3 levels by an unknown mechanism. Herein, we demonstrate that ectopic expression of IFI16 inhibited HBV transcription from recombinant rcccDNA, correlating with increased IFI16 binding to rcccDNA, reduced H3 acetylation, and elevated H3K27me3, determined by chromatin immunoprecipitation. Importantly, the inhibitory effect of ectopic IFI16 on HBV transcription was reversed by siRNA-mediated knockdown of DDX5 and EZH2, the methyltransferase subunit of PRC2. This reversal was associated with decreased IFI16 binding to rcccDNA, enhanced H3 acetylation, and reduced H3K27me3. Similarly, endogenous IFI16 induced by interferon-α inhibited HBV rcccDNA transcription in a DDX5- and PRC2-dependent manner. In HBV-infected HepG2-NTCP cells, the antiviral effect of interferon-α was abrogated upon knockdown of DDX5 and EZH2, underscoring the crucial role of the DDX5 complex in IFI16-mediated antiviral response. In conclusion, in response to interferon, DDX5 partners with IFI16 to bind cccDNA, directing PRC2 to epigenetically silence cccDNA chromatin, thereby regulating immune signaling and HBV transcription.
Collapse
Affiliation(s)
- Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Naimur Rahman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Cheng Bi
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Aryamav Pattnaik
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Majid Kazemian
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Fang Huang
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
42
|
Shi Y, Wang Z, Xu J, Niu W, Wu Y, Guo H, Shi J, Li Z, Fu B, Hong Y, Wang Z, Guo W, Chen D, Li X, Li Q, Wang S, Gao J, Sun A, Xiao Y, Cao J, Fu L, Wu Y, Zhang T, Xia N, Yuan Q. TCR-like bispecific antibodies toward eliminating infected hepatocytes in HBV mouse models. Emerg Microbes Infect 2024; 13:2387448. [PMID: 39109538 PMCID: PMC11313007 DOI: 10.1080/22221751.2024.2387448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Therapeutics for eradicating hepatitis B virus (HBV) infection are still limited and current nucleos(t)ide analogs (NAs) and interferon are effective in controlling viral replication and improving liver health, but they cannot completely eradicate the hepatitis B virus and only a very small number of patients are cured of it. The TCR-like antibodies recognizing viral peptides presented on human leukocyte antigens (HLA) provide possible tools for targeting and eliminating HBV-infected hepatocytes. Here, we generated three TCR-like antibodies targeting three different HLA-A2.1-presented peptides derived from HBV core and surface proteins. Bispecific antibodies (BsAbs) were developed by fuzing variable fragments of these TCR-like mAbs with an anti-CD3ϵ antibody. Our data demonstrate that the BsAbs could act as T cell engagers, effectively redirecting and activating T cells to target HBV-infected hepatocytes in vitro and in vivo. In HBV-persistent mice expressing human HLA-A2.1, two infusions of BsAbs induced marked and sustained suppression in serum HBsAg levels and also reduced the numbers of HBV-positive hepatocytes. These findings highlighted the therapeutic potential of TCR-like BsAbs as a new strategy to cure hepatitis B.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zihan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jingjing Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Wenxia Niu
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yubin Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Huiyu Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jinmiao Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zonglin Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Baorong Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Yunda Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zikang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Wenjie Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Dabing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Xingling Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Qian Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jiahua Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Aling Sun
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yaosheng Xiao
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Jiali Cao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Lijuan Fu
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
43
|
