1
|
Tang H, Zou X, Chen P, Wang Y, Gao S, Wang T, Xu Y, Ji SL. Broxyquinoline targets NLRP3 to inhibit inflammasome activation and alleviate NLRP3-associated inflammatory diseases. Int Immunopharmacol 2025; 156:114687. [PMID: 40253767 DOI: 10.1016/j.intimp.2025.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is responsible for various pathogenic and non-pathogenic damage signals and plays a critical role in host defense against pathogens and physiological damage. However, inflammasome activation and its subsequent effects also lead to a variety of inflammatory diseases. In this study, we identified broxyquinoline, an FDA-approved antimicrobial drug, as a effective NLRP3 inflammasome inhibitor. Broxyquinoline suppressed NLRP3 inflammasome-dependent interleukin-1β (IL-1β) release, but did not affect NLRC4 or AIM2 inflammasome activation. Mechanistically, broxyquinoline directly targets Arg165 of NLRP3 protein, thus preventing NEK7-NLRP3 interaction, NLRP3 oligomerization, and ASC speck formation, without affecting the NF-κB pathway. Consequently, broxyquinoline significantly attenuated the progression of monosodium urate (MSU)-induced peritonitis and myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) in murine models. In conclusion, we demonstrated that broxyquinoline directly targets the NLRP3 protein to suppress the activation of NLRP3 inflammasome and provide a promising therapeutic agent for NLRP3 inflammasome-associated diseases.
Collapse
MESH Headings
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Animals
- Inflammasomes/metabolism
- Inflammasomes/antagonists & inhibitors
- Mice
- Peritonitis/drug therapy
- Peritonitis/chemically induced
- Peritonitis/immunology
- Mice, Inbred C57BL
- Humans
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Anti-Inflammatory Agents/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- NIMA-Related Kinases/metabolism
- Interleukin-1beta/metabolism
- Female
- Uric Acid
Collapse
Affiliation(s)
- Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing Neurology Clinical Medical Center, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Zhang H, Qin X, Yuan H, Xiang L, Yu H. Cathepsin L Aggravates Neuroinflammation via Promoting Microglia M1 Polarization and NLRP3 Activation After Spinal Cord Injury. FASEB J 2025; 39:e70561. [PMID: 40293792 DOI: 10.1096/fj.202403101r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Neuronal inflammation and apoptosis aggravate the secondary injury after spinal cord injury (SCI). Cathepsin L (CTSL) is a lysosomal cysteine protease with effects on the regulation of inflammation, but its role in SCI remains unclear. The in vivo T10 mouse spinal cord contusion model was established. The results showed that CTSL expression was increased following SCI and then gradually decreased. Moreover, CTSL was mainly expressed in microglia. To detect the function of CTSL, after contusive injury, the mice were immediately injected with lentiviruses carrying CTSL shRNA. The results showed that CTSL depletion promoted functional recovery, accompanied by increased locomotor ability. CTSL deficiency reduced lesion cavity areas by inhibiting neuronal apoptosis and neuroinflammation. Indeed, CTSL deficiency decreased the secretion of TNF-α, IL-6, and MCP-1 and M1 microglia polarization in the spinal cord. CTSL depletion inhibited the expression and assembly of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome. In vitro, CTSL expression was increased in LPS-treated BV2 cells. CTSL silencing repressed LPS-induced M1 polarization, as evidenced by the reduction in TNF-α, IL-6, and MCP-1 expression in the supernatant of BV2 cells. CTSL knockdown induced the downregulation of NLRP3 expression and activation. The inhibition role of CTSL knockdown in microglial inflammation and M1 polarization was reversed by NLRP3 agonist. Collectively, the study suggests that CTSL induces the microglia M1 polarization-mediated inflammation via promoting NLRP3 activation and thereby inhibits functional recovery after SCI.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xianyun Qin
- Department of Orthopaedics, The 945th Hospital of the Joint Logistic Support Force, Ya'an, Sichuan, China
| | - Hong Yuan
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Liangbi Xiang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zhu Y, Guo Y, Guo P, Zhang J, He Y, Xia Y, Wei Z, Dai Y. Estrogen receptor β activation alleviates inflammatory bowel disease by suppressing NLRP3-dependent IL-1β production in macrophages via downregulation of intracellular calcium level. J Adv Res 2025; 71:571-584. [PMID: 38844124 DOI: 10.1016/j.jare.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Although several estrogen receptor β (ERβ) agonists have been reported to alleviate IBD, the pivotal mechanism remains obscure. OBJECTIVES To examine the effects and mechanisms of ERβ activation on cytokine/chemokine networks in colitis mice. METHODS Dextran sulfate sodium salt (DSS) and trinitro-benzene-sulfonic acid (TNBS) were used to induce mouse colitis model. Multiple molecular biological methods were employed to evaluate the severity of mouse colitis and the level of cytokine and/or chemokine. RESULTS Bioinformatics analysis, ELISA and immunofluorescence results showed that the targeted cytokines and/or chemokines associated with ERβ expression and activation is IL-1β, and the anti-colitis effect of ERβ activation was significantly attenuated by the overexpression of AAV9-IL-1β. Immunofluorescence analysis indicated that ERβ activation led to most evident downregulation of IL-1β expression in colonic macrophages as compared to monocytes and neutrophils. Given the pivotal roles of NLRP3, NLRC4, and AIM2 inflammasome activation in the production of IL-1β, we examined the influence of ERβ activation on inflammasome activity. ELISA and WB results showed that ERβ activation selectively blocked the NLRP3 inflammasome assembly-mediated IL-1β secretion. The calcium-sensing receptor (CaSR) and calcium signaling play crucial roles in the assembly of the NLRP3 inflammasome. WB and immunofluorescence results showed that ERβ activation reduced intracellular CaSR expression and calcium signaling in colonic macrophages. Combination with CaSR overexpression plasmid reversed the suppressive effect of ERβ activation on NLRP3 inflammasome assembly, and counteracting the downregulation of IL-1β secretion. CONCLUSION Our research uncovers that the anti-colitis effect of ERβ activation is accomplished through the reduction of IL-1β levels in colonic tissue, achieved by specifically decreasing CaSR expression in macrophages to lower intracellular calcium levels and inhibit NLRP3 inflammasome assembly-mediated IL-1β production.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| |
Collapse
|
4
|
Wang LT, Wang HH, Jiang SS, Chang CC, Hsu PJ, Liu KJ, Sytwu HK, Yen BL, Yen ML. Lack of IFN-γ response of human uterine myometrium-derived MSCs significantly improve multiple IBD parameters compared to bone marrow MSCs: Implications for anti-TNFα-refractory patients. Pharmacol Res 2025; 215:107716. [PMID: 40154933 DOI: 10.1016/j.phrs.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical efficacy of mesenchymal stem cell (MSC) therapy for inflammatory bowel disease (IBD) is inconsistent and often fails to match promising preclinical findings. To improve outcome, we compared MSCs isolated from human uterine myometrium (Ut), a readily-available tissue source from a unique immune niche, to bone marrow (BM) MSCs, the most common source, in a murine IBD model with mechanisms underlying differential effects. In this study, human BMMSCs and UtMSCs were intravenously administered to mice with dextran sulfate sodium-induced colitis and evaluated for disease activity, microbiome composition, and cellular immunity. Bioinformatics analyses including patient data were performed to further specify involved mechanisms with subsequent functional validation performed. We found that UtMSC but not BMMSC treatment significantly reversed disease parameters by improving microbiome and reducing mesenteric lymph node IFN-γ and IL-17A-secreting T cells. Transcriptomic analysis revealed UtMSCs had reduced MHC II pathway activation compared to BMMSCs. Functional validation confirmed UtMSCs compared to BMMSCs expressed lower IFN-γ receptors, prevent MHC II-mediated human unstimulated T cell activation, and modulated stimulated T helper (Th) cells away from effector phenotypes while increasing regulatory T cells (Tregs) and IL-10 levels. Bioinformatics from IBD patients resistant to non-T cell-specific therapies implicated persistent MHC II-mediated Th1/Th17 activation as key drivers of disease. Overall, UtMSCs outperformed BMMSCs in improving microbiota, avoiding IFN-γ responses, and modulating overall Th responses, suggesting this MSC source may offer more significant effectiveness for IBD and Th1/Th17-mediated conditions. Our findings also highlight that understanding MSC source-specific therapeutic mechanisms is crucial for optimizing clinical therapies.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Chia-Chih Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan; Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan; Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan.
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan.
| |
Collapse
|
5
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
6
|
Zhou Z, Wang L, Liao R, Chen Q, Liu C, Song J, Deng C, Huang X. The Effect of GB1 on DSS-Induced Colitis in WT and Nlrp3 -/- Mice. Int J Mol Sci 2025; 26:4016. [PMID: 40362256 PMCID: PMC12071720 DOI: 10.3390/ijms26094016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
This study investigated the protective effects of Garcinia biflavonoid 1 (GB1) against dextran sulfate sodium (DSS)-induced ulcerative colitis and its underlying mechanisms. Using wild-type (WT) and NLRP3 knockout (Nlrp3-/-) mice, we demonstrated that GB1 administration significantly ameliorated colitis symptoms, as evidenced by improved body weight, disease activity index (DAI) scores, colon length, and histological damage in WT mice. Mechanistically, GB1 downregulated pro-inflammatory mediators (IL-6, NF-κB, and CD11b) while attenuating the expression of NLRP3 inflammasome components (ASC, Caspase-1, and IL-1β). Notably, these protective effects were abolished in Nlrp3-/- mice, confirming the essential role of NLRP3 in GB1-mediated mitigation of colitis. Furthermore, GB1 reinforced intestinal barrier integrity by preserving tight junctions, reducing permeability, and attenuating mucosal inflammation. Collectively, our findings highlight GB1 as a promising therapeutic candidate for colitis treatment, primarily through NLRP3 inflammasome suppression and intestinal barrier restoration.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- Dextran Sulfate/adverse effects
- Mice
- Mice, Knockout
- Inflammasomes/metabolism
- Biflavonoids/pharmacology
- Biflavonoids/therapeutic use
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/pathology
- Colitis/metabolism
- Mice, Inbred C57BL
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/metabolism
- Disease Models, Animal
- Male
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
Collapse
Affiliation(s)
- Ziyi Zhou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
| | - Lixian Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
| | - Ruhe Liao
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
| | - Qin Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Z.Z.); (L.W.); (R.L.); (Q.C.); (J.S.)
| |
Collapse
|
7
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
8
|
Zhang Y, Li L, Kong J, Long Y, Lu X, Erb CJ, Miao Y, Kammula SV, Popov J, Tinana AJ, Selaru FM, Mao HQ. Long-acting injectable nanoparticle formulation for sustained release of anti-TNF-α antibody therapeutic in ulcerative colitis treatment. J Control Release 2025; 380:1005-1016. [PMID: 39978474 DOI: 10.1016/j.jconrel.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Inflammatory bowel diseases (IBD) are chronic, remitting, and relapsing conditions of the gastrointestinal tract with incompletely elucidated etiology. The anti-TNF-α mAbs represent one of aflash nanocomplexation and flash nanoprecipitation process, resulting in particles with a narrow size distribution and tunable release profile, with the longest in vitro release lasting over four months. These mAb-releasing NPs are then incorporated into hyaluronic acid hydrogel microparticles (MPs) to enhance tissue retention, thus extending the duration of mAb release in vivo. A single i.m. injection of the LAI can maintain the serum mAb level above the therapeutically effective concentration for over 100 days in healthy mice. In a 9-week study using a dextran sulfate-induced chronic colitis model, the anti-TNF-α LAI formulation demonstrates substantial therapeutic efficacy and a better safety profile than free mAb injections. This work demonstrates the effectiveness of this LAI system in maintaining a persistent serum mAb level and its potential as a versatile, safer, and effective delivery system for antibody therapeutics.
