1
|
Cho M, Been N, Son HS. Analysis of protein determinants of genotype-specific properties of group a rotaviruses using machine learning. Comput Biol Med 2025; 191:110143. [PMID: 40203739 DOI: 10.1016/j.compbiomed.2025.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Group A rotaviruses (RVAs) are the leading cause of viral diarrhoea across various host species, including mammals and birds. The VP7 and VP4 proteins of these viruses play critical roles in determining genotype specificity, influencing viral infectivity and host adaptation. This study employed machine-learning techniques to classify RVA genotypes based on the molecular and physicochemical properties of these proteins. A dataset of 94 VP7 and 68 VP4 protein sequences was collected from various host species. Seven machine-learning algorithms-Naïve Bayes (NB), logistic regression (LR), decision tree (DT), random forest (RF), k-nearest neighbour (kNN), support vector machine (SVM), and artificial neural network (ANN)-were used for genotype classification. Feature subsets were configured using ranking-based attribute selection, and classification performance was evaluated using accuracy (ACC), precision, recall, Matthews' correlation coefficient (MCC), and the area under the curve (AUC). kNN demonstrated the highest classification accuracy for both VP7 (ACC = 97.87 %) and VP4 (ACC = 100 %), outperforming NB, LR, DT, RF, SVM, and ANN. For VP7 sequences, key properties influencing genotype classification included hydrophobicity, normalised van der Waals volume, and leucine composition. For VP4, polarity, normalised van der Waals volume, and polarizability were the most significant factors. In summary, the genotype-specific molecular features of VP7 and VP4 proteins served as reliable markers for RVA classification. Our findings highlight the potential of machine-learning approaches to predict RVA genotypes based on the physicochemical properties of amino acids, providing valuable insights into the molecular mechanisms that drive viral evolution, host specificity, and immune evasion.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Public Health AI Lab, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nara Been
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Public Health AI Lab, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeon S Son
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Public Health AI Lab, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Euring B, Harzer M, Vahlenkamp TW. Extended analyses of rotavirus C (RVC) G-types and P-types reveal new cut-off value for the G-types and reclassification of strains. J Virol 2025; 99:e0004925. [PMID: 40231817 PMCID: PMC12090754 DOI: 10.1128/jvi.00049-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Rotavirus C (RVC) is an important cause of gastroenteritis in humans and pigs and has also been detected in cattle, ferrets, minks, and dogs. Incidental zoonotic transmissions have been described. In contrast to rotavirus A (RVA), a complete genotyping system for RVC has not yet been established due to limited or incomplete sequence data. In this study, 138 complete nucleotide sequences for VP7 (G-type) and 97 complete nucleotide sequences for VP4 (P-type) of porcine RVC-positive samples have successfully been generated and genotyped. Together with available sequences from the NCBI database, phylogenetic analyses were conducted, cut-off values were re-evaluated, and the current classification system was adapted. Pairwise identity frequency analyses revealed a new cut-off value of 82% instead of the previous 85% for the G-type and confirmed the current cut-off value of 85% for the P-type. This resulted in the identification of 21 G-types and 39 P-types, including 4 new G-types and 10 new P-types. The results of the investigations expand the existing knowledge about the genetics of RVC and demonstrate the enormous diversity of porcine RVC sequences in particular.IMPORTANCEThis article provides a new sequence data set of porcine rotavirus C (RVC) strains. The extended full-length analysis of RVC G-types and P-types enabled us to review the current classification system. According to the guidelines of the rotavirus classification working group (RCWG), the results led to a new cut-off value of RVC G-types and required the reclassification of numerous RVC G-types. In addition, several new genotypes have been found. The present work closes the aforementioned knowledge gap and provides important, comprehensive data for RVC genetic diversity.
Collapse
Affiliation(s)
- Belinda Euring
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Maxi Harzer
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Thomas W. Vahlenkamp
- Institute of Virology, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Sun A, Shan X, Liu R, Tang Z, Huang J, Zhang S, Bian L, Shi Y, Liu Z, Hu J, Wang C. A strain of Lactobacillus plantarum from piglet intestines enhances the anti-PoRV effect via the STING-IFN-I pathway. BMC Vet Res 2025; 21:316. [PMID: 40319282 PMCID: PMC12049038 DOI: 10.1186/s12917-025-04766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Rotavirus infection represents a major etiology of severe diarrheal disease in neonatal and weaned piglets, causing substantial economic burdens to the global swine industry. Lactobacillus plantarum, a ubiquitous probiotic in natural ecosystems, has demonstrated multifaceted biological functions. The stimulator of the interferon gene (STING) is involved in type I interferon (IFN-I) mediated host antiviral innate immunity, which is a pivotal adaptor in response to the microbial DNA/RNA-activated signaling pathways. Emerging evidence suggests that certain probiotic strains can activate the STING-dependent pathway to induce IFN-I responses. In the present study, we successfully isolated a strain of Lactobacillus plantarum (designated LP1)from porcine intestinal contents and investigate its potential to counteract porcine rotavirus (PoRV) infection via modulation of antiviral signaling pathway. RESULT LP1 exhibited superior tolerance to simulated gastrointestinal conditions (pH 3.0 and 0.3% bile salts) compared with other isolated Lactobacillus strains. In vitro adhesion assays demonstrated that LP1effectively colonized porcine intestinal epithelial cells (IPEC-J2) without inducing cytotoxicity or apoptosis. Animal experiments also confirmed the protective effect of LP1 in mice against rotavirus, by reducing body weight loss, promoting viral clearance in feces, and alleviating intestinal mucosal damage. Mechanistic investigations identified STING-IRF3 pathway activation as the pivotal antiviral mechanism. Both phosphorylation of STING and IRF3 in LP1-treated IPEC-J2 cells accompanied by upregulated transcription and secretion of IFN-β and interferon-stimulated genes (ISGs). Consistent findings were observed in intestinal tissues of LP1-protected mice with STING pathway activation correlating with reduction in viral titers. Crucially, STING inhibitor (C-170) administration could reverse LP1-mediated antiviral effects. CONCLUSION LP1 exerts potent anti-PoRV activity in both murine models and porcine intestinal epithelial (IPEC-J2) cells through STING-IRF3 signaling axis-mediated IFN-β production.
Collapse
Affiliation(s)
- Anqi Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Shan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ruihan Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhengxu Tang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingshu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Shihan Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Lihong Bian
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yumeng Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zixuan Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Li X, Wang J, Zhang Y, Zhao Y, Shi Y. Evolutionary characterization and pathogenicity of the highly virulent human-porcine reassortant G9P[23] porcine rotavirus HB05 strain in several Chinese provinces. Front Microbiol 2025; 16:1539905. [PMID: 40160270 PMCID: PMC11949960 DOI: 10.3389/fmicb.2025.1539905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Rotavirus A (RVA), a member of the Sedoreoviridae family, is significant intestinal pathogen that cause diarrhea in both piglets and humans. During of an outbreak that struck nursing piglets with diarrhea, a human-porcine reassortment rotavirus, named as RVA/Pig-wt/China/HB05/2023/G9P[23] (hereafter referred to as HB05), was identified. This specific strain was found to be prevalent in pig farms in several regions, including Hebei, Liaoning, Sichuan, Zhejiang and Henan, and caused significant economic losses from March to August 2023. To further explore the evolutionary diversity of HB05, a comprehensive analysis of all gene segments was conducted. The genome constellation was identified as G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Nucleotide sequence identity and phylogenetic analyses indicated that the NSP3 gene of HB05 is most closely related to the corresponding genes of Human strains, with the highest homology at 95.45% identity. The other genes (VP1-VP4, VP6-VP7, NSP1-NSP2, NSP4-NSP5) exhibited the closest relationship to porcine strains, with the highest homology ranging from 94.79 to 98.89% similarity. Therefore, it is likely that HB05 originated from genetic reassortment between porcine and human rotaviruses. The pathogenicity study performed on 3-day-old piglets revealed that severe diarrhea manifested 8 h post-infection after oral inoculation with the PoRV HB05 strain at a dose of 2 × 10^5.5 TCID50/mL per piglet. To our knowledge, this marks the first report of a prevalent and highly virulent human-porcine reassortment G9P[23] rotavirus A (RVA) strain identified in mainland China. This finding provides valuable insights into the evolutionary traits of the G9P[23] strain and suggests a possible risk of cross-species transmission.
Collapse
Affiliation(s)
| | | | | | | | - Yanli Shi
- Beijing Biomedicine Technology Center, Zhaofeng Hua Biotechnology (Nanjing) Co., LTD, Beijing, China
| |
Collapse
|
5
|
Vizzi E, Rosales RE, Piñeros O, Fernández R, Inaty D, López K, Peña L, De Freitas-Linares A, Navarro D, Neri S, Durán O, Liprandi F. Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela. Viruses 2025; 17:410. [PMID: 40143336 PMCID: PMC11946648 DOI: 10.3390/v17030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Rotavirus alphagastroenteritidis is the leading cause of acute gastroenteritis worldwide in young humans and animals. In 2023-2024, a relatively high rotavirus detection rate (34.5%) was detected in children with diarrhea in Caracas. All rotavirus strains were typed as P[8], using a multiplex RT-PCR assay, while the G-type was not identified. This unusual pattern, not previously observed in Venezuela, prompted the VP7 gene sequencing of nineteen strains, which displayed a high sequence identity (99.3-100%) compatible with the G3 genotype. These strains clustered into a well-supported lineage IX encompassing human reassortants of equine-like G3P[8] strains described elsewhere, showing a very close genetic relationship (99.0-99.9%). Old G3 rotavirus isolates obtained from diarrheic samples in the past were included in the analysis and grouped into lineage I together with ancestral reference G3 strains. The novel G3P[8]s carry amino acid changes in VP7-neutralizing epitopes, compared with the RotaTeq-WI78-8-vaccine strain. Full genome sequencing of a representative strain revealed a genotype constellation including an equine-like G3P[8] in a DS-1-like backbone (I2-R2-C2-M2-A2-N2-T2-E2-H2), confirming the role of animal strains as a source of diversification, and the importance of unceasingly revising molecular typing strategies and vaccine efficacy to guarantee their success.
