1
|
Zhang J, de Guimaraes TAC, Thompson D, Michaelides M. SHWACHMAN-DIAMOND SYNDROME ASSOCIATED WITH ROD-CONE DYSTROPHY. Retin Cases Brief Rep 2025; 19:152-156. [PMID: 38437796 PMCID: PMC7616497 DOI: 10.1097/icb.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE The aim of this study was to report a patient with Shwachman-Diamond syndrome and concomitant rod-cone dystrophy who underwent bone marrow transplantation. METHODS This was a retrospective single case report. RESULTS A female patient with Shwachman-Diamond syndrome was referred to a tertiary hospital to investigate possible pigmentary retinopathy at the age of 16 years. She described poor night vision and was found to have reduced VA (6/20 right eye, 6/38 left eye). Over the 10-year follow-up, her VA remained relatively stable with no new visual symptoms. Optical coherence tomography revealed progressive, diffuse outer retinal thinning with disruption of the ellipsoid zone, which initially was relatively preserved subfoveally. Fundus autofluorescence images revealed generalized areas of hypoautofluorescence beyond the vascular arcades and a perimacular ring of increased autofluorescence. The flash electroretinogram was in keeping with a severe rod-cone dystrophy. The pattern visual evoked potential was abnormal but detectable, indicating macular pathway dysfunction, suggesting encroachment into central macular regions but with some functional preservation. CONCLUSION The authors report a patient with Shwachman-Diamond syndrome with severe early-onset rod-cone dystrophy noted at the age of 16 years. Slow anatomical progression has been observed over the subsequent 10 years, with relative functional macular preservation to support a VA of 6/36 in both eyes.
Collapse
Affiliation(s)
- Jingwen Zhang
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Thales A. C. de Guimaraes
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | | | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
2
|
Jacinto-Calimag F, Wee LWY, Wen MYL, Wei CHW, Koh MJA. Shwachman-Diamond Syndrome Presenting as Neonatal Ichthyosis. Pediatr Dermatol 2025; 42:383-386. [PMID: 39557154 DOI: 10.1111/pde.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 10/19/2024] [Indexed: 11/20/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare inherited bone marrow failure syndrome characterized by the triad of exocrine pancreatic dysfunction, cytopenia, and skeletal abnormalities. We report a 5-month-old boy with SDS who presented with generalized ichthyosis in the neonatal period that evolved into more eczematous skin eruptions, accompanied by severe failure to thrive. This report highlights the importance of including SDS as a differential diagnosis in patients who present with early ichthyosis, failure-to-thrive, gastrointestinal symptoms and cytopenia.
Collapse
Affiliation(s)
- Fatima Jacinto-Calimag
- Department of Dermatology, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - Lynette Wei Yi Wee
- Department of Dermatology, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - Mildrid Yeo Li Wen
- Department of Genetics, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - Christopher Ho Wen Wei
- Department of Paediatrics, Gastroenterology, Hepatology and Nutrition Service, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| | - Mark Jean-Aan Koh
- Department of Dermatology, Kandang Kerbau Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Minelli A, Pintani E, Valli R, Tridello G, Porta G, Fioredda F, Cipolli M, Danesino C. Shwachman-Diamond Syndrome and Diabetes: An Update from the Italian Registry and Review of the Literature. Exp Clin Endocrinol Diabetes 2025; 133:78-82. [PMID: 39814041 DOI: 10.1055/a-2460-6977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The issue of a possible association between Shwachman-Diamond Syndrome and diabetes has been debated for many years. This review updates the Italian Shwachman-Diamond registry, confirming our previous findings that suggest that these patients might be at higher risk of developing diabetes, particularly type 1. These data are of relevance in the clinical follow-up of patients in everyday life, emphasizing the need for early diagnosis and timely intervention.
Collapse
Affiliation(s)
| | - Emily Pintani
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberto Valli
- Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | - Gloria Tridello
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giovanni Porta
- Dipartimento di Medicina e Chirurgia, Università dell'Insubria, Varese, Italy
| | | | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Bobric NA, Grevoul-Fesquet J, Rigonnot L, Trost D, Boughalem A, Martinovic J. The First Fetal Case of Shwachman-Diamond Syndrome Mimicking Vascular Growth Restriction. Pediatr Dev Pathol 2024; 27:603-607. [PMID: 39215521 DOI: 10.1177/10935266241272735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Shwachman-Diamond Syndrome (SDS) is a rare autosomal recessive genetic condition with 90% of cases associated with biallelic pathogenic variants in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene on chromosome 7q.11.21. SDS belongs to ribosomopathies since SBDS gene encodes a protein involved in ribosomal maturation. Its phenotypic postnatal hallmark features include growth delay, bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities. We report a first fetal case of Shwachman-Diamond syndrome and extend its phenotype before birth. The clinical features mimicked vascular growth restriction with FGR and shortened long bones, associated with abnormal Doppler indices. Non-restricted fetal autopsy after termination of pregnancy allowed deep phenotyping disclosing the features of fetal skeletal dysplasia. Post-fetopathological trio exome sequencing identified biallelic pathogenic variants in the SBDS gene. Genotype-phenotype correlations confirmed the diagnosis and enabled an adequate genetic counseling of the parents. Our case is another example of the positive impact of fetal autopsy coupled with post-fetopathological genomic studies, even in the cases that were hitherto classified as maternal or fetal vascular malperfusion.
Collapse
Affiliation(s)
- Nicoleta-Andreea Bobric
- Department of Obstetrics and Gynecology, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France
| | - Julie Grevoul-Fesquet
- Department of Obstetrics and Gynecology, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France
| | - Luc Rigonnot
- Department of Obstetrics and Gynecology, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France
| | - Detlef Trost
- Department of Genetics, Cerba Healthcare, Saint-Ouen-L'Aumone, France
| | - Aïcha Boughalem
- Department of Genetics, Cerba Healthcare, Saint-Ouen-L'Aumone, France
| | - Jelena Martinovic
- Department of Fetal Pathology, AP-HP, Antoine Béclère Hospital, Paris Saclay University, Clamart, France
| |
Collapse
|
5
|
Veltra D, Marinakis NM, Kotsios I, Delaporta P, Kekou K, Kosma K, Traeger-Synodinos J, Sofocleous C. Lethal Complications and Complex Genotypes in Shwachman Diamond Syndrome: Report of a Family with Recurrent Neonatal Deaths and a Case-Based Brief Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2024; 11:705. [PMID: 38929284 PMCID: PMC11201973 DOI: 10.3390/children11060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Kotsios
- Neonatal Intensive Care Unit, “Hippocration” General Hospital, 54642 Thessaloniki, Greece
| | - Polyxeni Delaporta
- Thalassemia Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| |
Collapse
|
6
|
Takahashi M, Ariwa M, Yamaguchi T. Characteristics of Craniofacial Morphology and Occlusion in Shwachman-Diamond Syndrome: A Case Report of a Japanese Sibling Pair. Cureus 2024; 16:e53467. [PMID: 38435186 PMCID: PMC10909481 DOI: 10.7759/cureus.53467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder mainly caused by mutations in the Shwachman-Bodian-Diamond syndrome gene on chromosome 7q11. Although skeletal abnormalities are a feature of SDS, no reports have focused on the craniofacial morphology of patients with SDS. Moreover, the detailed dental characteristics of SDS remain unknown. In the present case report, we evaluated the craniofacial morphology and dental findings of two patients with SDS. A Japanese adolescent sibling pair with SDS had the chief complaint of excessive overjet. Cephalometric analysis revealed similar craniofacial morphology in both patients: skeletal class I malocclusion with a hypodivergent pattern and labial inclination of the maxillary and mandibular incisors. A panoramic photograph showed the tendency of delayed permanent tooth eruption and replacement in both patients. These cases suggest that malocclusion requiring orthodontic treatment might be a feature of patients with SDS.
