1
|
Yang J, Qian Y, Kim C, Birhanu BT, Cal Y Mayor-Luna C, Ding D, Yu X, Schroeder VA, Mobashery S, Chang M. Targeting SleC and CspB in the Inhibition of Spore Germination in Clostridioides difficile. J Med Chem 2025; 68:9357-9370. [PMID: 40286328 DOI: 10.1021/acs.jmedchem.4c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Clostridioides difficile, a Gram-positive, spore-forming anaerobic bacterium, is a major healthcare threat. Its spores colonize the gut following dysbiosis caused by broad-spectrum antibiotics, remaining dormant until host's bile acid triggers germination into vegetative cells that produce toxins, leading to diarrhea, colitis, and potentially death. Current antibiotics to treat C. difficile infection target vegetative cells but not spore germination, a pivotal step in infection development. This study unveils 1,2,4-oxadiazoles as a novel class of spore germination inhibitors and delineates the structure-activity relationship. Screening of 120 oxadiazoles revealed compound 110 (IC50 = 14 ± 1 μM or 6.3 ± 0.4 μg/mL). Compound 110 targets mature SleC (Kd = 12 ± 1.0 μM) and CspB (Kd = 8.0 ± 1.0 μM) on spores, inhibiting their enzymatic activities, thus preventing spore germination. To our knowledge, compound 110 is the first reported spore germination inhibitor targeting SleC/CspB, offering a promising avenue for C. difficile therapies.
Collapse
Affiliation(s)
- Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Biruk T Birhanu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carlos Cal Y Mayor-Luna
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xiaotan Yu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Valerie A Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
3
|
Lee CC, Tu YC, Wu HT, Ko WC, Liu HC, Tsai PJ, Chang HN, Huang IH, Hung YP. Clostridium Butyricum Miyairi Bacteriocin Treatment for Clostridioides difficile Infections with Clinical Isolates: Insights from In Vitro, Ex Vivo, and Mouse Model Studies. J Glob Antimicrob Resist 2025:S2213-7165(25)00066-9. [PMID: 40147758 DOI: 10.1016/j.jgar.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVE The standard antimicrobial therapy for Clostridioides difficile infections (CDIs) is limited to oral fidaxomicin or vancomycin, but these agents are associated with high treatment failure and recurrence rates. Clostridium butyricum had been proven effective in many kinds of gastrointestinal disease. With a less disturbed gut microbiota, we hypothesized that the properties of Clostridium butyricum Miyairi Bacteriocin (CBM-B) make it a potential therapeutic agent for treating patients with CDIs. METHODS The inhibitory effects of CBM-B and vancomycin were compared using the kinetic time-kill assay, ex vivo co-culture model and mouse model. RESULTS Among the clinical isolates of C. difficile, the minimal inhibitory concentration (MIC) of CBM-B ranged from 0.0625 to 8 µg/ml; the MIC50 and MIC90 were 1 µg/ml and 4 µg/ml, respectively. In the mouse model infected with a RT078 and receiving CBM-B intra-rectal enema therapy, mice infected with isolates with a relative low CBM-B MICs (2 µg/ml, abbreviated as M2) revealed significant better therapeutic effect, including less loss of body weight and cecum weight, compared with those infected with isolates of relative high CBM-B MICs (4 or 8 µg/ml, abbreviated as M4 or M8) . The relative C. difficile bacterial burden in stool of mice receiving CBM-B treatment were significantly lower among mice infected with M2, compared with that infected with M4 or M8. CBMB treatment, compared with vancomycin therapy revealed less disturbance in gut microbiota. CONCLUSION CBM-B could be effective in the treatment of CDIs that infected with a C. difficile isolate with relatively low MICs with less disturbance in gut microbiota.
Collapse
Affiliation(s)
- Ching-Chi Lee
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chen Tu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Tsung Wu
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Chieh Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiang-Ning Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences.
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
4
|
Zvonareva T, Courson DS, Purcell EB. Clostridioides difficile infection study models and prospectives for probing the microbe-host interface. J Bacteriol 2025; 207:e0040724. [PMID: 39912651 PMCID: PMC11925243 DOI: 10.1128/jb.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Clostridioides difficile infection (CDI) is an urgent public health threat with a high rate of recurrence and limited treatment options. In vivo models have been indispensable in understanding CDI pathophysiology and establishing treatment protocols and continue to be essential in pre-clinal testing. More importantly, in vivo models offer the opportunity to probe the complex systemic host response to the microbe, which is impossible to recapitulate in vitro. Nonetheless, constraints related to the availability of animal models, cost, ethical considerations, and regulatory control limit their accessibility for basic research. Furthermore, physiological and habitual divergences between animal models and humans often result in poor translatability to human patients. In addition to being more accessible, in vitro CDI models offer more control over experimental parameters and allow dynamic analysis of early infection. In vitro fermentation offers models for probing microbe-microbe and microbe-microbiome interactions, while continuous multi-stage platforms allow opportunities to study C. difficile pathophysiology and treatment in context with human-derived microbiota. However, these platforms are not suitable for probing the host-pathogen interface, leaving the challenge of modeling early CDI unanswered. As a result, alternative in vitro co-culture platforms are being developed. This review evaluates the strengths and weaknesses of each approach, as well as future directions for C. difficile research.