Collapse
Affiliation(s)
- Esmeralda Vizzi
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Rita E. Rosales
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Oscar Piñeros
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - David Inaty
- Departamento de Pediatría, Clínica Las Ciencias, Caracas 1040, Venezuela;
| | - Karolina López
- Unidad de Gastroenterología y Nutrición, Hospital General “Dr. Miguel Pérez Carreño”, Caracas 1020, Venezuela; (K.L.); (D.N.)
| | - Laura Peña
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Angela De Freitas-Linares
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Dianora Navarro
- Unidad de Gastroenterología y Nutrición, Hospital General “Dr. Miguel Pérez Carreño”, Caracas 1020, Venezuela; (K.L.); (D.N.)
| | - Sandra Neri
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Osmary Durán
- Hospital Militar Universitario “Dr. Carlos Arvelo”, Caracas 1020, Venezuela;
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| |
Collapse
|
6
|
Hosseini-Fakhr SS, Jalilvand S, Maleki A, Kachooei A, Behnezhad F, Mir-Hosseinian M, Taghvaei S, Marashi SM, Shoja Z. Genetic characterization of rotavirus A strains circulating in children under 5 years of age with acute gastroenteritis in Tehran, Iran, in 2023-2024: dissemination of the emerging equine-like G3P[8]-I2-E2 DS-1-like strains. J Gen Virol 2025; 106:002088. [PMID: 40100090 PMCID: PMC11936345 DOI: 10.1099/jgv.0.002088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
The present study was conducted to monitor the genotype diversity of circulating species A rotavirus (RVA) in Iran. A total of 300 faecal specimens were collected from children under 5 years of age hospitalized for acute gastroenteritis between October 2023 and October 2024. G3P[8] represented 72.91% (70/96) of all RVA-positive samples, further subdivided into equine-like G3P[8]-I2-E2 DS-1-like and human G3P[8]-I1-E1 Wa-like. A retrospective genetic analysis of G3P[8] strains isolated from 2015 to 2017 was also performed and showed that G3P[8] strains belong to the G3P[8]-E1-I1 Wa-like genetic pattern, which is typically similar to human G3P[8] Wa-like strains in this study. The emergence of equine-like G3P[8] DS-1-like strains in Iran may not be related to selection pressure from rotavirus vaccination, but rather to cross-border migration of rotavirus strains due to population movements.
Collapse
Affiliation(s)
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Tehran, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seiedehparnian Taghvaei
- Pediatric Pathology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Oliveira Matos AD, Araujo M, Paulino J, Franco FC, Luchs A, Sales-Campos H, Fiaccadori F, Souza M, Silva-Sales M. Mutations in the main antigenic sites of VP7 and VP8* from G3P[8] rotavirus a strains circulating in Brazil may impact immune evasion to rotavirus vaccination. Braz J Microbiol 2025; 56:319-330. [PMID: 39505807 PMCID: PMC11885731 DOI: 10.1007/s42770-024-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
In the post-rotavirus (RVA) vaccination era, uncommon and zoonotic strains have emerged as causative agents of acute gastroenteritis in humans, including the equine-like G3P[8] strains. First identified in 2013, this strain has quickly spread worldwide, reaching the position of the most prevalent genotype in many countries, including Brazil. Here, we report full genotype characterization and phylogenetic analysis of two equine-like G3P[8] strains detected in Goiás, a state in the Cerrado biome of the Brazilian Midwestern region, during the year of 2019. The strains were detected in different socioeconomic and demographic contexts: GO-MR from an asymptomatic adult living in a rural traditional community and GO-H5 from a symptomatic child from the state capital, with access to safe drinking water and essential sanitation services. These strains also displayed different backbone constellations considering the NSP2 gene segment (G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for GO-MR and G3-P[8]-I2-R2-C2-M2-A2-N1-T2-E2-H2 for GO-H5). Furthermore, significant mutations in the main epitope sites of the VP7 and VP8* proteins of the detected strains, and other Brazilian G3P[8] viruses, were found with the comparison to RV1 and RV5 vaccine proteins, indicating a potential ability of these viruses to evade vaccine protection, which may contribute to their prevalence both nationally and globally. In summary, this study corroborates the genetic diversity of equine-like G3P[8] DS-1-like strains circulating worldwide, highlights the epidemiological importance of adults as reservoirs of RVA and shows the substantial differences between these emerging strains and the currently used anti-RVA vaccines, which may partially explain their predominance due to potential evasion of vaccine-induced protection.
Collapse
Affiliation(s)
- Amanda de Oliveira Matos
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
- Laboratory of Mucosal Immunology and Immunoinformatics (LIMIM), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Maísa Araujo
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Jordana Paulino
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Fernanda Craveiro Franco
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Helioswilton Sales-Campos
- Laboratory of Mucosal Immunology and Immunoinformatics (LIMIM), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Fabiola Fiaccadori
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Menira Souza
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Marcelle Silva-Sales
- Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil.
| |
Collapse
|
8
|
Liu C, Wei H, Zhang X, Wu W, Shen Z, Luo F, Deng S. Establishment of a reverse genetics system for an epidemic strain of porcine rotavirus JXAY01 type G5P[23]I12. Front Vet Sci 2025; 11:1512327. [PMID: 40012614 PMCID: PMC11862993 DOI: 10.3389/fvets.2024.1512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 02/28/2025] Open
Abstract
Porcine rotavirus is one of the most important pathogens causing diarrhea in newborn piglets, and the genome of this virus contains 11 double-stranded RNA segments, which are easy to be recombined among strains to produce new strains with different antigenic properties. The reverse genetics system is an informative tool for studying virus biology. Recently, adaptable plasmid-based reverse genetics systems were developed for the porcine rotavirus OSU strain; however, such systems have not been developed for epidemic porcine rotavirus genotypes in China. In this study, we successfully established a reverse genetic system based on an epidemic strain of porcine rotavirus JXAY01 isolated in recent years, which was characterized by a specific genotype constellation: G5-P[23]-I12-R1-C1-M1-A8-N1-T7-E1-H1. 11 gene segments of porcine rotavirus JXAY01 were cloned into plasmid vectors similar to the SA11 system. JXAY01 genome segment plasmids were co-transfected with 10 complementary SA11 genome plasmids, and 11 monoreassortant strains were successfully rescued. Viral replication analyses of the parental SA11 strain and the monoreassortant strains showed that the structural protein replacement monoreassortants had reduced cell proliferation compared with the parental SA11 and non-structural protein replacement strains. The recombinant rJXAY01 strain could be successfully rescued using 11 pRG-JXAY01 plasmids. Whole genome sequencing showed 12 amino acid differences between the isolate JXAY01 and the recombinant rJXAY01, but there was no significant difference in their in vitro replication ability. This study reports the reverse genetic system, which lays the foundation for further understanding of porcine rotavirus molecular biology and novel vaccine development.
Collapse
Affiliation(s)
- Changjin Liu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- The College of Life Science, Nanchang Normal University, Nanchang, China
| | - Huangsiwu Wei
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Science, Lushan, China
| | - Xingyi Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenjie Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhengqiao Shen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Feng Luo
- Jiangxi Jinyibo Biotechnology Company, Nanchang, China
| | - Shunzhou Deng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
9
|
Li Z, Pan Y, Zhou Y, Cui J, Ge H, Zhao W, Feng L, Tian J. Pathogenicity comparison between porcine G9P[23] and G5P[23] RVA in piglets. Vet Microbiol 2025; 301:110359. [PMID: 39742552 DOI: 10.1016/j.vetmic.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Rotavirus Group A (RVA) is a primary pathogen that causes viral diarrhea in humans and animals. Porcine rotaviruses (PoRVs) are widely epidemic in pig farms in China, causing great economic losses to the swine industry. In the past 30 years, the G5 RVA had been the main epidemic genotype in pig farms worldwide. However, G9 RVA is an emerging genotype that is gradually becoming prevalent in humans and animals. To explore its potential mechanism, we isolated G9P[23] and G5P[23] rotaviruses, named 923 H and NG523 respectively, from diarrheal samples and compared the growth curves and virulence of two strains. In vitro experiments revealed that pig small intestine epithelial cells were more susceptible to 923 H strain. In vivo experiments showed that 923 H strain was more virulent than NG523 strain, causing more severe damage to piglets. The viral load of G9 infection groups in intestinal and extra-intestinal tissues was higher than that of G5 infection group. Histopathological examination showed cell degeneration, necrosis and nuclear condensation in the jejunum of G9 RVA infection group as well as more inflammatory cell infiltration and tissue destruction in the lung of G9 RVA infection group. Our results indicate that 923 H strain is more pathogenic than NG523 strain, which provides new insights into the widespread epidemic of G9 RVA in pig farms.
Collapse
Affiliation(s)
- Zixin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanxiang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jianshuang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hailiang Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, PR China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
10
|
Díaz Alarcón RG, Salvatierra K, Gómez Quintero E, Liotta DJ, Parreño V, Miño SO. Complete Genome Classification System of Rotavirus alphagastroenteritidis: An Updated Analysis. Viruses 2025; 17:211. [PMID: 40006966 PMCID: PMC11860323 DOI: 10.3390/v17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rotavirus alphagastroenteritidis is the major causative agent of acute gastroenteritis in both children under the age of 5 and young mammals and birds globally. RVAs are non-enveloped viruses with a genome comprising 11 double-stranded RNA segments. In 2008, the Rotavirus Classification Working Group pioneered a comprehensive and complete RVA genome classification system, establishing a specific threshold, which measures the genetic distances between homologous genes. The aim of this study was to perform an updated systematic analysis of the genetic variability across all RVA genes. Our investigation involved assessing the established cutoff values for each RVA genome segment and determining the need for any updates. To achieve this objective, multiple sequence alignments were constructed for all 11 genes and one for each genotype with discrepancies. Also, pairwise distances along with their cutoff values were evaluated. The analyses provided insights into the current relevance of cutoff values, which remain applicable for the majority of genotypes. In conclusion, this study fortifies the current classification system by highlighting its robustness and accurate genotyping of Rotavirus alphagastroenteritidis.
Collapse
Affiliation(s)
- Ricardo Gabriel Díaz Alarcón
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
- National Council for Scientific and Technical Research (CONICET), Av. Mariano Moreno 1375, Lab 105, Posadas CP3300, Misiones, Argentina
| | - Karina Salvatierra
- Laboratory “MADAR”, National University of Misiones (UNaM), Ruta 12, Km 7 y ½, Posadas CP3300, Misiones, Argentina;
| | - Emiliano Gómez Quintero
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
| | - Domingo Javier Liotta
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
- National Institute of Tropical Medicine (INMeT)—ANLIS “Dr. Carlos Malbrán”, Puerto Iguazú CP3370, Misiones, Argentina
| | - Viviana Parreño
- National Institute of Agricultural Technology (INTA), IncuINTA, De Las Cabañas y De los Reseros s/n, Hurlingham CP1816, Buenos Aires, Argentina;
| | - Samuel Orlando Miño
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
- National Institute of Agricultural Technology (INTA), EEA Cerro Azul, National Route 14, Km 836, Cerro Azul CP3313, Misiones, Argentina
| |
Collapse
|
11
|
Dinana Z, Doan YH, Maharani AT, Fitria AL, Yamani LN, Juniastuti, Wahyuni RM, Soegijanto S, Soetjipto, Utsumi T, Matsui C, Deng L, Takemae N, Kageyama T, Katayama K, Lusida MI, Shoji I. Unusual G9P[4] Rotavirus Emerged After the Dynamic Changes in Rotavirus Genotypes From Equine-Like G3 to Typical Human G1/G3 in Indonesia. J Med Virol 2024; 96:e70106. [PMID: 39670413 DOI: 10.1002/jmv.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Inter-genogroup reassortment of Rotavirus A (RVA) strains has highlighted the spread of unusual RVA strains worldwide. We previously reported the equine-like G3 RVA as the predominant strain in Indonesia in 2015-2016. However, since July 2017, typical human genotypes G1 and G3 have replaced these strains completely. To understand how dynamic changes in RVA occur in Indonesia, we performed a detailed epidemiological study. A total of 356 stool specimens were collected from hospitalized children in Sidoarjo, Indonesia between 2018 and 2022. Whole-genome sequencing was performed for all 26 RVA-positive samples using next-generation sequencing. Twenty-four samples were determined to be the unusual RVA G9P[4], while two were G9P[6]. Detailed analysis revealed that seven G9P[4] strains had the typical DS-1-like backbone, while the other strains exhibited a double-reassortant profile (G9-N1) on the DS-1-like backbone. The Bayesian evolutionary analyses suggested that the Indonesian G9P[4] strains share a common ancestor with previously reported G9P[4] strains in the VP7 and VP4 genes. G9P[4] DS-1-like strains were identified as the predominant genotype in Indonesia in 2021 for the first time. These results suggest that the G9P[4] strains were generated from the previous G9P[4] strains that had undergone further intra-reassortments with the other circulating strains.