Collapse
Affiliation(s)
- Masahiro Takahashi
- Department of Orthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka, JPN
| | - Masataka Ariwa
- Department of Orthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka, JPN
| | - Tetsutaro Yamaguchi
- Department of Orthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka, JPN
| |
Collapse
|
7
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Kanagal-Shamanna R, Schafernak KT, Calvo KR. Diagnostic work-up of hematological malignancies with underlying germline predisposition disorders (GPD). Semin Diagn Pathol 2023; 40:443-456. [PMID: 37977953 DOI: 10.1053/j.semdp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Hematological malignancies with underlying germline predisposition disorders have been recognized by the World Health Organization 5th edition and International Consensus Classification (ICC) classification systems. The list of genes and the associated phenotypes are expanding and involve both pediatric and adult populations. While the clinical presentation and underlying molecular pathogenesis are relatively well described, the knowledge regarding the bone marrow morphologic features, the landscape of somatic aberrations associated with progression to hematological malignancies is limited. These pose challenges in the diagnosis of low-grade myelodysplastic syndrome (MDS) to hematopathologists which carries direct implication for various aspects of clinical management of the patient, donor selection for transplantation, and family members. Here in, we provide a focused review on the diagnostic work-up of hematological malignancies with underlying germline predisposition disorders with emphasis on the spectrum of hematological malignancies associated with each entity, and characteristic bone marrow morphologic, somatic cytogenetic and molecular alterations at the time of diagnosis of hematological malignancies. We also review the key clinical, morphologic, and molecular features, that should initiate screening for these entities.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristian T Schafernak
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States.
| |
Collapse
|
9
|
Billich N, O'Brien K, Fredwall SO, Lee M, Savarirayan R, Davidson ZE. A scoping review of nutrition issues and management strategies in individuals with skeletal dysplasia. Genet Med 2023; 25:100920. [PMID: 37330695 DOI: 10.1016/j.gim.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Skeletal dysplasia are heterogeneous conditions affecting the skeleton. Common nutrition issues include feeding difficulties, obesity, and metabolic complications. This systematic scoping review aimed to identify key nutrition issues, management strategies, and gaps in knowledge regarding nutrition in skeletal dysplasia. METHODS The databases Ovid MEDLINE, Ovid EMBASE, Ebsco CINAHL, Scopus, and Cochrane Central Register of Controlled Trials and Database of Systematic Reviews were searched. Reference lists and citing literature for included studies were searched. Eligible studies included participants with skeletal dysplasia and described: anthropometry, body composition, nutrition-related biochemistry, clinical issues, dietary intake, measured energy or nutrition requirements, or nutrition interventions. RESULTS The literature search identified 8509 references from which 138 studies were included (130 observational, 3 intervention, 2 systematic reviews, and 3 clinical guidelines). Across 17 diagnoses identified, most studies described osteogenesis imperfecta (n = 50) and achondroplasia or hypochondroplasia (n = 47). Nutrition-related clinical issues, biochemistry, obesity, and metabolic complications were most commonly reported, and few studies measured energy requirements (n = 5). CONCLUSION Nutrition-related comorbidities are documented in skeletal dysplasia; yet, evidence to guide management is scarce. Evidence describing nutrition in rarer skeletal dysplasia conditions is lacking. Advances in skeletal dysplasia nutrition knowledge is needed to optimize broader health outcomes.
Collapse
Affiliation(s)
- Natassja Billich
- Murdoch Children's Research Institute, Parkville, VIC, Australia; The University of Queensland, St Lucia, QLD, Australia.
| | - Katie O'Brien
- Royal Children's Hospital, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| | - Svein O Fredwall
- Murdoch Children's Research Institute, Parkville, VIC, Australia; TRS National Resource Centre for Rare Disorders, Sunnaas Rehabiliation Hospital, Nesodden, Norway
| | | | - Ravi Savarirayan
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia
| | - Zoe E Davidson
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Navasardyan LV, Furlan I, Brandt S, Schulz A, Wabitsch M, Denzer C. Spectrum of diabetes mellitus in patients with Shwachman-Diamond syndrome: case report and review of the literature. Ital J Pediatr 2023; 49:98. [PMID: 37580732 PMCID: PMC10424348 DOI: 10.1186/s13052-023-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS) is a rare congenital disorder caused by mutations in the SBDS gene and characterized by exocrine pancreatic deficiency, hematologic dysfunction, and skeletal growth failure. Although the hematologic features and characteristics of the somatic disorders commonly associated with SDS are well known, emerging data from case reports and patient registries suggest that SDS may also be associated with an increased risk of diabetes mellitus. However, currently available data on SDS-associated diabetes are limited and do not allow conclusions regarding prevalence and incidence rates, clinical course, and outcomes. CASE PRESENTATION Here we report the case of a 5-year-old girl with SDS who underwent bone marrow transplantation at the age of 3 months and developed autoantibody-positive type 1 diabetes mellitus at the age of 1.8 years. The manifestation and course of diabetes development were mild, complicated by concurrent spontaneous episodes of hypoglycemia even before the onset of antidiabetic treatment. Currently, adequate metabolic control can be achieved by dietary intervention. CONCLUSIONS Considering that the SBDS protein regulates mitosis and ribosomal biosynthesis and that its suppression may cause immunologic instability and chronic inflammation, this case provides insight into the phenotype of rare Shwachman-Diamond syndrome-associated diabetes mellitus, which may be characterized by significant age-dependent differences in clinical course.
Collapse
Affiliation(s)
- Lusine V Navasardyan
- Department of Endocrinology, Arabkir Medical Center, Yerevan State Medical University, Yerevan, Armenia
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
11
|
Feyen J, Ping Z, Chen L, van Dijk C, van Tienhoven TVD, van Strien PMH, Hoogenboezem RM, Wevers MJW, Sanders MA, Touw IP, Raaijmakers MHGP. Myeloid cells promote interferon signaling-associated deterioration of the hematopoietic system. Nat Commun 2022; 13:7657. [PMID: 36496394 PMCID: PMC9741615 DOI: 10.1038/s41467-022-35318-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs. Depletion of myeloid cells abrogates HSC expansion, loss of serial repopulation and lymphoid reconstitution capacity and remodeling of HSC niches, features previously associated with hematopoietic aging. This is associated with mitigation of interferon signaling in both HSCs and their niches via reduction of NK cell number and activation. These data implicate myeloid cells in the functional decline of hematopoiesis, associated with activation of interferon signaling via a putative neutrophil-NK cell axis. Innate immunity may thus come at the cost of system deterioration through enhanced chronic inflammatory signaling to stem cells and their niches.