Collapse
Affiliation(s)
- Tatiana Zvonareva
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - David S. Courson
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - Erin B. Purcell
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
5
|
Sedeek SA, Farowski F, Youssafi S, Tsakmaklis A, Brodesser S, El-Attar MM, Abdelmalek MO, Vehreschild MJGT. In vitro validation concept for lyophilized fecal microbiota products with a focus on bacterial viability. World J Microbiol Biotechnol 2025; 41:83. [PMID: 40011318 PMCID: PMC11865215 DOI: 10.1007/s11274-025-04291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Fecal microbiota transplantation (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), typically administered as a fresh or frozen stool suspension through colonoscopy, nasojejunal tube, or oral capsules. Lyophilized fecal microbiota (LFM) are an alternative to frozen FM products. We aimed to assess whether lyophilization affects bacterial viability and metabolite levels and to develop LFM capsules for clinical use in Germany. Fecal donations from pre-screened volunteers were aliquoted and analyzed through microbial cell counting, bacterial culture, 16S rRNA gene amplicon sequencing, and bile acid assays. Results showed higher counts of viable bacterial cells and cultured anaerobes in unprocessed stool compared to freshly processed stool (p = 0.012 and p < 0.001, respectively). No significant difference in viable bacterial counts was found between freshly processed (day 0), lyophilized (day 3) and frozen FM (day 3) (p = 0.15), nor between freshly processed (day 0), lyophilized (days 30 and 90) and frozen FM (day 30) (p = 0.07). lyophilization did not significantly impact bile acid and 16S rRNA profiling. Encapsulation of lyophilized powder required fewer capsules (10-14) than frozen capsules (30). LFM products are a practical, viable alternative to frozen and fresh FM products, potentially improving storage and patient acceptance.
Collapse
Affiliation(s)
- Sara A Sedeek
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Tropical Medicine and Gastroenterology, Assiut University, Assiut, Egypt
| | - Fedja Farowski
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stella Youssafi
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Susanne Brodesser
- Faculty of Medicine, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, University Hospital of Cologne, Cologne, Germany
| | - Madiha M El-Attar
- Department of Tropical Medicine and Gastroenterology, Assiut University, Assiut, Egypt
| | | | - Maria J G T Vehreschild
- Department of Internal Medicine II, Infectious Diseases, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany.
- Faculty of Medicine, Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, University Hospital Cologne, Cologne, Germany.
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Kim C, Molina R, Lee M, Garay-Alvarez A, Yang J, Qian Y, Birhanu BT, Hesek D, Hermoso JA, Chang M, Mobashery S. Reactions of SleC, Its Structure and Inhibition in Mitigation of Spore Germination in Clostridioides difficile. J Am Chem Soc 2025; 147:5060-5070. [PMID: 39883867 DOI: 10.1021/jacs.4c14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Spore germination in Clostridioides difficile is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species. Furthermore, we report the first X-ray structure of zymogenic prepro-SleC at 2.1 Å resolution. Additionally, the structure provides insights into the YabG and CspB cleavage sites necessary for the activation of the zymogen. The active site of SleC presents relevant differences in contrast to SpoIID, a homologous lytic transglycosylase involved in the sporulation Clostridioides species, explaining the ability of SleC to turn over the spore sacculus, a prerequisite for the germination event. A screening of an in-house library of compounds led to the discovery of an oxadiazole that binds to the mature (activated) form of SleC, whereby it shuts down the ability of spores to germinate in the presence of germinants. This is consistent with the SleC activity as an end-point for the germination cascade. The mechanistic knowledge and the inhibitor hold the promise in addressing an unmet medical need in intervention of recurrent infections by C. difficile.
Collapse
Affiliation(s)
- Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alba Garay-Alvarez
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Biruk T Birhanu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Vázquez-Cuesta S, Olmedo M, Kestler M, Álvarez-Uría A, De la Villa S, Alcalá L, Marín M, Rodríguez-Fernández S, Sánchez-Martínez C, Muñoz P, Bouza E, Reigadas E. Prospective analysis of biomarkers associated with successful faecal microbiota transplantation in recurrent Clostridioides difficile infection. Clin Microbiol Infect 2025:S1198-743X(25)00034-5. [PMID: 39870349 DOI: 10.1016/j.cmi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVES Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success. METHODS We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for recurrent CDI (January 2018 to December 2022). Samples were collected at three time points: at CDI diagnosis, within 24 hours before FMT administration, and 30 days post-FMT. Calprotectin levels were assessed and the V4 region of the 16S rRNA gene was sequenced to analyse the microbiota composition. Sequencing data analysis and statistical analysis were performed using MOTHUR and R. RESULTS Ninety-seven patients underwent FMT (totalling 105 procedures). A total of 221 samples were processed, including 21 donor samples, 24 capsule contents, and 176 patient faecal samples (39 at diagnosis, 63 pre-FMT, and 74 post-FMT). FMT achieved an overall success rate of 85.1% (86/101 cases). The abundance of Bacteroides, Ruminococcus, Megamonas, and certain Prevotella operational taxonomic units was significantly higher in capsules associated with 100% success compared with less effective capsules. FMT engraftment was observed in 95% of patients with favourable outcomes versus 62% of those with recurrences (p 0.006). Additionally, a negative correlation was found between calprotectin levels and specific microbial genera, suggesting an association with successful outcomes. DISCUSSION This study highlights differences in the evolution of faecal microbiota, bacterial engraftment, and inflammation markers (e.g. calprotectin) between patients with varying FMT outcomes. Potential biomarkers for successful FMT were identified, providing valuable insights for optimizing FMT strategies.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Biochemistry and Molecular Biology Department, School of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Martha Kestler
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Álvarez-Uría
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sofía De la Villa
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Sara Rodríguez-Fernández
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Celia Sánchez-Martínez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de investigación biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain.