Ren C, Zhang Z, Dou Y, Sun Y, Fu Z, Wang L, Wang K, Gao C, Fan Y, Sun S, Yue X, Li C, Gao L, Liang X, Ma C, Wu Z. DNA Sensor ABCF1 Phase Separates With cccDNA to Inhibit Hepatitis B Virus Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409485. [PMID: 39498874 PMCID: PMC11672287 DOI: 10.1002/advs.202409485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) contributes to viral persistence and recurrence, however, how the host innate immune system responds to cccDNA is still less known. Here, based on cccDNA-hepatic proteins interaction profiling, DNA sensor ATP-binding cassette subfamily F member 1 (ABCF1) is identified as a novel cccDNA-binding protein and host restriction factor for HBV replication. Mechanistically, ABCF1 recognizes cccDNA by KKx4 motif and forms phase-separated condensates by the poly-glutamine (PolyQ) region of the N-terminal intrinsically disordered low-complexity domain (LCD). Subsequently, ABCF1-cccDNA phase separation not only activates the type I/III interferon (IFN-I/III) pathway but also prevents Pol II accumulation on cccDNA to inhibit HBV transcription. In turn, to sustain viral replication, HBV reduces ABCF1 expression by HBx-mediated ubiquitination and degradation of SRY-box transcription factor 4(SOX4), leading to defects in SOX4-mediated upregulation of ABCF1 transcription. Taken together, the study shows that ABCF1 interacts with cccDNA to form phase separation that dually drives innate immune signaling and HBV transcriptional inhibition. These findings shed new light on the understanding of host defense against cccDNA and provide a novel promising therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Kai Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yuchen Fan
- Department of HepatologyQilu HospitalCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xuetian Yue
- Department of Cellular BiologySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of EducationDepartment of Histology and EmbryologySchool of Basic Medical SciencesShandong UniversityJinanShandong250012China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| |
Collapse
|
44
|
Nair DM, Vajravelu LK, Thulukanam J, Paneerselvam V, Vimala PB, Lathakumari RH. Tackling hepatitis B Virus with CRISPR/Cas9: advances, challenges, and delivery strategies. Virus Genes 2024; 60:592-602. [PMID: 39196289 DOI: 10.1007/s11262-024-02105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health challenge, with chronic HBV leading to severe liver diseases, including cirrhosis and hepatocellular carcinoma. Current treatments often fail to eradicate the virus, highlighting the need for innovative therapeutic strategies. The CRISPR/Cas9 system has emerged as a dynamic tool for precise genome editing and presents a promising approach to targeting and eliminating HBV infection. This review provides a comprehensive overview of the advances, challenges, and delivery strategies associated with CRISPR/Cas9-based therapies for HBV. We begin by elucidating the mechanism of the CRISPR/Cas9 system and then explore HBV pathogenesis, focusing on the role of covalently closed circular DNA (cccDNA) and integrated HBV DNA in maintaining chronic infection. CRISPR/Cas9 can disrupt these key viral reservoirs, which are critical for persistent HBV replication and associated liver damage. The application of CRISPR/Cas9 in HBV treatment faces significant challenges, such as off-target effects, delivery efficiency, and immune responses. These challenges are addressed by examining current approaches to enhance the specificity, safety, and efficacy of CRISPR/Cas9. A future perspective on the development and clinical translation of CRISPR/Cas9 therapies for HBV is provided, emphasizing the requirement for further research to improve delivery methods and ensure durable safety and effectiveness. This review underscores the transformative potential of CRISPR/Cas9 in combating HBV and sets the stage for future breakthroughs in the field.
Collapse
Affiliation(s)
- Dakshina M Nair
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India.
| | - Leela Kakithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Jayaprakash Thulukanam
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Vishnupriya Paneerselvam
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Poornima Baskar Vimala
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Rahul Harikumar Lathakumari
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
45
|
Nguyen L, Nguyen TT, Kim JY, Jeong JH. Advanced siRNA delivery in combating hepatitis B virus: mechanistic insights and recent updates. J Nanobiotechnology 2024; 22:745. [PMID: 39616384 PMCID: PMC11608496 DOI: 10.1186/s12951-024-03004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 12/06/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem, causing thousands of deaths each year worldwide. Although current medications can often inhibit viral replication and reduce the risk of liver carcinoma, several obstacles still hinder their effectiveness. These include viral resistance, prolonged treatment duration, and low efficacy in clearing viral antigens. To address these challenges in current HBV treatment, numerous approaches have been developed with remarkable success. Among these strategies, small-interfering RNA (siRNA) stands out as one of the most promising therapies for hepatitis B. However, naked siRNAs are vulnerable to enzymatic digestion, easily eliminated by renal filtration, and unable to cross the cell membrane due to their large, anionic structure. Therefore, effective delivery systems are required to protect siRNAs and maintain their functionality. In this review, we have discussed the promises of siRNA therapy in treating HBV, milestones in their delivery systems, and products that have entered clinical trials. Finally, we have outlined the future perspectives of siRNA-based therapy for HBV treatment.
