1
|
Zhang F, Lo EKK, Chen C, Lee JCY, Felicianna, Ismaiah MJ, Leung HKM, Tsang DHL, El-Nezami H. Probiotics Mixture, Prohep: a Potential Adjuvant for Low-Dose Sorafenib in Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatocellular Carcinoma Suppression Through Modulating Gut Microbiota. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10593-4. [PMID: 40405038 DOI: 10.1007/s12602-025-10593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2025] [Indexed: 05/24/2025]
Abstract
Targeting gut microbiota is an innovative approach to mitigate the development of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular carcinoma (MASLD-HCC). This study aims to investigate the effects of Prohep, a probiotic mixture, both as a prophylactic measure and as an adjuvant therapy for low-dose sorafenib. A MASLD-HCC mice model was established by diethylnitrosamine (DEN) injection with feeding of a high-fat high-cholesterol (HFHC) diet. Gut microbiome profiles were later identified through shotgun sequencing. Our findings demonstrated that Prohep supplementation effectively suppressed MASLD-HCC development in mice. This protective effect was attributed to the modulation of gut microbiota and the increased production of short-chain fatty acids (SCFAs), propionate, and valerate. Prohep also activated AMPK, which decreased lipogenesis, reduced lipid uptake, and enhanced antioxidant enzyme expressions. Additionally, the cancer proliferation pathway PI3K/mTOR was inhibited in response to Prohep treatment. As an adjuvant therapy, Prohep improved the efficacy of low-dose sorafenib, as indicated by reduced tumor counts, alleviated inflammation, and increased hepatic superoxide dismutase (SOD) expression. The combination led to enhanced butyrate production, contributing to the overall therapeutic effects, thanks to the gut microbiota modulatory effects of Prohep. These results underscore Prohep's anti-tumorigenic properties and its potential to enhance the therapeutic outcomes of low-dose sorafenib in MASLD-HCC treatment. The study highlights the importance of gut microbiota modulation for developing effective neoadjuvant therapies and long-term management strategies for MASLD-HCC.
Collapse
Affiliation(s)
- Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Dorothy Hin Lam Tsang
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong S. A. R., China.
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, 70211, Finland.
| |
Collapse
|
2
|
Li K, Mathew B, Saldanha E, Ghosh P, Krainer AR, Dasarathy S, Huang H, Xiang X, Mishra L. New insights into biomarkers and risk stratification to predict hepatocellular cancer. Mol Med 2025; 31:152. [PMID: 40269686 PMCID: PMC12020275 DOI: 10.1186/s10020-025-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.
Collapse
Affiliation(s)
- Katrina Li
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Brandon Mathew
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Ethan Saldanha
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Puja Ghosh
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Hai Huang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
3
|
Nakashima M, Fukumoto A, Matsuda S. Beneficial Probiotics with New Cancer Therapies for Improved Treatment of Hepatocellular Carcinoma. Diseases 2025; 13:111. [PMID: 40277821 PMCID: PMC12025462 DOI: 10.3390/diseases13040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant form of primary liver cancer. Intricate networks linked to the host immune system may be associated with the pathogenesis of HCC. A huge amount of interdisciplinary medical information for the treatment of HCC has been accumulated over recent years. For example, advances in new immunotherapy have improved the results of treatment for HCC. This approach can be advantageously combined with standard conventional treatments such as surgical resection to improve the therapeutic effect. However, several toxic effects of treatments may pose a significant threat to human health. Now, a shift in mindset is important for achieving superior cancer therapy, where probiotic therapy may be considered, at least within the bounds of safety. The interplay between the gut microbiota and immune system could affect the efficacy of several anticancer treatments, including of immune checkpoint therapy via the alteration of Th17 cell function against various malignant tumors. Here, some recent anticancer techniques are discussed, whereby the growth of HCC may be effectively and safely repressed by probiotic therapy.
Collapse
Affiliation(s)
| | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
4
|
Li C, Cai C, Wang C, Chen X, Zhang B, Huang Z. Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer. Clin Mol Hepatol 2025; 31:350-381. [PMID: 39659059 PMCID: PMC12016628 DOI: 10.3350/cmh.2024.0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Romeo M, Dallio M, Di Nardo F, Napolitano C, Vaia P, Martinelli G, Federico P, Olivieri S, Iodice P, Federico A. The Role of the Gut-Biliary-Liver Axis in Primary Hepatobiliary Liver Cancers: From Molecular Insights to Clinical Applications. J Pers Med 2025; 15:124. [PMID: 40278303 PMCID: PMC12028696 DOI: 10.3390/jpm15040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Hepatobiliary liver cancers (HBLCs) represent the sixth most common neoplasm in the world. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) constitute the main HBLC types, with alarming epidemiological projections. Methods: In recent decades, alterations in gut microbiota, with mutual implications on the gut-liver axis and gut-biliary axis permeability status, have been massively investigated and proposed as HBLC pathogenetic deus ex machina. Results: In the HCC setting, elevated intestinal levels of Escherichia coli and other Gram-negative bacteria have been demonstrated, resulting in a close association with increased lipopolysaccharide (LPS) serum levels and, consequently, chronic systemic inflammation. In contrast, the intestinal microbiota of HCC individuals feature reduced levels of Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. In the CC setting, evidence has revealed an increased expression of Lactobacillus spp., with enhanced levels of Actynomices spp. and Alloscardovia spp. Besides impaired strains/species representation, gut-derived metabolites, including bile acids (BAs), short-chain fatty acids (SCFAs), and oxidative-stress-derived products, configure a network severely impacting the progression of HBLC. Conclusions: In the era of Precision Medicine, the clarification of microbiota composition and functioning in HCC and CC settings can contribute to the identification of individual signatures, potentially providing novel diagnostic markers, therapeutic approaches, and prognostic/predictive tools.
Collapse
Affiliation(s)
- Mario Romeo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Marcello Dallio
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Fiammetta Di Nardo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Carmine Napolitano
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Paolo Vaia
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Giuseppina Martinelli
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Pierluigi Federico
- Pharmaceutical Department, ASL NA3 Sud, Torre del Greco, 80059 Naples, Italy;
| | - Simone Olivieri
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | | | - Alessandro Federico
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| |
Collapse
|
6
|
Liu Y, Chen Z, Li C, Sun T, Luo X, Jiang B, Liu M, Wang Q, Li T, Cao J, Li Y, Chen Y, Kuai L, Xiao F, Xu H, Cui H. Associations between changes in the gut microbiota and liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:16. [PMID: 39806278 PMCID: PMC11727502 DOI: 10.1186/s12876-025-03589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Summaries of the relationships between the microbiota and liver cirrhosis and their conclusions are not consistent. This study describes microbial differences in patients with liver cirrhosis by performing a meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and the Cochrane Library and collected related articles published before March 10, 2024. Ratio of autochthonous to non-autochthonous taxa was calculated as the cirrhosis dysbiosis ratio (CDR). Using a random-effects model, the standard mean deviation (SMD) and 95% confidence interval (CI) were calculated. We subsequently performed subgroup, sensitivity, and publication bias analyses. cirrhosis dysbiosis ratio. RESULTS A total of 53 eligible papers including 5076 participants were included. The pooled estimates revealed a moderately significant reduction in gut microbiome richness in patients with liver cirrhosis compared with controls, including the Shannon, Chao1, observed species, ACE, and PD indices, but no significant difference was observed for the Simpson index. Over 80% of the studies reported significant differences in β diversity. Families Enterobacteriaceae and Pasteurellaceae, belonging to the phylum Proteobacteria, along with the family Streptococcaceae and the genera Haemophilus, Streptococcus, and Veillonella, were significantly associated with liver cirrhosis compared to the control group. In contrast, the healthy group exhibited a higher abundance of the class Clostridia, particularly the families Lachnospiraceae and Ruminococcaceae, which are known for their diversity and role as common gut commensals. Furthermore, the class Bacilli, predominantly represented by the genus Streptococcus, was markedly enriched in the cirrhosis group. CONCLUSIONS The microbiota richness of liver cirrhosis patients was lower than that of healthy controls. Alterations in gut microbiota linked to liver cirrhosis were characterized by a decrease in Lachnospiraceae, Ruminococcaceae, and Clostridia and an enrichment of Enterobacteriaceae, Pasteurellaceae, Streptococcaceae, Bacilli, and Streptococcus.
Collapse
Affiliation(s)
- Ye Liu
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Ziwei Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianhan Sun
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuanmei Luo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Boyue Jiang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meilan Liu
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Li
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianfu Cao
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yayu Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Kuai
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China.