| |
Collapse
|
8
|
Vinay G, Seppen J, Setlow P, Brul S. Bile acids as germinants for Clostridioides difficile spores, evidence of adaptation to the gut? FEMS Microbiol Rev 2025; 49:fuaf005. [PMID: 39924167 PMCID: PMC11878537 DOI: 10.1093/femsre/fuaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Bacterial spores formed upon metabolic stress have minimal metabolic activity and can remain dormant for years. Nevertheless, they can sense the environment and germinate quickly upon exposure to various germinants. Germinated spores can then outgrow into vegetative cells. Germination of spores of some anaerobes, especially Clostridioides difficile, is triggered by cholic acid and taurocholic acid. Elevated levels of these bile acids are thought to correlate with a perturbed gut microbiome, which cannot efficiently convert primary bile acids into secondary bile acids. That bile acids are germination-triggers suggests these bacteria have a life cycle taking place partially in the mammalian digestive tract where bile acids are plentiful; notably bile acids can be made by all vertebrates. Thus, spores survive in the environment until taken up by a host where they encounter an environment suitable for germination and then proliferate in the largely anaerobic large intestine; some ultimately sporulate there, regenerating environmentally resistant spores in the C. difficile life cycle. This review summarizes current literature on the effects of bile acids and their metabolites on spore germination in the gut and evidence that adaptation to bile acids as germinants is a consequence of a life cycle both inside and outside the digestive tract.
Collapse
Affiliation(s)
- Gianni Vinay
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, United States
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
9
|
Daniel SL, Ridlon JM. Clostridium scindens: history and current outlook for a keystone species in the mammalian gut involved in bile acid and steroid metabolism. FEMS Microbiol Rev 2025; 49:fuaf016. [PMID: 40307670 PMCID: PMC12065433 DOI: 10.1093/femsre/fuaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025] Open
Abstract
Clostridium scindens is a keystone bacterial species in the mammalian gut that, while low in abundance, has a significant impact on bile acid and steroid metabolism. Numerous studies indicate that the two most studied strains of C. scindens (i.e. ATCC 35704 and VPI 12708) are important for a myriad of physiological processes in the host. We focus on both historical and current microbiological and molecular biology work on the Hylemon-Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in C. scindens. Our most recent analysis now calls into question whether strains currently defined as C. scindens represent two separate taxonomic groups. Future directions include developing genetic tools to further explore the physiological role of bile acid and steroid metabolism by strains of C. scindens and the causal role of these pathways in host physiology and disease.
Collapse
Affiliation(s)
- Steven L Daniel
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920, United States
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, United States
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
10
|
Beebe MA, Paredes-Sabja D, Kociolek LK, Rodríguez C, Sorg JA. Phenotypic analysis of various Clostridioides difficile ribotypes reveals consistency among core processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632434. [PMID: 39829883 PMCID: PMC11741275 DOI: 10.1101/2025.01.10.632434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Clostridioides difficile infections (CDI) cause almost 300,000 hospitalizations per year of which ~15-30% are the result of recurring infections. The prevalence and persistence of CDI in hospital settings has resulted in an extensive collection of C. difficile clinical isolates and their classification, typically by ribotype. While much of the current literature focuses on one or two prominent ribotypes (e.g., RT027), recent years have seen several other ribotypes dominate the clinical landscape (e.g., RT106 and RT078). Some ribotypes are associated with severe disease and / or increased recurrence rates, but why are certain ribotypes more prominent or harmful than others remains unknown. Because C. difficile has a large, open pan-genome, this observed relationship between ribotype and clinical outcome could be a result of the genetic diversity of C. difficile. Thus, we hypothesize that core biological processes of C. difficile are conserved across ribotypes / clades. We tested this hypothesis by observing the growth kinetics, sporulation, germination, bile acid sensitivity, bile salt hydrolase activity, and surface motility of fifteen strains belonging to various ribotypes spanning each known C. difficile clade. In viewing these phenotypes across each strain, we see that core phenotypes (growth, germination, sporulation, and resistance to bile salt toxicity) are remarkably consistent across clades / ribotypes. This suggests that variations observed in the clinical setting may be due to unidentified factors in the accessory genome or due to unknown host-factors. Importance C. difficile infections impact thousands of individuals every year many of whom experience recurring infections. Clinical studies have reported an unexplained correlation between some clades / ribotypes of C. difficile and disease severity / recurrence. Here, we demonstrate that C. difficile strains across the major clades / ribotypes are consistent in their core phenotypes. This suggests that such phenotypes are not responsible for variations in disease severity / recurrence and are ideal targets for the development of therapeutics meant to treat C. difficile related infections.
Collapse
Affiliation(s)
- Merilyn A. Beebe
- Department of Biology, Texas A&M University, College Station, TX 77845
| | | | - Larry K. Kociolek
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845
| |
Collapse
|
11
|
Menon R, Bhattarai SK, Crossette E, Prince AL, Olle B, Silber JL, Bucci V, Faith J, Norman JM. Multi-omic profiling a defined bacterial consortium for treatment of recurrent Clostridioides difficile infection. Nat Med 2025; 31:223-234. [PMID: 39747680 DOI: 10.1038/s41591-024-03337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Donor-derived fecal microbiota treatments are efficacious in preventing recurrent Clostridioides difficile infection (rCDI), but they have inherently variable quality attributes, are difficult to scale and harbor the risk of pathogen transfer. In contrast, VE303 is a defined consortium of eight purified, clonal bacterial strains developed for prevention of rCDI. In the phase 2 CONSORTIUM study, high-dose VE303 was well tolerated and reduced the odds of rCDI by more than 80% compared to placebo. VE303 organisms robustly colonized the gut in the high-dose group and were among the top taxa associated with non-recurrence. Multi-omic modeling identified antibiotic history, baseline stool metabolites and serum cytokines as predictors of both on-study CDI recurrence and VE303 colonization. VE303 potentiated early recovery of the host microbiome and metabolites with increases in short-chain fatty acids, secondary bile acids and bile salt hydrolase genes after antibiotic treatment for CDI, which is considered important to prevent CDI recurrences. These results support the idea that VE303 promotes efficacy in rCDI through multiple mechanisms.