Collapse
Affiliation(s)
- Linh Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Tiep Tien Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Ju-Yeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
46
|
Peng B, Pan L, Li W. New Insights on Hepatitis B Virus Viral Transcription in Single Hepatocytes. Viruses 2024; 16:1828. [PMID: 39772138 PMCID: PMC11680359 DOI: 10.3390/v16121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The hepatitis B virus (HBV) infects approximately 290 million people globally, with chronic infection sustained by persistent viral gene expression. Recent single-cell analyses of HBV viral transcripts have uncovered novel features of HBV transcription and provided fresh insights into its regulation at the single-cell level. In this review, we summarize the latest advancements in understanding HBV viral transcription in individual hepatocytes and highlight emerging technologies that hold promise for future research.
Collapse
Affiliation(s)
- Bo Peng
- National Institute of Biological Sciences, Beijing 102206, China;
| | - Lixia Pan
- National Institute of Biological Sciences, Beijing 102206, China;
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China;
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Huang C, Jin Y, Fu P, Hu K, Wang M, Zai W, Hua T, Song X, Ye J, Zhang Y, Luo G, Wang H, Liu J, Chen J, Li X, Yuan Z. Discovery of novel small molecules targeting hepatitis B virus core protein from marine natural products with HiBiT-based high-throughput screening. Acta Pharm Sin B 2024; 14:4914-4933. [PMID: 39664428 PMCID: PMC11628845 DOI: 10.1016/j.apsb.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Due to the limitations of current anti-HBV therapies, the HBV core (HBc or HBcAg) protein assembly modulators (CpAMs) are believed to be potential anti-HBV agents. Therefore, discovering safe and efficient CpAMs is of great value. In this study, we established a HiBiT-based high-throughput screening system targeting HBc and screened novel CpAMs from an in-house marine chemicals library. A novel lead compound 8a, a derivative of the marine natural product naamidine J, has been successfully screened for potential anti-HBV activity. Bioactivity-driven synthesis was then conducted, and the structure‒activity relationship was analyzed, resulting in the discovery of the most effective compound 11a (IC50 = 0.24 μmol/L). Furthermore, 11a was found to significantly inhibit HBV replication in multiple cell models and exhibit a synergistic effect with tenofovir disoproxil fumarate (TDF) and IFNa2 in vitro for anti-HBV activity. Treatment with 11a in a hydrodynamic-injection mouse model demonstrated significant anti-HBV activity without apparent hepatotoxicity. These findings suggest that the naamidine J derivative 11a could be used as the HBV core protein assembly modulator to develop safe and effective anti-HBV therapies.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Panpan Fu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Mengxue Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Guixi Hospital of Chinese Medicine, Guixi 335400, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xuwen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| |
Collapse
|
48
|
Huang D, Yuan Z, Wu D, Yuan W, Chang J, Chen Y, Ning Q, Yan W. HBV Antigen-Guided Switching Strategy From Nucleos(t)ide Analogue to Interferon: Avoid Virologic Breakthrough and Improve Functional Cure. J Med Virol 2024; 96:e70021. [PMID: 39530181 DOI: 10.1002/jmv.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Little is known for factors associated with virologic breakthrough (VBT) after switching from nucleos(t)ide analogue (NA) to pegylated interferon alpha (Peg-IFN-α) for patients with chronic hepatitis B (CHB). Eighty patients who received 48-week Peg-IFN-ɑ and NA combination therapy followed by Peg-IFN-ɑ monotherapy for additional 48 weeks were included in this study. HBV-related markers including HBV DNA, HBsAg, HBcrAg, HBeAg, cccDNA, and immunological biomarkers were dynamically evaluated. Twelve (15.0%) patients experienced VBT after switching to Peg-IFN-ɑ and exhibited significantly lower rates of HBsAg loss after therapy completion (0% vs. 35.3%, p = 0.014). The patients with HBcrAg≥ 5 log10U/mL and HBsAg≥ 100 IU/mL had the highest risk of VBT and failed to achieve subsequent HBsAg clearance. Intrahepatic cccDNA level was significantly higher in patients with HBcrAg≥ 5 log10U/mL than those with HBcrAg< 5 log10U/mL. Notably, in contrast to patients with HBcrAg< 5 log10U/mL or with HBsAg< 100 IU/mL who had obviously restored HBV-specific CD8+T cell, Tfh or B cell responses before NA cessation, those with HBcrAg≥ 5 log10U/mL or with HBsAg≥ 100 IU/mL exhibited lackluster immunities before NA cessation and notable diminished immune responses thereafter. Monitoring HBcrAg and HBsAg levels, which correlated with poor immune responses during sequential Peg-IFN-ɑ strategy, may help to avoid VBT and improve functional cure of CHB.