Collapse
Affiliation(s)
- Jacqueline Feyen
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Zhen Ping
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Lanpeng Chen
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Claire van Dijk
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Tim V. D. van Tienhoven
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Paulina M. H. van Strien
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Remco M. Hoogenboezem
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Michiel J. W. Wevers
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Ivo P. Touw
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Marc H. G. P. Raaijmakers
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| |
Collapse
|
12
|
Frattini A, Bolamperti S, Valli R, Cipolli M, Pinto RM, Bergami E, Frau MR, Cesaro S, Signo M, Bezzerri V, Porta G, Khan AW, Rubinacci A, Villa I. Enhanced p53 Levels Are Involved in the Reduced Mineralization Capacity of Osteoblasts Derived from Shwachman-Diamond Syndrome Subjects. Int J Mol Sci 2021; 22:ijms222413331. [PMID: 34948128 PMCID: PMC8707819 DOI: 10.3390/ijms222413331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.
Collapse
Affiliation(s)
- Annalisa Frattini
- Institute for Genetic and Biomedical Research (IRGB), UOS Milano CNR, Via Fantoli, 15/16, 20138 Milano, Italy
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
- Correspondence: ; Tel.: +39-0332217113
| | - Simona Bolamperti
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| | - Roberto Valli
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
| | - Rita Maria Pinto
- Department of Onco-Hematology, Ospedale Bambino Gesù IRCCS, Piazza S.Onofrio, 4, 00165 Roma, Italy;
| | - Elena Bergami
- Pediatric Onco-Hematology, IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy;
| | - Maria Rita Frau
- Pediatrics and Intensive Neonatal Therapy, Ospedale San Francesco, Via Salvatore Mannironi, 08100 Nuoro, Italy;
| | - Simone Cesaro
- Pediatric Hematology Oncology, Ospedale Donna Bambino, Azienda Ospedaliera Universitaria Integrata, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
| | - Michela Signo
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Via Conca, 71, 60126 Ancona, Italy;
| | - Giovanni Porta
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
| | - Abdul Waheed Khan
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
| | - Alessandro Rubinacci
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| | - Isabella Villa
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| |
Collapse
|
13
|
González MM, Hualpa JCP, Moreno DM, Albarrán OG. A case of type 1 diabetes mellitus in a woman with
Shwachman‐Diamond
syndrome. PRACTICAL DIABETES 2021. [DOI: 10.1002/pdi.2370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Diego Muñoz Moreno
- Endocrinology Service, Gregorio Marañón General University Hospital, Madrid, Spain
| | | |
Collapse
|
14
|
"Oral Manifestations of Patients with Inherited Defect in Phagocyte Number or Function" a systematic review. Clin Immunol 2021; 229:108796. [PMID: 34271191 DOI: 10.1016/j.clim.2021.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Inherited phagocyte defects are one of the subgroups of primary immunodeficiency diseases (PIDs) with various clinical manifestations. As oral manifestations are common at the early ages, oral practitioners can have a special role in the early diagnosis. MATERIALS AND METHODS A comprehensive search was conducted in this systematic review study and data of included studies were categorized into four subgroups of phagocyte defects, including congenital neutropenia, defects of motility, defects of respiratory burst, and other non-lymphoid defects. RESULTS Among all phagocyte defects, 12 disorders had reported data for oral manifestations in published articles. A total of 987 cases were included in this study. Periodontitis is one of the most common oral manifestations. CONCLUSION There is a need to organize better collaboration between medical doctors and dentists to diagnose and treat patients with phagocyte defects. Regular dental visits and professional oral health care are recommended from the time of the first primary teeth eruption in newborns.
Collapse
|
15
|
Drosophila to Explore Nucleolar Stress. Int J Mol Sci 2021; 22:ijms22136759. [PMID: 34201772 PMCID: PMC8267670 DOI: 10.3390/ijms22136759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/29/2023] Open
Abstract
Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels.
Collapse
|
16
|
Lusman SS, Ovchinsky N, Rosh JR. Cystic Fibrosis and Congenital Anomalies of the Exocrine Pancreas. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:905-921.e6. [DOI: 10.1016/b978-0-323-67293-1.00081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Bogusz-Wójcik A, Kołodziejczyk H, Klaudel-Dreszler M, Oracz G, Pawłowska J, Szalecki M. Somatic development in children with Shwachman-Diamond syndrome. Ital J Pediatr 2020; 46:151. [PMID: 33046118 PMCID: PMC7552354 DOI: 10.1186/s13052-020-00919-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS) is a rare genetic, multi-systemic disease characterized by exocrine pancreatic insufficiency, immune deficiency, bone marrow failure and skeletal abnormalities. Most patients present with failure in somatic development and short stature, but systematic data concerning those features are limited. The aim of the study was to assess the prevalence of failure in somatic development in the children with SDS. METHODS An analysis of anthropometric measurements of 21 patients (14 girls and 7 boys),aged 2 to 17 years (mean age 6.3 years) with SDS diagnosed in The Children's Memorial Health Institute in Warsaw, Poland was performed. The patients were measured using a Holtain Limited stadiometer, an electronic scale, a Harpenden anthropometer, a metric tape and a spreading caliper. The assessed anthropometric parameters were expressed as standard deviation scores in relation to the reference values in Poland, suitable for sex as well as calendar and growth age. RESULTS A total of 66 measurements was collected and analyzed with a median number of 3 observations per patient. The group of boys presented with a significantly lower height (- 3.0 SD, p < 0.0001) and BMI (- 1.4 SD, p < 0.00001), and in the relation to the growth age a lower weight (- 1.0 SD, p < 0.001) as well as a smaller chest width (- 0.9 SD, p < 0.05), hip width (- 0,5 SD, p < 0,05) and lower limb length (- 0,5 SD, p < 0,05). The group of girls also showed significantly lower height (- 2.6 SD, p < 0.00001) and BMI (- 0.8 SD, p < 0.00001), and in relation to the growth age, lower weight (- 0.5 SD, p < 0.001) as well as decreased width of the chest (- 1.7 SD, p < 0.0001) and shoulder (- 1.0 SD, p < 0.001) were observed. Boys and girls were also characterized by significantly decreased circumference and width of head, additionally, girls had also smaller head length. CONCLUSIONS Patients with SDS have abnormal somatic development. Both boys and girls are characterized by short stature, decreased weight, BMI, leg length, chest width as well as circumference and width of head. Anthropometric measurements provide important data on the process of growth and body proportions in children with SDS.