Collapse
Affiliation(s)
| | - Shakti K Bhattarai
- Program in Microbiome Dynamics, Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Bernat Olle
- Vedanta Biosciences, Inc., Cambridge, MA, USA
| | | | - Vanni Bucci
- Program in Microbiome Dynamics, Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremiah Faith
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
12
|
Ellegaard AM, Kårhus ML, Krych L, Sonne DP, Forman JL, Hansen SH, Dragsted LO, Nielsen DS, Knop FK. Liraglutide and Colesevelam Change Serum and Fecal Bile Acid Levels in a Randomized Trial With Patients With Bile Acid Diarrhea. Clin Transl Gastroenterol 2024; 15:e00772. [PMID: 39602188 PMCID: PMC11596762 DOI: 10.14309/ctg.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Both liraglutide and colesevelam improve bile acid diarrhea symptoms. Colesevelam binds excess amounts of diarrhea-causing bile acids in the colon, whereas the mode of action for liraglutide remains elusive. In this article, we examined the impact of colesevelam and liraglutide treatment on the concentrations of bile acids in serum and feces and the fecal microbiota composition to better understand the 2 drugs' modes of action. METHODS Bile acid species were analyzed in serum and fecal samples from a randomized, double-blind, double-dummy trial at baseline and after 3 and 6 weeks of orally administered colesevelam (1,875 mg twice daily, n = 26) or subcutaneously administered liraglutide (uptitrated by weekly increments of 0.6 mg from 0.6 to 1.8 mg daily, n = 26) in patients with 75 selenium-homotaurocholic acid test-verified, idiopathic, or postcholecystectomy bile acid diarrhea. Fecal microbiota composition was analyzed by 16S rRNA gene amplicon sequencing at the same time points. RESULTS Colesevelam increased the fecal concentrations of all bile acid species, whereas it decreased serum concentrations of secondary bile acids. Liraglutide induced a small increase in serum unconjugated bile acid concentrations without affecting fecal bile acid concentrations. No changes in fecal microbiota composition were observed with either treatment. DISCUSSION Colesevelam and liraglutide exhibit distinct effects on serum and fecal bile acid concentrations with colesevelam reducing serum concentrations of secondary bile acids and promoting fecal bile acid excretion, whereas liraglutide enhances serum concentrations of unconjugated bile acids, potentially through deceleration of small intestinal transit time allowing more time for passive absorption of bile acids.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - David P. Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L. Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svend H. Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark;
- Current affiliation: Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
13
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
14
|
Lee A, Yoo JS, Yoon EJ. Gut Microbiota and New Microbiome-Targeted Drugs for Clostridioides difficile Infections. Antibiotics (Basel) 2024; 13:995. [PMID: 39452261 PMCID: PMC11505460 DOI: 10.3390/antibiotics13100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Clostridioides difficile is a major causative pathogen for antibiotic-associated diarrhea and C. difficile infections (CDIs) may lead to life-threatening diseases in clinical settings. Most of the risk factors for the incidence of CDIs, i.e., antibiotic use, treatment by proton pump inhibitors, old age, and hospitalization, are associated with dysbiosis of gut microbiota and associated metabolites and, consequently, treatment options for CDIs include normalizing the composition of the intestinal microbiome. In this review, with an introduction to the CDI and its global epidemiology, CDI-associated traits of the gut microbiome and its metabolites were reviewed, and microbiome-targeting treatment options were introduced, which was approved recently as a new drug by the United States Food and Drug Administration (U.S. FDA), rather than a medical practice.
Collapse
Affiliation(s)
| | | | - Eun-Jeong Yoon
- Division of Antimicrobial Resistance Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea
| |
Collapse
|
15
|
Ellegaard AM, Kårhus ML, Winther-Jensen M, Knop FK, Kårhus LL. Bile Acid Diarrhea Is Associated With an Increased Incidence of Gastrointestinal Cancers. Am J Gastroenterol 2024; 119:2107-2113. [PMID: 38717021 PMCID: PMC11446519 DOI: 10.14309/ajg.0000000000002859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Bile acid diarrhea (BAD) is an underrecognized and socially debilitating disease caused by high concentrations of bile acids in the colon. Bile acids directly and indirectly promote carcinogenesis. In this article, we investigated whether individuals with BAD have an increased risk of gastrointestinal (GI) cancers. METHODS By using the Danish health registries, adult individuals with BAD were identified by International Classification of Diseases 10th revision code K90.8 or referral to the diagnostic ⁷⁵selenium-homotaurocholic acid test followed by prescription of a bile acid sequestrant within 365 days (n = 5,245). Age- and sex-matched individuals without BAD were included for comparison (n = 52,450). We analyzed the cumulative incidence of GI cancers after BAD diagnosis and the odds ratios (ORs) of GI cancer 8 and 15 years before BAD diagnosis/matching. RESULTS Cumulative incidence of GI cancer 6 years after BAD diagnosis/matching was 1.6% in the BAD group and 1.1% in controls ( P = 0.01). The ORs of total GI cancer 8 and 15 years before BAD diagnosis were 6.16 (5.08-7.48) and 5.19 (4.28-6.29), respectively. Furthermore, 47 individuals with BAD (0.9%) and 250 (0.5%) controls died of GI cancer. DISCUSSION This nationwide cohort study indicates an association between BAD and GI cancers. We found both a higher incidence of GI cancer after BAD diagnosis compared with controls and increased OR of GI cancer before BAD diagnosis. Bearing in mind the underdiagnosis of BAD, the delay of BAD diagnosis, and the carcinogenic effect of bile acids, these findings warrant further investigations of the risk of GI cancer in individuals with BAD.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Matilde Winther-Jensen
- Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
- Currently employed at Novo Nordisk A/S, Søborg, Denmark.