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
- Clinical Biobank, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Laboratory Medicine, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongyuan Cui
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of General Surgery, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| |
Collapse
|
7
|
Xirouchakis E, Pelekanos A, Xirouchakis S, Kranidioti H, Manolakopoulos S. A Systematic Review of Microbiota in Cirrhosis: A Change Towards a More Pathogenic Predisposition. Int J Mol Sci 2025; 26:527. [PMID: 39859243 PMCID: PMC11765289 DOI: 10.3390/ijms26020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The microbiome of the human intestine is a regulator of health that modulates immune response and plays an important role in metabolism. The diversity, and abundance of microbiota communities in the gut have been shown to change in cirrhosis and its complications. We aimed to review the current knowledge regarding microbiota alterations in cirrhosis, its potential differences according to etiology, and its role in the development of cirrhosis complications. A systematic search of the online bibliographic database up to July 2024 was performed. Randomized controlled trials and observational and cohort studies that included a total or at least a cohort of cirrhotic adult patients were enlisted for data extraction and analysis. A total of 73 publications were included for data extraction. Alpha diversity was found to decrease in cirrhotic patients in 30/38 (78%) of the studies, while beta diversity in 20/22 (90%) presented significant differences between healthy and cirrhotic groups. Proteobacteria significantly increased in 20/27 (74%) studies, followed by Actinobacteria and Fusobacteria, while 22/25 (88%) studies found either a reduction in cirrhotic patients or increased abundance in healthy controls for Firmicutes and Bacteroidetes. The most abundant genera in hepatic encephalopathy groups were pathobionts such as Enterococcus and Streptococcus, followed by Vellionella and Escherichia. Heterogeneity was found among studies regarding Alpha diversity in hepatocellular carcinoma (HCC) as it was decreased in three studies, indifferent in five, and increased in three studies in comparison to cirrhotic non-HCC patients. The dysbiosis of the gut microbiota is associated with cirrhosis and the development of complications such as hepatic encephalopathy and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Elias Xirouchakis
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
- Department of Gastroenterology and Hepatology, Athens Medical, P. Faliron Hospital, 175 62 Athens, Greece;
| | - Alexandros Pelekanos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| | - Spyridon Xirouchakis
- Department of Gastroenterology and Hepatology, Athens Medical, P. Faliron Hospital, 175 62 Athens, Greece;
- Medical School, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Hariklia Kranidioti
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| | - Spilios Manolakopoulos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| |
Collapse
|
8
|
Yu J, Chen X, Yang X, Zhang B. Understanding gut dysbiosis for hepatocellular carcinoma diagnosis and treatment. Trends Endocrinol Metab 2024; 35:1006-1020. [PMID: 38969601 DOI: 10.1016/j.tem.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
The gut microbiome can play a crucial role in hepatocellular carcinoma (HCC) progression through the enterohepatic circulation, primarily acting via metabolic reprogramming and alterations in the hepatic immune microenvironment triggered by microbe-associated molecular patterns (MAMPs), metabolites, and fungi. In addition, the gut microbiome shows potential as a biomarker for early HCC diagnosis and for assessing the efficacy of immunotherapy in unresectable HCC. This review examines how gut microbiota dysbiosis, with varied functional profiles, contributes to HCCs of different etiologies. We discuss therapeutic strategies to modulate the gut microbiome including diets, antibiotics, probiotics, fecal microbiota transplantation, and nano-delivery systems, and underscore their potential as an adjunctive treatment modality for HCC.
Collapse
Affiliation(s)
- Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Attia AM, Rezaee-Zavareh MS, Hwang SY, Kim N, Adetyan H, Yalda T, Chen PJ, Koltsova EK, Yang JD. Novel Biomarkers for Early Detection of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:2278. [PMID: 39451600 PMCID: PMC11507329 DOI: 10.3390/diagnostics14202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally. Most patients present with late diagnosis, leading to poor prognosis. This narrative review explores novel biomarkers for early HCC detection. We conducted a comprehensive literature review analyzing protein, circulating nucleic acid, metabolite, and quantitative proteomics-based biomarkers, evaluating the advantages and limitations of each approach. While established markers like alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, and AFP-L3 remain relevant, promising candidates include circulating tumor DNA, microRNAs, long noncoding RNAs, extracellular vesicle, and metabolomic biomarkers. Multi-biomarker panels like the GALAD score, Oncoguard, and Helio liver test show promise for improved diagnostic accuracy. Non-invasive approaches like urine and gut microbiome analysis are also emerging possibilities. Integrating these novel biomarkers with current screening protocols holds significant potential for earlier HCC detection and improved patient outcomes. Future research should explore multi-biomarker panels, omics technologies, and artificial intelligence to further enhance early HCC diagnosis and management.
Collapse
Affiliation(s)
- Abdelrahman M. Attia
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | | | - Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD 21201, USA;
| | - Naomy Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Hasmik Adetyan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Tamar Yalda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Pin-Jung Chen
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Pallozzi M, De Gaetano V, Di Tommaso N, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Role of Gut Microbial Metabolites in the Pathogenesis of Primary Liver Cancers. Nutrients 2024; 16:2372. [PMID: 39064815 PMCID: PMC11280141 DOI: 10.3390/nu16142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatobiliary malignancies, which include hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are the sixth most common cancers and the third leading cause of cancer-related death worldwide. Hepatic carcinogenesis is highly stimulated by chronic inflammation, defined as fibrosis deposition, and an aberrant imbalance between liver necrosis and nodular regeneration. In this context, the gut-liver axis and gut microbiota have demonstrated a critical role in the pathogenesis of HCC, as dysbiosis and altered intestinal permeability promote bacterial translocation, leading to chronic liver inflammation and tumorigenesis through several pathways. A few data exist on the role of the gut microbiota or bacteria resident in the biliary tract in the pathogenesis of CCA, and some microbial metabolites, such as choline and bile acids, seem to show an association. In this review, we analyze the impact of the gut microbiota and its metabolites on HCC and CCA development and the role of gut dysbiosis as a biomarker of hepatobiliary cancer risk and of response during anti-tumor therapy. We also discuss the future application of gut microbiota in hepatobiliary cancer management.
Collapse
Affiliation(s)
- Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Natalia Di Tommaso
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
12
|
Uema T, Tsukita M, Okamoto S, Uehara M, Honma KI, Nakayama Y, Tamaki A, Miyazato M, Ashikari A, Maeda S, Imamura M, Matsushita M, Nakamura K, Masuzaki H. Gut microbiota-based prediction for the transition from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) in a remote island cohort study. Diabetes Res Clin Pract 2024; 213:111747. [PMID: 38878868 DOI: 10.1016/j.diabres.2024.111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
AIM The present cohort study explored whether specific gut microbiota (GM) profile would predict the development of impaired glucose tolerance (IGT) in individuals with normal glucose tolerance (NGT). METHODS A total of 114 study subjects with NGT in Kumejima island, Japan participated in the present study and underwent 75 g oral glucose tolerance tests at baseline and one year later. We compared the profile of GM at baseline between individuals who consistently maintained NGT (NRN, n = 108) and those who transitioned from NGT to IGT (NTI, n = 6). RESULTS Within-individual bacterial richness and evenness as well as inter-individual bacterial composition showed no significant differences between NRN and NTI. Of note, however, partial least squares discriminant analyses revealed distinct compositions of GM between groups, with no overlap in their 95 % confidence interval ellipses. Multi-factor analyses at the genus level demonstrated that the proportions of CF231, Corynebacterium, Succinivibrio, and Geobacillus were significantly elevated in NTI compared to NRN (p < 0.005, FDR < 0.1, respectively) after adjusting for age, sex, HbA1c level, and BMI. CONCLUSIONS Our data suggest that increased proportion of specific GM is linked to the future deterioration of glucose tolerance, thereby serving as a promising predictive marker for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tsugumi Uema
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mari Tsukita
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Moriyuki Uehara
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ken-Ichiro Honma
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiro Nakayama
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Atsuko Tamaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Minoru Miyazato
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Asuka Ashikari
- Department of Urology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Koshi Nakamura
- Department of Public Health and Epidemiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
13
|
Chang G, Sun J, Li J, Li T. Effect of Probiotics on Portal Hypertension (PH) with Cirrhosis: A Systematic Review and Meta-Analysis. Clin Res Hepatol Gastroenterol 2024; 48:102361. [PMID: 38701917 DOI: 10.1016/j.clinre.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION There are many options for the reduction of portal hypertension (pH) in cirrhotic patients, but all the current ones have side effects. Probiotics are a new approach for ameliorating the hyperdynamic circulation of cirrhotic patients. The aim of this study is to measure the effect of probiotics on pH in cirrhosis for the first time. METHODS A search was conducted across four electronic databases (PubMed, Scopus, Web of Science, Cochrane) for English-language records evaluating probiotic effects on pH in cirrhotic patients. Quality assessment used the Cochrane Collaboration's tool, employing a random-effects model in statistical analysis with Stata software version 1. RESULTS A search yielded 1,251 articles, which were narrowed down to 5 through screening. These studies, involving 158 participants across Canada, India, Spain, and Russia, focused on probiotic interventions in cirrhotic patients. Meta-analysis of two RCTs (66 participants) indicated a significant decrease in hepatic venous pressure gradient (HVPG) (SMD: -0.60 [-1.09, -0.12]). In single-arm analysis, four studies (58 participants) showed a substantial reduction in HVPG with probiotic use compared to the control (SMD: -2.55 [-3.42, -1.68]). CONCLUSION In summary, it showcased a notable reduction in HVPG compared to the control group, indicating a potential advantage of probiotics in decreasing pH in cirrhotic patients. Further research with larger samples and robust designs is warranted.