Collapse
Affiliation(s)
- Zayyin Dinana
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Yen Hai Doan
- Office of Laboratory Emergency Preparedness, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aussie Tahta Maharani
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Anisa Lailatul Fitria
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Laura Navika Yamani
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Juniastuti
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Rury Mega Wahyuni
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soegeng Soegijanto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Soetjipto
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Takako Utsumi
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Nobuhiro Takemae
- Office of Laboratory Emergency Preparedness, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsutomu Kageyama
- Office of Laboratory Emergency Preparedness, Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Laboratory of Viral Infection I, Tokyo, Japan
| | - Maria Inge Lusida
- Laboratory of Viral Diarrhea, Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Research Center on Global Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
12
|
Ji J, Jiao R, Zhang Z, Xu X, Wang Y, Bi Y, Yao L. Novel genotyping definition and molecular characteristics of canine circovirus in China. Virology 2024; 600:110261. [PMID: 39423599 DOI: 10.1016/j.virol.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Canine circovirus (CCV) has been detected globally, but its genotyping remains unevenly characterized. To comprehend the evolution and genotyping of CCV, 887 rectal swabs of dogs were collected during 2018-2023. According to p-distance/frequency histograms and phylogenetic trees based on complete genome sequences, the 21 newly obtained Chinese and 84 reference CCV strains were mainly divided into 7 subtypes (CCV-1a, CCV-1b, CCV-1c, CCV-1d, CCV-1e, CCV-2a, and CCV-2b). Among the 21 newly obtained CCVs, 9 strains belonged to CCV-1d, 2 strains belonged to CCV-1b, and the remaining strains belonged to CCV-1c. Recombination analysis indicated that recombination events occurred between CCV strains of different subtypes, hosts, and countries. The CCV capsid protein features 19 variable sites, with 2 sites (T58Q, P239A) displaying regional specificity and 3 (Q57T, E150Q, and T195Q) manifesting subtype specificity. Therefore, this genotyping analysis provides a reference for the molecular characteristics of CCV strains found globally.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Ruiqi Jiao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Zhibin Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yanhua Wang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China.
| |
Collapse
|
13
|
Mirhoseinian M, Jalilvand S, Yaghooti MM, Kachooei A, Latifi T, Feizi M, Motamedi-Rad M, Azadmanesh K, Marashi SM, Roohvand F, Shoja Z. Full genome sequence analysis of the predominant and uncommon G9P[4] rotavirus strains circulating in Tehran, Iran, 2021-2022: Evidence for inter and intra-genotype recombination. Virology 2024; 600:110250. [PMID: 39321558 DOI: 10.1016/j.virol.2024.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Group A rotaviruses (RVAs) are a major cause of acute gastroenteritis in children under 5 years of age worldwide. Herein, the genetic sequences of 11 RNA segments from three uncommon G9P[4] RVA strains found in the stool samples of children under 5 years of age in Iran were analyzed using next-generation sequencing (NGS) technology. The genomic constellations of these three uncommon G9P[4] strains indicated the presence of the double and quadruple reassortants of two G9P[4] strains, containing the VP7/NSP2 and VP7/VP2/NSP2/NSP4 genes on a DS-1-like genetic background, respectively. The genome of one strain indicated a Wa-like genetic backbone in a single-reassortant with the VP4 of the DS1-like human strains. With the exception of VP1, VP2, VP7, NSP2, NSP3, and NSP4 genes, which clustered with RVA of human origins belonging to cognate gene sequences of genogroup 1/2 genotypes/lineages, the remaining five genes (VP8/VP4, VP3, VP6, NSP1, NSP5) displayed direct evidence of recombination. It is presumed that the presence of uncommon G9P[4] strains in Iran is not linked to vaccination pressure, but rather to the high prevalence of RVA co-infection or the direct import of these uncommon RVA reassortants strains from other countries (especially those that have implemented RV vaccination).
Collapse
Affiliation(s)
- Mahtab Mirhoseinian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Mahsa Feizi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Lv Y, Tong Z, Liu J, Zhang Z, Wang C, Zeng Y, Liu P, Zong X, Chen G, Chen H, Tan C. Molecular Characterization and Pathogenicity Analysis of Porcine Rotavirus A. Viruses 2024; 16:1842. [PMID: 39772152 PMCID: PMC11680200 DOI: 10.3390/v16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Porcine rotavirus A (RVA) is one of the major etiological agents of diarrhea in piglets and constitutes a significant threat to the swine industry. A molecular epidemiological investigation was conducted on 2422 diarrhea samples from Chinese pig farms to enhance our understanding of the molecular epidemiology and evolutionary diversity of RVA. The findings revealed an average RVA positivity rate of 42% (943/2422), and the study included data from 26 provinces, primarily in the eastern, southern and southwestern regions. Genetic evolutionary analysis revealed that G9 was the predominant genotype among the G-type genotypes, accounting for 25.32% of the total. The VP4 genotypes were P[7] (36.49%) and P[23] (36.49%). The predominant genotypic combinations of RVA were G9P[23] and G9P[7]. Eleven RVA strains were obtained via MA104 cell isolation. A rat model was established to assess the pathogenicity of these strains, with three strains exhibiting high pathogenicity in the model. Specifically, the RVA Porcine CHN HUBEI 2022 (Q-1), RVA Porcine CHN SHANXI 2022 (3.14-E), and RVA Porcine CHN HUBEI 2022 (5.11-U) strains were shown to cause diarrhea in the rats and damage the intestinal villi during the proliferation phase of the infection, leading to characteristic lesions in the small intestine. These data indicate that continuous monitoring of RVA can provide essential data for the prevention and control of this virus.
Collapse
Affiliation(s)
- Yaning Lv
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ze Tong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiaqi Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Zeng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pingxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xin Zong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guosheng Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
15
|
Krasnikov N, Gulyukin A, Aliper T, Yuzhakov A. Complete genome characterization by nanopore sequencing of rotaviruses A, B, and C circulating on large-scale pig farms in Russia. Virol J 2024; 21:289. [PMID: 39538316 PMCID: PMC11562526 DOI: 10.1186/s12985-024-02567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Rotaviruses are the major etiological agents of gastroenteritis and diarrheal outbreaks in plenty of mammalian species. The genus Rotavirus is highly diverse and currently comprises nine genetically distinct species, and four of them (A, B, C, and H) are common for humans and pigs. There is a strong necessity to comprehend phylogenetic relationships among rotaviruses from different host species to assess interspecies transmission, specifically between humans and livestock. To reveal the genetic origin of rotaviruses from Russian pig farms, nanopore-based metagenomic sequencing was performed on the PCR-positive specimens. METHODS Samples were selected among the cases submitted to routine diagnostic or monitoring studies to the Laboratory of Biochemistry and Molecular Biology of "Federal Scientific Center VIEV" (Moscow, Russia). The selected positive samples were genotyped using nanopore sequencing method. RESULTS Five porcine RVA isolates were completely sequenced, and genotype analysis revealed various porcine G/P genogroups: G2, G3, G4, G5, G11 and P[6], P[7], P[13], P[23], P[27] with a typical backbone constellation I5-R1-C1-M1-A8-N1-T1/7-E1-H1. The RVB isolate was detected in combination with RVA in a rectal swab from a diseased pig in Krasnoyarsk Krai. It was characterized by the following genogroups: G15-P[X]-I11-R4-C4-M4-A8-N10-T4-E4-H7. The first complete porcine RVC genome from Russia was obtained with genomic constellation G6-P[5]-I14-R1-C1-M1-A7-N9-T6-E1-H1, and the phylogenetic analysis revealed putative novel genotype group for the VP6 gene-I14. Additionally, the first porcine kobuvirus isolate from Russia was phylogenetically characterized. CONCLUSIONS The applied nanopore sequencing method successfully genotyped the RV isolates and additionally revealed co-circulated species. The study demonstrates high genetic variability of Russian RVA isolates in VP4/VP7 genes and phylogenetically describes local RVB and RVC. Complete characterization of genomic segments is a crucial methodology in tracing the rotavirus's evolution and evaluating interspecies transmissions.
Collapse
Grants
- FGUG-2022-0018 Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
- FGUG-2022-0018 Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
- FGUG-2022-0018 Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
- FGUG-2022-0018 Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, Moscow, Russia.
Collapse
Affiliation(s)
- Nikita Krasnikov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey Gulyukin
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV" (FSC VIEV), Moscow, Russia
| | - Taras Aliper
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV" (FSC VIEV), Moscow, Russia
| | - Anton Yuzhakov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV" (FSC VIEV), Moscow, Russia
| |
Collapse
|
16
|
Harima H, Qiu Y, Sasaki M, Ndebe J, Penjaninge K, Simulundu E, Kajihara M, Ohnuma A, Matsuno K, Nao N, Orba Y, Takada A, Ishihara K, Hall WW, Hang'ombe BM, Sawa H. A first report of rotavirus B from Zambian pigs leading to the discovery of a novel VP4 genotype P[9]. Virol J 2024; 21:263. [PMID: 39449113 PMCID: PMC11515359 DOI: 10.1186/s12985-024-02533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Rotavirus B (RVB) causes diarrhea in humans and pigs. Although various RVB strains were identified in humans and various animals globally, little is known about the epidemiology RVB infection in Africa. In this study, we attempted to examine the prevalence of RVB infection in pig populations in Zambia. METHODS Metagenomic analyses were conducted on pig feces collected in Zambia to detect double stranded RNA viruses, including RVB. To clarify the prevalence of RVB infection in pig populations in Zambia, 147 fecal samples were screened for the RVB detection by RT-qPCR. Full genome sequence of a detected RVB was determined by Sanger sequencing and genetically analyzed. RESULTS The metagenomic analyses revealed that RVB sequence reads and contigs of RVB were detected from one fecal sample collected from pigs in Zambia. RT-qPCR screening detected RVB genomes in 36.7% (54/147) of fecal samples. Among 54 positive samples, 13 were positive in non-diarrheal samples (n = 48, 27.1%) and 41 in diarrheal samples (n = 99, 41.4%). Genetic analyses demonstrated that all the segments of ZP18-18, except for VP4, had high nucleotide sequence identities (80.6-92.6%) with all other known RVB strains detected in pigs. In contrast, the VP4 sequence of ZP18-18 was highly divergent from other RVB strains (< 64.6% identities) and formed a distinct lineage in the phylogenetic tree. Notably, the VP8 subunit of the VP4 showed remarkably low amino acid identities (33.3%) to those of known RVB strains, indicating that the VP8 subunit of ZP18-18 was unique among RVB strains. According to the whole genome classification for RVB, ZP18-18 was assigned to a genotype constellation, G18-P[9]-I12-R4-C4-M4-A8-N10-T5-E4-H7 with the newly established VP4 genotype P[9]. CONCLUSIONS This current study updates the geographical distribution and the genetic diversity of RVB. Given the lack of information regarding RVB in Africa, further RVB surveillance is required to assess the potential risk to humans and animals.