Collapse
Affiliation(s)
- Da Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhize Yuan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yuan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuying Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Liu Y, Yang J, Wang Y, Zeng Q, Fan Y, Huang A, Fan H. The proteasome activator subunit PSME1 promotes HBV replication by inhibiting the degradation of HBV core protein. Genes Dis 2024; 11:101142. [PMID: 39281837 PMCID: PMC11400625 DOI: 10.1016/j.gendis.2023.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a leading cause of liver cirrhosis and hepatocellular carcinoma, representing a global health problem for which a functional cure is difficult to achieve. The HBV core protein (HBc) is essential for multiple steps in the viral life cycle. It is the building block of the nucleocapsid in which viral DNA reverse transcription occurs, and its mediation role in viral-host cell interactions is critical to HBV infection persistence. However, systematic studies targeting HBc-interacting proteins remain lacking. Here, we combined HBc with the APEX2 to systematically identify HBc-related host proteins in living cells. Using functional screening, we confirmed that proteasome activator subunit 1 (PSME1) is a potent HBV-associated host factor. PSME1 expression was up-regulated upon HBV infection, and the protein level of HBc decreased after PSME1 knockdown. Mechanistically, the interaction between PSME1 and HBc inhibited the degradation of HBc by the 26S proteasome, thereby improving the stability of the HBc protein. Furthermore, PSME1 silencing inhibits HBV transcription in the HBV infection system. Our findings reveal an important mechanism by which PSME1 regulates HBc proteins and may facilitate the development of new antiviral therapies targeting PSME1 function.
Collapse
Affiliation(s)
- Yu Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yanyan Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Qiqi Zeng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
50
|
Xu W, Luo Q, Zhang Y, Xie C, Peng L. A case report: cccDNA and pgRNA remain positive in liver tissue in a chronic hepatitis B patient with functional cure. Front Med (Lausanne) 2024; 11:1427043. [PMID: 39534217 PMCID: PMC11554451 DOI: 10.3389/fmed.2024.1427043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatitis B surface antigen (HBsAg) seroclearance is recommended as the ideal endpoint for nucleos(t)ide analog (NA) treatments. Functional cure of chronic hepatitis B (CHB) is defined as having undetectable serum hepatitis B virus (HBV) deoxyribonucleic acid and serum HBsAg. We report a functional cure case of CHB with a family history of hepatocellular carcinoma (HCC) after long-term NA therapy. Despite achieving functional cure for over 7 years, both HBV covalently closed circular deoxyribonucleic acid (cccDNA) and pregenomic ribonucleic acid (pgRNA) remain positive in the liver tissue of the patient, indicating that a sterilizing cure has not been achieved. This case highlights the importance of active surveillance of HBV cccDNA and pgRNA for sterilizing the cure and risk of HCC.
Collapse
Affiliation(s)
- Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiumin Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|