Collapse
Affiliation(s)
- Gang Chang
- Department of Minimally invasive intervention, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, PR China.
| | - Jie Sun
- Department of Gastrointestinal surgery, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, PR China
| | - Jianhua Li
- Department of Gastroenterology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, Shandong 250031, PR China
| | - Tao Li
- Department of Hepatic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| |
Collapse
|
14
|
Jiang DQY, Guo TL. Interaction between Per- and Polyfluorinated Substances (PFAS) and Acetaminophen in Disease Exacerbation-Focusing on Autism and the Gut-Liver-Brain Axis. TOXICS 2024; 12:39. [PMID: 38250995 PMCID: PMC10818890 DOI: 10.3390/toxics12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
This review presents a new perspective on the exacerbation of autism spectrum disorder (ASD) by per- and polyfluoroalkyl substances (PFAS) through the gut-liver-brain axis. We have summarized evidence reported on the involvement of the gut microbiome and liver inflammation that led to the onset and exacerbation of ASD symptoms. As PFAS are toxicants that particularly target liver, this review has comprehensively explored the possible interaction between PFAS and acetaminophen, another liver toxicant, as the chemicals of interest for future toxicology research. Our hypothesis is that, at acute dosages, acetaminophen has the ability to aggravate the impaired conditions of the PFAS-exposed liver, which would further exacerbate neurological symptoms such as lack of social communication and interest, and repetitive behaviors using mechanisms related to the gut-liver-brain axis. This review discusses their potential interactions in terms of the gut-liver-brain axis and signaling pathways that may contribute to neurological diseases.
Collapse
Affiliation(s)
| | - Tai Liang Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
15
|
Sparfel L, Ratodiarivony S, Boutet-Robinet E, Ellero-Simatos S, Jolivet-Gougeon A. Akkermansia muciniphila and Alcohol-Related Liver Diseases. A Systematic Review. Mol Nutr Food Res 2024; 68:e2300510. [PMID: 38059838 DOI: 10.1002/mnfr.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.
Collapse
Affiliation(s)
- Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Sandy Ratodiarivony
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
- Teaching Hospital, CHU Rennes, 2 rue Henri Le Guilloux 35033, Rennes, F-35000, France
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241, INSERM 1241, Rennes, F-35000, France
| |
Collapse
|
16
|
Liu X, Liu D, Tan C, Feng W. Gut microbiome-based machine learning for diagnostic prediction of liver fibrosis and cirrhosis: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2023; 23:294. [PMID: 38115019 PMCID: PMC10731850 DOI: 10.1186/s12911-023-02402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Invasive detection methods such as liver biopsy are currently the gold standard for diagnosing liver cirrhosis and can be used to determine the degree of liver fibrosis and cirrhosis. In contrast, non-invasive diagnostic methods, such as ultrasonography, elastography, and clinical prediction scores, can prevent patients from invasiveness-related discomfort and risks and are often chosen as alternative or supplementary diagnostic methods for liver fibrosis or cirrhosis. However, these non-invasive methods cannot specify the pathological grading and early diagnosis of the lesions. Recent studies have revealed that gut microbiome-based machine learning can be utilized as a non-invasive diagnostic technique for liver cirrhosis or fibrosis, but there is no evidence-based support. Therefore, this study conducted a systematic review and meta-analysis for the first time to investigate the accuracy of machine learning based on the gut microbiota in the prediction of liver fibrosis and cirrhosis. METHODS A comprehensive and systematic search of publications published before April 2th, 2023 in PubMed, Cochrane Library, Embase, and Web of Science was conducted for relevant studies on the application of gut microbiome-based metagenomic sequencing modeling technology to the diagnostic prediction of liver cirrhosis or fibrosis. A bivariate mixed-effects model and Stata software 15.0 were adopted for the meta-analysis. RESULTS Ten studies were included in the present study, involving 11 prediction trials and 838 participants, 403 of whom were fibrotic and cirrhotic patients. Meta-analysis showed the pooled sensitivity (SEN) = 0.81 [0.75, 0.85], specificity (SEP) = 0.85 [0.77, 0.91], positive likelihood ratio (PLR) = 5.5 [3.6, 8.7], negative likelihood ratio (NLR) = 0.23 [0.18, 0.29], diagnostic odds ratio (DOR) = 24 [14, 41], and area under curve (AUC) = 0.86 [0.83-0.89]. The results demonstrated that machine learning methods had excellent potential to analyze gut microbiome data and could effectively predict liver cirrhosis or fibrosis. Machine learning provides a powerful tool for non-invasive prediction and diagnosis of liver cirrhosis or liver fibrosis, with broad clinical application prospects. However, these results need to be interpreted with caution due to limited clinical data. CONCLUSION Gut microbiome-based machine learning can be utilized as a practical, non-invasive technique for the diagnostic prediction of liver cirrhosis or fibrosis. However, most of the included studies applied the random forest algorithm in modeling, so a diversified prediction system based on microorganisms is needed to improve the non-invasive detection of liver cirrhosis or fibrosis.
Collapse
Affiliation(s)
- Xiaopei Liu
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian New District, Xianyang, 712046, Shaanxi Province, China
| | - Dan Liu
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710016, Shaanxi, China
| | - Cong'e Tan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian New District, Xianyang, 712046, Shaanxi Province, China.
| | - Wenzhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| |
Collapse
|
17
|
Rajapakse J, Khatiwada S, Akon AC, Yu KL, Shen S, Zekry A. Unveiling the complex relationship between gut microbiota and liver cancer: opportunities for novel therapeutic interventions. Gut Microbes 2023; 15:2240031. [PMID: 37615334 PMCID: PMC10454000 DOI: 10.1080/19490976.2023.2240031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been linked to the gut microbiota, with recent studies revealing the potential of gut-generated responses to influence several arms of the immune responses relevant to HCC formation. The pro- or anti-tumor effects of specific bacterial strains or gut microbiota-related metabolites, such as bile acids and short-chain fatty acids, have been highlighted in many human and animal studies. The critical role of the gut microbiota in HCC development has spurred interest in modulating the gut microbiota through dietary interventions, probiotics, and fecal microbiota transplantation as a potential strategy to improve liver cancer outcomes. Encouragingly, preclinical and clinical studies have demonstrated that modulation of the gut microbiota can ameliorate liver function, reduce inflammation, and inhibit liver tumor growth, underscoring the potential of this approach to improve HCC outcomes. As research continues to unravel the complex and dynamic mechanisms underlying the gut-liver axis, the development of safe and effective interventions to target this pathway for liver cancer prevention and treatment appears to be on the horizon, heralding a significant advance in our ongoing efforts to combat this devastating disease.
Collapse
Affiliation(s)
- Jayashi Rajapakse
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Saroj Khatiwada
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Anna Camille Akon
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| | - Kin Lam Yu
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Amany Zekry
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| |
Collapse
|
18
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
19
|
Gok Yavuz B, Datar S, Chamseddine S, Mohamed YI, LaPelusa M, Lee SS, Hu ZI, Koay EJ, Tran Cao HS, Jalal PK, Daniel-MacDougall C, Hassan M, Duda DG, Amin HM, Kaseb AO. The Gut Microbiome as a Biomarker and Therapeutic Target in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4875. [PMID: 37835569 PMCID: PMC10571776 DOI: 10.3390/cancers15194875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The microbiome is pivotal in maintaining health and influencing disease by modulating essential inflammatory and immune responses. Hepatocellular carcinoma (HCC), ranking as the third most common cause of cancer-related fatalities globally, is influenced by the gut microbiome through bidirectional interactions between the gut and liver, as evidenced in both mouse models and human studies. Consequently, biomarkers based on gut microbiota represent promising non-invasive tools for the early detection of HCC. There is a growing body of evidence suggesting that the composition of the gut microbiota may play a role in the efficacy of immunotherapy in different types of cancer; thus, it could be used as a predictive biomarker. In this review, we will dissect the gut microbiome's role as a potential predictive and diagnostic marker in HCC and evaluate the latest progress in leveraging the gut microbiome as a novel therapeutic avenue for HCC patients, with a special emphasis on immunotherapy.
Collapse
Affiliation(s)
- Betul Gok Yavuz
- Department of Medicine, University of Missouri, St. Louis, MO 63121, USA;
| | - Saumil Datar
- Department of Medicine, University of Texas at Houston, Houston, TX 77030, USA;
| | - Shadi Chamseddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Yehia I. Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Michael LaPelusa
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Zishuo Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Hop S. Tran Cao
- Hepato-Pancreato-Biliary Section, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Prasun Kumar Jalal
- Division of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Carrie Daniel-MacDougall
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.-M.); (M.H.)
| | - Manal Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.-M.); (M.H.)
| | - Dan G. Duda
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (Y.I.M.); (S.S.L.); (Z.I.H.)
| |
Collapse
|
20
|
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, Wen Z, He Z, Xu L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res 2023; 196:106916. [PMID: 37690533 DOI: 10.1016/j.phrs.2023.106916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, Soochow Univeristy, Jiangsu 215000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
21
|
Xiong W, Yang C, Xia J, Wang W, Li N. G. lucidum triterpenes restores intestinal flora balance in non-hepatitis B virus-related hepatocellular carcinoma: evidence of 16S rRNA sequencing and network pharmacology analysis. Front Pharmacol 2023; 14:1197418. [PMID: 37790812 PMCID: PMC10544910 DOI: 10.3389/fphar.2023.1197418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Ganoderma lucidum (G. lucidum) is a popular traditional remedy medicine used in Asia to promote health and longevity, which has also been highlighted for anti-cancer effects. This study investigated the molecular pharmacological mechanism of G. lucidum triterpenes in influencing intestinal flora imbalance in non-hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) based on 16S rRNA sequencing technology and network pharmacology analysis. Methods: 16S rRNA sequencing data of fecal samples from normal controls and HCC patients were obtained from the SRA database. G. lucidum triterpenes and HCC-related targets were screened by BATMAN-TCM, ETCM, and GeneCards databases. The TCGA-LIHC dataset was downloaded through the TCGA database to analyze the differential expression of key genes. NHBV-related HCC-related transcriptome RNA sequencing dataset was downloaded via the GEO database. Results: Abundance of intestinal flora in the HBV-related HCC and NHBV-related samples was higher than that of control samples. The intestinal flora of NHBV samples was mainly enriched in apoptosis and p53 pathways. Totally, 465 G. lucidum triterpenes-related targets were intersected with 4186 HCC-related targets, yielding 176 intersected targets. Among them, apoptosis and p53 pathway factors were located at the core of the protein-protein interactions network. Ganosporelactone B, the active component of G. lucidum triterpenes, had the lowest binding free energy to CASP3. CASP3 expression were upregulated in HCC tissue samples, and had higher predictive value in NHBV-related HCC patients. Conclusion: Therefore, Ganosporelactone B, the active ingredient of G. lucidum triterpenes, improves the imbalance of intestinal flora and ultimately curtails development of NHBV-related HCC.