| | - Line L. Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| |
Collapse
|
16
|
Li X, Xiao F, Wang X, Ye L, Xiao Y, Li D, Zhang T, Wang Y. Gut Microbial and Metabolic Features Associated With Clostridioides difficile Infection Recurrence in Children. Open Forum Infect Dis 2024; 11:ofae506. [PMID: 39319090 PMCID: PMC11420671 DOI: 10.1093/ofid/ofae506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Background Recurrent Clostridioides difficile infection (CDI) is a critical clinical issue due to the increase in incidence and difficulty in treatment. We aimed to identify gut microbial and metabolic features associated with disease recurrence in a group of pediatric CDI patients. Methods A total of 84 children with primary CDI were prospectively enrolled in the study. Fecal samples collected at the initial diagnosis were subjected to 16S rRNA gene sequencing and targeted metabolomics analysis to profile the bacterial composition and metabolome. Results Twenty-six of 84 (31.0%) pediatric CDI patients experienced recurrence. The alpha diversity of the fecal microbiota was significantly lower in the recurrent group than in the nonrecurrent group, and the beta diversity was different from that of the nonrecurrent group. Taxonomic profiles revealed that the relative abundances of multiple bacterial taxa significantly differed between the recurrent and nonrecurrent groups. Linear discriminant analysis effect size analysis identified several bacterial genera that discriminated between recurrent and nonrecurrent groups, including Parabacteroides, Coprococcus, Dialister, and Clostridium. Recurrent bacteria presented lower abundances of several short-chain fatty acid (SCFA)-producing bacteria (Faecalibacterium, Butyricicoccus, Clostridium, Roseburia, and Ruminococcus), which were correlated with reduced fecal SCFA levels. In addition, several bile acids, including lithocholic acid (LCA), 12-ketoLCA, trihydroxycholestanoic acid, and deoxycholic acid, were decreased in recurrent patients. Conclusions Our study suggests that the differing gut microbiota profiles in pediatric CDI patients may contribute to disease recurrence by modulating SCFA concentrations and bile acid profiles. The gut microbiota and metabolite signatures may be used to predict disease recurrence in children with CDI.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xufei Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Ye
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Daniel SL, Ridlon JM. Clostridium scindens : an endocrine keystone species in the mammalian gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609444. [PMID: 39229245 PMCID: PMC11370556 DOI: 10.1101/2024.08.23.609444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Clostridium scindens is a keystone human gut microbial taxonomic group that, while low in abundance, has a disproportionate effect on bile acid and steroid metabolism in the mammalian gut. Numerous studies indicate that the two most studied strains of C. scindens (i.e., ATCC 35704 and VPI 12708) are important for a myriad of physiological processes in the host. We focus on both historical and current microbiological and molecular biology work on the Hylemon-Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in C. scindens. Our most recent analysis now calls into question whether strains currently defined as C. scindens represent two separate taxonomic groups. Future directions include developing genetic tools to further explore the physiological role bile acid and steroid metabolism by strains of C. scindens , and the causal role of these pathways in host physiology and disease.
Collapse
|
18
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
19
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Buratta S, Urbanelli L, Pellegrino RM, Alabed HBR, Latella R, Cerrotti G, Emiliani C, Bassotti G, Spaterna A, Marconi P, Fettucciari K. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells 2024; 13:1103. [PMID: 38994956 PMCID: PMC11240607 DOI: 10.3390/cells13131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
- Santa Maria Della Misericordia Hospital, Gastroenterology & Hepatology Unit, Piazzale Menghini 1, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Pierfrancesco Marconi
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| | - Katia Fettucciari
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
21
|
Xue M, Chakraborty S, Gao R, Wang S, Gu M, Shen N, Wei L, Cao C, Sun X, Cai J. Antimicrobial Guanidinylate Polycarbonates Show Oral In Vivo Efficacy Against Clostridioides Difficile. Adv Healthc Mater 2024; 13:e2303295. [PMID: 38321619 PMCID: PMC11144102 DOI: 10.1002/adhm.202303295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Indexed: 02/08/2024]
Abstract
The emerging antibiotic resistance has been named by the World Health Organization (WHO) as one of the top 10 threats to public health. Notably, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VREF) are designated as serious threats, whereas Clostridioides difficile (C. difficile) is recognized as one of the most urgent threats to human health and unmet medical need. Herein, they report the design and application of novel biodegradable polymers - the lipidated antimicrobial guanidinylate polycarbonates. These polymers showed potent antimicrobial activity against a panel of bacteria with fast-killing kinetics and low resistance development tendency, mainly due to their bacterial membrane disruption mechanism. More importantly, the optimal polymer showed excellent antibacterial activity against C. difficile infection (CDI) in vivo via oral administration. In addition, compared with vancomycin, the polymer demonstrated a much-prolonged therapeutic effect and virtually diminished recurrence rate of CDI. The convenient synthesis, easy scale-up, low cost, as well as biodegradability of this class of polycarbonates, together with their in vitro broad-spectrum antimicrobial activity and orally in vivo efficacy against CDI, suggest the great potential of lipidated guandinylate polycarbonates as a new class of antibacterial biomaterials to treat CDI and combat emerging antibiotic resistance.