Collapse
Affiliation(s)
- Yicheng Zhang
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiayuan Kong
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yuanmuhuang Long
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoya Lu
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher J Erb
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yurun Miao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Sachin V Kammula
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan Popov
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J Tinana
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Florin M Selaru
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liu Y, Wang Q, Ma J, Li J, Li C, Xie X, Xiao Q, Xie C, Liu H, Hong Y, Wang J. Discovery of Novel Sulfonylurea NLRP3 Inflammasome Inhibitor for the Treatment of Multiple Inflammatory Diseases. J Med Chem 2025; 68:7243-7262. [PMID: 40112040 DOI: 10.1021/acs.jmedchem.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
NLRP3 inflammasome is critical in innate immunity and inflammatory responses. A series of novel sulfonylurea-based NLRP3 inflammasome inhibitors was designed and synthesized. Notably, compound 15 exhibited the potent NLRP3 inhibitory activity, effectively suppressing IL-1β secretion in THP-1 (IC50 = 23 nM), demonstrating better efficacy compared to MCC950. It selectively inhibits NLRP3 activation by disrupting inflammasome assembly, with no effect on NLRC4 or AIM2 inflammasomes. Molecular docking showed that the 1-methyl-4-(methylamino)piperidine moiety forms a novel hydrogen bond with Asp662 in the hydrophilic region of NLRP3. Additionally, compound 15 displayed excellent pharmacokinetic properties with 99.6% oral bioavailability in mice. It exhibited superior efficacy in acute peritonitis and diabetic kidney disease models, surpassing MCC950. Tissue distribution studies confirmed that compound 15 specifically targeted the gut and showed efficacy in an IBD model, comparable to MCC950. These findings highlight compound 15 as a promising lead for novel oral NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Yiting Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Jiyuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiannan Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cen Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
10
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Rakhmatullaev A, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. Inflammasomes and Cardiovascular Disease: Linking Inflammation to Cardiovascular Pathophysiology. Scand J Immunol 2025; 101:e70020. [PMID: 40170223 DOI: 10.1111/sji.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global mortality, driven by risk factors such as dyslipidemia, hypertension and diabetes. Recent research has highlighted the critical role of inflammasomes, particularly the NLRP3 inflammasome, in the pathogenesis of various CVDs, including hypertension, atherosclerosis, myocardial infarction and heart failure. Inflammasomes are intracellular protein complexes that activate inflammatory responses through the production of pro-inflammatory cytokines such as IL-1β and IL-18, contributing to endothelial dysfunction, plaque formation and myocardial injury. This review provides a comprehensive overview of the structure, activation mechanisms and pathways of inflammasomes, with a focus on their involvement in cardiovascular pathology. Key activation pathways include ion fluxes (K+ efflux and Ca2+ signalling), endoplasmic reticulum (ER) stress, mitochondrial dysfunction and lysosomal destabilisation. The review also explores the therapeutic potential of targeting inflammasomes to mitigate inflammation and improve outcomes in CVDs. Emerging strategies include small-molecule inhibitors, biologics and RNA-based therapeutics, with a particular emphasis on NLRP3 inhibition. Additionally, the integration of artificial intelligence (AI) in cardiovascular research offers promising avenues for identifying novel biomarkers, predicting disease risk and developing personalised treatment strategies. Future research directions should focus on understanding the interactions between inflammasomes and other immune components, as well as genetic regulators, to uncover new therapeutic targets. By elucidating the complex role of inflammasomes in CVDs, this review underscores the potential for innovative therapies to address inflammation-driven cardiovascular pathology, ultimately improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Akmal Rakhmatullaev
- Department of Faculty Pediatric Surgery, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
11
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2025; 39:1776-1807. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Aljabali AAA, Tambuwala M. Exploring Scopoletin's Therapeutic Efficacy in DSS-Induced Ulcerative Colitis: Insights into Inflammatory Pathways, Immune Modulation, and Microbial Dynamics. Inflammation 2025; 48:575-589. [PMID: 38918333 PMCID: PMC12053357 DOI: 10.1007/s10753-024-02048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to investigate the therapeutic potential of scopoletin in ulcerative colitis, with a primary focus on its impact on crucial inflammatory pathways and immune responses. A male mouse model of DSS-induced colitis was employed with six distinct groups: a control group, a group subjected to DSS only, three groups treated with varying scopoletin doses, and the final group treated with dexamethasone. The investigation included an assessment of the effects of scopoletin on colitis symptoms, including alterations in body weight, Disease Activity Index (DAI), and histopathological changes in colonic tissue. Furthermore, this study scrutinized the influence of scopoletin on cytokine production, PPARγ and NF-κB expression, NLRP3 inflammasome, and the composition of intestinal bacteria. Scopoletin treatment yielded noteworthy improvements in DSS-induced colitis in mice, as evidenced by reduced weight loss and colonic shortening (p < 0.05, < 0.01, respectively). It effectively diminished TNF-α, IL-1β, and IL-12 cytokine levels (p < 0.01, p < 0.05), attenuated NLRP3 inflammasome activation and the associated cytokine release (p < 0.05, p < 0.01), and modulated the immune response by elevating PPARγ expression while suppressing NF-κB pathway activation (p < 0.05, p < 0.01). Additionally, scopoletin induced alterations in the gut microbiota composition, augmenting beneficial Lactobacillus and Bifidobacteria while reducing E. coli (p < 0.05). It also enhanced tight junction proteins, signifying an improvement in the intestinal barrier integrity (p < 0.05, < 0.01). Scopoletin is a promising therapeutic agent for managing ulcerative colitis, showing benefits that extend beyond mere anti-inflammatory actions to encompass regulatory effects on gut microbiota and restoration of intestinal integrity.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
13
|
Fahey DL, Patel N, Watford WT. TPL2 kinase activity is required for Il1b transcription during LPS priming but dispensable for NLRP3 inflammasome activation. Front Immunol 2025; 16:1496613. [PMID: 40170849 PMCID: PMC11958189 DOI: 10.3389/fimmu.2025.1496613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The NLRP3 inflammasome complex is an important mechanism for regulating the release of pro-inflammatory cytokines, IL-1β and IL-18, in response to harmful pathogens. Overproduction of pro-inflammatory cytokines has been linked to cryopyrin-associated periodic syndrome, arthritis, and other inflammatory conditions. It has been previously shown that tumor progression locus 2, a serine-threonine kinase, promotes IL-1β synthesis in response to LPS stimulation; however, whether TPL2 kinase activity is required during inflammasome priming to promote Il1b mRNA transcription and/or during inflammasome activation for IL-1β secretion remained unknown. In addition, whether elevated type I interferons, a consequence of either Tpl2 genetic ablation or inhibition of TPL2 kinase activity, decreases IL-1β expression or inflammasome function has not been explored. Using LPS-stimulated primary murine bone marrow-derived macrophages, we determined that TPL2 kinase activity is required for transcription of Il1b, but not Nlrp3, Il18, caspase-1 (Casp1), or gasdermin-D (Gsdmd) during inflammasome priming. Both Casp1 and Gsdmd mRNA synthesis decreased in the absence of type I interferon signaling, evidence of crosstalk between type I interferons and the inflammasome. Our results demonstrate that TPL2 kinase activity is differentially required for the expression of inflammasome precursor cytokines and components but is dispensable for inflammasome activation. These data provide the foundation for the further exploration of TPL2 kinase inhibitor as a potential therapeutic in inflammatory diseases.
Collapse
Affiliation(s)
- Denise L. Fahey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Niki Patel
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Cao R, Zhou J, Liu J, Wang Y, Dai Y, Jiang Y, Yamauchi A, Atlas D, Jin T, Zhou J, Wang C, Tan Q, Chen Y, Yodoi J, Tian H. TXM-CB13 Improves the Intestinal Mucosal Barrier and Alleviates Colitis by Inhibiting the ROS/TXNIP/TRX/NLRP3 and TLR4/MyD88/NF-κB/NLRP3 Pathways. Inflammation 2025:10.1007/s10753-025-02282-9. [PMID: 40085192 DOI: 10.1007/s10753-025-02282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
The activation of inflammasomes (NLRP3 and NLRP1) is central to the pathogenesis of inflammatory bowel disease (IBD). Here we examined the protective effects of a thioredoxin-mimetic peptide CB13 (TXM-CB13), known for its antioxidative stress and anti-inflammatory properties. We examined the effects of TXM-CB13 on dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation in RAW264.7 macrophages. TXM-CB13 appeared to alleviate symptoms of DSS-induced colitis and to significantly suppress the protein and mRNA levels of NLRP3, Mlck, and IL-1β in colonic tissues. Additionally, TXM-CB13 treatment increased the levels of the intestinal barrier proteins Occludin, ZO-1, and NLRP1, as shown through immunohistochemistry and Western blot analysis. In vitro, TXM-CB13 inhibited LPS-induced TLR4 signaling, reducing MyD88 levels and consequently attenuating the activation of the NF-κB pathways, including p-IκB-α/IκB-α and p-NF-κB-p65/NF-κB-p65. This inhibition further reduced the activation of the NLRP3 inflammasome components, NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. In addition, TXM-CB13 prevented the ROS-mediated dissociation of TXNIP from TRX, inhibiting NLRP3 activation. These findings suggest that TXM-CB13 is a potential therapeutic candidate for IBD through its modulation of the TLR4/MyD88/NF-κB/NLRP3 and ROS/TXNIP/TRX/NLRP3 pathways.
Collapse
Affiliation(s)
- Ruijie Cao
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jinhui Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jiale Liu
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yaxuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yandong Dai
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yun Jiang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Akira Yamauchi
- Department of Breast Surgery, Misugi-kai Sato Hospital Breast Center, HIrakata, Osaka, Japan
| | - Daphne Atlas
- Dept. Of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tiancheng Jin
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Qihuan Tan
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yifei Chen
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China.
- Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing, China.
| |
Collapse
|
15
|
Gao X, Jing D, Zhang Y, Zhu F, Yang Y, Zhou G. Unveiling the Role of GRK2: From Immune Regulation to Cancer Therapeutics. Mediators Inflamm 2025; 2025:8837640. [PMID: 40224487 PMCID: PMC11986179 DOI: 10.1155/mi/8837640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/04/2025] [Indexed: 04/15/2025] Open
Abstract
G protein-coupled receptors (GPCRs) represent humans' most prominent family of membrane proteins. In contrast, G protein-coupled receptor kinases (GRKs) play a pivotal role in the rapid desensitization of GPCRs. GRK2 is a particularly significant member of the GRK family. Recent studies have demonstrated that GRK2 primarily regulates immune cell function and homeostasis through receptor desensitization. Over the past decade, substantial progress has been made in elucidating the role of GRK2 in various human diseases. Notably, GRK2 is implicated in a range of autoimmune disorders, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), Sjögren's syndrome (SS), autoimmune myocarditis, hepatitis, and Graves' disease. Furthermore, emerging research has expanded our understanding of GRK2's involvement in cancer biology. Comprehensive investigations into the biological and pathological functions of GRK2 have facilitated the development of therapeutic strategies aimed at targeting the GRK2 signaling pathway in cancer, inflammation, and autoimmune diseases. Promising results have been observed with targeted biologics in preclinical and clinical trials. This review aims to elucidate the multifaceted role of GRK2 in immune function, autoimmune diseases, and cancer to uncover the remaining complexities associated with this kinase. A thorough understanding of GRK2 may position it as a potent therapeutic target in treating inflammation and cancer.
Collapse
Affiliation(s)
- Xizhuang Gao
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| |
Collapse
|
16
|
Shi S, Jiang H, Ma W, Guan Z, Han M, Man S, Wu Z, He S. Preclinical studies of natural flavonoids in inflammatory bowel disease based on macrophages: a systematic review with meta-analysis and network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2293-2318. [PMID: 39422746 DOI: 10.1007/s00210-024-03501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Flavonoid is a category of bioactive polyphenolic compounds that are extensively distributed in plants with specific pharmacological properties, such as anti-inflammatory and anti-oxidant. Importantly, natural flavonoids have shown the protected function on the dextran sulfate sodium (DSS)-induced colitis in animals and lipopolysaccharides (LPS)-induced inflammatory response in macrophages. The purpose of this systematic review is to explore the efficacy of natural flavonoids in animal models of IBD (inflammatory bowel disease) and potential mechanisms in macrophages by meta-analysis and network pharmacology in preclinical studies. Relevant foundation studies were searched from January 2010 to November 2023 in databases like PubMed, Elsevier ScienceDirect, and Web of Science. Then, OriginPro software was used to extract values from images, and the analysis was performed using Review Manager 5.3. The retrieved data was analyzed according to the fixed-effects model and random-effects model. Subsequently, heterogeneity was evaluated using the I2 statistics. Lastly, network pharmacology was applied to confirm mechanisms of natural flavonoids on IBD. According to the results of meta-analysis, we found the natural flavonoids exhibited powerful therapeutic effects against IBD, which not only reversed colonic shortness (WMD = 1.33, 95% CI (1.07, 1.59), P < 0.00001), but also reduced histological score (SMD = - 2.66, 95% CI (- 3.77, - 1.95), P < 0.00001) between natural flavonoid treatment groups compared with the experimental IBD model. Furthermore, treatment with natural flavonoids decreased the levels of tumor necrosis factor-α (TNF-α) in macrophages. Mechanistically, our summarized data substantiate that natural flavonoids alleviate LPS-induced M1 macrophage polarization, anti-oxidant, anti-inflammatory, maintain intestinal barrier, and inhibit the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Moreover, the results of network pharmacology also support this. This systematic review demonstrated the efficiency of natural flavonoids in treating IBD in preclinical research by meta-analysis and network pharmacology, which offered supporting evidence for clinical trial implementation. However, some limitations remain present, such as technique quality shortage, missed reports on account of negative results, failure to count sample size, and the risk of bias.
Collapse
Affiliation(s)
- Shasha Shi
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hao Jiang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenke Ma
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zitong Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengxue Han
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhuzhu Wu
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Shan He
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
17
|
Li J, Li P, Yuan S, Xue JC, Zhang QG, Gao BH. Pulchinenoside B4 alleviates DSS-induced colitis by inhibiting CD1d-dependent NLRP3 inflammasome activation in macrophages. Int Immunopharmacol 2025; 148:114118. [PMID: 39854876 DOI: 10.1016/j.intimp.2025.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Ulcerative colitis (UC) represents a significant challenge to global health, underscoring the importance of developing novel alternative anti-colitis agents. Inhibition of the NLRP3 inflammasome in macrophages has emerged as a potential therapeutic strategy for UC. Pulchinenoside B4 (PB4) is a major component of traditional medicinal plants that demonstrated to possess promising anti-inflammatory properties. The aim of the present study was to assess whether PB4 alleviates dextran sodium sulfate (DSS)-induced colitis by inhibiting the NLRP3 inflammasome in macrophages and its potential molecular mechanism. We constructed DSS-induced colitis in C57BL/6 mice, and isolated mouse intestinal macrophages and epithelial cells to investigate the effect of PB4 on NLRP3 inflammasome, and confirmed our findings in DSS-induced NLRP3-/- mice. In addition, we constructed lipopolysaccharides (LPS)-induced macrophages in vitro and identified the target and molecular mechanism of PB4 through biolayer interference (BLI) and cell thermal migration (CETSA) in conjunction with dss induced macrophage-specific CD1d depletion (CD1d-/-) colitis. This study showed that PB4 had a strong anti-inflammatory effect on WT mice induced by DSS, but the protective effect on NLRP3-/- mice was no longer enhanced. Interestingly, PB4 inhibited the activation of NLRP3 inflammasome in colon macrophages without affecting intestinal epithelial cells. Mechanistically, PB4 may target CD1d, thereby reducing the AKT-STAT1-PRDX1-NF-κB signaling pathway and ultimately inhibiting the activation of the NLRP3 inflammasome. Macrophage-specific CD1d loss has been shown to reverse the protective effects of PB4. These findings have paved the way for the development of CD1d/NLRP3-based novel anti-colitis agents and will facilitate the future clinical translation of the plant-derived drug PB4.
Collapse
Affiliation(s)
- Jiao Li
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Shuo Yuan
- Chronic Disease Research Center, Natural Products Provincial Key Innovation Center, Medical College, Dalian University, Dalian, Liaoning 116622, China
| | - Jia-Chen Xue
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Natural Products Provincial Key Innovation Center, Medical College, Dalian University, Dalian, Liaoning 116622, China.
| | - Bi-Hu Gao
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| |
Collapse
|
18
|
Feng Z, Chen Z, Wang X, Zhou M, Liu S. Immune-Mediated Bidirectional Causality Between Inflammatory Bowel Disease and Chronic Periodontitis: Evidence from Mendelian Randomization and Integrative Bioinformatics Analysis. Biomedicines 2025; 13:476. [PMID: 40002889 PMCID: PMC11853167 DOI: 10.3390/biomedicines13020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: A bidirectional association between inflammatory bowel disease (IBD) and periodontitis has been observed, yet their causal relationship remains unclear. This study aimed to investigate the potential causal links between these two inflammatory conditions through comprehensive genetic and molecular analyses. Methods: We conducted a bidirectional Mendelian randomization (MR) analysis integrated with bioinformatics approaches. The causal relationships were primarily evaluated using inverse variance weighting (IVW), complemented by multiple sensitivity analyses to assess the robustness of the findings. Additionally, we performed differential gene expression analysis using RNA sequencing data to identify co-expressed genes and shared inflammatory mediators between IBD and periodontitis, followed by pathway enrichment analysis. Results: Bidirectional MR analysis revealed significant causal associations between IBD and periodontitis (p-value < 0.05). Sensitivity analyses demonstrated the consistency of these findings, with no evidence of significant heterogeneity or horizontal pleiotropy (p-value > 0.05). Integrated bioinformatics analysis identified key immune regulators, particularly interleukin 1 beta (IL1B) and C-X-C motif chemokine receptor 4 (CXCR4), and inflammatory signaling pathways, including tumor necrosis factor (TNF-α) and interleukin 17 (IL17), as potential molecular mechanisms underlying the bidirectional relationship between these conditions. Conclusions: Our findings provide genetic evidence supporting a bidirectional causal relationship between IBD and periodontitis. Transcriptomic analysis revealed shared pathological mechanisms and identified crucial immune regulatory factors common to both diseases. These insights enhance our understanding of the molecular interplay between IBD and periodontitis, potentially informing new therapeutic strategies for both conditions.
Collapse
Affiliation(s)
| | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.F.); (Z.C.); (X.W.)
| | - Shupeng Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.F.); (Z.C.); (X.W.)
| |
Collapse
|
19
|
Zhuang J, Zhuang Z, Chen B, Yang Y, Chen H, Guan G. Odoribacter splanchnicus-derived extracellular vesicles alleviate inflammatory bowel disease by modulating gastrointestinal inflammation and intestinal barrier function via the NLRP3 inflammasome suppression. Mol Med 2025; 31:56. [PMID: 39934686 PMCID: PMC11816829 DOI: 10.1186/s10020-025-01063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from specific bacteria exert therapeutic potential on inflammatory diseases. Previous reports suggest the protective role of Odoribacter splanchnicus (O.splanchnicus) in inflammatory bowel disease (IBD). The effect of EVs derived from O.splanchnicus (Os-EVs) and the underlying mechanism on IBD were surveyed here. METHODS Os-EVs were derived with ultracentrifugation before characterization by transmission electron microscopy and nanoparticle tracking analysis. Based on IBD model mice induced by dextran sulfate sodium (DSS), the effects of Os-EVs on IBD symptoms, intestinal barrier dysfunction, and colonic apoptosis, inflammation as well as NLRP3 inflammasome activation were analyzed. NLRP3 knockout mice were exploited to judge the role of NLRP3 in Os-EVs against IBD. RESULTS Os-EVs were typically shaped as a double concave disc (average diameter = 95 nm). The administration of Os-EVs attenuated DSS-induced body weight loss, colon shortening, disease activity index score, and histological injury in mice. Os-EVs could also relieve intestinal barrier dysfunction and colonic apoptosis, as evidenced by the up-regulation of zona occludens-1 and Occludin and the decrease of TUNEL-positive staining in colonic tissues of IBD mice. Os-EVs downregulated the expression of the interleukin-1β (IL-1β), tumor necrosis factor-α, and IL-6, and elevated IL-10, accompanied by blockage of the NLRP3 inflammasome activation in DSS-induced mice. Furthermore, NLRP3 knockout mice experiments revealed that the protective role of Os-EVs in IBD relies on regulating NLRP3. CONCLUSION Our finding indicated that Os-EVs effectively ameliorated IBD through repressing NLRP3, strongly supporting the potential of probiotic-derived EVs for alleviating IBD.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Zhicheng Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Bin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China
| | - Hengkai Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China.