Collapse
Affiliation(s)
- Agnieszka Bogusz-Wójcik
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-736, Warsaw, Poland.
| | | | - Maja Klaudel-Dreszler
- Department of Gastroenterology, Hepatology, Feeding Disorders and Paediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Grzegorz Oracz
- Department of Gastroenterology, Hepatology, Feeding Disorders and Paediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Paediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczysław Szalecki
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-736, Warsaw, Poland
- Collegium Medicum, University of Jan Kochanowski, Kielce, Poland
| |
Collapse
|
18
|
Lawal OS, Mathur N, Eapi S, Chowdhury R, Malik BH. Liver and Cardiac Involvement in Shwachman-Diamond Syndrome: A Literature Review. Cureus 2020; 12:e6676. [PMID: 32104616 PMCID: PMC7026866 DOI: 10.7759/cureus.6676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive inherited disease of the SBDS gene. It has multi-organ involvement but primarily affects the bone marrow and the pancreas. This disease is more commonly found in males than females, and its earliest manifestation in infancy is pancytopenia, most especially neutropenia. Our article attempts an in-depth analysis of the hepatic and cardiac association in this disease and the severity of this association. For the purpose of this study, we engaged in an in-depth research of critically appraised literature and published articles. We searched for such articles on PubMed and Google Scholar using regular and Medical Subject Headings (MeSH) keywords. We eventually selected 32 articles from the search results and carefully read through and analyzed them. These articles showed the usual age of diagnosis of SDS to be at infancy (before age one), with a predominantly median survival age of 35 years. All the published articles we reviewed showed some hepatic and cardiac associations with SDS, but the extent of the associations varied. Even though most hepatic involvements were found to be benign, some severe cases led to fibrosis and hepatic failure. Although there is no particular consensus as to the exact outcome of cardiac involvement, the few cases we reviewed showed that cardiac association could be a severe complication and could even be fatal. Most of the cases reported in the literature had been diagnosed at autopsy.
Collapse
Affiliation(s)
- Odunayo S Lawal
- Pediatrics, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Nimisha Mathur
- Pediatrics, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Srilatha Eapi
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Rupak Chowdhury
- Pathology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
19
|
Camacho SM, McLoughlin L, Nowicki MJ. Cirrhosis complicating Shwachman-Diamond syndrome: A case report. World J Clin Cases 2019; 7:1456-1460. [PMID: 31363473 PMCID: PMC6656663 DOI: 10.12998/wjcc.v7.i12.1456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The features of Shwachman-Diamond syndrome (SDS) include exocrine pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction; an often overlooked feature is hepatic involvement.
CASE SUMMARY We report a child who initially presented with failure to thrive and mildly elevated transaminase levels and was determined to have pancreatic insufficiency due to SDS. During follow-up he had persistently elevated transaminase levels and developed hepatosplenomegaly. An investigation was performed to determine the etiology of ongoing liver injury, including a liver biopsy which revealed hepatic cirrhosis.
CONCLUSION Cirrhosis has rarely been reported with SDS. While many of the hepatic disorders associated with SDS improve with age, there are rare exceptions with serious implications for long-term outcome.
Collapse
Affiliation(s)
- Sandra M Camacho
- Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Division of Pediatric Gastroenterology, Children’s Hospital of San Antonio, San Antonio, TX 78207, United States
| | - Lucille McLoughlin
- Division of Pediatric Gastroenterology, Children’s Hospital of San Antonio, San Antonio, TX 78207, United States
| | - Michael J Nowicki
- Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| |
Collapse
|
20
|
Cipolli M, Tridello G, Micheletto A, Perobelli S, Pintani E, Cesaro S, Maserati E, Nicolis E, Danesino C. Normative growth charts for Shwachman-Diamond syndrome from Italian cohort of 0-8 years old. BMJ Open 2019; 9:e022617. [PMID: 30782681 PMCID: PMC6340480 DOI: 10.1136/bmjopen-2018-022617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder. Its predominant manifestations include exocrine pancreatic insufficiency, bone marrow failure and skeletal abnormalities. Patients frequently present failure to thrive and susceptibility to short stature. Average birth weight is at the 25th percentile; by the first birthday, >50% of patients drop below the third percentile for height and weight.The study aims at estimating the growth charts for patients affected by SDS in order to give a reference tool helpful for medical care and growth surveillance through the first 8 years of patient's life. SETTING AND PARTICIPANTS This retrospective observational study includes 106 patients (64 M) with available information from birth to 8 years, selected among the 122 patients included in the Italian National Registry of SDS and born between 1975 and 2016. Gender, birth date and auxological parameters at repeated assessment times were collected. The General Additive Model for Location Scale and Shape method was applied to build the growth charts. A set of different distributions was used, and the more appropriate were selected in accordance with the smallest Akaike information criterion. RESULTS A total of 408 measurements was collected and analysed. The median number of observations per patient amounted to 3, range 1-11. In accordance with the methods described, specific SDS growth charts were built for weight, height and body mass index (BMI), separately for boys and girls.The 50th and 3rd percentiles of weight and height of the healthy population (WHO standard references) respectively correspond to the 97th and 50th percentiles of the SDS population (SDS specific growth charts), while the difference is less evident for the BMI. CONCLUSIONS Specific SDS growth charts obtained through our analysis enable a more appropriate classification of patients based on auxological parameters, representing a useful reference tool for evaluating their growth during childhood.
Collapse
Affiliation(s)
- Marco Cipolli
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Cystic Fibrosis Regional Centre, Ospedali Riuniti, Ancona, Italy
| | - Gloria Tridello
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessio Micheletto
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sandra Perobelli
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Emily Pintani
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Simone Cesaro
- Pediatric Hematology and Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Emanuela Maserati
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Elena Nicolis
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Cesare Danesino
- Department of Human Pathology and Genetics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
21
|
Abstract
Bone marrow failure (BMF) is a rare but life-threatening disorder that usually manifests as (pan)cytopenia. BMF can be caused by a variety of diseases, but inherited BMF (IBMF) syndromes are a clinically important cause, especially in children. IBMF syndromes are a heterogeneous group of genetic disorders characterized by BMF, physical abnormalities, and predisposition to malignancy. An accurate diagnosis is critical, as disease-specific management, surveillance, and genetic counselling are required for each patient. The major differential diagnoses of IBMF syndromes are acquired aplastic anemia (AA) and refractory cytopenia of childhood (RCC). These diseases have overlapping features, such as BM hypocellularity and/or dysplastic changes, which make the differential diagnosis challenging. RCC has been defined as a histomorphologically distinct entity. Therefore, understanding the BM histopathology of these diseases is essential for the differential diagnosis. However, the BM histopathological features have not been characterized in detail, as descriptions of BM histopathology are very limited due to the rarity of the diseases. This review provides a detailed description of the BM histopathology in cases of RCC, AA, and the four most common IBMF syndromes: Fanconi anemia (FA), dysketatosis congenita (DC), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS). An overview, including the clinical features and diagnosis, is also provided.
Collapse
|
22
|
Barış Z, Özçay F, Olcay L, Ceylaner S, Sezer T. A Case of Shwachman-Diamond Syndrome who Presented with Hypotonia. J Pediatr Genet 2018; 7:117-121. [PMID: 30105119 DOI: 10.1055/s-0038-1636997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/05/2018] [Indexed: 10/17/2022]
Abstract
We present a patient with failure to thrive and severe hypotonia, who was initially suspected of having a neurometabolic disease but later diagnosed as Shwachman-Diamond syndrome (SDS), which was genetically confirmed. SDS is a multisystemic disease, which is characterized by exocrine pancreatic deficiency, bone marrow dysfunction with increased risk for malignant transformation, and skeletal abnormalities. It should be included in differential diagnosis of patients with failure to thrive and unexplained neurodevelopmental delay with neutropenia.