Collapse
Affiliation(s)
- Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Soumyadeep Chakraborty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Ning Shen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
22
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, Scharer CD, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. Infect Immun 2024; 92:e0046123. [PMID: 38345371 PMCID: PMC10929453 DOI: 10.1128/iai.00461-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
23
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Sharma SK, Schilke AR, Phan JR, Yip C, Sharma PV, Abel-Santos E, Firestine SM. The design, synthesis, and inhibition of Clostridioides difficile spore germination by acyclic and bicyclic tertiary amide analogs of cholate. Eur J Med Chem 2023; 261:115788. [PMID: 37703709 PMCID: PMC10680100 DOI: 10.1016/j.ejmech.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Clostridioides difficile infection (CDI) is a major identifiable cause of antibiotic-associated diarrhea. In our previous study (J. Med. Chem., 2018, 61, 6759-6778), we have identified N-phenyl-cholan-24-amide as a potent inhibitor of spore germination. The most potent compounds in our previous work are N-arylamides. We were interested in the role that the conformation of the amide plays in activity. Previous research has shown that secondary N-arylamides exist exclusively in the coplanar trans conformation while tertiary N-methyl-N-arylamides exist in a non-planar, cis conformation. The N-methyl-N-phenyl-cholan-24-amide was 17-fold less active compared to the parent compounds suggesting the importance of the orientation of the phenyl ring. To lock the phenyl ring into a trans conformation, cyclic tertiary amides were prepared. Indoline and quinoline cholan-24-amides were both inhibitors of spore germination; however, the indoline analogs were most potent. Isoindoline and isoquinoline amides were inactive. We found that the simple indoline derivative gave an IC50 value of 1 μM, while the 5'-fluoro-substituted compound (5d) possessed an IC50 of 400 nM. To our knowledge, 5d is the most potent known spore germination inhibitor described to date. Taken together, our results indicate that the trans, coplanar conformation of the phenyl ring is required for potent inhibition.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Angel R Schilke
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Jacqueline R Phan
- Department of Chemistry and Biochemistry, University of Nevada -Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada -Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Prateek V Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada -Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Steven M Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
Tomofuji Y, Kishikawa T, Sonehara K, Maeda Y, Ogawa K, Kawabata S, Oguro-Igashira E, Okuno T, Nii T, Kinoshita M, Takagaki M, Yamamoto K, Arase N, Yagita-Sakamaki M, Hosokawa A, Motooka D, Matsumoto Y, Matsuoka H, Yoshimura M, Ohshima S, Nakamura S, Fujimoto M, Inohara H, Kishima H, Mochizuki H, Takeda K, Kumanogoh A, Okada Y. Analysis of gut microbiome, host genetics, and plasma metabolites reveals gut microbiome-host interactions in the Japanese population. Cell Rep 2023; 42:113324. [PMID: 37935197 DOI: 10.1016/j.celrep.2023.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Interaction between the gut microbiome and host plays a key role in human health. Here, we perform a metagenome shotgun-sequencing-based analysis of Japanese participants to reveal associations between the gut microbiome, host genetics, and plasma metabolome. A genome-wide association study (GWAS) for microbial species (n = 524) identifies associations between the PDE1C gene locus and Bacteroides intestinalis and between TGIF2 and TGIF2-RAB5IF gene loci and Bacteroides acidifiaciens. In a microbial gene ortholog GWAS, agaE and agaS, which are related to the metabolism of carbohydrates forming the blood group A antigen, are associated with blood group A in a manner depending on the secretor status determined by the East Asian-specific FUT2 variant. A microbiome-metabolome association analysis (n = 261) identifies associations between bile acids and microbial features such as bile acid metabolism gene orthologs including bai and 7β-hydroxysteroid dehydrogenase. Our publicly available data will be a useful resource for understanding gut microbiome-host interactions in an underrepresented population.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan.
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shuhei Kawabata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
| | - Noriko Arase
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Mayu Yagita-Sakamaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Akiko Hosokawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Neurology, Suita Municipal Hospital, Suita 564-8567, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hidetoshi Matsuoka
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Maiko Yoshimura
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shiro Ohshima
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
26
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565354. [PMID: 37961610 PMCID: PMC10635087 DOI: 10.1101/2023.11.02.565354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT ) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance. IMPORTANCE C. difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
|
27
|
Muroya D, Nadayoshi S, Yamada K, Kai Y, Masuda N, Nishida T, Shimokobe M, Hisaka T. Effects of Hyperbaric Oxygen Therapy for Clostridioides difficile-associated Colitis: A Retrospective Study. J Anus Rectum Colon 2023; 7:264-272. [PMID: 37900689 PMCID: PMC10600261 DOI: 10.23922/jarc.2023-033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 10/31/2023] Open
Abstract
Objectives Clostridioides difficile (CD) is an anaerobic spore-forming Gram-positive rod that is a major cause of antibiotic-associated diarrhea. Hyperbaric oxygen therapy (HBO) is a well-established treatment for Clostridium perfringens, but there are no reports that have examined the efficacy of HBO against CD, which is also an anaerobic bacterium. Methods In this study, we retrospectively examined whether HBO therapy affects the prognosis following CD infections (CDI). This study included 92 inpatients diagnosed with CDI at our hospital between January 2013 and December 2022. Of these, 16 patients received HBO therapy. The indications for HBO therapy were stroke in five patients, ileus in four patients, cancer in two patients, acute peripheral circulatory disturbance in two patients, and others in three patients. The mean observation period was 5.4 years. Results In the univariate analysis, there was no significant difference in severity, mortality, hospitalization, or overall survival between patients who did and did not receive HBO therapy. However, the HBO group had a significantly lower recurrence rate (0% vs. 22.4%, p=0.0363) and a shorter symptomatic period (6.2 vs. 13.6 days, p=0.0217). Conclusions HBO may have beneficial effect on CDI by shortening the symptomatic period and preventing recurrence.