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, 20th, Chazhong Road, Fuzhou, Fujian Province, 350005, P. R. China.
| |
Collapse
|
20
|
Jiang L, Ma X, Yan Q, Pu D, Fu X, Zhang D. Dihydromyricetin/montmorillonite intercalation compounds ameliorates DSS-induced colitis: Role of intestinal epithelial barrier, NLRP3 inflammasome pathway and gut microbiota. Int J Pharm 2025; 670:125155. [PMID: 39746581 DOI: 10.1016/j.ijpharm.2024.125155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Dihydromyricetin (DHM), the primary active compound in vine tea possesses various pharmacological effects such as anti-inflammatory and antioxidant properties, along with high biosafety. However, its oral delivery remains a significant challenge. Montmorillonite (MMT), the primary component of bentonite, is a commonly used drug in the clinical treatment of gastrointestinal diseases and serves as an excellent drug carrier due to its intercalation capability. In this study, we intercalated DHM into the interlayer spaces of MMT via solution intercalation method combined with rotary evaporation and used it to treat ulcerative colitis in mice. SEM, XRD, and FTIR analyses confirmed the successful synthesis of the DHM/MMT intercalation compound. In vitro studies shown that DHM/MMT eliminated intracellular ROS and suppressed inflammatory genes IL-1β, IL-6, and TNF-α. Moreover, DHM/MMT demonstrated notable therapeutic effects in ulcerative colitis (UC) mice, significantly restoring the intestinal mucosa. Importantly, the therapeutic mechanism of DHM/MMT is closely linked to the inhibition of the NLRP3 signaling pathway. Additionally, this strategy modulated gut microbiota by increasing probiotics and suppressing harmful bacteria, thereby maintaining intestinal homeostasis. In conclusion, DHM/MMT presents a promising strategy for UC treatment.
Collapse
Affiliation(s)
- Luxia Jiang
- Department of Cardiac Surgery ICU, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Cuiying Biomedical Research Center, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xueni Ma
- Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Qi Yan
- Department of Neurology Department, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Dan Pu
- Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
21
|
Li J, Ji W, Chen G, Yu K, Zeng J, Zhang Q, Xiong G, Du C, Peng Y, Zeng X, Chen C. Peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside), a polyacylated anthocyanin isolated from the black corncobs, alleviates colitis by modulating gut microbiota in DSS-induced mice. Food Res Int 2025; 202:115688. [PMID: 39967148 DOI: 10.1016/j.foodres.2025.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Polyacylated anthocyanins are known for their enhanced stability and immunosuppressive properties. Although peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside) (P3GdM) from black corncobs has demonstrated notable antibacterial and stress-resistance effects in plants, its regulatory role in inflammatory bowel disease (IBD) remains unexplored. In this study, P3GdM was isolated from black corncobs, and its potential as a treatment for dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. The findings revealed that P3GdM significantly mitigated clinical symptoms, reduced the disease activity index (DAI), suppressed the production of pro-inflammatory cytokines and endotoxins, and repaired the intestinal barrier. Furthermore, P3GdM markedly improved DSS-induced gut microbiota dysbiosis, significantly increasing microbial diversity and enhancing the relative abundance of critical bacterial species such as Akkermansia muciniphila and Lactobacillus reuteri, while also stimulating the production of short-chain fatty acids (SCFAs) and lactic acid. Correlation analyses further revealed strong associations between key microbial taxa, pro-inflammatory factors, clinical symptoms, tight junction proteins, and SCFAs. These findings provide support for the potential of P3GdM as an adjunct therapy for intestinal disorders, particularly colitis.
Collapse
Affiliation(s)
- Junjie Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Wenting Ji
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kun Yu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Jianhua Zeng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Qi Zhang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guoyuan Xiong
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Yujia Peng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chunxu Chen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Chuzhou 233100, China.
| |
Collapse
|
22
|
Wang Y, Wang J, Chen Y, Li X, Jiang Z. Decursinol angelate relieves inflammatory bowel disease by inhibiting the ROS/TXNIP/NLRP3 pathway and pyroptosis. Front Pharmacol 2025; 15:1520040. [PMID: 39840084 PMCID: PMC11747577 DOI: 10.3389/fphar.2024.1520040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Despite evidence of the efficacy of decursinol angelate (DA), a prescription medication derived farom traditional Chinese medicine, in alleviating inflammatory bowel disease (IBD), the precise mechanisms behind its action remain unclear. Methods Lipopolysaccharides (LPS) and dextran sodium sulfate (DSS) induction were used as in vitro and in vivo models of IBD, respectively, to assess the role of DA in alleviating IBD. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression levels of pro-inflammatory cytokines in mouse serum, Western blot was performed to detect the expression of TXNIP/NLRP3 pathway tight junction (TJ) proteins in colon tissues and cells, and immunohistochemistry, immunofluorescence and immunohistochemistry, immunofluorescence and qRT-PCR were used to validate the proteins related to this signaling pathway. Molecular docking technique and co-immunoprecipitation (Co-IP) method assay were applied to evaluate the targeting effect of DA on NLRP3 proteins, and MCC950, a specific inhibitor of NLRP3, was used as a positive control for validation. Results Our research indicates that DA's distinctive molecular mechanism could entail binding to the NLRP3 protein, thereby suppressing the activation of the NLRP3 pathway and diminishing the assembly and activation of the NLRP3 inflammasome, thus functioning as an anti-inflammatory agent. Conclusion DA may play a role in improving BD by inhibiting the activation of the ROS/TXNIP/NLRP3 signaling pathway and the release of inflammatory mediators, and by repairing the intestinal barrier function.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jiamin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yonghu Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuezheng Li
- Department of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe Jiang
- Department of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
23
|
Zhang H, Zhao T, Gu J, Tang F, Zhu L. Gut microbiota and inflammasome-mediated pyroptosis: a bibliometric analysis from 2014 to 2023. Front Microbiol 2025; 15:1413490. [PMID: 39834371 PMCID: PMC11743621 DOI: 10.3389/fmicb.2024.1413490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background The role of gut microbiota in inflammatory disease development and progression has been recognized more recently. Inflammasome-mediated pyroptosis in involved in these diseases. This complex relationship between gut microbiota and inflammasome-mediated pyroptosis provides an important field of research. Bibliometric analysis provides a comprehensive understanding of this relationship, offering valuable insights into emerging research trends. Materials and methods Leveraging data spanning from 2014 to 2023 sourced from the Web of Science Core Collection, our analysis was conducted using advanced tools such as SCImago Graphica, VOSviewer, and CiteSpace software. Visualizations were created using GraphPad Prism software. We explored the nuanced aspects of research hotspots, collaborative networks, and developing trends in this field. Results A global bibliometric analysis identified 520 relevant studies spanning 41 countries and 887 institutions. Over the past decade, publication trends have shown consistent growth, with China and the United States leading the research output. Southern Medical University and Nanjing Medical University in China emerged as leading institutions in this filed. Prominent contributors include Jia Sun, Yuan Zhang, Wei Chen, Jing Wang, and Hongtao Liu from China, alongside Eicke Latz from Germany. High-impact journals such as Frontiers in Immunology and Nature Communications have been pivotal in disseminating research in this domain. Keyword analysis highlighted a primary focus on gut microbiota, NLRP3 inflammasome, pyroptosis pathways, and inflammatory diseases, themes that persist in recent studies. Furthermore, burst keyword analysis identified "butyrate" as the sole term currently experiencing a marked increase in research interest. Conclusion Research has been deeply focused on the gut microbiota and inflammasome triggered pyroptosis in years. Over the past decade, the exploration of how gut microbiota and NLRP3 or NLRP6 inflammasome-mediated pyroptosis has been an area of interest. Future investigations in this filed may primarily revolve around understanding the correlation between butyrate and NLRP3 inflammasome induced pyroptosis in relation to conditions. However, an in-depth analysis, through studies is crucial to uncover and elucidate the complex mechanisms linking these elements.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Tian Zhao
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Juan Gu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Lei Zhu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Song L, Tai Y, Li JX, Cao S, Han J, Liu XZ, Cao S, Li MY, Zuo HX, Xing Y, Ma J, Jin X. Mollugin inhibits IL-1β production by reducing zinc finger protein 91-regulated Pro-IL-1β ubiquitination and inflammasome activity. Int Immunopharmacol 2025; 145:113757. [PMID: 39642566 DOI: 10.1016/j.intimp.2024.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Rubia cordifolia L. has been formally included in the Chinese Pharmacopoeia and utilized for centuries as a traditional Chinese medicine. Mollugin, a quinone compound, is a major active compound extracted from Rubia cordifolia L. Mollugin was reported has multiple pharmacological activity, including anti-inflammatory, anti-tumor effects. However, the anti-inflammatory mechanism is not yet clear. In this study, we explored the anti-inflammatory activity and potential mechanism of mollugin in vitro and in vivo. MATERIALS AND METHODS We explored the mechanisms that mollugin suppressed IL-1β expression through ZFP91 using various assays, including western blot, immunofluorescence, immunoprecipitation, MTT, RT-PCR, and ELISA assays in vitro. In vivo, oral administration of DSS induced colitis in mice and intraperitoneal injection of alum induced peritonitis in mice. RESULTS First, the results demonstrated that mollugin dramatically suppressed IL-1β secretion through reducing ZFP91 in macrophages. Crucially, we proved that mollugin inhibited K63-linked Pro-IL-1β ubiquitination through ZFP91 and limitated Pro-IL-1β cleavage efficacy. In addition, ZFP91-mediated Caspase-8 inflammasome component expression was inhibited by mollugin. Furthermore, mollugin inhibited the assembly of the Caspase-8 inflammasome complex by downregulating ZFP91. In vivo studies further revealed that mollugin improved DSS-induced colitis and alum-induced peritonitis in mice by reducing ZFP91. Notely, mollugin significantly altered the abundance of gut flora in DSS-induced colitis mice, which in turn ameliorated the colitis. CONCLUSION We present a novel finding that mollugin inhibition of ZFP91 is a crucial regulatory step, preventing undue inflammatory responses and thereby maintaining immune homeostasis. The current study offers new insight into the development of anti-inflammatory therapeutics targeting ZFP91.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yi Tai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jia Xuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shen Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xin Zhe Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Sheng Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
25
|
He X, Zhou C, Shang R, Wang X. Acanthoside B attenuates NLRP3-mediated pyroptosis and ulcerative colitis through inhibition of tAGE/RAGE pathway. Allergol Immunopathol (Madr) 2025; 53:112-122. [PMID: 39786883 DOI: 10.15586/aei.v53i1.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025]
Abstract
Acanthoside B (Aca.B), a principal bioactive compound extracted from Pogostemon cablin, exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology. The potential of Aca.B as a therapeutic agent for ulcerative colitis is also unknown and remains an area for future investigation. In this study, we established both in vitro and in vivo models to investigate ulcerative colitis, utilizing Llipopolysaccharide (LPS)-stimulated MODE-K cells and dextran sulfate sodium (DSS)-induced colitis in mice, respectively. The progression of ulcerative colitis was evaluated through histologic analysis, body weight monitoring, and assessment of disease activity index assessment. Furthermore, the effects on pyroptosis were detected through immunoblot analysis. We found that Aca.B treatment significantly ameliorated LPS-induced injury in MODE-K cells, as evidenced by increased cell viability and inhibition of inflammatory response. Moreover, the Aca.B treatment attenuated pyroptosis-specific protein expression, caspase-1 activation, and inflammatory cytokine secretion. In the animal study, Aca.B administration improved bowel symptoms in DSS-induced colitis mice model. This was accompanied by reductionsreduced inweight, colon shortening, inflammatory cell infiltration, and cell pyroptosis in vivo. Furthermore, Aca.B diminished the accumulation of advanced glycation end-products (AGE), resulting in a decrease in the expression of the receptor of AGE (RAGE) and downstream phosphorylated P65 expression. e.The inhibition of the inflammatory response and pyroptosis by Aca.B depends on suppressing the AGE/RAGE pathway. This study confirms the effects of Aca.B on pyroptosis and ulcerative colitis, providing a fundamental evidence for translating Aca.B into clinical applications as an anti-inflammatory medicine.