Collapse
Affiliation(s)
- Zeren Barış
- Department of Pediatric Gastroenterology, Başkent University Hospital, Beşevler-Çankaya, Ankara, Turkey
| | - Figen Özçay
- Department of Pediatric Gastroenterology, Başkent University Hospital, Beşevler-Çankaya, Ankara, Turkey
| | - Lale Olcay
- Department of Pediatric Hematology, Başkent University Hospital, Beşevler-Çankaya, Ankara, Turkey
| | | | - Taner Sezer
- Department of Pediatric Neurology, Başkent University Hospital, Beşevler-Çankaya, Ankara, Turkey
| |
Collapse
|
23
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Delaporta P, Sofocleous C, Economou M, Makis A, Kostaridou S, Kattamis A. The Greek Registry of Shwachman Diamond-Syndrome: Molecular and clinical data. Pediatr Blood Cancer 2017; 64. [PMID: 28509441 DOI: 10.1002/pbc.26630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/14/2023]
Abstract
This study presents the clinical phenotype and molecular analysis findings from 11 patients recorded in the Greek Shwachman-Diamond syndrome (SDS) Registry. The most severely affected patient in our registry was diagnosed at birth and is the first patient reported to require bone marrow transplantation so early in life. Severe psoriasis, a feature not previously reported in SDS, was observed in one patient. Mutations in the Shwachman-Bodian-Diamond syndrome gene (SBDS) were found in all patients. Cytogenetic analyses revealed clonal abnormalities, one novel, in two patients.
Collapse
Affiliation(s)
- Polyxeni Delaporta
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christalena Sofocleous
- Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece.,Research Institute for the Study of Genetic and Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Marina Economou
- First Department of Pediatrics, University of Thessaloniki, Greece
| | - Alexandros Makis
- Department of Pediatrics, University Hospital of Ioannina, Greece
| | - Stavroula Kostaridou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Affiliation(s)
- Roberto Valli
- Medical Genetic Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- UOS Milano, Institute of Genetics and Biomedical Research, National Research Council, Milano, Italy
- Department of Medicine and Surgery, University of Insubria, Milano, Italy
| | - Antonella Minelli
- Medical Genetic Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Probing the mechanisms underlying human diseases in making ribosomes. Biochem Soc Trans 2017; 44:1035-44. [PMID: 27528749 DOI: 10.1042/bst20160064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 12/26/2022]
Abstract
Ribosomes are essential, highly complex machines responsible for protein synthesis in all growing cells. Because of their importance, the process of building these machines is intricately regulated. Although the proteins involved in regulating ribosome biogenesis are just beginning to be understood, especially in human cells, the consequences for dysregulating this process have been even less studied. Such interruptions in ribosome synthesis result in a collection of human disorders known as ribosomopathies. Ribosomopathies, which occur due to mutations in proteins involved in the global process of ribosome biogenesis, result in tissue-specific defects. The questions posed by this dichotomy and the steps taken to address these questions are therefore the focus of this review: How can tissue-specific disorders result from alterations in global processes? Could ribosome specialization account for this difference?
Collapse
|
27
|
Batt M, Canton M, Pastore O, Bocéréan C, Trognon A, Verhaegen F, Fouyssac F, Raffo E, Guiot E, Bonneton M, Beaupain B, Donadieu J. Profil neuropsychologique et capacités métapragmatiques dans le syndrome de Schachman-Diamond. ENFANCE 2017. [DOI: 10.3917/enf1.172.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
28
|
Profil neuropsychologique et capacités métapragmatiques dans le syndrome de Schachman-Diamond. ENFANCE 2017. [DOI: 10.4074/s0013754517002014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Abstract
Abstract
There is an Inside Blood Commentary on this article in this issue.
Collapse
|
30
|
Calamita P, Miluzio A, Russo A, Pesce E, Ricciardi S, Khanim F, Cheroni C, Alfieri R, Mancino M, Gorrini C, Rossetti G, Peluso I, Pagani M, Medina DL, Rommens J, Biffo S. SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention. PLoS Genet 2017; 13:e1006552. [PMID: 28056084 PMCID: PMC5249248 DOI: 10.1371/journal.pgen.1006552] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/20/2017] [Accepted: 12/24/2016] [Indexed: 12/26/2022] Open
Abstract
Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease. Shwachman Diamond syndrome (SDS) is an inherited disease. SDS presents, as hallmarks, exocrine pancreatic insufficiency, increased rate of infections, and higher incidence of leukemia. Most cases are due to mutations in the SBDS gene. SBDS encodes for a ribosome maturation factor. In this study, we immortalized mouse fibroblasts carrying one of the most common mutation of SDS patients and performed a thorough analysis of their properties. We show that the loss of SBDS activity causes a rewiring of gene expression and cellular metabolism. Overall we find a reduction of protein synthesis capability, a lower energy status, and increased lysosomal capability. SBDS mutant cells have an increased susceptibility to various forms of stress, but are strikingly resistant to oncogene-induced transformation. We propose a model that explains the complex phenotype of SDS patients and suggests roads for a rationale treatment.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- * E-mail: (SB); (PC)
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Arianna Russo
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- DiSIT, University of Eastern Piedmont, Alessandria, Italy
| | - Elisa Pesce
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Sara Ricciardi
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Farhat Khanim
- School of Biosciences, University of Birmingham Edgbaston Birmingham, United Kingdom
| | - Cristina Cheroni
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Marilena Mancino
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Chiara Gorrini
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Grazisa Rossetti
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM)-Fondazione Telethon, Pozzuoli, Italy
| | - Massimiliano Pagani
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM)-Fondazione Telethon, Pozzuoli, Italy
| | | | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- DBS, Università degli Studi di Milano, Milan, Italy
- * E-mail: (SB); (PC)
| |
Collapse
|
31
|
Zambetti N, Ping Z, Chen S, Kenswil K, Mylona M, Sanders M, Hoogenboezem R, Bindels E, Adisty M, Van Strien P, van der Leije C, Westers T, Cremers E, Milanese C, Mastroberardino P, van Leeuwen J, van der Eerden B, Touw I, Kuijpers T, Kanaar R, van de Loosdrecht A, Vogl T, Raaijmakers M. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell 2016; 19:613-627. [DOI: 10.1016/j.stem.2016.08.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
|
32
|
Topa A, Tulinius M, Oldfors A, Hedberg-Oldfors C. Novel myopathy in a newborn with Shwachman-Diamond syndrome and review of neonatal presentation. Am J Med Genet A 2016; 170A:1155-64. [DOI: 10.1002/ajmg.a.37593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/27/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Alexandra Topa
- Department of Clinical Pathology and Genetics; Sahlgrenska University Hospital; Gothenburg Sweden
| | - Mar Tulinius
- Department of Pediatrics; University of Gothenburg; The Queen Silvia Children's Hospital; Gothenburg Sweden
| | - Anders Oldfors
- Department of Pathology; University of Gothenburg; Gothenburg Sweden
| | | |
Collapse
|
33
|
Kanprasoet W, Jensen LT, Sriprach S, Thitiananpakorn K, Rattanapornsompong K, Jensen AN. Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. J Genet Genomics 2015; 42:671-84. [DOI: 10.1016/j.jgg.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
34
|
Saito-Benz M, Miller HE, Berry MJ. Shwachman-Diamond syndrome (SDS) in a preterm neonate. J Paediatr Child Health 2015; 51:1228-31. [PMID: 26081292 DOI: 10.1111/jpc.12941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
A preterm neonate at 29-week gestational age was born with intrauterine growth restriction, severe pancytopaenia and gross skeletal dysplasia. Antenatal screening bloods, TORCH/parvovirus tests and karyotype were unremarkable. Postnatally, he had normal microarray comparative genomic hybridization and serum B12/folate levels, and human immunodeficiency virus and cytomegalovirus polymerase chain reaction and antoimmune screening were negative. Targeted gene testing for Shwachman-Diamond syndrome (SDS) revealed the pathognomic mutation (c.183_184delTAinsCT). His postnatal clinical course was complicated by: (i) Ventilator dependency because of a combination of a pathologically compliant chest wall and preterm-associated chronic lung disease. (ii) Progressive bone marrow failure, resulting in transfusion dependence and profound neutropenia associated with recurrent sepsis. (iii) Gastrointestinal failure and TPN dependency. (iv) Poor postnatal growth with weight/length/head circumference all <3rd centile. (v) Prognostication was complicated by the lack of published literature on the presentation of SDS in a preterm infant. However, because of inexorable progression of multiorgan failure, intensive care was withdrawn on day 54 of life. SDS is a rare autosomal recessive disorder characterised by haematological abnormalities, skeletal dysplasia and exocrine pancreatic dysfunction. Neonatal presentation is thought to be extremely rare. However, with the availability of genetic testing, it has now become clear that because of overlap in clinical presentation, term-born infants with skeletal dysplasia and severe respiratory distress may initially be misdiagnosed as asphyxiating thoracic dystrophy. This case report highlights the complexities of preterm birth complicating clinical manifestations of SDS.