Collapse
Affiliation(s)
| | | | | | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| |
Collapse
|
22
|
Efremova I, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Fedorova M, Shirokova E, Kozlov E, Levshina A, Ivashkin V. Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms 2023; 11:2202. [PMID: 37764046 PMCID: PMC10537778 DOI: 10.3390/microorganisms11092202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to evaluate the relationship between gut dysbiosis and hemodynamic changes (hyperdynamic circulation) in cirrhosis, and between hemodynamic changes and complications of this disease. This study included 47 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Echocardiography with a simultaneous assessment of blood pressure and heart rate was performed to assess systemic hemodynamics. Patients with hyperdynamic circulation had more severe cirrhosis, lower albumin, sodium and prothrombin levels, higher C-reactive protein, aspartate aminotransferase and total bilirubin levels, and higher incidences of portopulmonary hypertension, ascites, overt hepatic encephalopathy, hypoalbuminemia, hypoprothrombinemia, systemic inflammation, and severe hyperbilirubinemia than patients with normodynamic circulation. Patients with hyperdynamic circulation compared with those with normodynamic circulation had increased abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcaceae, Lactobacillaceae, Fusobacteria, Micrococcaceae, Intestinobacter, Clostridium sensu stricto, Proteus and Rumicoccus, and decreased abundance of Bacteroidetes, Bacteroidaceae, Holdemanella, and Butyrivibrio. The systemic vascular resistance and cardiac output values correlated with the abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcaceae, Lactobacillaceae, Micrococcaceae, and Fusobacteria. Heart rate and cardiac output value were negatively correlated with the abundance of Bacteroidetes. The mean pulmonary artery pressure value was positively correlated with the abundance of Proteobacteria and Micrococcaceae, and negatively with the abundance of Holdemanella.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119991 Moscow, Russia
- Consultative and Diagnostic Center No. 2, Moscow Health Department, 107564 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119991 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 119991 Moscow, Russia;
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| |
Collapse
|
23
|
Dai M, Lui RN, Lau LH. The role of gut microbiome and fecal microbiota transplantation in liver cancer and related complications: mechanisms and therapeutic potentials. HEPATOMA RESEARCH 2023. [DOI: 10.20517/2394-5079.2023.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer is the sixth commonest cancer and the third leading cause of cancer mortality worldwide. Accumulating evidence suggests a pivotal role of the gut microbiome in the progression of chronic liver disease and the subsequent development of liver cancer. Additionally, gut microbiome has been shown to contribute to the hosts’ antitumor responses following immunotherapy and chemotherapy for liver cancers, highlighting the therapeutic potential of gut microbiome modulation in enhancing treatment efficacy and reducing drug resistance. Fecal microbiota transplantation (FMT), a novel therapeutic modality to deliver a healthy donor's stool by endoscopy or capsule, has demonstrated potential in managing liver diseases and cancers by restoring and modulating the recipient’s gut microbiome composition. However, existing data on the clinical application of FMT in liver cancers are still limited. This review summarizes the underlying roles and mechanisms of gut microbiome in liver cancer and discusses the therapeutic potential of FMT in liver cancer treatment and the management of its related complications (e.g., hepatic encephalopathy).
Collapse
|
24
|
Maslennikov R, Alieva A, Poluektova E, Zharikov Y, Suslov A, Letyagina Y, Vasileva E, Levshina A, Kozlov E, Ivashkin V. Sarcopenia in cirrhosis: Prospects for therapy targeted to gut microbiota. World J Gastroenterol 2023; 29:4236-4251. [PMID: 37545638 PMCID: PMC10401661 DOI: 10.3748/wjg.v29.i27.4236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Decreased muscle mass and function, also known as sarcopenia, is common in patients with cirrhosis and is associated with a poor prognosis. Although the pathogenesis of this disorder has not been fully elucidated, a disordered gut-muscle axis probably plays an important role. Decreased barrier function of the gut and liver, gut dysbiosis, and small intestinal bacterial overgrowth (SIBO) can lead to increased blood levels of ammonia, lipopolysaccharides, pro-inflammatory mediators, and myostatin. These factors have complex negative effects on muscle mass and function. Drug interventions that target the gut microbiota (long-term use of rifaximin, lactulose, lactitol, or probiotics) positively affect most links of the compromised gut-muscle axis in patients with cirrhosis by decreasing the levels of hyperammonemia, bacterial translocation, and systemic inflammation and correcting gut dysbiosis and SIBO. However, although these drugs are promising, they have not yet been investigated in randomized controlled trials specifically for the treatment and prevention of sarcopenia in patients with cirrhosis. No data exist on the effects of fecal transplantation on most links of gut-muscle axis in cirrhosis; however, the results of animal experimental studies are promising.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Yana Letyagina
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Ekaterina Vasileva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
25
|
Su Q, Jin C, Bo Z, Yang Y, Wang J, Wang J, Zhou J, Chen Y, Zeng H, Chen G, Wang Y. Association between gut microbiota and gastrointestinal cancer: a two-sample bi-directional Mendelian randomization study. Front Microbiol 2023; 14:1181328. [PMID: 37533836 PMCID: PMC10390774 DOI: 10.3389/fmicb.2023.1181328] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Background The gut microbiome is closely related to gastrointestinal (GI) cancer, but the causality of gut microbiome with GI cancer has yet to be fully established. We conducted this two-sample Mendelian randomization (MR) study to reveal the potential causal effect of gut microbiota on GI cancer. Materials and methods Summary-level genetic data of gut microbiome were derived from the MiBioGen consortium and the Dutch Microbiome Project. Summary statistics of six GI cancers were drawn from United Kingdom Biobank. Inverse-variance-weighted (IVW), MR-robust adjusted profile score (MR-RAPS), and weighted-median (WM) methods were used to evaluate the potential causal link between gut microbiota and GI cancer. In addition, we performed sensitivity analyses and reverse MR analyses. Results We identified potential causal associations between 21 bacterial taxa and GI cancers (values of p < 0.05 in all three MR methods). Among them, phylum Verrucomicrobia (OR: 0.17, 95% CI: 0.05-0.59, p = 0.005) retained a strong negative association with intrahepatic cholangiocarcinoma after the Bonferroni correction, whereas order Bacillales (OR: 1.67, 95% CI: 1.23-2.26, p = 0.001) retained a strong positive association with pancreatic cancer. Reverse MR analyses indicated that GI cancer was associated with 17 microbial taxa in all three MR methods, among them, a strong inverse association between colorectal cancer and family Clostridiaceae1 (OR: 0.91, 95% CI: 0.86-0.96, p = 0.001) was identified by Bonferroni correction. Conclusion Our study implicates the potential causal effects of specific microbial taxa on GI cancer, potentially providing new insights into the prevention and treatment of GI cancer through specific gut bacteria.