Collapse
Affiliation(s)
- Xiaobo He
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Chunfang Zhou
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaoyan Wang
- Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;
| |
Collapse
|
26
|
Chen P, Wang Y, Tang H, Zhou C, Liu Z, Gao S, Wang T, Xu Y, Ji SL. New applications of clioquinol in the treatment of inflammation disease by directly targeting arginine 335 of NLRP3. J Pharm Anal 2025; 15:101069. [PMID: 39902456 PMCID: PMC11788862 DOI: 10.1016/j.jpha.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 02/05/2025] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is essential in innate immune-mediated inflammation, with its overactivation implicated in various autoinflammatory, metabolic, and neurodegenerative diseases. Pharmacological inhibition of NLRP3 offers a promising treatment strategy for inflammatory conditions, although no medications targeting the NLRP3 inflammasome are currently available. This study demonstrates that clioquinol (CQ), a clinical drug with chelating properties, effectively inhibits NLRP3 activation, resulting in reduced cytokine secretion and cell pyroptosis in both human and mouse macrophages, with a half maximal inhibitory concentration (IC50) of 0.478 μM. Additionally, CQ mitigates experimental acute peritonitis, gouty arthritis, sepsis, and colitis by lowering serum levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Mechanistically, CQ covalently binds to Arginine 335 (R335) in the NACHT domain, inhibiting NLRP3 inflammasome assembly and blocking the interaction between NLRP3 and its component protein. Collectively, this study identifies CQ as an effective natural NLRP3 inhibitor and a potential therapeutic agent for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210000, China
| |
Collapse
|
27
|
Gong JZ, Huang JJ, Pan M, Jin QW, Fan YM, Shi WQ, Huang SY. Cathepsin L of Fasciola hepatica meliorates colitis by altering the gut microbiome and inflammatory macrophages. Int J Biol Macromol 2025; 286:138270. [PMID: 39638178 DOI: 10.1016/j.ijbiomac.2024.138270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Helminths can relieve the development of autoimmune diseases and inflammatory diseases, by inducing anti-inflammatory innate immune responses. Here, we report that CL7, a Cathepsin L protein secreted by Fasciola hepatica, inhibited the activation of the NF-κB and MAPK signaling resulting in reduced secretion of inflammatory mediators in macrophages. Furthermore,we found that CL7 could prevent dextran sulfate sodium (DSS) induced ulcerative colitis (UC). CL7 and ESP administration restored DSS-induced body weight loss, colon shortening, and injury, significantly decreased the disease activity index (DAI) and alleviated colonic epithelial injury. CL7 noticeably suppressed the DSS-triggered M1 polarization upregulation and inhibited IL-17 and other inflammatory mediator production in UC mice. Additionally, CL7 ameliorated DSS-induced microbiota dysbiosis. Results of Antibiotic treatment (ABX) and fecal microbial transplants (FMT) suggested that the gut microbiota played an important role in CL7 treating UC. These findings propose that CL7 could be a promising strategy for UC therapy.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Jun-Jie Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Wen-Qian Shi
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
28
|
Slusny B, Zimmer V, Nasiri E, Lutz V, Huber M, Buchholz M, Gress TM, Roth K, Bauer C. Optimized Spheroid Model of Pancreatic Cancer Demonstrates Influence of Macrophage-T Cell Interaction for Intratumoral T Cell Motility. Cancers (Basel) 2024; 17:51. [PMID: 39796680 PMCID: PMC11718817 DOI: 10.3390/cancers17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids. METHODS Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment. In particular, T cell migration analysis represents the final step of effector function, as T cells engage with targets cells upon cytotoxic interaction, which is represented by an arrest within the spheroid volume. Therefore, T cell arrest is a novel readout parameter of T cell effector function in spheroids. RESULTS Here, we demonstrate that incubation of macrophages with nigericin for NLRP3 activation increases T cell velocity, but results in decreased T cellular arrest. This is paralleled by reduced rejection kinetics of pancreatic cancer spheroids in the presence of antigen-dependent T cells and nigericin-treated macrophages. Our model demonstrates consistent changes in T cell motility upon coculturing of T cells and tumors cells with macrophages, including influences of molecular interventions such as NLRP3 activation. CONCLUSIONS Motility analysis using a spheroid model of pancreatic cancer is a more sophisticated alternative to in vitro cytotoxicity assays measuring spheroid size. Ultimately, an optimized spheroid model might replace at least some aspects of animal experiments investigating T cell effector function.
Collapse
Affiliation(s)
- Benedikt Slusny
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Vanessa Zimmer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Elena Nasiri
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Veronika Lutz
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany (M.H.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
| | - Katrin Roth
- Core Facility Cellular Imaging, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany; (B.S.); (E.N.); (M.B.); (T.M.G.)
- Department of Gastroenterology, DonauIsar Klinikum Deggendorf, MedizinCampus Niederbayern, 94469 Deggendorf, Germany
| |
Collapse
|
29
|
Xu X, Huang Z, Huang Z, Lv X, Jiang D, Huang Z, Han B, Lin G, Liu G, Li S, Fan J, Lv X. Butyrate attenuates intestinal inflammation in Crohn's disease by suppressing pyroptosis of intestinal epithelial cells via the cGSA-STING-NLRP3 axis. Int Immunopharmacol 2024; 143:113305. [PMID: 39426229 DOI: 10.1016/j.intimp.2024.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Butyrate can strengthen the intestinal epithelial barrier. However, the mechanisms by which butyrate affects intestinal epithelial cells (IECs) pyroptosis in Crohn's disease (CD) remain unclear. In this study, we collected colonic biopsy samples from CD patients and healthy controls to assess pyroptosis levels. Our findings indicated elevated expression of pyroptosis markers in CD patients, alongside distinct morphological evidence of pyroptosis in IECs. We further investigated the effects of tributyrin on pyroptosis and the cGAS-STING pathway in a trinitrobenzene sulfonic acid-induced colitis rat model. Tributyrin significantly mitigated intestinal inflammation, reduced pathological progression, and inhibited pyroptosis and cGAS-STING pathway activation in the colitis rat model. Similarly, in an in vitro model of IECs pyroptosis, sodium butyrate inhibited pyroptosis and cGAS-STING pathway activation in HT-29 cells. Co-treatment with a cGAS-STING pathway activator and butyrate demonstrated that the activator reversed the inhibitory effects of butyrate on pyroptosis and cGAS-STING pathway activation in both the colitis rat model and HT-29 cells. Mechanistically, the cGAS-STING pathway was found to interact with NLRP3. Taken together, butyrate may mitigate intestinal inflammation in CD by suppressing cGAS-STING-NLRP3 axis-mediated IECs pyroptosis. These findings offer new insights into potential therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
30
|
Gao Z, Ding C, Huang X, Liu Y, Fan W, Song S. Estrogen receptor α aggravates intestinal inflammation via promoting the activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 143:113425. [PMID: 39426237 DOI: 10.1016/j.intimp.2024.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Activation of the NLRP3 inflammasome and estrogen receptor α (ERα) has been shown to increase the risk of inflammatory bowel diseases (IBD) or promote disease recurrence. In previous work, we demonstrated that ERα regulated the transcription of NLRP3. However, the precise mechanism by which ERα modulates NLRP3 in IBD models remains unclear. In this study, we induced IBD in wild-type mice using DSS or TNBS, followed by treatment with the ERα-specific agonist PPT. The results showed that IBD symptoms and intestinal inflammation responses were significantly exacerbated after PPT treatment. Furthermore, the activation of ERα by PPT led to a marked increase in the expression of NLRP3 and pro-inflammatory cytokines, including IL-1β and IL-18, suggesting that ERα activation exacerbated intestinal inflammation and impaired mucosal healing during the recovery phase of inflammation. In contrast, ERα-knockout mice exhibited only mild symptoms when exposed to DSS or TNBS, with a concurrent reduction in NLRP3 expression, indicating that ERα plays a role in inflammation susceptibility. Similar findings were observed in NCM-460 cells, where the inflammation response was attenuated in ERα-knockdown cells. Importantly, we demonstrated that ERα interacted with the NLRP3 inflammasome and promoted its assembly. Collectively, we propose an underlying pathogenesis of IBD, that is, ERα can interact with the NLRP3 inflammasome and promote its expression and assembly, thereby exacerbating intestinal inflammation in IBD models. Therefore, ERα could serve as a potential therapeutic target for NLRP3 inflammasome-associated intestinal inflammation.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xi Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yapei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
31
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
32
|
Wang Z, Liu J, Mou Y, Li Y, Liao W, Yao M, Wang T, Shen H, Sun Q, Tang J. Extinguishing the flames of inflammation: retardant effect of chlorquinaldol on NLRP3-driven diseases. Mol Med 2024; 30:245. [PMID: 39701924 DOI: 10.1186/s10020-024-01016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND NLRP3 inflammasome immoderate activation results in the occurrence of various inflammatory diseases, but the clinic medications targeting NLRP3 inflammasome are still not available currently. The strategy of drug repurposing can reorient the direction of therapy, which is an indispensable method of drug research. In this study, an antimicrobial agent chlorquinaldol (CQ) was conducted to assess the effect on NLRP3 inflammasome and novel clinical value on NLRP3-driven diseases. METHODS The effect of CQ on NLRP3 inflammasome activation and pyroptosis was studied in mouse and human macrophages. ASC oligomerization, intracellular potassium, reactive oxygen species production, and NLRP3-ASC interaction were used to evaluate the suppression mechanism of CQ on inflammasome activation. Finally, the ameliorative effects of CQ in the model of LPS-induced peritonitis, dextran sodium sulfate (DSS)-induced colitis, and monosodium urate (MSU)-induced gouty arthritis were evaluated in vivo. RESULTS CQ is a highly powerful NLRP3 inhibitor that has feeble impact on the NLRC4 or AIM2 inflammasome activation in mouse and human macrophages. Further study indicated that CQ exhibits its suppression effect on NLRP3 inflammasome by blocking NLRP3-ASC interaction and hydroxyl on the benzene ring is vital for the assembly and activation of NLRP3 inflammasome. Furthermore, in vivo experiments demonstrated that administration of CQ has outstanding therapeutic action on LPS-induced peritonitis, DSS-induced colitis, and MSU-induced gouty inflammation in mice. CONCLUSIONS Collectively, the current study discoveries the antimicrobial agent CQ as a potentially specific NLRP3 inhibitor, and its use provides a feasible therapeutic approach for the treatment of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Menglin Yao