Collapse
Affiliation(s)
- Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
| | - Joseph Ndebe
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Kapila Penjaninge
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
- Macha Research Trust, Choma, 20100, Zambia
| | - Masahiro Kajihara
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Aiko Ohnuma
- Technical office, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001- 0020, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia
| | - Kanako Ishihara
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernard M Hang'ombe
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia
- Department of Para-clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, North 21 West 11, Kita-ku, Sapporo, 001-0021, Japan.
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka, 10101, Zambia.
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan.
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka, 10101, Zambia.
| |
Collapse
|
17
|
Jampanil N, Kumthip K, Yodmeeklin A, Tacharoenmuang R, Akari Y, Komoto S, Okitsu S, Ushijima H, Maneekarn N, Khamrin P. Unusual G3P[10] bat-like rotavirus strains detected in children with acute gastroenteritis in Thailand. J Med Virol 2024; 96:e70014. [PMID: 39420695 DOI: 10.1002/jmv.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Rotavirus A (RVA) is the main cause of acute gastroenteritis among children under the age of five globally. The unusual bat-like human RVA strains G3P[10] (RVA/Human-wt/THA/CMH079/05/2005/G3P[10] and RVA/Human-wt/THA/CMH-S015-19/2019/G3P[10]) were detected in children with acute gastroenteritis in 2005 and 2019, respectively, in the same geographical area of Northern Thailand. To elucidate the genetic backgrounds of these unusual or bat-like human RVA strains, the complete genome of these RVA strains was sequenced and phylogenetically analyzed. All eleven genome segments of these G3P[10] strains were genotyped as G3-P[10]-I8-R3-C3-M3-A9-N3-T3-E3-H6, which is closely related to bat G3P[10] RVA strain (RVA/Bat-tc/CHN/MYAS33/2013/G3P[10]) and bat-like human RVA strain (RVA/Human-wt/THA/MS2015-1-0001/2015/G3P[10]). The findings indicate that human G3P[10] RVA strains detected in this study (RVA/Human-wt/THA/CMH079/05/2005/G3P[10] and RVA/Human-wt/THA/CMH-S015-19/2019/G3P[10]) contained all eleven genome segments similar to those of bat RVA strains and appeared to be human RVA strains of bat origin. Phylogenetic analysis revealed that several genome segments of these two RVA strains were also closely related with those of other species in addition to bats and had a zoonotic transmission history. The results of this study supported the roles of interspecies transmission of RVA strains among bats and humans in the natural environment and provided convincing evidence that the evolution of human RVAs was closely interrelated with those of animal RVAs. Continuing surveillance of RVAs in humans and animals is imperative to gain a better understanding of the origin and the evolution of these viruses.
Collapse
Affiliation(s)
- Nutthawadee Jampanil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| | - Ratana Tacharoenmuang
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | - Yuki Akari
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita, Japan
| | - Shoko Okitsu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Emerging and Re-emerging Diarrheal Viruses Cluster, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Barua SR, Das T, Rakib TM, Nath BK, Gupta SD, Sarker S, Chowdhury S, Raidal SR, Das S. Complete genome constellation of a dominant Bovine rotavirus genotype circulating in Bangladesh reveals NSP4 intragenic recombination with human strains. Virology 2024; 598:110195. [PMID: 39089050 DOI: 10.1016/j.virol.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.
Collapse
Affiliation(s)
- Shama Ranjan Barua
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh; Department of Livestock Services, Ministry of Fisheries and Livestock, Bangladesh
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD-4814, Australia
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia.
| |
Collapse
|
19
|
Agbemabiese CA, Dennis FE, Lartey BL, Damanka SA, Nakagomi T, Nakagomi O, Armah GE. Whole Genome Sequences of the Wildtype AU-1 Rotavirus A Strain: The Prototype of the AU-1-like Genotype Constellation. Viruses 2024; 16:1529. [PMID: 39459863 PMCID: PMC11512235 DOI: 10.3390/v16101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Most human rotaviruses belong to the Wa-like, DS-1-like, or AU-1-like genotype constellation. The AU-1-like constellation, albeit minor, captured attention because its prototype strain AU-1 originated from feline rotavirus, leading to the concept of interspecies transmission of rotavirus. The AU-1 genome sequence determined by various laboratories over the years has documented two conflicting VP7 sequences in the GenBank. As culture-adaptation may introduce changes in the viral genome, the original fecal (wild-type) and the seed stock of culture-adapted AU-1 genomes were sequenced using the Illumina's MiSeq platform to determine the authentic AU-1 sequence and to identify what mutational changes were selected during cell-culture adaptation. The wild-type and culture-adapted AU-1 genomes were identical except for one VP4-P475L substitution. Their VP7 gene was 99.9% identical to the previously reported AU-1 VP7 under accession number AB792641 but only 92.5% to that under accession number D86271. Thus, the wild-type sequences determined in this study (accession numbers OR727616-OR727626) should be used as the reference. The VP4-P475L mutation was more likely incidental than inevitable during cell-culture adaptation. This was the first study in which the whole genomes of both wild-type and cultured RVA strains were simultaneously determined by deep sequencing.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (T.N.); (O.N.)
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| | - Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (T.N.); (O.N.)
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (T.N.); (O.N.)
| | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| |
Collapse
|
20
|
Velikzhanina EI, Sashina TA, Morozova OV, Kashnikov AY, Epifanova NV, Novikova NA. Unusual BA222-like strains of Rotavirus A (Sedoreoviridae: Rotavirus: Rotavirus A): molecular and genetic analysis based on all genome segments. Vopr Virusol 2024; 69:363-376. [PMID: 39361930 DOI: 10.36233/0507-4088-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Rotavirus infection is the major cause of severe dehydrating diarrhea requiring hospitalization in young children worldwide. Due to their segmented genome, rotaviruses are capable of gene reassortment, which makes the emergence and spread of genetically novel strains possible. The purpose of this study was to search for unusual rotaviruses circulating in Nizhny Novgorod in 2021‒2023 and their molecular genetic characterization based on all genome segments. MATERIALS AND METHODS Rotavirus-positive stool samples of children were examined by PCR genotyping and electrophoresis in PAAG. cDNA fragments of each of the 11 genes (VP1‒VP4, VP6, VP7, NSP1‒NSP5), 570 to 850 nucleotide pairs in length were sequenced for the selected strains. The phylogenetic analysis was performed in the MEGA X program. RESULTS In the study period 2021‒2023, 11 G[P] combinations with a predominance of G3P[8] (59.5%) were identified. Six atypical Rotavirus А (RVA) strains were identified: 2 strains of the G2P[4] genotype (G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E2-H3, G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E3-H2) and 4 G3P[9] strains (all strains had the genotype G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3). Phylogenetic analysis based on all genes showed an evolutionary relationship between rotaviruses similar to rotaviruses of cats and dogs (BA222-like) and unusual strains of the G2P[4] genotype, for which a mixed combination of genotypes was identified and characterized for the first time. DISCUSSION The results obtained expand the understanding of the diversity of reassortant RVAs, as well as complement the data on the genotypic structure of the rotavirus population in Nizhny Novgorod. CONCLUSION The wide genetic diversity of reassortant RVA can help rotaviruses overcome the immunological pressure provided by natural and vaccine-induced immunity. In this regard, to control the emergence of new variants and assess changes in the virulence of rotaviruses after reassortment processes, continuous molecular monitoring for circulating RVA is necessary.
Collapse
Affiliation(s)
- E I Velikzhanina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - T A Sashina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - O V Morozova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A Y Kashnikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N V Epifanova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N A Novikova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
21
|
Kozyra I, Kocki J, Rzeżutka A. Detection of Porcine-Human Reassortant and Zoonotic Group A Rotaviruses in Humans in Poland. Transbound Emerg Dis 2024; 2024:4232389. [PMID: 40303033 PMCID: PMC12017087 DOI: 10.1155/2024/4232389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 08/13/2024] [Indexed: 01/05/2025]
Abstract
Group A rotaviruses (RVAs) are widespread in humans and many animal species and represent the most epidemiologically important rotavirus group. The aim of the study was the identification of the genotype pattern of human RVA strains circulating in Poland, assessment of their phylogenetic relationships to pig RVAs and identification of reassortant and zoonotic virus strains. Human stool samples which were RVA positive (n = 166) were collected from children and adults at the age of 1 month to 74 years with symptoms of diarrhoea. Identification of the G and P genotypes of human RVAs as well as the complete genotype of reassortant and zoonotic virus strains was performed by the use of an RT-PCR method. The G (G1-G4, G8 or G9) and/or P (P[4], P[6], P[8] or P[9]) genotypes were determined for 148 (89.2%) out of 166 RVA strains present in human stool. G1P[8] RVA strains prevailed, and G4P[8] (20.5%), G9P[8] (15.7%) and G2P[4] (13.3%) human RVA strains were also frequently identified. The full genome analysis of human G4P[6] as well as pig G1P[8] and G5P[6] RVAs revealed the occurrence of porcine-human reassortants and zoonotic RVAs. Detection of G4P[6] in pigs confirms their role as a reservoir of zoonotic RVAs.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental VirologyNational Veterinary Research Institute, Al. Partyzantów 57, Puławy 24-100, Poland
| | - Janusz Kocki
- Department of Medical GeneticsMedical University of Lublin, ul. Radziwiłłowska 11, Lublin 20-080, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental VirologyNational Veterinary Research Institute, Al. Partyzantów 57, Puławy 24-100, Poland
| |
Collapse
|
22
|
Herbert J, van Dijk AA. Identification of a cooperative effect between amino acids 169 and 174 in the rotavirus NSP4 double-layered particle-binding domain. J Gen Virol 2024; 105. [PMID: 39320365 DOI: 10.1099/jgv.0.002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Collapse
Affiliation(s)
- Jayme Herbert
- University of the Free State, Bloemfontein, South Africa
- Deltamune PTY (LTD), Pretoria, South Africa
| | | |
Collapse
|
23
|
Hasan M, Ahmed S, Imranuzzaman M, Bari R, Roy S, Hasan MM, Mia MM. Designing and development of efficient multi-epitope-based peptide vaccine candidate against emerging avian rotavirus strains: A vaccinomic approach. J Genet Eng Biotechnol 2024; 22:100398. [PMID: 39179326 PMCID: PMC11260576 DOI: 10.1016/j.jgeb.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Enteric avian rotavirus (ARV) is the etiological agent of several health problems that pose a global threat to commercial chickens. Therefore, to avoid these widespread epidemics and high mortality rates, only vaccine and strict biosecurity are required. METHOD The present study employs computational techniques to design a unique multi-epitope-based vaccine candidate that successfully activates immune cells against the ARV by combining adjuvant, linker, and B and T-cell epitopes. Starting, homologous sequences in the various ARV serotypes were revealed in the NCBI BLAST database, and then the two surface proteins (VP4 and VP7) of the ARV were retrieved from the UniprotKB database. The Clustal Omega server was then used to identify the conserved regions among the homologous sequences, and the B and T-cell epitopes were predicted using IEDB servers. Then, superior epitopes-2 MHC-1 epitopes, 2 MHC-2 epitopes, and 3B-cell epitopes-were combined with various adjuvants to create a total of four unique vaccine candidates. Afterward, the designed vaccine candidates underwent computational validation to assess their antigenicity, allergenicity, and stability. The vaccine candidate (V2) that demonstrated non-antigenicity, a high VaxiJen score, and non-allergenicity was ultimately chosen for molecular docking and dynamic simulation. RESULTS Although the V2 and V4 vaccine candidates were highly immunogenic, V2 had a higher solubility rate. The predicted values of the aliphatic index and GRAVY value were 30.4 and 0.417, respectively. In terms of binding energy, V2 outperformed V4. Being successfully docked with TLRs, V2 was praised as the finest. After adaptation, the sequence's 50.73 % GC content outside of the BglII or ApaI restriction sites indicated that it was equivalently safe to clone. The chosen sequence was then inserted into the pET28a(+) vector within the BglII and ApaI restriction sites. This resulted in a final clone that was 4914 base pairs long, with the inserted sequence accounting for 478 bp and the vector accounting for the remainder. CONCLUSIONS The immune-mediated simulation results for the selected vaccine construct showed significant response; thus, the study confirmed that the selected V2 vaccine candidate could enhance the immune response against ARV.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Md Imranuzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rezaul Bari
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Shiplu Roy
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Livestock Production and Management, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mukthar Mia
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
24
|
Omatola CA, Olaniran AO. Molecular Characterization and Phylogenetic analyses of Rotaviruses Circulating in Municipal Sewage and Sewage-Polluted River Waters in Durban Area, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:363-379. [PMID: 38914870 PMCID: PMC11422280 DOI: 10.1007/s12560-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/17/2024] [Indexed: 06/26/2024]
Abstract
Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, Republic of South Africa.