Collapse
Affiliation(s)
- Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Efremova I, Maslennikov R, Alieva A, Poluektova E, Ivashkin V. Small Intestinal Bacterial Overgrowth Is Associated with Poor Prognosis in Cirrhosis. Microorganisms 2023; 11:1017. [PMID: 37110440 PMCID: PMC10143588 DOI: 10.3390/microorganisms11041017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Small intestinal bacterial overgrowth (SIBO) is associated with numerous manifestations of cirrhosis. To determine whether the presence of SIBO affects the prognosis in cirrhosis was the aim of the study. METHODS This prospective cohort study included 50 patients. All participants underwent a lactulose hydrogen breath test for SIBO. The follow-up period was 4 years. RESULTS SIBO was detected in 26 (52.0%) patients: in 10 (52.6%) patients with compensated cirrhosis and in 16 (51.6%) ones with decompensated cirrhosis. Twelve (46.2%) patients with SIBO and four (16.7%) patients without SIBO died within 4 years (p = 0.009). Among patients with decompensated cirrhosis, 8 (50.0%) patients with SIBO and 3 (20.0%) patients without SIBO died (p = 0.027). Among patients with compensated cirrhosis, four (40.0%) patients with SIBO and one (11.1%) patient without SIBO died (p = 0.045). Among patients with SIBO, there was no difference in mortality between patients with compensated and decompensated cirrhosis (p = 0.209). It was the same for patients without SIBO (p = 0.215). SIBO affects the prognosis only in the first year of follow-up in decompensated cirrhosis, and only in subsequent years in compensated cirrhosis. Presence of SIBO (p = 0.028; HR = 4.2(1.2-14.9)) and serum albumin level (p = 0.027) were significant independent risk factors for death in cirrhosis. CONCLUSIONS SIBO is associated with poor prognosis in cirrhosis.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119121 Moscow, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119121 Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
| |
Collapse
|
27
|
Pellegrino A, Coppola G, Santopaolo F, Gasbarrini A, Ponziani FR. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023; 15:nu15081815. [PMID: 37111034 PMCID: PMC10142179 DOI: 10.3390/nu15081815] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota plays a critical role in the modulation of host metabolism and immune response, and its impairment has been implicated in many gastrointestinal and extraintestinal diseases. Current evidence shows the well-documented role of A. muciniphila in maintaining the integrity of the intestinal barrier, modulating the host immune response, and improving several metabolic pathways, making it a key element in the pathogenesis of several human diseases. In this scenario, A. muciniphila is the most promising next-generation probiotic and one of the first microbial species suitable for specific clinical use when compared with traditional probiotics. Further studies are needed to provide more accurate insight into its mechanisms of action and to better elucidate its properties in several major areas, paving the way for a more integrated and personalized therapeutic approach that finally makes the most of our knowledge of the gut microbiota.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
28
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Pakharukova MY, Lishai EA, Zaparina O, Baginskaya NV, Hong SJ, Sripa B, Mordvinov VA. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. PLoS Negl Trop Dis 2023; 17:e0011111. [PMID: 36780567 PMCID: PMC9956601 DOI: 10.1371/journal.pntd.0011111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis are epidemiologically significant food-borne trematodes endemic to diverse climatic areas. O. viverrini and C. sinensis are both recognized to be 1A group of biological carcinogens to human, whereas O. felineus is not. The mechanisms of carcinogenesis by the liver flukes are studied fragmentarily, the role of host and parasite microbiome is an unexplored aspect. METHODOLOGY/PRINCIPAL FINDINGS Specific pathogen free Mesocricetus auratus hamsters were infected with C. sinensis, O. viverrini and O. felineus. The microbiota of the adult worms, colon feces and bile from the hamsters was investigated using Illumina-based sequencing targeting the prokaryotic 16S rRNA gene. The analysis of 43 libraries revealed 18,830,015 sequences, the bacterial super-kingdom, 16 different phyla, 39 classes, 63 orders, 107 families, 187 genera-level phylotypes. O. viverrini, a fluke with the most pronounced carcinogenic potential, has the strongest impact on the host bile microbiome, changing the abundance of 92 features, including Bifidobacteriaceae, Erysipelotrichaceae, [Paraprevotellaceae], Acetobacteraceae, Coriobacteraceae and Corynebacteriaceae bacterial species. All three infections significantly increased Enterobacteriaceae abundance in host bile, reduced the level of commensal bacteria in the gut microbiome (Parabacteroides, Roseburia, and AF12). CONCLUSIONS/SIGNIFICANCE O. felineus, O. viverrini, and C. sinensis infections cause both general and species-specific qualitative and quantitative changes in the composition of microbiota of bile and colon feces of experimental animals infected with these trematodes. The alterations primarily concern the abundance of individual features and the phylogenetic diversity of microbiomes of infected hamsters.
Collapse
Affiliation(s)
- Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Ekaterina A. Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina V. Baginskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Viatcheslav A. Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
30
|
Multi-Omics Analyses Identify Signatures in Patients with Liver Cirrhosis and Hepatocellular Carcinoma. Cancers (Basel) 2022; 15:cancers15010210. [PMID: 36612207 PMCID: PMC9818216 DOI: 10.3390/cancers15010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Gut bacterial/viral dysbiosis, changes in circulating metabolites, and plasma cytokines/chemokines have been previously associated with various liver diseases. Here, we analyzed the associations between fecal microbial composition, circulating metabolites, and plasma cytokines/chemokines in patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). We recruited 10 HCC patients, 18 LC patients, and 17 healthy individuals. Their stool samples were used for gene sequencing of bacterial 16S rRNA and viral genomes, while plasma samples were utilized for the determination of endotoxin, zonulin, metabolite, and cytokine/chemokine levels. Dysbiosis was observed among gut bacteria and viruses, with significant changes in abundance at the genus and species levels, respectively. However, no differences were found between cohorts in the alpha and beta diversity. Plasma lipopolysaccharides and zonulin, but not trimethylamine N-oxide, were progressively increased in LC and HCC subjects. Profiling plasma metabolites and selected cytokines/chemokines revealed differential changes in the LC and HCC cohorts. Following joint correlation and correlation network analyses, regardless of etiology, common network signatures shared by LC and HCC patients were characterized by the gut virus Stenotrophomonas virus DLP5 and the uncultured Caudovirales phage, plasma metabolites pyruvic acid and acetic acid, and plasma cytokines/chemokines eotaxin and PDGF-AB/BB, respectively. Additionally, LC- and HCC-specific correlation networks were also identified. This study provides novel insights into altered gut microbial/viral composition that may contribute to pre-HCC disorders, metabolic reprogramming, or inflammatory microenvironments for hepatocarcinogenesis.
Collapse
|
31
|
Shen WX, Liang SR, Jiang YY, Chen YZ. Enhanced metagenomic deep learning for disease prediction and consistent signature recognition by restructured microbiome 2D representations. PATTERNS (NEW YORK, N.Y.) 2022; 4:100658. [PMID: 36699735 PMCID: PMC9868677 DOI: 10.1016/j.patter.2022.100658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Metagenomic analysis has been explored for disease diagnosis and biomarker discovery. Low sample sizes, high dimensionality, and sparsity of metagenomic data challenge metagenomic investigations. Here, an unsupervised microbial embedding, grouping, and mapping algorithm (MEGMA) was developed to transform metagenomic data into individualized multichannel microbiome 2D representation by manifold learning and clustering of microbial profiles (e.g., composition, abundance, hierarchy, and taxonomy). These 2D representations enable enhanced disease prediction by established ConvNet-based AggMapNet models, outperforming the commonly used machine learning and deep learning models in metagenomic benchmark datasets. These 2D representations combined with AggMapNet explainable module robustly identified more reliable and replicable disease-prediction microbes (biomarkers). Employing the MEGMA-AggMapNet pipeline for biomarker identification from 5 disease datasets, 84% of the identified biomarkers have been described in over 74 distinct works as important for these diseases. Moreover, the method also discovered highly consistent sets of biomarkers in cross-cohort colorectal cancer (CRC) patients and microbial shifts in different CRC stages.
Collapse
Affiliation(s)
- Wan Xiang Shen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China,Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore
| | - Shu Ran Liang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yu Yang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China,Corresponding author
| | - Yu Zong Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China,Shenzhen Bay Laboratory, Shenzhen 518000, China,Corresponding author
| |
Collapse
|
32
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [PMID: 36483296 PMCID: PMC9723259 DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 03/01/2025] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Deng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yating Chen
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dimin Ning
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yinmei Guo
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Ruoyu Wang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuelin Meng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuefei Tian
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
33
|
Ullah N, Kakakhel MA, Khan I, Gul Hilal M, Lajia Z, Bai Y, Sajjad W, Yuxi L, Ullah H, M Almohaimeed H, Alshanwani AR, Assiri R, Aggad WS, Alharbi NA, Alshehri AM, Liu G, Sun H, Zhang C. Structural and compositional segregation of the gut microbiota in HCV and liver cirrhotic patients: A clinical pilot study. Microb Pathog 2022; 171:105739. [PMID: 36055570 DOI: 10.1016/j.micpath.2022.105739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/09/2022]
Abstract
Gut microbial dysbiosis during the development of Hepatitis C virus and liver-related diseases is not well studied. Nowadays, HCV and liver cirrhosis are the major concerns that cause gut bacterial alteration, which leads to dysbiosis. For this purpose, the present study was aimed at correlating the gut bacterial community of the control group in comparison to HCV and liver cirrhotic patients. A total of 23 stool samples were collected, including control (9), liver cirrhotic (8), and HCV (6). The collected samples were subjected to 16S rRNA Illumina gene sequencing. In comparison with control, a significant gut bacterial alteration was observed in the progression of HCV and liver cirrhosis. Overall, Firmicutes were significantly abundant in the whole study. No significant difference was observed in the alpha diversity of the control and patient studies. Additionally, the beta diversity based on non-metric multidimensional scaling (NMDS) has a significant difference (p = 0.005) (ANOSIM R2 = 0.14) in all groups. The discriminative results based on the LEfSe tool revealed that the HCV-infected patients had higher Enterobacteriaceae and Enterobacterial, as well as Lactobacillus and Bacilli in comparison than the liver-cirrhotic patients. These taxa were significantly different from the control group (p < 0.05). Regarding prospects, a detailed analysis of the function through metagenomics and transcriptomics is needed.