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ting Wang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
33
|
Shao W, Zhang J, Yao Z, Zhao P, Li B, Tang W, Zhang J. Cannabidiol suppresses silica-induced pulmonary inflammation and fibrosis through regulating NLRP3/TGF-β1/Smad2/3 pathway. Int Immunopharmacol 2024; 142:113088. [PMID: 39244899 DOI: 10.1016/j.intimp.2024.113088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Silica-induced pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. In this work, FDA-approved cannabidiol (CBD) was studied for its potential medical use in silicosis. In silicosis female C57BL/6 mice model, oral CBD or pirfenidone (PFD) on day 1 after intratracheal drip silica (150 mg/mL) and continued for 42 days. Lung inflammatory and fibrotic changes were studied using ELISA kits, H&E staining and Masson staining. Osteopontion (OPN) and α-smooth muscle actin (α-SMA) expression in lung tissues was determined using immunohistochemical staining. The results indicated that CBD attenuated silica-induced pulmonary inflammation and fibrosis. Human myeloid leukemia mononuclear cells (THP-1) were treated with silica (200 μg/mL) to induce cell damage, then CBD (10 μM, 20 μM) and PFD (100 μM) were incubated. In vitro experiments showed that CBD can effectively reduce the expression of NLRP3 inflammasome in THP-1 cells and subsequently block silica-stimulated transformation of fibromuscular-myofibroblast transition (FMT) by culturing human embryonic lung fibroblasts (MRC-5) in conditioned medium of THP-1 cells. Therefore, CBD exhibited the potential therapy for silicosis through inhibiting the silica-induced pulmonary inflammation and fibrosis via the NLRP3/TGF-β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Wei Shao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Jiazhen Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Zongze Yao
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Pan Zhao
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
34
|
Scalavino V, Piccinno E, Giannelli G, Serino G. Inflammasomes in Intestinal Disease: Mechanisms of Activation and Therapeutic Strategies. Int J Mol Sci 2024; 25:13058. [PMID: 39684769 DOI: 10.3390/ijms252313058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
NOD-like receptors (NLRs) are a family of cytosolic pattern recognition receptors (PRRs) implicated in the innate immune sensing of pathogens and damage signals. NLRs act as sensors in multi-protein complexes called inflammasomes. Inflammasome activity is necessary for the maintenance of intestinal homeostasis, although their aberrant activation contributes to the pathogenesis of several gastrointestinal diseases. In this review, we summarize the main features of the predominant types of inflammasomes involved in gastrointestinal immune responses and their implications in intestinal disease, including Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), celiac disease, and Colorectal Cancer (CRC). In addition, we report therapeutic discoveries that target the inflammasome pathway, highlighting promising novel therapeutic strategies in the treatment of intestinal diseases. Collectively, our understanding of the mechanisms of intestinal inflammasome activation and their interactions with other immune pathways appear to be not fully elucidated. Moreover, the clinical relevance of the efficacy of inflammasome inhibitors has not been evaluated. Despite these limitations, a greater understanding of the effectiveness, specificity, and reliability of pharmacological and natural inhibitors that target inflammasome components could be an opportunity to develop new therapeutic options for the treatment of intestinal disease.
Collapse
Affiliation(s)
- Viviana Scalavino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Emanuele Piccinno
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| |
Collapse
|
35
|
Zhang Z, Wu C, Bao Z, Ren Z, Zou M, Lei S, Liu K, Deng X, Yin S, Shi Z, Zhang L, Lan Z, Chen L. Benzoylmesaconine mitigates NLRP3 inflammasome-related diseases by reducing intracellular K + efflux and disrupting NLRP3 inflammasome assembly. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156154. [PMID: 39447229 DOI: 10.1016/j.phymed.2024.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Benzoylmesaconine (BMA), a major alkaloid derived from the traditional Chinese medicine Aconitum carmichaeli Debx, exhibits potent anti-inflammatory properties. However, the precise mechanism underlying its action remains unclear. PURPOSE This study aimed to investigate the inhibitory mechanism of BMA on the NLRP3 inflammasome and assess its therapeutic efficacy in NLRP3-related metabolic diseases. METHODS A classic NLRP3 inflammasome-activated bone marrow-derived macrophage (BMDM) model was established to evaluate BMA's effects on NLRP3 upstream and downstream protein expression, as well as pyroptosis. Two distinct animal disease models, MSU-induced gouty arthritis and DSS-induced colitis, were utilized to validate BMA's anti-inflammatory activity in vivo. RESULTS In vitro findings revealed that BMA can suppress NLRP3 inflammasome activation by inhibiting interleukin-1β (IL-1β) secretion and GSDMD-N protein expression. This mechanism involved blocking intracellular K+ efflux and interfering with the formation of NLRP3 inflammasomes. In vivo studies demonstrated that BMA significantly alleviated inflammatory symptoms in MSU-induced acute gout and DSS-induced colitis models. CONCLUSION These findings suggest that BMA effectively inhibits the activation of the NLRP3 signaling pathway through dual mechanisms: reducing intracellular K+ efflux and disrupting NLRP3 inflammasome assembly. This multifaceted action highlights the therapeutic potential of BMA for NLRP3-related diseases.
Collapse
Affiliation(s)
- Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuhui Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Kaiqun Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaohua Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan China
| | - Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 2 Zheshan West Road, Wuhu 241002, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
36
|
Xu Y, Xu L, Zhang T, Tian H, Lu Y, Jiang S, Cao X, Li Z, Hu X, Fang R, Peng L. Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2024; 25:12572. [PMID: 39684284 DOI: 10.3390/ijms252312572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Cathelicidins have anti-inflammatory activity and chicken cathelicidin-2 (CATH-2) has shown to modulate immune response, but the underlying mechanism of its anti-inflammation is still unclear. Therefore, in this study, we investigated the anti-inflammatory activity of CATH-2 on murine peritoneal macrophages during avian pathogenic E. coli (APEC) infection. The results showed that CATH-2 priming significantly reduced the production of IL-1β, IL-6, IL-1α, and IL-12. In addition, CATH-2 significantly attenuated APEC-induced caspase-1 activation and the formation of an adaptor (ASC) of NLRP3 inflammasome, indicating that CATH-2 inhibits APEC-induced NLRP3 inflammasome activation. Furthermore, CATH-2 remarkably inhibited NF-κB and MAPK signaling pathways activation. Moreover, CATH-2 significantly inhibited mRNA expression of cathepsin B and inhibited lysosomal acidification, demonstrating that CATH-2 disrupts lysosomal function. In addition, promoting lysosomal acidification using ML-SA1 hampered the anti-inflammatory effect of CATH-2 on APEC-infected cells. In conclusion, our study reveals that CATH-2 inhibits APEC-induced inflammation via the NF-κB/NLRP3/MAPK pathway through the dysfunction of lysosome.
Collapse
Affiliation(s)
- Yating Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Liuyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Tingting Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuefeng Cao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaoxiang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
37
|
Youssef A, Rehman AU, Elebasy M, Roper J, Sheikh SZ, Karhausen J, Yang W, Ulloa L. Vagal stimulation ameliorates murine colitis by regulating SUMOylation. Sci Transl Med 2024; 16:eadl2184. [PMID: 39565873 DOI: 10.1126/scitranslmed.adl2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic debilitating conditions without cure, the etiologies of which are unknown, that shorten the lifespans of 7 million patients worldwide by nearly 10%. Here, we found that decreased autonomic parasympathetic tone resulted in increased IBD susceptibility and mortality in mouse models of disease. Conversely, vagal stimulation restored neuromodulation and ameliorated colitis by inhibiting the posttranslational modification SUMOylation through a mechanism independent of the canonical interleukin-10/α7 nicotinic cholinergic vagal pathway. Colonic biopsies from patients with IBDs and mouse models showed an increase in small ubiquitin-like modifier (SUMO)2 and SUMO3 during active disease. In global genetic knockout mouse models, the deletion of Sumo3 protected against development of colitis and delayed onset of disease, whereas deletion of Sumo1 halted the progression of colitis. Bone marrow transplants from Sumo1-knockout (KO) but not Sumo3-KO mice into wild-type mice conferred protection against development of colitis. Electric stimulation of the cervical vagus nerve before the induction of colitis inhibited SUMOylation and delayed the onset of colitis in Sumo1-KO mice and resulted in milder symptoms in Sumo3-KO mice. Treatment with TAK-981, a first-in-class inhibitor of the SUMO-activating enzyme, ameliorated disease in three murine models of IBD and reduced intestinal permeability and bacterial translocation in a severe model of the disease, suggesting the potential to reduce progression to sepsis. These results reveal a pathway of vagal neuromodulation that reprograms endogenous stress-adaptive responses through inhibition of SUMOylation and suggest SUMOylation as a therapeutic target for IBD.