| |
Collapse
|
25
|
Ghonaim AH, Yi G, Lei M, Xie D, Ma H, Yang Z, Usama U, Wu H, Jiang Y, Li W, He Q. Isolation, characterization and whole-genome analysis of G9 group a rotaviruses in China: Evidence for possible Porcine-Human interspecies transmission. Virology 2024; 597:110129. [PMID: 38908046 DOI: 10.1016/j.virol.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.9%. RVA was confirmed in two out of 5 calf samples. We successfully isolated two porcine samples using MA104 cell line. The full-length genetic constellation of the two isolates were determined to be G9-P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1, with close similarity to human Wa-like and porcine strains. Sequence analysis revealed the majority of genes were closely related to porcine and human RVAs. Phylogenetic analysis revealed that these isolates might have their ancestral origin from pigs, although some of their gene segments were related to human strains. This study reveals evidence of reassortment and possible interspecies transmission between pigs and humans in China.
Collapse
Affiliation(s)
- Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Desert Research Centre, Cairo, Egypt
| | - GuangYuan Yi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Mingkai Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Dongqi Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Hailong Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhengxin Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Usama Usama
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Animal Disease Diagnostic Centre of Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; The Animal Disease Diagnostic Centre of Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Šenica P, Žele Vengušt D, Vengušt G, Kuhar U. Genomic revelations: investigating rotavirus a presence in wild ruminants and its zoonotic potential. Front Vet Sci 2024; 11:1429654. [PMID: 39211480 PMCID: PMC11358691 DOI: 10.3389/fvets.2024.1429654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Rotaviruses A (RVA) are a major cause of acute viral gastroenteritis in humans worldwide and are responsible for about two million hospitalizations per year. They can also infect other mammals such as pigs, calves, goats, lambs, and horses, in which they are also considered a major cause of viral diarrhea. While RVA is well studied in humans and domestic animals, its occurrence in wild ruminants is not well known. The RVA genome is a double-stranded RNA consisting of 11 segments, and genotyping is based on the VP7 (G) and VP4 (P) segments. Currently, there are 42G genotypes and 58P genotypes. RVA has a high mutation rate, and some combinations of G and P genotypes can infect different animal species, leading to speculation about the potential for zoonotic transmission. Materials and methods A total of 432 fecal samples were collected from roe deer, red deer, chamois, mouflon and Alpine ibex in Slovenia between 2017 and 2021. To investigate the presence of RVA in wild ruminants, real-time RT-PCR was used. Positive samples were subjected to next generation sequencing (NGS) using RIP-seq method. Results and discussion In total, 7 samples were RVA positive. Complete genomes were determined and phylogenetically analyzed for all 7 RVAs. Four different genotype constellations were present in 7 positive RVA animals: G8-P[14]-I2- R2-C2-M2-A3-N2-T6-E2-H3, G6-P [14]-I2-R2-C2-M2-A11-N2-T6-E2-H3, G10-P [15]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and G10-P [15]-I2-R2-C2-M2-A11- N2-T6-E2-H3. Genotypes G6P[14] and G10P[15] were found in both roe deer and red deer, representing the first confirmed occurrence of RVA in red deer. In addition, genotype G8P[14] was found in chamois, representing the first known case of positive RVA in this species. Some of these genotypes have also been found in humans, indicating the potential for zoonotic transmission.
Collapse
Affiliation(s)
- Petra Šenica
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - Gorazd Vengušt
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Jalilvand S, Latifi T, Kachooei A, Mirhoseinian M, Hoseini-Fakhr SS, Behnezhad F, Roohvand F, Shoja Z. Circulating rotavirus strains in children with acute gastroenteritis in Iran, 1986 to 2023 and their genetic/antigenic divergence compared to approved vaccines strains (Rotarix, RotaTeq, ROTAVAC, ROTASIIL) before mass vaccination: Clues for vaccination policy makers. Virus Res 2024; 346:199411. [PMID: 38823689 PMCID: PMC11190746 DOI: 10.1016/j.virusres.2024.199411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
In the present study, first, rotaviruses that caused acute gastroenteritis in children under five years of age during the time before the vaccine was introduced in Iran (1986 to 2023) are reviewed. Subsequently, the antigenic epitopes of the VP7 and VP4/VP8 proteins in circulating rotavirus strains in Iran and that of the vaccine strains were compared and their genetic differences in histo-blood group antigens (HBGAs) and the potential impact on rotavirus infection susceptibility and vaccine efficacy were discussed. Overall data indicate that rotavirus was estimated in about 38.1 % of samples tested. The most common genotypes or combinations were G1 and P[8], or G1P[8]. From 2015 to 2023, there was a decline in the prevalence of G1P[8], with intermittent peaks of genotypes G3P[8] and G9P[8]. The analyses suggested that the monovalent Rotarix vaccine or monovalent vaccines containing the G1P[8] component might be proper in areas with a similar rotavirus genotype pattern and genetic background as the Iranian population where the G1P[8] strain is the most predominant and has the ability to bind to HBGA secretors. While the same concept can be applied to RotaTeq and RotasIIL vaccines, their complex vaccine technology, which involves reassortment, makes them less of a priority. The ROTASIIL vaccine, despite not having the VP4 arm (P[5]) as a suitable protection option, has previously shown the ability to neutralize not only G9-lineage I strains but also other G9-lineages at high titers. Thus, vaccination with the ROTASIIL vaccine may be more effective in Iran compared to RotaTeq. However, considering the rotavirus genotypic pattern, ROTAVAC might not be a good choice for Iran. Overall, the findings of this study provide valuable insights into the prevalence of rotavirus strains and the potential effectiveness of different vaccines in the Iranian and similar populations.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Mirhoseinian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzane Behnezhad
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
28
|
Uprety T, Soni S, Sreenivasan C, Hause BM, Naveed A, Ni S, Graves AJ, Morrow JK, Meade N, Mellits KH, Adam E, Kennedy MA, Wang D, Li F. Genetic and antigenic characterization of two diarrhoeicdominant rotavirus A genotypes G3P[12] and G14P[12] circulating in the global equine population. J Gen Virol 2024; 105:002016. [PMID: 39163114 PMCID: PMC11335307 DOI: 10.1099/jgv.0.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shalini Soni
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Chithra Sreenivasan
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Ahsan Naveed
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Amy J. Graves
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Jennifer K. Morrow
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Nathan Meade
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H. Mellits
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Emma Adam
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Michael A. Kennedy
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
29
|
Kachooei A, Mirhoseinian M, Jalilvand S, Latifi T, Feizi M, Shahosseini Z, Arashkia A, Marashi SM, Shoja Z. Molecular characterization of human astrovirus infection in children under 5 years of age with acute gastroenteritis in Tehran, Iran, 2021-2022: co-infection with rotavirus. Virus Genes 2024; 60:357-369. [PMID: 38744749 DOI: 10.1007/s11262-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Human astroviruses (HAstVs) are considered important causative pathogens of acute gastroenteritis (AGE) in children under 5 years of age worldwide, along with group A rotavirus (RVA), norovirus (NoV), and enteric adenovirus (EAdV). The present study was aimed to both detect HAstV and its co-infections and investigate genetic analysis of circulating HAstV and co-infected virus in hospitalized children under 5 years of age with AGE in Iran. Accordingly, a sum of 200 stool specimens were screened by PCR for HAstV during 2021-2022. The HAstV was found in 0.5% of 200 specimens (n = 1) while was co-infected with RVA. The genetic and phylogenetic analysis indicated HAstV1 genotype, which clustered with viruses from lineage 1b, which has not been previously reported in Iran. The detected RVA strain belonged to G1 lineage II/P[8]-lineage III, which has been reported previously in Iran as the most common strain. The further genetic analysis of RVA VP6 and NSP4 demonstrated an atypical genotype pattern G1P[8]-I1-E2, as a mono-reassortant of a Wa-like genogroup, which appeared to be reassorted with the NSP4 gene of E2 genotype of the G2P[4] DS-1 genogroup. Although the clinical outcomes of the AGE-causing viruses co-infection is not yet entirely clear, it seems that future studies will be helpful to merge clinical and epidemiological data of co-infecting viruses for a more accurate medical and clinical relevance in symptomatic children.