Collapse
Affiliation(s)
- Naeem Ullah
- School of Life Sciences, Lanzhou University, 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 73000, PR China
| | - Mian Adnan Kakakhel
- School of Life Sciences, Lanzhou University, 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 73000, PR China
| | - Mian Gul Hilal
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Zha Lajia
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Li Yuxi
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Habib Ullah
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aliah R Alshanwani
- Physiology Department, College of Medicine, King Saud University, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O.Box 8304, Jeddah, 23234, Saudi Arabia
| | - Nada Abdullah Alharbi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | | | - Guanlan Liu
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Hui Sun
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 730000, PR China.
| |
Collapse
|
34
|
Maslennikov R, Efremova I, Ivashkin V, Zharkova M, Poluektova E, Shirokova E, Ivashkin K. Effect of probiotics on hemodynamic changes and complications associated with cirrhosis: A pilot randomized controlled trial. World J Hepatol 2022; 14:1667-1677. [PMID: 36157871 PMCID: PMC9453455 DOI: 10.4254/wjh.v14.i8.1667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial translocation exacerbates the hyperdynamic circulation observed in cirrhosis and contributes to a more severe disease course. Probiotics may reduce bacterial translocation and may therefore be useful to redress the circulatory imbalance. AIM To investigate the effect of probiotics on hemodynamic parameters, systemic inflammation, and complications of cirrhosis in this randomized placebo-controlled trial. METHODS This single-blind randomized placebo-controlled study included 40 patients with Child-Pugh class B and C cirrhosis; 24 patients received probiotics (Saccharomyces boulardii) for 3 mo, and 16 patients received a placebo over the same period. Liver function and the systemic hemodynamic status were evaluated pre- and post-intervention. Echocardiography and simultaneous blood pressure and heart rate monitoring were performed to evaluate systemic hemodynamic indicators. Cardiac output and systemic vascular resistance were calculated. RESULTS Following a 3-mo course of probiotics in comparison to the control group, we observed amelioration of hyperdynamic circulation [a decrease in cardiac output (P = 0.026) and an increase in systemic vascular resistance (P = 0.026)] and systemic inflammation [a decrease in serum C-reactive protein levels (P = 0.044)], with improved liver function [an increase in serum albumin (P = 0.001) and a decrease in the value of Child-Pugh score (P = 0.001)] as well as a reduction in the severity of ascites (P = 0.022), hepatic encephalopathy (P = 0.048), and cholestasis [a decrease in serum alkaline phosphatase (P = 0.016) and serum gamma-glutamyl transpeptidase (P = 0.039) activity] and an increase in platelet counts (P < 0.001) and serum sodium level (P = 0.048). CONCLUSION Probiotic administration was associated with amelioration of hyperdynamic circulation and the associated complications of cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Consultative and Diagnostic Center No. 2 of Moscow Health Department , Moscow 107764, Russia.
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
35
|
Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, Chiang JYL, Han S. Interactive Relationships between Intestinal Flora and Bile Acids. Int J Mol Sci 2022; 23:8343. [PMID: 35955473 PMCID: PMC9368770 DOI: 10.3390/ijms23158343] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The digestive tract is replete with complex and diverse microbial communities that are important for the regulation of multiple pathophysiological processes in humans and animals, particularly those involved in the maintenance of intestinal homeostasis, immunity, inflammation, and tumorigenesis. The diversity of bile acids is a result of the joint efforts of host and intestinal microflora. There is a bidirectional relationship between the microbial community of the intestinal tract and bile acids in that, while the microbial flora tightly modulates the metabolism and synthesis of bile acids, the bile acid pool and composition affect the diversity and the homeostasis of the intestinal flora. Homeostatic imbalances of bile acid and intestinal flora systems may lead to the development of a variety of diseases, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), hepatocellular carcinoma (HCC), type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS). The interactions between bile acids and intestinal flora may be (in)directly involved in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Edozie Samuel Okpara
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| |
Collapse
|
36
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
37
|
Maslennikov R, Ivashkin V, Alieva A, Poluektova E, Kudryavtseva A, Krasnov G, Zharkova M, Zharikov Y. Gut dysbiosis and body composition in cirrhosis. World J Hepatol 2022; 14:1210-1225. [PMID: 35978666 PMCID: PMC9258262 DOI: 10.4254/wjh.v14.i6.1210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut dysbiosis and changes in body composition (i.e., a decrease in the proportion of muscle mass and an increase in extracellular fluid) are common in cirrhosis. AIM To study the relationship between the gut microbiota and body composition in cirrhosis. METHODS This observational study included 46 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Multifrequency bioelectrical impedance analysis was performed to assess body composition in these patients. RESULTS An increase in fat mass and a decrease in body cell mass were noted in 23/46 (50.0%) and 15/46 (32.6%) patients, respectively. Changes in the gut microbiome were not independently associated with the fat mass percentage in cirrhosis. The abundance of Bacteroidaceae (P = 0.041) and Eggerthella (P = 0.001) increased, whereas that of Erysipelatoclostridiaceae (P = 0.006), Catenibacterium (P = 0.021), Coprococcus (P = 0.033), Desulfovibrio (P = 0.043), Intestinimonas (P = 0.028), and Senegalimassilia (P = 0.015) decreased in the gut microbiome of patients with body cell mass deficiency. The amount of extracellular fluid increased in 22/46 (47.6%) patients. Proteobacteria abundance (P < 0.001) increased, whereas Firmicutes (P = 0.023), Actinobacteria (P = 0.026), Bacilli (P = 0.008), Anaerovoraceceae (P = 0.027), Christensenellaceae (P = 0.038), Eggerthellaceae (P = 0.047), Erysipelatoclostridiaceae (P = 0.015), Erysipelotrichaceae (P = 0.003), Oscillospiraceae (P = 0.024), Rikenellaceae (P = 0.002), Collinsella (P = 0.030), Hungatella (P = 0.040), Peptococcaceae (P = 0.023), Slackia (P = 0.008), and Senegalimassilia (P = 0.024) abundance decreased in these patients. Patients with clinically significant ascites (n = 9) had a higher abundance of Proteobacteria (P = 0.031) and a lower abundance of Actinobacteria (P = 0.019) and Bacteroidetes (P = 0.046) than patients without clinically significant ascites (n = 37). CONCLUSION Changes in the amount of body cell mass and extracellular fluid are associated with changes in the gut microbiome in cirrhosis patients.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine, Сonsultative and Diagnostic Center No. 2, Moscow City Health Department, Moscow 107564, Russia.
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Anna Kudryavtseva
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yuri Zharikov
- Department of Anatomy, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
38
|
Sharma R, Kannourakis G, Prithviraj P, Ahmed N. Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma. Front Med (Lausanne) 2022; 9:766869. [PMID: 35775004 PMCID: PMC9237320 DOI: 10.3389/fmed.2022.766869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cell cancer (RCC) is a heterogeneous tumor that shows both intra- and inter-heterogeneity. Heterogeneity is displayed not only in different patients but also among RCC cells in the same tumor, which makes treatment difficult because of varying degrees of responses generated in RCC heterogeneous tumor cells even with targeted treatment. In that context, precision medicine (PM), in terms of individualized treatment catered for a specific patient or groups of patients, can shift the paradigm of treatment in the clinical management of RCC. Recent progress in the biochemical, molecular, and histological characteristics of RCC has thrown light on many deregulated pathways involved in the pathogenesis of RCC. As PM-based therapies are rapidly evolving and few are already in current clinical practice in oncology, one can expect that PM will expand its way toward the robust treatment of patients with RCC. This article provides a comprehensive background on recent strategies and breakthroughs of PM in oncology and provides an overview of the potential applicability of PM in RCC. The article also highlights the drawbacks of PM and provides a holistic approach that goes beyond the involvement of clinicians and encompasses appropriate legislative and administrative care imparted by the healthcare system and insurance providers. It is anticipated that combined efforts from all sectors involved will make PM accessible to RCC and other patients with cancer, making a tremendous positive leap on individualized treatment strategies. This will subsequently enhance the quality of life of patients.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Luo W, Guo S, Zhou Y, Zhao J, Wang M, Sang L, Chang B, Wang B. Hepatocellular Carcinoma: How the Gut Microbiota Contributes to Pathogenesis, Diagnosis, and Therapy. Front Microbiol 2022; 13:873160. [PMID: 35572649 PMCID: PMC9092458 DOI: 10.3389/fmicb.2022.873160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is gaining increasing attention, and the concept of the "gut-liver axis" is gradually being recognized. Leaky gut resulting from injury and/or inflammation can cause the translocation of flora to the liver. Microbiota-associated metabolites and components mediate the activation of a series of signalling pathways, thereby playing an important role in the development of hepatocellular carcinoma (HCC). For this reason, targeting the gut microbiota in the diagnosis, prevention, and treatment of HCC holds great promise. In this review, we summarize the gut microbiota and the mechanisms by which it mediates HCC development, and the characteristic alterations in the gut microbiota during HCC pathogenesis. Furthermore, we propose several strategies to target the gut microbiota for the prevention and treatment of HCC, including antibiotics, probiotics, faecal microbiota transplantation, and immunotherapy.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Shiqi Guo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Yang Zhou
- The Second Clinical College, China Medical University, Shenyang, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Ai D, Xing Y, Zhang Q, Wang Y, Liu X, Liu G, Xia LC. Joint Analysis of Microbial and Immune Cell Abundance in Liver Cancer Tissue Using a Gene Expression Profile Deconvolution Algorithm Combined With Foreign Read Remapping. Front Immunol 2022; 13:853213. [PMID: 35493464 PMCID: PMC9047545 DOI: 10.3389/fimmu.2022.853213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Recent transcriptomics and metagenomics studies showed that tissue-infiltrating immune cells and bacteria interact with cancer cells to shape oncogenesis. This interaction and its effects remain to be elucidated. However, it is technically difficult to co-quantify immune cells and bacteria in their respective microenvironments. To address this challenge, we herein report the development of a complete a bioinformatics pipeline, which accurately estimates the number of infiltrating immune cells using a novel Particle Swarming Optimized Support Vector Regression (PSO-SVR) algorithm, and the number of infiltrating bacterial using foreign read remapping and the GRAMMy algorithm. It also performs systematic differential abundance analyses between tumor-normal pairs. We applied the pipeline to a collection of paired liver cancer tumor and normal samples, and we identified bacteria and immune cell species that were significantly different between tissues in terms of health status. Our analysis showed that this dual model of microbial and immune cell abundance had a better differentiation (84%) between healthy and diseased tissue. Caldatribacterium sp., Acidaminococcaceae sp., Planctopirus sp., Desulfobulbaceae sp.,Nocardia farcinica as well as regulatory T cells (Tregs), resting mast cells, monocytes, M2 macrophases, neutrophils were identified as significantly different (Mann Whitney Test, FDR< 0.05). Our open-source software is freely available from GitHub at https://github.com/gutmicrobes/PSO-SVR.git.