Collapse
Affiliation(s)
- Maria Saito-Benz
- Neonatal Intensive Care Unit, Wellington Regional Hospital, Wellington, 6021, New Zealand
| | - Helen Elizabeth Miller
- Neonatal Intensive Care Unit, Wellington Regional Hospital, Wellington, 6021, New Zealand
| | - Mary Judith Berry
- Neonatal Intensive Care Unit, Wellington Regional Hospital, Wellington, 6021, New Zealand
| |
Collapse
|
35
|
Zambetti NA, Bindels EMJ, Van Strien PMH, Valkhof MG, Adisty MN, Hoogenboezem RM, Sanders MA, Rommens JM, Touw IP, Raaijmakers MHGP. Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes. Haematologica 2015; 100:1285-93. [PMID: 26185170 DOI: 10.3324/haematol.2015.131573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/06/2015] [Indexed: 01/10/2023] Open
Abstract
Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome.
Collapse
Affiliation(s)
- Noemi A Zambetti
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Paulina M H Van Strien
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Marijke G Valkhof
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands Current address: Laboratory for Cell Therapy, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maria N Adisty
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Johanna M Rommens
- Program in Genetics & Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Ivo P Touw
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Marc H G P Raaijmakers
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
36
|
Tourlakis ME, Zhang S, Ball HL, Gandhi R, Liu H, Zhong J, Yuan JS, Guidos CJ, Durie PR, Rommens JM. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency. PLoS Genet 2015; 11:e1005288. [PMID: 26057580 PMCID: PMC4461263 DOI: 10.1371/journal.pgen.1005288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/18/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption. Growth of all living things relies on protein synthesis. Failure of components of the complex protein synthesis machinery underlies a growing list of inherited and acquired multi—organ syndromes referred to as ribosomopathies. While ribosomes, the critical working components of the protein synthesis machinery, are required in all cell types to translate the genetic code, only certain organs manifest clinical symptoms in ribosomopathies, indicating specific cell-type features of protein synthesis control. Further, many of these diseases result in cancer despite an inherent deficit in growth. Here we report a range of consequences of protein synthesis insufficiency with loss of a broadly expressed ribosome factor, leading to growth impairment and cell cycle arrest at different stages. Apparent induction of p53-dependent cell death and arrest pathways included apoptosis in the fetal brain and senescence in the mature exocrine pancreas. The senescence, considered a tumour suppression mechanism, was accompanied by the expression of biomarkers associated with early stages of malignant transformation. These findings inform how cancer may initiate when growth is compromised and provide new insights into cell-type specific consequences of protein synthesis insufficiency.
Collapse
Affiliation(s)
- Marina E. Tourlakis
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Siyi Zhang
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Heather L. Ball
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Rikesh Gandhi
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Hongrui Liu
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jian Zhong
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Julie S. Yuan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Department of Immunology, University of Toronto, Toronto, Canada
| | - Cynthia J. Guidos
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Department of Immunology, University of Toronto, Toronto, Canada
| | - Peter R. Durie
- Program in Physiology & Experimental Medicine, Research Institute, Division of Gastroenterology & Nutrition, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Johanna M. Rommens
- Program in Genetics & Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
37
|
Monitoring changes in plasma levels of pancreatic and intestinal enzymes in a model of pancreatic exocrine insufficiency--induced by pancreatic duct-ligation--in young pigs. Adv Med Sci 2015; 60:112-7. [PMID: 25658045 DOI: 10.1016/j.advms.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 11/21/2022]
Abstract
PURPOSE Plasma levels of pancreatic and intestinal enzymes were measured after pancreatic duct ligation (PDL) to monitor pancreatic exocrine insufficiency (PEI) in a model using young pigs. MATERIAL/METHODS Five, 6 week-old pigs (10.9±0.2kg), underwent PDL while age-matched, un-operated pigs were used as controls. Plasma levels of immunoreactive cationic trypsinogen (IRCT), amylase, lipase, and diamine oxidase (DAO) activities were analyzed for 48 days after PDL, including 1 week of oral pancreatic enzyme supplementation (PES) with Creon(®). RESULTS PDL resulted in an arrested body growth and a rapid surge of pancreatic enzymes (IRCT, amylase and lipase) into the plasma. Nine days after PDL, the plasma levels of these pancreatic enzymes had decreased. IRCT then remained below the level in un-operated pigs while amylase only fell below control at 25 days. The intestinally derived marker DAO and plasma protein levels were unaffected by PDL but DAO decreased slightly with time in PEI pigs. One-week of oral PES restored body growth, but had little effect on pancreatic enzyme plasma levels, except for a tendency towards increased DAO. CONCLUSIONS The study showed that PEI developed within 1-2 weeks after PDL and that only IRCT is a reliable plasma enzyme marker for this. The reduced plasma DAO indicated that PEI also affected the intestines, while PES therapy restored growth of the PDL pigs and slightly increased plasma DAO, suggesting an improved intestinal function.