Collapse
Affiliation(s)
- Daisuke Muroya
- Department of Surgery, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Shinya Nadayoshi
- Department of Clinical Engineering, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Koito Yamada
- Department of Clinical Engineering, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Yutaro Kai
- Department of Clinical Engineering, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Naoki Masuda
- Department of Surgery, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Takamichi Nishida
- Department of Internal Medicine, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Masayuki Shimokobe
- Department of Internal Medicine, Tobata Kyoritsu Hospital, Kitakyusyu, Japan
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
28
|
Alenezi T, Fu Y, Alrubaye B, Alanazi T, Almansour A, Wang H, Sun X. Potent Bile Acid Microbial Metabolites Modulate Clostridium perfringens Virulence. Pathogens 2023; 12:1202. [PMID: 37887718 PMCID: PMC10610205 DOI: 10.3390/pathogens12101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Clostridium perfringens is a versatile pathogen, inducing diseases in the skin, intestine (such as chicken necrotic enteritis (NE)), and other organs. The classical sign of NE is the foul smell gas in the ballooned small intestine. We hypothesized that deoxycholic acid (DCA) reduced NE by inhibiting C. perfringens virulence signaling pathways. To evaluate the hypothesis, C. perfringens strains CP1 and wild-type (WT) HN13 and its mutants were cultured with different bile acids, including DCA and isoallolithocholic acid (isoalloLCA). Growth, hydrogen sulfide (H2S) production, and virulence gene expression were measured. Notably, isoalloLCA was more potent in reducing growth, H2S production, and virulence gene expression in CP1 and WT HN13 compared to DCA, while other bile acids were less potent compared to DCA. Interestingly, there was a slightly different impact between DCA and isoalloLCA on the growth, H2S production, and virulence gene expression in the three HN13 mutants, suggesting possibly different signaling pathways modulated by the two bile acids. In conclusion, DCA and isoalloLCA reduced C. perfringens virulence by transcriptionally modulating the pathogen signaling pathways. The findings could be used to design new strategies to prevent and treat C. perfringens-induced diseases.
Collapse
Affiliation(s)
- Tahrir Alenezi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- College of Medical Applied Sciences, The Northern Border University, Arar 91431, Saudi Arabia
| | - Ying Fu
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
| | - Bilal Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
| | - Thamer Alanazi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ayidh Almansour
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Hong Wang
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (T.A.); (Y.F.); (B.A.); (T.A.); (A.A.); (H.W.)
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
29
|
Morales-Olvera CG, Lanz-Zubiría L, Aguilar-Zamora E, Camorlinga-Ponce M, Aparicio-Ozores G, Aguilar-Zapata D, Chávez-Tapia NC, Uribe M, Barbero-Becerra VJ, Juárez-Hernández E. Clostridioides Difficile in Latin America: An Epidemiological Overview. Curr Microbiol 2023; 80:357. [PMID: 37768473 DOI: 10.1007/s00284-023-03475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/18/2023] [Indexed: 09/29/2023]
Abstract
Clostridioides difficile infection is one of the most significant causes of nosocomial diarrhea associated with antibiotic use worldwide. In recent years, the incidence of Clostridioides difficile infection in Latin American countries has increased due to the emergence and spread of epidemic Clostridioides difficile strains, such as RT027/NAP1/ST1, RT078/ST11, and RT017/ST37; additionally, endemic multi-drug-resistant strains have recently appeared due to the lack of heterogeneous diagnostic algorithms and guidelines for antibiotic use in each country. The aim of this review is to present the latest information regarding Clostridioides difficile and emphasize the importance of epidemiological surveillance of this pathogen in Latin American countries.
Collapse
Affiliation(s)
- Claudia G Morales-Olvera
- Translational Research Unit. Medica Sur Clinic & Foundation, Mexico City, Mexico
- Geriatric Service, PEMEX North Central Hospital and Postgraduate Studies Division, School of Medicine, UNAM, Mexico City, Mexico
| | - Lorena Lanz-Zubiría
- Infectious Diseases and Hospital Epidemiology Department, Médica Sur Clinic & Foundation. Medicine School Universidad Anáhuac, Mexico City, Mexico
| | - Emmanuel Aguilar-Zamora
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gerardo Aparicio-Ozores
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Daniel Aguilar-Zapata
- Infectious Diseases and Hospital Epidemiology Department, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - M Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Eva Juárez-Hernández
- Translational Research Unit. Medica Sur Clinic & Foundation, Mexico City, Mexico.