Collapse
Affiliation(s)
- Dongmei Ai
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Dongmei Ai, ; Li C. Xia,
| | - Yonglian Xing
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Qingchuan Zhang
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Yishu Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Xiuqin Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Gang Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Li C. Xia
- School of Mathematics, South China University of Technology, Guangzhou, China
- *Correspondence: Dongmei Ai, ; Li C. Xia,
| |
Collapse
|
41
|
Álvares-da-Silva MR, Oliveira CP, Fagan A, Longo L, Thoen RU, Yoshimura Zitelli PM, Tanaka Ferreira RM, Mcgeorge S, Shamsaddini A, Farias AQ, Sikaroodi M, Gillevet PM, Bajaj JS. Interaction of Microbiome, Diet, and Hospitalizations Between Brazilian and American Patients With Cirrhosis. Clin Gastroenterol Hepatol 2022; 20:930-940. [PMID: 33813071 PMCID: PMC8486893 DOI: 10.1016/j.cgh.2021.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gut microbiota are affected by diet, country, and affect outcomes in cirrhosis. Western diets are associated with dysbiosis. Comparisons with other diets is needed. We aimed to compare cirrhosis patients from the United States with cirrhosis patients from Brazil with respect to diet, microbiota, and impact on hospitalizations. METHODS Healthy controls and compensated/decompensated outpatients with cirrhosis from the United States and Brazil underwent dietary recall and stool for 16S ribosomal RNA sequencing. Demographics and medications/cirrhosis details were compared within and between countries. Patients with cirrhosis were followed up for 90-day hospitalizations. Regression for Shannon diversity was performed within cirrhosis. Regression for hospitalizations adjusting for clinical and microbial variables was performed. RESULTS Model for end-stage liver disease (MELD), diabetes, ascites, and albumin were similar, but more Americans were men, had higher hepatic encephalopathy and alcohol/hepatitis C etiology, with lower nonalcoholic fatty liver disease than Brazilians. Brazilians had higher cereal, rice, and yogurt intake vs the United States. As disease progressed, cereals, rice/beans, coffee, and chocolate consumption was reduced. Microbial diversity was higher in Brazilians. Within cirrhosis, high diversity was related to Brazilian origin (P < .0001), age, and cereal intake (P = .05), while high MELD scores (P = .009) and ascites (P = .05) did the reverse. Regardless of stage, beneficial taxa and taxa associated with grant and yogurt intake were higher (Ruminococcaceae, Christensenellacae, and Prevotellaceae), while pathobionts (Porphyromonadaceae, Sutterellaceae, and Enterobacteriaceae) were lower in Brazilians. More Americans were hospitalized vs Brazilians (P = .002). On regression, MELD (P = .001) and ascites (P = .001) were associated with higher hospitalizations, while chocolate (P = .03) and Brazilian origin (P = .001) were associated with lower hospitalizations with/without microbiota inclusion. CONCLUSIONS Brazilian cirrhotic patients follow a diet richer in cereals and yogurt, which is associated with higher microbial diversity and beneficial microbiota and could contribute toward lower hospitalizations compared with a Western-diet-consuming American cohort.
Collapse
Affiliation(s)
| | - Claudia P Oliveira
- Department of Medicine, Universidade de Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Andrew Fagan
- Department of Medicine, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Larisse Longo
- Department of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rutiane U Thoen
- Department of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Sara Mcgeorge
- Department of Medicine, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | | | - Alberto Q Farias
- Department of Medicine, Universidade de Sao Paulo, Sao Paulo, São Paulo, Brazil
| | | | | | - Jasmohan S Bajaj
- Department of Medicine, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, Virginia.
| |
Collapse
|
42
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Kudryavtseva A, Krasnov G. Gut dysbiosis and small intestinal bacterial overgrowth as independent forms of gut microbiota disorders in cirrhosis. World J Gastroenterol 2022; 28:1067-1077. [PMID: 35431497 PMCID: PMC8968519 DOI: 10.3748/wjg.v28.i10.1067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut dysbiosis and small intestinal bacterial overgrowth (SIBO) are commonly observed in patients with cirrhosis. Despite the substantial number of articles describing the relations between disorders of gut microbiota and various manifestations of cirrhosis, dysbiosis and SIBO were always studied separately. AIM To study the relationship of gut dysbiosis and SIBO in cirrhosis. METHODS This observational study included 47 in-patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. SIBO was assessed using the lactulose hydrogen breath test. RESULTS SIBO was found in 24/47 (51.1%) patients. Patients with SIBO had a higher abundance of Firmicutes (P = 0.017) and Fusobacteria (P = 0.011), and a lower abundance of Bacteroidetes (P = 0.013) than patients without SIBO. This increase in the abundance of Firmicutes occurred mainly due to an increase in the abundance of bacteria from the genus Blautia (P = 0.020) of the Lachnospiraceae family (P = 0.047), while the abundance of other major families of this phylum [Ruminococcaceae (P = 0.856), Peptostreptococcaceae (P = 0.066), Clostridiaceae (P = 0.463), Eubacteriaceae (P = 0.463), Lactobacillaceae (P = 0.413), and Veillonellaceae (P = 0.632)] did not differ significantly between the patients with and without SIBO. Reduced level of Bacteroidetes in samples from patients with SIBO was a result of the decrease in bacterial numbers from all the major families of this phylum [Bacteroidaceae (P = 0.014), Porphyromonadaceae (P = 0.002), and Rikenellaceae (P = 0.047)], with the exception of Prevotellaceae (P = 0.941). There were no significant differences in the abundance of taxa that were the main biomarkers of cirrhosis-associated gut dysbiosis [Proteobacteria (P = 0.790), Bacilli (P = 0.573), Enterobacteriaceae (P = 0.632), Streptococcaceae (P = 0.170), Staphylococcaceae (P = 0.450), and Enterococcaceae (P = 0.873)] between patients with and without SIBO. CONCLUSION Despite the differences observed in the gut microbiome between patients with and without SIBO, gut dysbiosis and SIBO are most likely independent disorders of gut microbiota in cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine 1, Сonsultative and Diagnostic Center 2 of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Anna Kudryavtseva
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
43
|
Naseri M, Palizban F, Yadegar A, Khodarahmi M, Asadzadeh Aghdaei H, Houri H, Zahiri J. Investigation and characterization of human gut phageome in advanced liver cirrhosis of defined etiologies. Gut Pathog 2022; 14:9. [PMID: 35168645 PMCID: PMC8845349 DOI: 10.1186/s13099-022-00482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Liver cirrhosis is a major public health problem, accounting for high rates of morbidity and mortality worldwide. The cirrhosis etiology is a broad and essential step in planning a treatment strategy. Many recent studies have documented that gut microbiome alterations play a vital role in the development and progression of cirrhosis and its complications. Nevertheless, there is insufficient data on the correlation between liver cirrhosis and gut phageome alterations in patients with advanced liver diseases. This study aimed to analyze the taxonomic structure and functional attributes of the gut phageome in six different etiologies of advanced liver cirrhosis. METHODS We first retrieved metagenomic sequencing data from three datasets of fecal samples taken from cirrhotic patients with various etiologies. Subsequently, several bioinformatics pipelines were used to analyze bacteriophage composition and determine their functionality. RESULTS A gene catalog of 479,425 non-redundant genes was developed as a reference to measure gene prevalence. The results of the analysis revealed a few significant differences among the cohorts at the phage species level. However, the alternations were more evident as there were more in-depth analyses of the functional resolution of the gut phageome. CONCLUSIONS Our findings suggest that the functional analysis of the gut phageome would provide meaningful markers to predict the progression of liver cirrhosis and facilitate the development of novel treatment approaches.
Collapse
Affiliation(s)
- Mohadeseh Naseri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Palizban
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Mohsen Khodarahmi
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Medical Imaging Center, Karaj, Alborz, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran.
| | - Javad Zahiri
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0662, USA.
| |
Collapse
|
44
|
Peng P, Xu Y, Aurora R, Di Bisceglie AM, Fan X. Within-host quantitation of anellovirus genome complexity from clinical samples. J Virol Methods 2022; 302:114493. [PMID: 35176352 PMCID: PMC8900665 DOI: 10.1016/j.jviromet.2022.114493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Anellovirus (AV) is a ubiquitous and diverse virus in the human population. An individual can be infected with multiple AV genera and species that form a heterogeneous repertoire, called the anellome. Due to its exceptional genetic diversity, efficient evaluation of anellome complexity remains a methodological challenge. In the current study, AV genome was first enriched from patient serum samples through two-phase rolling circle amplification. Following Illumina sequencing, anellome was analyzed with an advanced bioinformatics pipeline, including read extraction at three similarity levels, de novo assembly, species assignment, and determination of relative abundance among AV variants. The method was validated in the mock sample and then applied to 21 hepatitis C virus (HCV) patients with and without hepatocellular carcinoma (HCC). Overall, there was a large variance regarding AV richness, ranging from 2 to 51 AV species. In contrast to HCV patients without HCC, HCC incidence was associated with reduced richness (12.6 ± 14.4 vs. 35.4 ± 13.6, p = 0.001) and Shannon entropy (0.4 ± 0.34 vs. 0.61 ± 0.12, p = 0.095) at the AV species level. Interestingly, AV genus beta and gamma expanded in the anellome in 7 of 10 HCC patients. These observations shed light on the potential association between anellome and HCC incidence in patients with chronic HCV infection. The method presented here represents a valuable tool to investigate the role of anellome in human health and disease.