Collapse
Affiliation(s)
- Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ata Ur Rehman
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mohamed Elebasy
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| | - Shehzad Z Sheikh
- University of North Carolina, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jorn Karhausen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Humanitas Research Hospital, Rozzano, MI 20089, Italy
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
38
|
Lainšček D, Horvat S, Dolinar K, Ivanovski F, Romih R, Pirkmajer S, Jerala R, Manček-Keber M. MyD88 protein destabilization mitigates NF-κB-dependent protection against macrophage apoptosis. Cell Commun Signal 2024; 22:549. [PMID: 39550582 PMCID: PMC11568545 DOI: 10.1186/s12964-024-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Various signaling pathways are essential for both the innate immune response and the maintenance of cell homeostasis, requiring coordinated interactions among them. In this study, a mutation in the caspase-1 recognition site within MyD88 abolished inflammasome-dependent negative regulation, causing phenotypic changes in mice with some similarities to human NEMO-deficiencies. The MyD88D162E mutation reduced MyD88 protein levels and colon inflammation in DSS-induced colitis mice but did not affect cytokine expression in bone marrow-derived macrophages (BMDMs). However, compared to MyD88wt counterparts, MyD88D162E BMDMs had increased oxidative stress and dysfunctional mitochondria, along with reduced prosurvival Bcl-xL and BTK expression, rendering cells more prone to apoptosis, exacerbated by ibrutinib treatment. NF-κB activation by lipopolysaccharide mitigated this sensitive phenotype. These findings underscore the importance of MyD88wt signaling for NF-κB activation, protecting against macrophage premature apoptosis at resting state. Targeting MyD88 quantity rather than just its signaling could be a promising strategy for MyD88-driven lymphoma treatment.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Horvat
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- Centre of Excellence EN-FIST, Ljubljana, Slovenia.
| |
Collapse
|
39
|
You Y, Tao Y, Xu Y, Cao Y, Feng H, Wu Q, Wang Y, Yan W. Clinical analysis and identification of pediatric patients with colonic ulceration. BMC Pediatr 2024; 24:697. [PMID: 39487408 PMCID: PMC11529313 DOI: 10.1186/s12887-024-05174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND A wide variety of diseases mimic inflammatory bowel disease (IBD). This study aimed to reduce the misdiagnosis among children with colonic ulcers. METHODS Eighty-six pediatric patients with colonic ulcers detected by colonoscopy were enrolled in the retrospective study. Children were divided into different groups according to the final diagnosis. The clinical characteristics, laboratory examinations, endoscopic findings, and histopathological results were compared. RESULTS IBD (n = 37) was just responsible for 43% of patients with colonic ulceration. Other diagnosis included autoimmune diseases (n = 9), infectious enteritis (n = 13), gastrointestinal allergy (n = 8), and other diseases (n = 19). Comparing IBD and non-IBD groups, children with IBD had a higher frequency of symptoms like weight loss/failure to thrive (P < 0.001), perianal lesions (P = 0.001), and oral ulcers (P = 0.022), and higher expression levels of platelet (P = 0.006), neutrophil-to-lymphocyte ratio (NLR) (P = 0.001), erythrocyte sedimentation rate (P < 0.001), C-reactive protein (P < 0.001), Immunoglobulin G (P = 0.012), Interleukin-1β (P = 0.003), Interleukin-6 (P = 0.024) and TNF-α (P = 0.026), and a wider ulcer distribution in the lower gastrointestinal tract (LGIT) (P < 0.001). Expression levels of hemoglobin (P < 0.001) and albumin (P = 0.001) were lower in IBD patients. Multivariate analysis showed hemoglobin, NLR, Score of ulceration in LGIT, and pseudopolyps contributing to the diagnosis of pediatric IBD with colonic ulcers. CONCLUSIONS We displayed potential indicators to help diagnose pediatric IBD differentiating from other disorders with colonic ulcers more prudently.
Collapse
Affiliation(s)
- Yaying You
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China
| | - Yijing Tao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China
| | - Yanwen Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Cao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China
| | - Haixia Feng
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China
| | - Qingqing Wu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China.
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
- Shanghai Institute for Pediatric Research, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kong Jiang Road, Yangpu, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
40
|
Zhang X, Li B, Liu X, Chen L, Ruan B, Xia C. Synthesis and Anti-Inflammatory Bowel Disease Activity of Pterostilbene Derivatives. Chem Biodivers 2024; 21:e202401081. [PMID: 39126188 DOI: 10.1002/cbdv.202401081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The aberrant activation of NLRP3 inflammasomes is intricately linked to various inflammatory diseases. In this study, we present the discovery and optimization of a series of NLRP3 inflammasome inhibitors based on the pterostilbene skeleton. All compounds underwent screening to evaluate their inhibitory effects on LPS/Nigericin-induced IL-1β secretion and anti-cellular pyroptosis. Most compounds exhibit good biological activity and cellular safety, with compound D20 showing the most prominent activity. Preliminary mechanism studies suggest that compound D20 may affect the assembly of NLRP3 inflammasomes by targeting the NLRP3 protein, thereby inhibiting the activation of NLRP3 inflammasomes. The in vivo anti-inflammatory activity demonstrated significant therapeutic effect of compound D20 on DSS-induced acute colitis model in mice. This work has important reference significance for the development of drugs targeting NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, P. R. China
| | - Bin Li
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230000, P. R. China
| | - Xiaohan Liu
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, P. R. China
| | - Liuzeng Chen
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, P. R. China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, P. R. China
| | - Chun Xia
- Luzhou Branch of Sichuan Tobacco Company, Luzhou, 646000, P. R. China
| |
Collapse
|
41
|
Yuan L, Li W, Hu S, Wang Y, Wang S, Tian H, Sun X, Yang X, Hu M, Zhang Y. Protective effects of ginsenosides on ulcerative colitis: a meta-analysis and systematic review to reveal the mechanisms of action. Inflammopharmacology 2024; 32:3079-3098. [PMID: 38977646 DOI: 10.1007/s10787-024-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. Ginsenoside may be an ideal agent for UC treatment. However, its efficacy and safety are unknown. We aim to conduct a systematic evaluation to assess the effects and potential mechanisms of ginsenosides in animal models of UC. METHODS Six electronic databases will be searched (PubMed, Embase, Web of Science, China Knowledge Network (CNKI), China Science and Technology Journal Database (CQVIP), and Wanfang Data Knowledge). SYRCLE list will be used to assess the quality of literature, and STATA 15.1 for data analysis. Time-dose effects analysis will be used to reveal the time-dosage response relations between ginsenosides and UC. RESULTS Ultimately, fifteen studies involving 300 animals were included. Preliminary evidence was shown that ginsenosides could reduce Disease Activity Index (DAI) scores, weight loss, histological colitis score (HCS), spleen weight, Malondialdehyde (MDA), Myeloperoxidase (MPO) activity, interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and increase colon length (CL), myeloperoxidase (GSH), interleukin 4 (IL-4), interleukin 10 (IL-10), Zonula Occludens-1 (ZO-1) and occludin. Results of time-dose interval analysis indicated that ginsenosides at a dosage of 5-200 mg/kg with an intervention time of 7-28 days were relatively effective. CONCLUSIONS Preclinical evidence suggests that ginsenoside is a novel treatment for UC. And the mechanisms of ginsenosides in treating UC may involve anti-inflammatory, antioxidant, barrier protection, intestinal flora regulation, and immune regulation. Although, due to the high heterogeneity, further large-scale and high-quality preclinical studies are needed to examine the protection of ginsenosides against UC.
Collapse
Affiliation(s)
- Lingling Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingyi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaofeng Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huai'e Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhui Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuli Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyun Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
42
|
Dai N, Yang X, Pan P, Zhang G, Sheng K, Wang J, Liang X, Wang Y. Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome. Microbiol Res 2024; 287:127856. [PMID: 39079268 DOI: 10.1016/j.micres.2024.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of Bacillus paralicheniformis HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of B. paralicheniformis HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, B. paralicheniformis HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of B. paralicheniformis as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.
Collapse
Affiliation(s)
- Nini Dai
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xinting Yang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Peilong Pan
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| |
Collapse
|
43
|
Wang C, Xu Q, Wei C, Hu Q, Xiao Y, Jin Y. Kynurenine Attenuates Ulcerative Colitis Mediated by the Aryl Hydrocarbon Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21000-21012. [PMID: 39271472 DOI: 10.1021/acs.jafc.4c04933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The higher prevalence of ulcerative colitis (UC) and the side effects of its therapeutic agents contribute to finding novel treatments. This study aimed to investigate whether kynurenine (KYN), a tryptophan metabolite, has the possibility of alleviating UC and further clarifying the underlying mechanism. The effect of KYN on treating UC was evaluated by intestinal pathology, inflammatory cytokines, and tight-junction proteins in colitis mice and LPS-stimulated Caco-2 cells. Our results revealed that KYN relieved pathological symptoms of UC, improved intestinal barrier function, enhanced AhR expression, and inhibited NF-κB signaling pathway activation in the colon of colitis mice. Moreover, the improved intestinal barrier function, the decreased inflammasome production, and the inhibited activation of the NF-κB signaling pathway by KYN were dependent on AhR in Caco-2 cells. KYN could trigger AhR activation, inactivate the NF-κB signaling pathway, and inhibit NLRP3 inflammasome production, thus alleviating intestinal epithelial barrier dysfunction and reducing intestinal inflammation. In conclusion, the present study reveals that KYN ameliorates UC by improving the intestinal epithelial barrier and activating the AhR-NF-κB-NLRP3 signaling pathway, and it can be a promising therapeutic agent and dietary supplement for alleviating UC.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
44
|
Xing D, Zheng T, Chen X, Xie Z. Yellow Teas Protect against DSS-Induced Ulcerative Colitis by Inhibiting TLR4/NF-κB/NLRP3 Inflammasome in Mice. Foods 2024; 13:2843. [PMID: 39272608 PMCID: PMC11395497 DOI: 10.3390/foods13172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Yellow tea (YT), a slightly fermented tea with a unique yellowing process and mellow taste, is becoming widely popular. Currently, the YT includes bud yellow tea (BYT), small-leaf yellow tea (SYT), and large-leaf yellow tea (LYT) based on maturity of raw materials. Previous studies have shown that YT has outstanding potential in preventing metabolic syndrome. However, the distinct effects and mechanisms of different types of YT on ulcerative colitis (UC) are still unclear. This study investigated the effects and mechanisms of continuous or intermittent intervention of three yellow tea water extracts (YTEs) on dextran sulfate sodium (DSS)-induced ulcerative colitis in CD-1 mice. The results showed that YTE intervention significantly improves the syndrome of DSS-induced UC in mice. Mechanistic studies reveal that YTEs increase the expression levels of tight junction (TJ) proteins and reduce the levels of pro-inflammatory cytokines in the colon by inactivating TLR4/NF-κB/NLRP3. YTE treatment protected intestinal barrier integrity and reduced serum lipopolysaccharide (LPS) levels. Interestingly, our results indicate that large-leaf yellow tea (LYT) has a better alleviating effect than BYT and SYT. YTE intervention before DSS administration has a certain degree of preventive effect on ulcerative colitis, while continuous YTE intervention after DSS induction has a significant reversing effect on the damage caused by DSS. Our results indicated that drinking YT may have preventive and therapeutic effect on UC, especially drinking LYT.