Collapse
Affiliation(s)
- Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Mirhoseinian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mahsa Feizi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
30
|
Munlela B, João ED, Strydom A, Bauhofer AFL, Chissaque A, Chilaúle JJ, Maurício IL, Donato CM, O’Neill HG, de Deus N. Whole-Genome Characterization of Rotavirus G9P[6] and G9P[4] Strains That Emerged after Rotavirus Vaccine Introduction in Mozambique. Viruses 2024; 16:1140. [PMID: 39066302 PMCID: PMC11281483 DOI: 10.3390/v16071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mozambique introduced the Rotarix® vaccine into the National Immunization Program in September 2015. Following vaccine introduction, rotavirus A (RVA) genotypes, G9P[4] and G9P[6], were detected for the first time since rotavirus surveillance programs were implemented in the country. To understand the emergence of these strains, the whole genomes of 47 ELISA RVA positive strains detected between 2015 and 2018 were characterized using an Illumina MiSeq-based sequencing pipeline. Of the 29 G9 strains characterized, 14 exhibited a typical Wa-like genome constellation and 15 a DS-1-like genome constellation. Mostly, the G9P[4] and G9P[6] strains clustered consistently for most of the genome segments, except the G- and P-genotypes. For the G9 genotype, the strains formed three different conserved clades, separated by the P type (P[4], P[6] and P[8]), suggesting different origins for this genotype. Analysis of the VP6-encoding gene revealed that seven G9P[6] strains clustered close to antelope and bovine strains. A rare E6 NSP4 genotype was detected for strain RVA/Human-wt/MOZ/HCN1595/2017/G9P[4] and a genetically distinct lineage IV or OP354-like P[8] was identified for RVA/Human-wt/MOZ/HGJM0644/2015/G9P[8] strain. These results highlight the need for genomic surveillance of RVA strains detected in Mozambique and the importance of following a One Health approach to identify and characterize potential zoonotic strains causing acute gastroenteritis in Mozambican children.
Collapse
Affiliation(s)
- Benilde Munlela
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Eva D. João
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
| | - Amy Strydom
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Adilson Fernando Loforte Bauhofer
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Assucênio Chissaque
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Jorfélia J. Chilaúle
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
| | - Isabel L. Maurício
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal;
| | - Celeste M. Donato
- The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia;
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Nilsa de Deus
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Julius Nyerere Avenue, Maputo 3453, Mozambique
| |
Collapse
|
31
|
Fujii Y, Tsugawa T, Fukuda Y, Adachi S, Honjo S, Akane Y, Kondo K, Sakai Y, Tanaka T, Sato T, Higasidate Y, Kubo N, Mori T, Kato S, Hamada R, Kikuchi M, Tahara Y, Nagai K, Ohara T, Yoshida M, Nakata S, Noguchi A, Kikuchi W, Hamada H, Tokutake-Hirose S, Fujimori M, Muramatsu M. Molecular evolutionary analysis of novel NSP4 mono-reassortant G1P[8]-E2 rotavirus strains that caused a discontinuous epidemic in Japan in 2015 and 2018. Front Microbiol 2024; 15:1430557. [PMID: 39050631 PMCID: PMC11266183 DOI: 10.3389/fmicb.2024.1430557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In the 2010s, several unusual rotavirus strains emerged, causing epidemics worldwide. This study reports a comprehensive molecular epidemiological study of rotaviruses in Japan based on full-genome analysis. From 2014 to 2019, a total of 489 rotavirus-positive stool specimens were identified, and the associated viral genomes were analyzed by next-generation sequencing. The genotype constellations of those strains were classified into nine patterns (G1P[8] (Wa), G1P[8]-E2, G1P[8] (DS-1), G2P[4] (DS-1), G3P[8] (Wa), G3P[8] (DS-1), G8P[8] (DS-1), G9P[8] (Wa), and G9P[8]-E2). The major prevalent genotype differed by year, comprising G8P[8] (DS-1) (37% of that year's isolates) in 2014, G1P[8] (DS-1) (65%) in 2015, G9P[8] (Wa) (72%) in 2016, G3P[8] (DS-1) (66%) in 2017, G1P[8]-E2 (53%) in 2018, and G9P[8] (Wa) (26%) in 2019. The G1P[8]-E2 strains (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1) isolated from a total of 42 specimens in discontinuous years (2015 and 2018), which were the newly-emerged NSP4 mono-reassortant strains. Based on the results of the Bayesian evolutionary analyses, G1P[8]-E2 and G9P[8]-E2 were hypothesized to have been generated from distinct independent inter-genogroup reassortment events. The G1 strains detected in this study were classified into multiple clusters, depending on the year of detection. A comparison of the predicted amino acid sequences of the VP7 epitopes revealed that the G1 strains detected in different years encoded VP7 epitopes harboring distinct mutations. These mutations may be responsible for immune escape and annual changes in the prevalent strains.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Shuhei Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yoshiyuki Sakai
- Department of Pediatrics, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Toju Tanaka
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Hokkaido, Japan
| | - Toshiya Sato
- Department of Pediatrics, Iwamizawa Municipal General Hospital, Hokkaido, Japan
| | - Yoshihito Higasidate
- Department of Pediatrics, Japan Community Health Care Organization Sapporo Hokushin Hospital, Hokkaido, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Japan Red Cross Urakawa Hospital, Hokkaido, Japan
| | - Toshihiko Mori
- Department of Pediatrics, NTT Medical Center Sapporo, Hokkaido, Japan
| | - Shinsuke Kato
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Ryo Hamada
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Masayoshi Kikuchi
- Department of Pediatrics, Sunagawa City Medical Center, Hokkaido, Japan
| | - Yasuo Tahara
- Department of Pediatrics, Steel Memorial Muroran Hospital, Hokkaido, Japan
| | - Kazushige Nagai
- Department of Pediatrics, Takikawa Municipal Hospital, Hokkaido, Japan
| | - Toshio Ohara
- Department of Pediatrics, Tomakomai City Hospital, Hokkaido, Japan
| | - Masaki Yoshida
- Department of Pediatrics, Yakumo General Hospital, Hokkaido, Japan
| | | | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Wakako Kikuchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Shoko Tokutake-Hirose
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Makoto Fujimori
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
32
|
Li P, Zhao D, Wang T, Yu D, Zhang K. Isolation and Genomic Characterization of the G6P[1]-Type Sheep Rotavirus in China. Transbound Emerg Dis 2024; 2024:9614599. [PMID: 40303190 PMCID: PMC12016906 DOI: 10.1155/2024/9614599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 05/02/2025]
Abstract
Rotavirus A (RVA) is a prevalent cause of enteric diarrhea in infants, bovine, pigs, and sheep globally. Currently, the G6P[1]-type rotaviruses are prevalent in sheep or goat in Bangladesh, Turkey, and Uganda. However, this genotype has not been reported in Chinese sheep or goat. Therefore, 12 anal swabs were collected from diarrheal sheep in Gansu Province, China, in 2023 and tested for rotavirus using reverse transcription-polymerase chain reaction (RT-PCR). Pathological sections and immunohistochemistry were used to observe pathological changes and rotavirus antigens in the duodenum, respectively. The sheep rotavirus was isolated in MA-104 cells and characterized through indirect immunofluorescence and transmission electron microscopy. The genes of the strain were obtained using the next-generation sequencing technology and analyzed phylogenetically. One sheep was positive for rotavirus by RT-PCR, and immunohistochemistry revealed numerous rotavirus antigens in the apical portion of the duodenal villi. Transmission electron microscopy revealed that the strain was characterized by virus particles that were "wheel-shaped" and measured 70-80 nm in size. The gene constellations of this strain is G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3. BLASTn and phylogenetic tree analyses suggest that this strain is likely a recombinant of human rotavirus, goat rotavirus, and bovine rotavirus. The comparison of amino acid similarities revealed three differences in the key antigenic epitopes of the VP7 and VP4 proteins between the GO34 strain and this study strain despite the identical gene constellations of the two strains. To date, this is the first report of this constellation of RVA being found in sheep.
Collapse
Affiliation(s)
- Ping Li
- School of Life Science and EngineeringFoshan University, Foshan 528000, Guangdong, China
- College of Animal Science and TechnologyTarim University, Alar 843300, Xinjiang, China
| | - DengShuai Zhao
- School of Life Science and EngineeringFoshan University, Foshan 528000, Guangdong, China
| | - TianYu Wang
- School of Life Science and EngineeringFoshan University, Foshan 528000, Guangdong, China
| | - DiXi Yu
- School of Life Science and EngineeringFoshan University, Foshan 528000, Guangdong, China
| | - KeShan Zhang
- School of Life Science and EngineeringFoshan University, Foshan 528000, Guangdong, China
| |
Collapse
|
33
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Dao ATH, Nguyen AT, Bines JE, Thomas S, Grabovac V, Kataoka-Nakamura C, Taichiro T, Hasebe F, Kodama T, Kaneko M, Dang HTT, Duong HT, Anh DD, Nakagomi O. Evolution of DS-1-like G8P[8] rotavirus A strains from Vietnamese children with acute gastroenteritis (2014-21): Adaptation and loss of animal rotavirus-derived genes during human-to-human spread. Virus Evol 2024; 10:veae045. [PMID: 38952820 PMCID: PMC11215986 DOI: 10.1093/ve/veae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Trang Thu Thi Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Sarah Thomas
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Varja Grabovac
- Vaccine-Preventable Diseases and Immunization Unit, Division of Programmes for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila 1000, Philippines
| | - Chikako Kataoka-Nakamura
- Center Surveillance Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka 768-0065, Japan
| | - Takemura Taichiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Miho Kaneko
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Huyen Thi Thanh Dang
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hong Thi Duong
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
34
|
Carter MH, Gribble J, Diller JR, Denison MR, Mirza SA, Chappell JD, Halasa NB, Ogden KM. Human Rotaviruses of Multiple Genotypes Acquire Conserved VP4 Mutations during Serial Passage. Viruses 2024; 16:978. [PMID: 38932271 PMCID: PMC11209247 DOI: 10.3390/v16060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.
Collapse
Affiliation(s)
- Maximilian H. Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara A. Mirza
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natasha B. Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
35
|
Miura T, Kadoya SS, Miura Y, Takino H, Akiba M, Sano D, Masuda T. Pepper mild mottle virus intended for use as a process indicator for drinking water treatment: Present forms and quantitative relations to norovirus and rotavirus in surface water. WATER RESEARCH 2024; 257:121713. [PMID: 38733963 DOI: 10.1016/j.watres.2024.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Pepper mild mottle virus (PMMoV) has been proposed as a potential indicator of human enteric viruses in environmental water and for viral removal during drinking water treatment. To investigate the occurrence and present forms of PMMoV and quantitative relations to norovirus GII and rotavirus A (RVA) in surface waters, 147 source water samples were collected from 21 drinking water treatment plants (DWTPs) in Japan between January 2018 and January 2021, and the concentrations of viruses in suspended and dissolved fractions were measured using real-time RT-PCR. PMMoV was detected in 81-100 % of samples in each sample month and observed concentrations ranged from 3.0 to 7.0 log10 copies/L. The concentrations of PMMoV were higher in dissolved fraction compared to suspended fractions, while different partitioning was observed for NoV GII depending on seasons. The concentrations of PMMoV were basically higher than those of norovirus GII (1.9-5.3 log10 copies/L) and RVA (1.9-6.6 log10 copies/L), while in 18 samples, RVA presented higher concentrations than PMMoV. Partial regions of VP7, VP4, and VP6 of the RVA in the 18 samples were amplified using nested PCR, and the genotypes were determined using an amplicon-based next-generation sequencing approach. We found that these source water samples included not only human RVA but also various animal RVA and high genetic diversity due to the existence of animal RVA was associated with a higher RVA concentration than PMMoV. Our findings suggest that PMMoV can be used as an indicator of norovirus GII and human RVA in drinking water sources and that the indicator performance should be evaluated by comparing to zoonotic viruses as well as human viruses.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan.
| | - Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Tohoku University, Japan; Department of Urban Engineering, The University of Tokyo, Japan
| | - Yohei Miura
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | - Hiroyuki Takino
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Michihiro Akiba
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Japan
| | | |
Collapse
|
36
|
Zhou X, Hou X, Xiao G, Liu B, Jia H, Wei J, Mi X, Guo Q, Wei Y, Zhai SL. Emergence of a Novel G4P[6] Porcine Rotavirus with Unique Sequence Duplication in NSP5 Gene in China. Animals (Basel) 2024; 14:1790. [PMID: 38929409 PMCID: PMC11200575 DOI: 10.3390/ani14121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus is a major causative agent of diarrhoea in children, infants, and young animals around the world. The associated zoonotic risk necessitates the serious consideration of the complete genetic information of rotavirus. A segmented genome makes rotavirus prone to rearrangement and the formation of a new viral strain. Monitoring the molecular epidemiology of rotavirus is essential for its prevention and control. The quantitative RT-PCR targeting the NSP5 gene was used to detect rotavirus group A (RVA) in pig faecal samples, and two pairs of universal primers and protocols were used for amplifying the G and P genotype. The genotyping and phylogenetic analysis of 11 genes were performed by RT-PCR and a basic bioinformatics method. A unique G4P[6] rotavirus strain, designated S2CF (RVA/Pig-tc/CHN/S2CF/2023/G4P[6]), was identified in one faecal sample from a piglet with severe diarrhoea in Guangdong, China. Whole genome sequencing and analysis suggested that the 11 segments of the S2CF strain showed a unique Wa-like genotype constellation and a typical porcine RVA genomic configuration of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Notably, 4 of the 11 gene segments (VP4, VP6, VP2, and NSP5) clustered consistently with human-like RVAs, suggesting independent human-to-porcine interspecies transmission. Moreover, a unique 344-nt duplicated sequence was identified for the first time in the untranslated region of NSP5. This study further reveals the genetic diversity and potential inter-species transmission of porcine rotavirus.
Collapse
Affiliation(s)
- Xia Zhou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Xueyan Hou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guifa Xiao
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Handuo Jia
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Xiaoyun Mi
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China; (J.W.); (X.M.)
| | - Shao-Lun Zhai
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou 510640, China; (X.Z.); (X.H.); (G.X.); (B.L.); (H.J.)
| |
Collapse
|
37
|
Fukuda Y, Kondo K, Nakata S, Morita Y, Adachi N, Kogawa K, Ukae S, Kudou Y, Adachi S, Yamamoto M, Fukumura S, Tsugawa T. Whole-genome analysis of human group A rotaviruses in 1980s Japan and evolutionary assessment of global Wa-like strains across half a century. J Gen Virol 2024; 105. [PMID: 38836747 DOI: 10.1099/jgv.0.001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Historically, the Wa-like strains of human group A rotavirus (RVA) have been major causes of gastroenteritis. However, since the 2010s, the circulation of non-Wa-like strains has been increasingly reported, indicating a shift in the molecular epidemiology of RVA. Although understanding RVA evolution requires the analysis of both current and historical strains, comprehensive pre-1980's sequencing data are scarce globally. We determined the whole-genome sequences of representative strains from six RVA gastroenteritis outbreaks observed at an infant home in Sapporo, Japan, between 1981 and 1989. These outbreaks were mainly caused by G1 or G3 Wa-like strains, resembling strains from the United States in the 1970s-1980s and from Malawi in the 1990s. Phylogenetic analysis of these infant home strains, together with Wa-like strains collected worldwide from the 1970s to 2020, revealed a notable trend: pre-2010 strains diverged into multiple lineages in many genomic segments, whereas post-2010 strains tended to converge into a single lineage. However, Bayesian skyline plot indicated near-constant effective population sizes from the 1970s to 2020, and selection pressure analysis identified positive selection only at amino acid 75 of NSP2. These results suggest that evidence supporting the influence of rotavirus vaccines, introduced globally since 2006, on Wa-like RVA molecular evolution is lacking at present, and phylogenetic analysis may simply reflect natural fluctuations in RVA molecular evolution. Evaluating the long-term impact of RV vaccines on the molecular evolution of RVA requires sustained surveillance.
Collapse
Affiliation(s)
- Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shuji Nakata
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuyuki Morita
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriaki Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiko Kogawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Susumu Ukae
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshimasa Kudou
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shuhei Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
38
|
Kawagishi T, Sánchez-Tacuba L, Feng N, Greenberg HB, Ding S. Reverse Genetics of Murine Rotavirus: A Comparative Analysis of the Wild-Type and Cell-Culture-Adapted Murine Rotavirus VP4 in Replication and Virulence in Neonatal Mice. Viruses 2024; 16:767. [PMID: 38793648 PMCID: PMC11125933 DOI: 10.3390/v16050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Small-animal models and reverse genetics systems are powerful tools for investigating the molecular mechanisms underlying viral replication, virulence, and interaction with the host immune response in vivo. Rotavirus (RV) causes acute gastroenteritis in many young animals and infants worldwide. Murine RV replicates efficiently in the intestines of inoculated suckling pups, causing diarrhea, and spreads efficiently to uninoculated littermates. Because RVs derived from human and other non-mouse animal species do not replicate efficiently in mice, murine RVs are uniquely useful in probing the viral and host determinants of efficient replication and pathogenesis in a species-matched mouse model. Previously, we established an optimized reverse genetics protocol for RV and successfully generated a murine-like RV rD6/2-2g strain that replicates well in both cultured cell lines and in the intestines of inoculated pups. However, rD6/2-2g possesses three out of eleven gene segments derived from simian RV strains, and these three heterologous segments may attenuate viral pathogenicity in vivo. Here, we rescued the first recombinant RV with all 11 gene segments of murine RV origin. Using this virus as a genetic background, we generated a panel of recombinant murine RVs with either N-terminal VP8* or C-terminal VP5* regions chimerized between a cell-culture-adapted murine ETD strain and a non-tissue-culture-adapted murine EW strain and compared the diarrhea rate and fecal RV shedding in pups. The recombinant viruses with VP5* domains derived from the murine EW strain showed slightly more fecal shedding than those with VP5* domains from the ETD strain. The newly characterized full-genome murine RV will be a useful tool for dissecting virus-host interactions and for studying the mechanism of pathogenesis in neonatal mice.
Collapse
Affiliation(s)
- Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Liliana Sánchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Harry B. Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
França Y, Medeiros RS, Viana E, de Azevedo LS, Guiducci R, da Costa AC, Luchs A. Genetic diversity and evolution of G12P[6] DS-1-like and G12P[9] AU-1-like Rotavirus strains in Brazil. Funct Integr Genomics 2024; 24:92. [PMID: 38733534 DOI: 10.1007/s10142-024-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.
Collapse
Affiliation(s)
- Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
| |
Collapse
|
40
|
Wang J, Zhou J, Zhu X, Bian X, Han N, Fan B, Gu L, Cheng X, Li S, Tao R, Li J, Zhang X, Li B. Isolation and characterization of a G9P[23] porcine rotavirus strain AHFY2022 in China. Microb Pathog 2024; 190:106612. [PMID: 38467166 DOI: 10.1016/j.micpath.2024.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Nan Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Laqiang Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Xi Cheng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, 225009, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
41
|
Valusenko-Mehrkens R, Schilling-Loeffler K, Johne R, Falkenhagen A. VP4 Mutation Boosts Replication of Recombinant Human/Simian Rotavirus in Cell Culture. Viruses 2024; 16:565. [PMID: 38675907 PMCID: PMC11054354 DOI: 10.3390/v16040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.
Collapse
Affiliation(s)
| | | | | | - Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (R.V.-M.); (K.S.-L.); (R.J.)
| |
Collapse
|
42
|
Gutierrez MB, Arantes I, Bello G, Berto LH, Dutra LH, Kato RB, Fumian TM. Emergence and dissemination of equine-like G3P[8] rotavirus A in Brazil between 2015 and 2021. Microbiol Spectr 2024; 12:e0370923. [PMID: 38451227 PMCID: PMC10986506 DOI: 10.1128/spectrum.03709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Rotavirus A (RVA) is a major cause of acute gastroenteritis globally that is classically genotyped by its two immunodominant outer capsid proteins, VP7 (G-) and VP4 (P-). Recent evidence suggests that the reassortant equine-like G3P[8] strain played a substantial role in RVA transmission in Brazil since 2015. To understand its global emergence and dissemination in Brazilian territory, stool samples collected from 11 Brazilian states (n = 919) were genotyped by RT-qPCR and proceeded to sequence the VP7 gene (n = 102, 79 being newly generated) of the G3P[8] samples with pronounced viral loads. Our phylogenetic genotyping showed that G3P[8] became the dominant strain in Brazil between 2017 and 2020, with equine-like variants representing 75%-100% of VP7 samples in this period. A Bayesian discrete phylogeographic analysis strongly suggests that the equine-like G3P[8] strain originated in Asia during the early 2010s and subsequently spread to Europe, the Caribbean, and South America. Multiple introductions were detected in Brazil between 2014 and 2017, resulting in five national clusters. The reconstruction of the effective population size of the largest Brazilian cluster showed an expansion until 2017, followed by a plateau phase until 2019 and subsequent contraction. Our study also supports that most mutations fixed during equine-like G3P[8] evolution were synonymous, suggesting that adaptive evolution was not an important driving force during viral dissemination in humans, potentially increasing its susceptibility to acquired immunity. This research emphasizes the need for comprehensive rotavirus genomic surveillance that allows close monitoring of its ever-shifting composition and informs more effective public health policies.IMPORTANCEOur original article demonstrated the origin and spread in a short time of equine-like G3P[8] in Brazil and the world. Due to its segmented genome, it allows numerous mechanisms including genetic drift and reassortment contribute substantially to the genetic diversity of rotavirus. Although the effectiveness and increasing implementation of vaccination have not been questioned, a matter of concern is its impact on the emergence of escape mutants or even the spread of unusual strains of zoonotic transmission that could drive epidemic patterns worldwide. This research emphasizes the need for comprehensive rotavirus genomic surveillance, which could facilitate the formulation of public policies aimed at preventing and mitigating its transmission.
Collapse
Affiliation(s)
| | - Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Lúcia Helena Berto
- Coordenação Geral de Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Leonardo Hermes Dutra
- Coordenação Geral de Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Rodrigo Bentes Kato
- Coordenação Geral de Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Tulio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Fukuda Y, Kusuhara H, Takai-Todaka R, Haga K, Katayama K, Tsugawa T. Human transmission and outbreaks of feline-like G6 rotavirus revealed with whole-genome analysis of G6P[9] feline rotavirus. J Med Virol 2024; 96:e29565. [PMID: 38558056 DOI: 10.1002/jmv.29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.