Collapse
|
45
|
Xiong Y, Wu L, Shao L, Wang Y, Huang Z, Huang X, Li C, Wu A, Liu Z, Fan X, Zhou P. Dynamic Alterations of the Gut Microbial Pyrimidine and Purine Metabolism in the Development of Liver Cirrhosis. Front Mol Biosci 2022; 8:811399. [PMID: 35155569 PMCID: PMC8832137 DOI: 10.3389/fmolb.2021.811399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Liver cirrhosis is the common end-stage of liver disease which lacks effective treatment, thus studies to determine prevention targets are an urgent need. The intestinal microbiota (IM) play important roles in modulating liver diseases which are mediated by microbial metabolites. Despite decades of growing microbial studies, whether IM contribute to the development of cirrhosis and the intimate metabolic link remain obscure. Here, we aimed to reveal the dynamic alterations of microbial composition and metabolic signatures in carbon tetrachloride (CCl4)-induced liver cirrhosis mice. Methods: CCl4-treated mice or normal control (NC) were sacrificed (n = 10 per group) after 5 and 15 weeks of intervention. The disease severity was confirmed by Masson’s trichrome or Sirius red staining. Metagenomics sequencing and fecal untargeted metabolomics were performed to evaluate the composition and metabolic function of IM in parallel with the development of cirrhosis. Results: The CCl4-treated mice presented liver fibrosis at 5 weeks and liver cirrhosis at 15 weeks indicated by collagen deposition and pseudo-lobule formation, respectively. Mice with liver cirrhosis showed distinct microbial composition from NC, even in the earlier fibrosis stage. Importantly, both of the liver fibrosis and cirrhosis mice were characterized with the depletion of Deltaproteobacteria (p < 0.05) and enrichment of Akkermansia (p < 0.05). Furthermore, fecal metabolomics revealed distinguished metabolomics profiles of mice with liver fibrosis and cirrhosis from the NC. Notably, pathway enrichment analysis pointed to remarkable disturbance of purine (p < 0.001 at 5 weeks, p = 0.034 at 15 weeks) and pyrimidine metabolic pathways (p = 0.005 at 5 weeks, p = 0.006 at 15 weeks) during the development of liver cirrhosis. Interestingly, the disorders of pyrimidine and purine metabolites like the known microbial metabolites thymidine and 2′-deoxyuridine had already occurred in liver fibrosis and continued in cirrhosis. Conclusion: These novel findings indicated the crucial role of IM-modulated pyrimidine and purine metabolites in the development of liver cirrhosis, which provides microbial targets for disease prevention.
Collapse
Affiliation(s)
- Yinghui Xiong
- The Hunan Provincial Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Infectious Diseases, Infection Control Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Wu
- The Hunan Provincial Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shao
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Wang
- The Hunan Provincial Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zebing Huang
- The Hunan Provincial Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Diseases, Infection Control Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuegong Fan
- The Hunan Provincial Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xuegong Fan, ; Pengcheng Zhou,
| | - Pengcheng Zhou
- Department of Infectious Diseases, Infection Control Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xuegong Fan, ; Pengcheng Zhou,
| |
Collapse
|
46
|
Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. Int J Mol Sci 2022; 23:ijms23020594. [PMID: 35054790 PMCID: PMC8775704 DOI: 10.3390/ijms23020594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.
Collapse
|
47
|
Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front Cell Infect Microbiol 2021; 11:716299. [PMID: 35004340 PMCID: PMC8733563 DOI: 10.3389/fcimb.2021.716299] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian gut microbial community, known as the gut microbiota, comprises trillions of bacteria, which co-evolved with the host and has an important role in a variety of host functions that include nutrient acquisition, metabolism, and immunity development, and more importantly, it plays a critical role in the protection of the host from enteric infections associated with exogenous pathogens or indigenous pathobiont outgrowth that may result from healthy gut microbial community disruption. Microbiota evolves complex mechanisms to restrain pathogen growth, which included nutrient competition, competitive metabolic interactions, niche exclusion, and induction of host immune response, which are collectively termed colonization resistance. On the other hand, pathogens have also developed counterstrategies to expand their population and enhance their virulence to cope with the gut microbiota colonization resistance and cause infection. This review summarizes the available literature on the complex relationship occurring between the intestinal microbiota and enteric pathogens, describing how the gut microbiota can mediate colonization resistance against bacterial enteric infections and how bacterial enteropathogens can overcome this resistance as well as how the understanding of this complex interaction can inform future therapies against infectious diseases.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Habib Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Syed Rafiq Hussain Shah
- Department of Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Sun
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
| |
Collapse
|
48
|
Naseri M, Houri H, Yadegar A, Asadzadeh Aghdaei H, Zahiri J. Investigation of etiology-specific alterations in the gut microbiota in liver cirrhosis. Expert Rev Gastroenterol Hepatol 2021; 15:1435-1441. [PMID: 34632902 DOI: 10.1080/17474124.2021.1991312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Liver cirrhosis can develop as a consequence of many chronic liver diseases, such as viral hepatitis, fatty liver, or alcohol abuse. There are insufficient data on whether the different etiologies of liver cirrhosis could be related to the specific gut microbial alterations. This study aimed to compare the diversity and composition of the gut microbiota in different etiologies of liver cirrhosis. METHODS In the current study, the authors used three previously reported metagenomic datasets to investigate the fecal microbiota in cirrhotic patients with distinct etiologies. Microbial diversity and bacterial taxonomic composition were investigated bioinformatically in cirrhotic patients with different etiologies. RESULTS The analysis revealed no evidence of a significant difference in microbial diversity between cirrhotic patients with different etiologies. At the family level, cirrhotic patients with nonalcoholic fatty liver disease (NAFLD) showed a significantly higher abundance of the Enterobacteriaceae family and the related genera. CONCLUSION No robust microbial signal was found to differentiate between various underlying etiologies in cirrhotic patients. The data indicate that the geographical origin of cirrhotic patients could affect the composition of the gut microbiome, the effect of which obscures the impact of the etiology of cirrhosis.
Collapse
Affiliation(s)
- Mohadeseh Naseri
- Bioinformatics and Computational Omics Lab (Biocool), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Zahiri
- Department of Neuroscience, University of California, San Diego, CA, USA
| |
Collapse
|
49
|
Bartolini I, Risaliti M, Tucci R, Muiesan P, Ringressi MN, Taddei A, Amedei A. Gut microbiota and immune system in liver cancer: Promising therapeutic implication from development to treatment. World J Gastrointest Oncol 2021; 13:1616-1631. [PMID: 34853639 PMCID: PMC8603449 DOI: 10.4251/wjgo.v13.i11.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/25/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is a leading cause of death worldwide, and hepatocellular carcinoma (HCC) is the most frequent primary liver tumour, followed by cholangiocarcinoma. Notably, secondary tumours represent up to 90% of liver tumours. Chronic liver disease is a recognised risk factor for liver cancer development. Up to 90% of the patients with HCC and about 20% of those with cholangiocarcinoma have an underlying liver alteration. The gut microbiota-liver axis represents the bidirectional relationship between gut microbiota, its metabolites and the liver through the portal flow. The interplay between the immune system and gut microbiota is also well-known. Although primarily resulting from experiments in animal models and on HCC, growing evidence suggests a causal role for the gut microbiota in the development and progression of chronic liver pathologies and liver tumours. Despite the curative intent of "traditional" treatments, tumour recurrence remains high. Therefore, microbiota modulation is an appealing therapeutic target for liver cancer prevention and treatment. Furthermore, microbiota could represent a non-invasive biomarker for early liver cancer diagnosis. This review summarises the potential role of the microbiota and immune system in primary and secondary liver cancer development, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Ilenia Bartolini
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Matteo Risaliti
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Rosaria Tucci
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Paolo Muiesan
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| |
Collapse
|
50
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Shirokova E. Gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J Clin Cases 2021; 9:9320-9332. [PMID: 34877269 PMCID: PMC8610853 DOI: 10.12998/wjcc.v9.i31.9320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that the condition of the gut and its microbiota greatly influence the course of liver disease, especially cirrhosis. This introduces the concept of the gut-liver axis, which can be imagined as a chain connected by several links. Gut dysbiosis, small intestinal bacterial overgrowth, and intestinal barrier alteration lead to bacterial translocation, resulting in systemic inflammation. Systemic inflammation further causes vasodilation, arterial hypotension, and hyperdynamic circulation, leading to the aggravation of portal hypertension, which contributes to the development of complications of cirrhosis, resulting in a poorer prognosis. The majority of the data underlying this model were obtained initially from animal experiments, and most of these correlations were further reproduced in studies including patients with cirrhosis. However, despite the published data on the relationship of the disorders of the gut microbiota with the complications of cirrhosis and the proposed pathogenetic role of hemodynamic disorders in their development, the direct relations between gut dysbiosis and hemodynamic changes in this disease are poorly studied. They remain a missing link in the gut-liver axis and a challenge for future research.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
- Department of Internal Medicine, Consultative and Diagnostic Center of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|