Collapse
Affiliation(s)
- Dawei Xing
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, School of Biological and Environmental Engineering, Chaohu University, 1 Bantang Road, Hefei 238024, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tao Zheng
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, School of Biological and Environmental Engineering, Chaohu University, 1 Bantang Road, Hefei 238024, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xiaoju Chen
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, School of Biological and Environmental Engineering, Chaohu University, 1 Bantang Road, Hefei 238024, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
45
|
Danieli MG, Antonelli E, Longhi E, Gangemi S, Allegra A. The role of microbiota and oxidative stress axis and the impact of intravenous immunoglobulin in systemic lupus erythematosus. Autoimmun Rev 2024; 23:103607. [PMID: 39187222 DOI: 10.1016/j.autrev.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 08/28/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation affecting various organs. This review discusses the role of oxidative stress and gut microbiota in the pathogenesis of SLE and evaluates the therapeutic potential of intravenous immunoglobulins (IVIg). Oxidative stress contributes to SLE by causing impairment in the function of mitochondria, resulting in reactive oxygen species production, which triggers autoantigenicity and proinflammatory cytokines. Gut microbiota also plays a significant role in SLE. Dysbiosis has been associated to disease's onset and progression. Moreover, dysbiosis exacerbates SLE symptoms and influences systemic immunity, leading to a breakdown in bacterial tolerance and an increase in inflammatory responses. High-dose IVIg has emerged as a promising treatment for refractory cases of SLE. The beneficial effects of IVIg are partly due to its antioxidant property, reducing oxidative stress markers and modulating the immune responses. Additionally, IVIg can normalize the gut flora, as demonstrated in a case of severe intestinal pseudo-obstruction. In summary, both oxidative stress and dysregulation of microbiota are pivotal in the pathogenesis of SLE. The use of IVIg may improve the disease's outcome. Future research should be directed to elucidating the precise mechanisms by which oxidative stress and microbiota are linked with autoimmunity in SLE in developing targeted therapies.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, 60126 Ancona, Italy; SOS Immunologia delle Malattie rare e dei Trapianti, AOU delle Marche, Ancona, Italy.
| | - Eleonora Antonelli
- Postgraduate School of Internal Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Eleonora Longhi
- Postgraduate School in Clinical Pathology and Clinical Biochemistry, Università G. D'Annunzio Chieti -Pescara, 66100 Chieti, Italy.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
46
|
Wang S, He H, Qu L, Shen Q, Dai Y. Dual roles of inflammatory programmed cell death in cancer: insights into pyroptosis and necroptosis. Front Pharmacol 2024; 15:1446486. [PMID: 39257400 PMCID: PMC11384570 DOI: 10.3389/fphar.2024.1446486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lailiang Qu
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Qianhe Shen
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Yihang Dai
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
47
|
Hu D, Li Y, Wang X, Zou H, Li Z, Chen W, Meng Y, Wang Y, Li Q, Liao F, Wu K, Wu J, Li G, Wang W. Palmitoylation of NLRP3 Modulates Inflammasome Activation and Inflammatory Bowel Disease Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:481-493. [PMID: 38949555 PMCID: PMC11299489 DOI: 10.4049/jimmunol.2300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Aberrant activity of NLRP3 has been shown associations with severe diseases. Palmitoylation is a kind of protein post-translational modification, which has been shown to regulate cancer development and the innate immune system. Here, we showed that NLRP3 is palmitoylated at Cys419 and that palmitoyltransferase ZDHHC17 is the predominant enzyme that mediates NLRP3 palmitoylation and promotes NLRP3 activation by interacting with NLRP3 and facilitating NIMA-related kinase 7 (NEK7)-NLRP3 interactions. Blockade of NLRP3 palmitoylation by a palmitoylation inhibitor, 2-bromopalmitate, effectively inhibited NLRP3 activation in vitro. Also, in a dextran sulfate sodium-induced colitis model in mice, 2-bromopalmitate application could attenuate weight loss, improve the survival rate, and rescue pathological changes in the colon of mice. Overall, our study reveals that palmitoylation of NLPR3 modulates inflammasome activation and inflammatory bowel disease development. We propose that drugs targeting NLRP3 palmitoylation could be promising candidates in the treatment of NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Dingwen Hu
- Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haimei Zou
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Wenbiao Wang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Li J, Jia J, Teng Y, Xie C, Li C, Zhu B, Xia X. Gastrodin Alleviates DSS-Induced Colitis in Mice through Strengthening Intestinal Barrier and Modulating Gut Microbiota. Foods 2024; 13:2460. [PMID: 39123651 PMCID: PMC11311408 DOI: 10.3390/foods13152460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are commonly associated with dysfunctional intestinal barriers and disturbed gut microbiota. Gastrodin, a major bioactive ingredient of Gastrodia elata Blume, has been shown to exhibit anti-oxidation and anti-inflammation properties and could mitigate non-alcoholic fatty liver disease, but its role in modulating IBD remains elusive. The aim of this study was to investigate the impact of gastrodin on DSS-induced colitis in mice and explore its potential mechanisms. Gastrodin supplementation alleviated clinical symptoms such as weight loss, a shortened colon, and a high disease activity index. Meanwhile, gastrodin strengthened the intestinal barrier by increasing the 0expression of tight junction proteins and mucin. Furthermore, Gastrodin significantly reduced pro-inflammatory cytokine secretion in mice by downregulating the NF-κB and MAPK pathways. Gut microbiota analysis showed that gastrodin improved the DSS-disrupted microbiota of mice. These findings demonstrate that gastrodin could attenuate DSS-induced colitis by enhancing the intestinal barrier and modulating the gut microbiota, providing support for the development of a gastrodin-based strategy to prevent or combat IBD.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan Road, Ganjingzi District, Dalian 116034, China; (J.L.); (J.J.); (Y.T.); (B.Z.)
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Jinhui Jia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan Road, Ganjingzi District, Dalian 116034, China; (J.L.); (J.J.); (Y.T.); (B.Z.)
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan Road, Ganjingzi District, Dalian 116034, China; (J.L.); (J.J.); (Y.T.); (B.Z.)
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Chunwei Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China;
| | - Beiwei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan Road, Ganjingzi District, Dalian 116034, China; (J.L.); (J.J.); (Y.T.); (B.Z.)
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan Road, Ganjingzi District, Dalian 116034, China; (J.L.); (J.J.); (Y.T.); (B.Z.)
| |
Collapse
|
49
|
Lee MML, Chan BD, Ng YW, Leung TW, Shum TY, Lou JS, Wong WY, Tai WCS. Therapeutic effect of Sheng Mai San, a traditional Chinese medicine formula, on inflammatory bowel disease via inhibition of NF-κB and NLRP3 inflammasome signaling. Front Pharmacol 2024; 15:1426803. [PMID: 39156108 PMCID: PMC11327010 DOI: 10.3389/fphar.2024.1426803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a globally emergent chronic inflammatory disease which commonly requires lifelong care. To date, there remains a pressing need for the discovery of novel anti-inflammatory therapeutic agents against this disease. Sheng Mai San (SMS) is a traditional Chinese medicine prescription with a long history of use for treating Qi and Yin deficiency and recent studies have shown that SMS exhibits anti-inflammatory potential. However, the effects of SMS on the gastrointestinal system remain poorly studied, and its therapeutic potential and underlying molecular mechanisms in IBD have yet to be discovered. In this study, we examined the therapeutic efficacy of SMS in IBD and its anti-inflammatory activity and underlying molecular mechanism, in vivo and in vitro. Methods The therapeutic efficacy of SMS in IBD was assessed in the DSS-induced acute colitis mouse model. Body weight, stool consistency, rectal bleeding, colon length, organ coefficient, cytokine levels in colon tissues, infiltration of immune cells, and colon pathology were evaluated. The anti-inflammatory activity of SMS and related molecular mechanisms were further examined in lipopolysaccharide (LPS)-induced macrophages via assessment of pro-inflammatory cytokine secretion and NF-κB, MAPK, STAT3, and NLRP3 signalling. Results SMS significantly ameliorated the severity of disease in acute colitis mice, as evidenced by an improvement in disease activity index, colon morphology, and histological damage. Additionally, SMS reduced pro-inflammatory cytokine production and infiltration of immune cells in colon tissues. Furthermore, in LPS-induced macrophages, we demonstrated that SMS significantly inhibited the production of cytokines and suppressed the activation of multiple pro-inflammatory signalling pathways, including NF-κB, MAPK, and STAT3. SMS also abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion, suggesting a new therapeutic target for the treatment of IBD. These mechanistic findings were also confirmed in in vivo assays. Conclusion This study presents the anti-inflammatory activity and detailed molecular mechanism of SMS, in vitro and in vivo. Importantly, we highlight for the first time the potential of SMS as an effective therapeutic agent against IBD.
Collapse
Affiliation(s)
- Magnolia Muk-Lan Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Brandon Dow Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yuen-Wa Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tsz-Wing Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tan-Yu Shum
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| |
Collapse
|
50
|
Chen Y, Cai M, Shen B, Fan C, Zhou X. Electroacupuncture at Zusanli regulates the pathological phenotype of inflammatory bowel disease by modulating the NLRP3 inflammasome pathway. Immun Inflamm Dis 2024; 12:e1366. [PMID: 39119947 PMCID: PMC11310853 DOI: 10.1002/iid3.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND This study sought to explore the effect of electroacupuncture (EA) intervention at Zusanli (ST36) acupoint on modulating the NLRP3 inflammasome pathway for treating inflammatory bowel disease (IBD). METHODS C57BL/6 mice were administrated with 3% dextran sulfate sodium (DSS) to construct the IBD model. DSS mice were then administrated with EA (10 Hz, 1.5 mA) at ST36 for 7 days or intragastric administration of sulfasalazine (SASP) each day during the entire course. The control group animals were administered with distilled water. Then, partial least squares discriminant analysis revealed differences in the relative content of metabolites. The pathological changes of colon and spleen tissues were observed by H&E and immunohistochemistry (IHC) staining. qPCR determined the mRNA expression levels, while ELISA and western blot analysis determined the protein expression. RESULTS Compared with the control groups, DSS-induced decreases of body weight were reversed after EA stimulation at ST36 or SASP treatment. The DAI of DSS mice was significantly higher relative to the control groups, whereas the DAI of DSS mice were decreased after EA stimulation at ST36 or SASP treatment. The intestinal weight/length ratio increased significantly in DSS groups; however, EA at ST36 significantly improved the macroscopic/microscopic characteristics and the weight and length of the colon. EA reversed inflammation and leukocyte infiltration and normalized the elevated levels of IL-1β, IL-18, and NLRP3. Furthermore, EA improved the expression levels of ZO-1, occludin, and claudin 1, exhibiting normalization of the colon's tight junctions. CONCLUSIONS EA at Zusanli acupoint of colon tissue significantly improved the pathological phenotype, showing a therapeutic effect on IBD.
Collapse
Affiliation(s)
- Yanqiang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western MedicineWuhanHubeiChina
| | - Miaomiao Cai
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
| | - Boyuan Shen
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
| | - Changchang Fan
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
| | - Xiang Zhou
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|