Collapse
Affiliation(s)
- Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hajime Kusuhara
- Mie Prefecture Health and Environment Research Institute, Mie, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
44
|
Snyder AJ, Agbemabiese CA, Patton JT. Production of OSU G5P[7] Porcine Rotavirus Expressing a Fluorescent Reporter via Reverse Genetics. Viruses 2024; 16:411. [PMID: 38543776 PMCID: PMC10974435 DOI: 10.3390/v16030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
Rotaviruses are a significant cause of severe, potentially life-threatening gastroenteritis in infants and the young of many economically important animals. Although vaccines against porcine rotavirus exist, both live oral and inactivated, their effectiveness in preventing gastroenteritis is less than ideal. Thus, there is a need for the development of new generations of porcine rotavirus vaccines. The Ohio State University (OSU) rotavirus strain represents a Rotavirus A species with a G5P[7] genotype, the genotype most frequently associated with rotavirus disease in piglets. Using complete genome sequences that were determined via Nanopore sequencing, we developed a robust reverse genetics system enabling the recovery of recombinant (r)OSU rotavirus. Although rOSU grew to high titers (~107 plaque-forming units/mL), its growth kinetics were modestly decreased in comparison to the laboratory-adapted OSU virus. The reverse genetics system was used to generate the rOSU rotavirus, which served as an expression vector for a foreign protein. Specifically, by engineering a fused NSP3-2A-UnaG open reading frame into the segment 7 RNA, we produced a genetically stable rOSU virus that expressed the fluorescent UnaG protein as a functional separate product. Together, these findings raise the possibility of producing improved live oral porcine rotavirus vaccines through reverse-genetics-based modification or combination porcine rotavirus vaccines that can express neutralizing antigens for other porcine enteric diseases.
Collapse
Affiliation(s)
- Anthony J. Snyder
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Simon Hall 011, Bloomington, IN 47405, USA; (A.J.S.); (C.A.A.)
| | - Chantal A. Agbemabiese
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Simon Hall 011, Bloomington, IN 47405, USA; (A.J.S.); (C.A.A.)
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra 00233, Ghana
| | - John T. Patton
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Simon Hall 011, Bloomington, IN 47405, USA; (A.J.S.); (C.A.A.)
| |
Collapse
|
45
|
Shizawa S, Fukuda F, Kikkawa Y, Oi T, Takemae H, Masuda T, Ishida H, Murakami H, Sakaguchi S, Mizutani T, Nagai M, Oba M. Genomic diversity of group A rotaviruses from wild boars and domestic pigs in Japan: wide prevalence of NSP5 carrying the H2 genotype. Arch Virol 2024; 169:63. [PMID: 38451342 DOI: 10.1007/s00705-023-05954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 03/08/2024]
Abstract
Group A rotavirus (RVA) sequences were detected in 10.8% (23/212) and 20.7% (87/421) of fecal samples collected in 2017-2022 from wild boars and domestic pigs, using next-generation sequencing. Complete genome sequence analysis of one wild boar and 13 domestic pig RVAs revealed that six of them carried the rare H2 NSP5 genotype. Out of the 39 samples for which the NSP5 genotype could be determined, 23 (59.0%) were of genotype H2. H2 porcine RVAs consist exclusively of Japanese porcine RVAs and exhibit sequence diversity in each segment, suggesting that H2 porcine RVAs may have evolved through reassortment within the Japanese pig population.
Collapse
Affiliation(s)
- Shigeki Shizawa
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Fujiko Fukuda
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa, 920-3101, Japan
| | | | - Toru Oi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hitoshi Takemae
- Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tsuneyuki Masuda
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-0085, Japan
| | - Hiroho Ishida
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Tetsuya Mizutani
- Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
- Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Mami Oba
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan.
- Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
46
|
De Grazia S, Filizzolo C, Bonura F, Pizzo M, Di Bernardo F, Collura A, Pellegrini F, Martella V, Giammanco GM. Identification of a novel intra-genotype reassortant G1P[8] rotavirus in Italy, 2021. Int J Infect Dis 2024; 140:113-118. [PMID: 38307378 DOI: 10.1016/j.ijid.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES Rotaviruses G1P[8] are epidemiologically relevant and are targeted by vaccines. The introduction of vaccines has altered rotavirus epidemiology. Hospital-based surveillance conducted in Sicily, Italy, showed a progressive decline in rotavirus prevalence since 2014, along with an increasing vaccine coverage (63.8% in 2020), and a marked decrease in circulation of G1P[8] strains. Surprisingly in 2021, G1P[8] viruses accounted for 90.5% (19/21) of rotavirus infections. This study aimed to understand if the increased activity of G1P[8]'s was related to virus-related peculiarities. DESIGN In 2021, 266 patients <15 years of age were hospitalized with acute gastroenteritis (AGE) and included in rotavirus surveillance. Viral proteins (VP7 and VP4) genotyping and sequence data were generated from all rotavirus-positive samples. The genetic makeup of G1P[8] rotaviruses was investigated by full-genome sequencing. RESULTS Peculiar G1P[8] rotaviruses, with VP7 and VP4 belonging to novel sub-lineages, circulated in 2021, accounting for 76.2% (16/21) of all rotavirus infections. On full-genome analysis, the novel G1P[8] variant displayed an intra-genotype (Wa-like) reassortant constellation, involving G12 and G1 strains, into a unique arrangement never observed before. The novel G1P[8] variant showed peculiar amino acid substitutions in 8-1 and 8-3 epitopes of the VP4 with respect to the Rotarix strain. CONCLUSIONS Prompt identification of virus variants circulating in the human population is pivotal to understanding epidemiological trends and assessing vaccine efficacy.
Collapse
Affiliation(s)
- Simona De Grazia
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", A.O.U.P "P. Giaccone", Università degli Studi di Palermo, Italy.
| | - Chiara Filizzolo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", A.O.U.P "P. Giaccone", Università degli Studi di Palermo, Italy
| | - Floriana Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", A.O.U.P "P. Giaccone", Università degli Studi di Palermo, Italy
| | - Mariangela Pizzo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", A.O.U.P "P. Giaccone", Università degli Studi di Palermo, Italy
| | - Francesca Di Bernardo
- Unità Operativa di Microbiologia e Virologia, Ospedale Civico e Di Cristina, ARNAS, Palermo, Italy
| | - Antonina Collura
- Unità Operativa di Microbiologia e Virologia, Ospedale Civico e Di Cristina, ARNAS, Palermo, Italy
| | | | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università di Bari, Italy
| | - Giovanni M Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", A.O.U.P "P. Giaccone", Università degli Studi di Palermo, Italy
| |
Collapse
|
47
|
Hensley C, Roier S, Zhou P, Schnur S, Nyblade C, Parreno V, Frazier A, Frazier M, Kiley K, O’Brien S, Liang Y, Mayer BT, Wu R, Mahoney C, McNeal MM, Petsch B, Rauch S, Yuan L. mRNA-Based Vaccines Are Highly Immunogenic and Confer Protection in the Gnotobiotic Pig Model of Human Rotavirus Diarrhea. Vaccines (Basel) 2024; 12:260. [PMID: 38543894 PMCID: PMC10974625 DOI: 10.3390/vaccines12030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.
Collapse
Affiliation(s)
- Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sandro Roier
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sofia Schnur
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Viviana Parreno
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Kelsey Kiley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Samantha O’Brien
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Yu Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Ruizhe Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Monica M. McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | - Susanne Rauch
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| |
Collapse
|
48
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
49
|
Sadiq A, Khan J. Rotavirus in developing countries: molecular diversity, epidemiological insights, and strategies for effective vaccination. Front Microbiol 2024; 14:1297269. [PMID: 38249482 PMCID: PMC10797100 DOI: 10.3389/fmicb.2023.1297269] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Rotavirus (RV) causes the loss of numerous children's lives worldwide each year, and this burden is particularly heavy in low- and lower-middle-income countries where access to healthcare is limited. RV epidemiology exhibits a diverse range of genotypes, which can vary in prevalence and impact across different regions. The human genotypes that are most commonly recognized are G1P[8], G2P[4], G3P[8], G4P[8], G8P[8], G9P[8], and G12P[8]. The diversity of rotavirus genotypes presents a challenge in understanding its global distribution and developing effective vaccines. Oral, live-attenuated rotavirus vaccines have undergone evaluation in various contexts, encompassing both low-income and high-income populations, demonstrating their safety and effectiveness. Rotavirus vaccines have been introduced and implemented in over 120 countries, offering an opportunity to assess their effectiveness in diverse settings. However, these vaccines were less effective in areas with more rotavirus-related deaths and lower economic status compared to wealthier regions with fewer rotavirus-related deaths. Despite their lower efficacy, rotavirus vaccines significantly decrease the occurrence of diarrheal diseases and related mortality. They also prove to be cost-effective in regions with a high burden of such diseases. Regularly evaluating the impact, influence, and cost-effectiveness of rotavirus vaccines, especially the newly approved ones for worldwide use, is essential for deciding if these vaccines should be introduced in countries. This is especially important in places with limited resources to determine if a switch to a different vaccine is necessary. Future research in rotavirus epidemiology should focus on a comprehensive understanding of genotype diversity and its implications for vaccine effectiveness. It is crucial to monitor shifts in genotype prevalence and their association with disease severity, especially in high-risk populations. Policymakers should invest in robust surveillance systems to monitor rotavirus genotypes. This data can guide vaccine development and public health interventions. International collaboration and data sharing are vital to understand genotype diversity on a global scale and facilitate the development of more effective vaccines.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jadoon Khan
- Department of Allied and Health Sciences, IQRA University, Chak Shahzad Campus, Islamabad, Pakistan
| |
Collapse
|
50
|
Li Q, Wang Z, Jiang J, He B, He S, Tu C, Guo Y, Gong W. Outbreak of piglet diarrhea associated with a new reassortant porcine rotavirus B. Vet Microbiol 2024; 288:109947. [PMID: 38101077 DOI: 10.1016/j.vetmic.2023.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Rotavirus B (RVB) is a causative agent leading to acute viral gastroenteritis diarrhea in both children and young animals, and has been commonly detected in piglets. In order to determine the causative agent of diarrheal outbreak occurring in December 2022 in piglets from a pig herd in Luoyang, Henan province of China, four common viral pathogens causing piglet diarrhea-three coronaviruses and rotavirus A (RVA) were first tested and found negative, therefore metagenomic sequencing was performed to explore other potential pathogens in the diarrheal samples. Unexpectedly, the most abundant viral reads mapped to RVB, and were de novo assembled to complete 11 viral gene segments. Sequence comparisons revealed that 5 gene segments encoding VP1, VP2, VP3, NSP3 and NSP4 of RVB strain designated as HNLY-2022 are most closely related to RVB strains derived from herbivores with low nucleotide similarities of 65.7-75.3%, and the remaining segments were relatively close to porcine RVB strains with the VP4 gene segment showing very low nucleotide identity (65.0%) with reference strains, indicating HNLY-2022 is a new reassortant RVB strain. Based on the previously proposed genotype classification criterion, the genotype constellation of RVB strain HNLY-2022 is G6-P[6]-I4-R6-C6-M6-A7-N5-T7-E5-H4 with more than half of the genotypes (P[6], R6, C6, M6, T7 and E5) newly reported. Therefore, the new reassortant RVB strain is the likely causative agent for the diarrheal outbreak of piglets occurred in China and more epidemiological studies should be conducted to monitor the spread of this newly identified porcine RVB strain.
Collapse
Affiliation(s)
- Qingxian Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zunbao Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianfeng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Sun He
- TECON Biopharmaceutical Co., Ltd., Urumqi 830000, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjie Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|