Collapse
|
38
|
Shwachman-Diamond syndrome with development of bone formation defects during prenatal life. J Pediatr Gastroenterol Nutr 2014; 58:e38-40. [PMID: 23254443 DOI: 10.1097/mpg.0b013e318282994e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
39
|
Gokce M, Tuncer M, Cetin M, Gumruk F. Molecular diagnosis of shwachman-diamond syndrome presenting with pancytopenia at an early age: the first report from Turkey. Indian J Hematol Blood Transfus 2014; 29:161-3. [PMID: 24426364 DOI: 10.1007/s12288-012-0163-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/18/2012] [Indexed: 11/28/2022] Open
Abstract
A three-month-old boy presented with growth failure, skeletal abnormalities, otitis media and pancytopenia. Exocrine pancreatic insufficiency was confirmed by low levels of fecal elastase. He was diagnosed as Shwachman-Diamond syndrome by clinical and laboratory findings. The diagnosis was confirmed by sequence analysis for SBDS gene on chromosome seven revealing compound heterozygous mutation, which are c.258+2T-C and c.183-184TA-CT. Matched unrelated donor screening for hematopoietic stem cell transplantation was initiated. Unfortunately, he died of respiratory difficulty at 5 months of age. Our case is the youngest patient whose presumptive Shwachman-Diamond syndrome diagnosis was confirmed by molecular analysis.
Collapse
Affiliation(s)
- Muge Gokce
- Pediatric Hematology Division, Hacettepe Medical Faculty, Ihsan Dogramacı Children's Hospital, Sıhhıye, Ankara, 06100 Turkey
| | - Murat Tuncer
- Pediatric Hematology Division, Hacettepe Medical Faculty, Ihsan Dogramacı Children's Hospital, Sıhhıye, Ankara, 06100 Turkey
| | - Mualla Cetin
- Pediatric Hematology Division, Hacettepe Medical Faculty, Ihsan Dogramacı Children's Hospital, Sıhhıye, Ankara, 06100 Turkey
| | - Fatma Gumruk
- Pediatric Hematology Division, Hacettepe Medical Faculty, Ihsan Dogramacı Children's Hospital, Sıhhıye, Ankara, 06100 Turkey
| |
Collapse
|
40
|
Cavelti-Weder C, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, Bonner-Weir S, Weir GC. Pancreatic duct ligation after almost complete β-cell loss: exocrine regeneration but no evidence of β-cell regeneration. Endocrinology 2013; 154:4493-502. [PMID: 24029238 PMCID: PMC3836076 DOI: 10.1210/en.2013-1463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been great interest in the extent of β-cell regeneration after pancreatic duct ligation (PDL) and whether α- to β-cell conversion might account for β-cell regeneration after near-complete β-cell loss. To assess these questions, we established a PDL-model in adult male rats after almost complete beta-cell depletion achieved by giving a single high dose of streptozocin (STZ) in the fasted state. Because of the resultant severe diabetes, rats were given islet cell transplants to allow long-term follow-up. Although animals were followed up to 10 months, there was no meaningful β-cell regeneration, be it through replication, neogenesis, or α- to β-cell conversion. In contrast, the acinar cell compartment underwent massive changes with first severe acinar degeneration upon PDL injury followed by the appearance of pancreatic adipocytes, and finally near-complete reappearance of acini. We conclude that β-cells and acinar cells, although originating from the same precursors during development, have very distinct regenerative potentials in our PDL model in adult rats.
Collapse
Affiliation(s)
- Claudia Cavelti-Weder
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:769-78. [PMID: 24252615 DOI: 10.1016/j.bbadis.2013.11.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
The skeleton affords a framework and structural support for vertebrates, while also facilitating movement, protecting vital organs, and providing a reservoir of minerals and cells for immune system and vascular homeostasis. The mechanical and biological functions of the skeleton are inextricably linked to the size and shape of individual bones, the diversity of which is dependent in part upon differential growth and proliferation. Perturbation of bone development, growth and proliferation, can result in congenital skeletal anomalies, which affect approximately 1 in 3000 live births [1]. Ribosome biogenesis is integral to all cell growth and proliferation through its roles in translating mRNAs and building proteins. Disruption of any steps in the process of ribosome biogenesis can lead to congenital disorders termed ribosomopathies. In this review, we discuss the role of ribosome biogenesis in skeletal development and in the pathogenesis of congenital skeletal anomalies. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Myers KC, Rose SR, Rutter MM, Mehta PA, Khoury JC, Cole T, Harris RE. Endocrine evaluation of children with and without Shwachman-Bodian-Diamond syndrome gene mutations and Shwachman-Diamond syndrome. J Pediatr 2013; 162:1235-40, 1240.e1. [PMID: 23305959 PMCID: PMC5693331 DOI: 10.1016/j.jpeds.2012.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/26/2012] [Accepted: 11/19/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize the endocrine phenotype of patients with Shwachman-Diamond syndrome (SDS). STUDY DESIGN Clinically indicated endocrine screening data from 43 patients with SDS or SDS-like presentation were analyzed according to sex, age, and genetic testing. In addition to 25 patients with biallelic Shwachman-Bodian-Diamond syndrome (SBDS) gene mutations, we evaluated 18 patients with cytopenias who were receiving pancreatic enzyme replacement but were without SBDS mutation. We performed a retrospective review of growth records and clinically indicated endocrine evaluations. RESULTS Of patients with SBDS mutations, 2 had low stimulated growth hormone levels, 2 had mildly elevated thyrotropin levels, 5 had abnormal glucose levels, and 1 had an elevated follicle-stimulating hormone level (post transplantation). In contrast, 1 patient without SBDS mutations had postprandial hyperglycemia and 3 had mildly low free thyroxine levels without short stature. Endocrine abnormalities were identified in 19% of short patients and 26% of the whole group. Of patients with SBDS mutations, 56% had a height expressed in SD units from the mean for age and sex of <-1.8, in contrast to only 12% of patients without SBDS mutations (38% of the whole group). Body mass index z score was significantly greater in the group with SBDS mutations (P<.001). CONCLUSION Although short stature was more common in patients with SBDS mutations, no consistent endocrine phenotype was observed in patients with SDS regardless of genetic testing.
Collapse
Affiliation(s)
- Kasiani C. Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Susan R. Rose
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Meilan M. Rutter
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Parinda A. Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Jane C. Khoury
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Theresa Cole
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Richard E. Harris
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| |
Collapse
|
43
|
Misdiagnosis as asphyxiating thoracic dystrophy and CMV-associated haemophagocytic lymphohistiocytosis in Shwachman-Diamond syndrome. Eur J Pediatr 2013; 172:613-22. [PMID: 23315050 DOI: 10.1007/s00431-012-1908-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/22/2012] [Accepted: 11/29/2012] [Indexed: 12/11/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterised by skeletal dysplasia, exocrine pancreatic insufficiency and bone marrow failure. Various other conditions, such as hepatopathy and failure to thrive have been associated with SDS. A retrospective study was conducted to describe mutations, clinical features, and the immunological profile of 11 Belgian patients with genetically confirmed diagnosis of SDS. This study confirms the existing understanding of the classical features of SDS although the typical triad was present in only six out of nine fully studied patients. The following important observations are made in this cohort. Four out of eleven patients were misdiagnosed as having Asphyxiating Thoracic Dystrophy (Jeune syndrome) because of severe thoracic dystrophy. Another two patients presented with unexplained episodes of symptomatic hypoglycaemia. The immunological phenotype was heterogeneous although laboratory abnormalities were noticed in eight out of ten patients assessed. Three patients experienced a life threatening viral infection (respiratory syncytial virus, cytomegalovirus (CMV) and rotavirus). In one patient, CMV infection caused an episode of haemophagocytic lymphohistiocytosis. One patient has bronchiectasis at the age of 3 years due to recurrent respiratory tract infections. These findings strengthen the suspicion of an abnormal immune system in SDS. Liver anomalies, usually described as benign and transitory in SDS patients, were severe in two patients of the cohort. One patient developed hepatopulmonary syndrome. The findings in this national cohort of SDS patients could contribute to the prevention of misdiagnosis in the future and enable more rapid recognition of certain severe complications.
Collapse
|
44
|
Minelli A, Nicolis E, Cannioto Z, Longoni D, Perobelli S, Pasquali F, Sainati L, Poli F, Cipolli M, Danesino C. Incidence of Shwachman-Diamond syndrome. Pediatr Blood Cancer 2012; 59:1334-5. [PMID: 22887728 DOI: 10.1002/pbc.24260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/25/2012] [Indexed: 11/07/2022]
|
45
|
Myers KC, Davies SM, Shimamura A. Clinical and molecular pathophysiology of Shwachman-Diamond syndrome: an update. Hematol Oncol Clin North Am 2012; 27:117-28, ix. [PMID: 23351992 DOI: 10.1016/j.hoc.2012.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited neutropenia syndrome associated with a significant risk of aplastic anemia and malignant transformation. Multiple additional organ systems, including the pancreas, liver, and skeletal and central nervous systems, are affected. Mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene are present in most patients. There is growing evidence that SBDS functions in ribosomal biogenesis and other cellular processes. This article summarizes the clinical phenotype of SDS, diagnostic and treatment approaches, and novel advances in our understanding of the molecular pathophysiology of this disease.
Collapse
Affiliation(s)
- Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 7015, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
46
|
Tourlakis ME, Zhong J, Gandhi R, Zhang S, Chen L, Durie PR, Rommens JM. Deficiency of Sbds in the mouse pancreas leads to features of Shwachman-Diamond syndrome, with loss of zymogen granules. Gastroenterology 2012; 143:481-92. [PMID: 22510201 DOI: 10.1053/j.gastro.2012.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 04/01/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. METHODS Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. RESULTS Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. CONCLUSIONS We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function.
Collapse
Affiliation(s)
- Marina E Tourlakis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Keogh SJ, McKee S, Smithson SF, Grier D, Steward CG. Shwachman-Diamond syndrome: a complex case demonstrating the potential for misdiagnosis as asphyxiating thoracic dystrophy (Jeune syndrome). BMC Pediatr 2012; 12:48. [PMID: 22554078 PMCID: PMC3457858 DOI: 10.1186/1471-2431-12-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/28/2012] [Indexed: 12/12/2022] Open
Abstract
Background The differential diagnosis of a neonate or fetus presenting with a bell-shaped or long narrow thorax includes a wide range of bony dysplasia syndromes. Where this is accompanied by respiratory distress, asphyxiating thoracic dystrophy (ATD, Jeune syndrome) is an important potential diagnosis. Shwachman-Diamond syndrome (SDS) is widely recognised as a cause of exocrine pancreatic dysfunction, short stature and bone marrow failure. It is not so well appreciated that rib and/or thoracic cage abnormalities occur in 30–50% of patients and that, in severe cases, these abnormalities may lead to thoracic dystrophy and respiratory failure in the newborn. There are, however, at least three previous case reports of children who were initially diagnosed with ATD who were subsequently shown to have SDS. Case presentation This report details the case history of a patient misdiagnosed as having ATD as a neonate following the neonatal asphyxial death of her brother. She subsequently developed progressive pancytopenia but was only diagnosed with SDS at 11 years of age after referral for haematopoietic stem cell transplantation for bone marrow failure accompanied by trilineage dysplasia and clonal cytogenetic abnormalities on bone marrow examination. Subsequent testing revealed the presence of fat globules in stools, reduced faecal chymotrypsin, fat-soluble vitamin deficiency, metaphyseal dysplasia on skeletal survey and heterozygous mutations of the SBDS gene. Conclusion This report highlights the potential for diagnostic confusion between ATD and SDS. It is important to include SDS in the differential diagnosis of newborns with thoracic dystrophy and to seek expert clinical and radiological assessment of such children.
Collapse
Affiliation(s)
- Steven J Keogh
- Department of Paediatric Haematology, Oncology & BMT, Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin St, Bristol, BS2 8BJ, UK
| | | | | | | | | |
Collapse
|
48
|
Dror Y, Donadieu J, Koglmeier J, Dodge J, Toiviainen-Salo S, Makitie O, Kerr E, Zeidler C, Shimamura A, Shah N, Cipolli M, Kuijpers T, Durie P, Rommens J, Siderius L, Liu JM. Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann N Y Acad Sci 2012; 1242:40-55. [PMID: 22191555 DOI: 10.1111/j.1749-6632.2011.06349.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by pancreatic exocrine insufficiency and bone marrow failure, often associated with neurodevelopmental and skeletal abnormalities. Mutations in the SBDS gene have been shown to cause SDS. The purpose of this document is to provide draft guidelines for diagnosis, evaluation of organ and system abnormalities, and treatment of hematologic, pancreatic, dietary, dental, skeletal, and neurodevelopmental complications. New recommendations regarding diagnosis and management are presented, reflecting advances in understanding the genetic basis and clinical manifestations of the disease based on the consensus of experienced clinicians from Canada, Europe, and the United States. Whenever possible, evidence-based conclusions are made, but as with other rare diseases, the data on SDS are often anecdotal. The authors welcome comments from readers.
Collapse
Affiliation(s)
- Yigal Dror
- The Hospital For Sick Children, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Perobelli S, Nicolis E, Assael BM, Cipolli M. Further characterization of Shwachman-Diamond syndrome: Psychological functioning and quality of life in adult and young patients. Am J Med Genet A 2012; 158A:567-73. [DOI: 10.1002/ajmg.a.35211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 11/17/2011] [Indexed: 11/07/2022]
|
50
|
Dehkordy SF, Aghamohammadi A, Ochs HD, Rezaei N. Primary immunodeficiency diseases associated with neurologic manifestations. J Clin Immunol 2011; 32:1-24. [PMID: 22038677 DOI: 10.1007/s10875-011-9593-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/09/2011] [Indexed: 01/04/2023]
Abstract
Primary immunodeficiency diseases (PID) are a heterogeneous group of inherited disorders of the immune system, predisposing individuals to recurrent infections, allergy, autoimmunity, and malignancies. A considerable number of these conditions have been found to be also associated with neurologic signs and symptoms. These manifestations are considered core features of some immunodeficiency syndromes, such as ataxia-telangiectasia and purine nucleoside phosphorylase deficiency, or occur less prominently in some others. Diverse pathological mechanisms including defective responses to DNA damage, metabolic errors, and autoimmune phenomena have been associated with neurologic abnormalities; however, several issues remain to be elucidated. Greater awareness of these associated features and gaining a better understanding of the contributing mechanisms will lead to prompt diagnosis and treatment and possibly development of novel preventive and therapeutic strategies. In this review, we aim to provide a brief description of the clinical and genetic characteristics of PID associated with neurologic complications.
Collapse
Affiliation(s)
- Soodabeh Fazeli Dehkordy
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | | | | | | |
Collapse
|