| |
Collapse
|
30
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. J Bacteriol 2023; 205:e0013823. [PMID: 37655912 PMCID: PMC10521354 DOI: 10.1128/jb.00138-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as maintenance of the intestinal barrier, cell signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including its importance in alleviating infections caused by pathogens such as Clostridioides difficile. Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with changes in metabolic and regulatory genes, such as a putative carbon starvation protein, CstA. Collectively, these data suggest that butyrate may induce alternative C. difficile survival pathways, modifying its growth ability and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may modulate gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile. While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
Affiliation(s)
| | - Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Julian D. Coles
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sydney Nelson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - C. Alexis McCollum
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
31
|
Saenz C, Fang Q, Gnanasekaran T, Trammell SAJ, Buijink JA, Pisano P, Wierer M, Moens F, Lengger B, Brejnrod A, Arumugam M. Clostridium scindens secretome suppresses virulence gene expression of Clostridioides difficile in a bile acid-independent manner. Microbiol Spectr 2023; 11:e0393322. [PMID: 37750706 PMCID: PMC10581174 DOI: 10.1128/spectrum.03933-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major health concern and one of the leading causes of hospital-acquired diarrhea in many countries. C. difficile infection is challenging to treat as C. difficile is resistant to multiple antibiotics. Alternative solutions are needed as conventional treatment with broad-spectrum antibiotics often leads to recurrent CDI. Recent studies have shown that specific microbiota-based therapeutics such as bile acids (BAs) are promising approaches to treat CDI. Clostridium scindens encodes the bile acid-induced (bai) operon that carries out 7-alpha-dehydroxylation of liver-derived primary BAs to secondary BAs. This biotransformation is thought to increase the antibacterial effects of BAs on C. difficile. Here, we used an automated multistage fermentor to study the antibacterial actions of C. scindens and BAs on C. difficile in the presence/absence of a gut microbial community derived from healthy human donor fecal microbiota. We observed that C. scindens inhibited C. difficile growth when the medium was supplemented with primary BAs. Transcriptomic analysis indicated upregulation of C. scindens bai operon and suppressed expression of C. difficile exotoxins that mediate CDI. We also observed BA-independent antibacterial activity of the secretome from C. scindens cultured overnight in a medium without supplementary primary BAs, which suppressed growth and exotoxin expression in C. difficile mono-culture. Further investigation of the molecular basis of our observation could lead to a more specific treatment for CDI than current approaches. IMPORTANCE There is an urgent need for new approaches to replace the available treatment options against Clostridioides difficile infection (CDI). Our novel work reports a bile acid-independent reduction of C. difficile growth and virulence gene expression by the secretome of Clostridium scindens. This potential treatment combined with other antimicrobial strategies could facilitate the development of alternative therapies in anticipation of CDI and in turn reduce the risk of antimicrobial resistance.
Collapse
Affiliation(s)
- Carmen Saenz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qing Fang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesse Arnold Buijink
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Pisano
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Asker Brejnrod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Chen LA, Oliva-Hemker M, Radin A, Weidner M, O’Laughlin BD, Sears CL, Javitt NB, Hourigan SK. Longitudinal Bile Acid Composition Changes Following Faecal Microbiota Transplantation for Clostridioides difficile Infection in Children With and Without Underlying Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:1364-1368. [PMID: 36988432 PMCID: PMC10441560 DOI: 10.1093/ecco-jcc/jjad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS Faecal microbiota transplant [FMT] is effective in treating recurrent Clostridioides difficile infection [CDI] and restores gut microbiota composition. This is unlikely to account for its entire mechanism of efficacy, as studies have shown that factors such as bile acids influence the risk of infection by affecting Clostridioides difficile germination. We therefore aimed to investigate longitudinal changes in the gut bile acid composition after FMT performed for recurrent CDI, in children with and without inflammatory bowel disease [IBD]. METHODS Eight children received FMT; five had underlying IBD. Primary and secondary faecal bile acids were measured by liquid chromatography-mass spectrometry in recipients [pre-FMT and longitudinally post-FMT for up to 6 months] and donors. RESULTS Pre-FMT, recipients had higher primary and lower secondary bile acid proportions compared with donors. Post-FMT, there was a gradual increase of secondary and decrease of primary bile acids. Whereas gut bacterial diversity had been shown to be restored in all children shortly after FMT, normalisation of bile acids to donor levels occurred only by 6 months. In children with IBD, although microbiota diversity returned to pre-FMT levels within 6 months, secondary bile acids remained at donor levels. CONCLUSIONS The differences in bile acid profiles compared with gut bacterial diversity post-FMT suggests that interactions between the two may be more complex than previously appreciated and may contribute to FMT efficacy in different ways. This initial finding demonstrates the need to further investigate gut metabolites in larger cohorts, with longitudinal sampling to understand the mechanisms of FMT effectiveness.
Collapse
Affiliation(s)
- Lea Ann Chen
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Oliva-Hemker
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arielle Radin
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa Weidner
- Division of Pediatric Gastroenterology, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Brynn D O’Laughlin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s National Medical Center, Washington, DC, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Norman B Javitt
- Division of Gastroenterology and Hepatology,New York University Grossman School of Medicine, New York, NY, USA
| | - Suchitra K Hourigan
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
34
|
Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001377. [PMID: 37540126 PMCID: PMC10482380 DOI: 10.1099/mic.0.001377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine ('colonization resistance'). However, antibiotic treatment can kill members of the gut microbiota ('gut commensals') and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.
Collapse
Affiliation(s)
- Victoria Horrocks
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Olivia G. King
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Alexander Y. G. Yip
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Inês Melo Marques
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
35
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
36
|
Alyahya K, Baillie L. Assessing the Feasibility of Employing a Combination of a Bacteriophage-Derived Endolysin and Spore Germinants to Treat Relapsing Clostridioides difficile Infection. Microorganisms 2023; 11:1651. [PMID: 37512824 PMCID: PMC10384137 DOI: 10.3390/microorganisms11071651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacillus and is a major cause of healthcare-associated infections. Whereas the vegetative form of the pathogen is susceptible to treatment with antibiotics, its ability to persist in the gut as antibiotic-resistant spores means that reinfection can occur in cases were the individual fails to re-establish a protective microflora. Bacteriophages and their lysins are currently being explored as treatment options due to their specificity, which minimizes the disruption to the other members of the gut microflora that are protective. The feasibility of employing recombinant endolysins to target the vegetative form of C. difficile has been demonstrated in animal models. In this study, we cloned and expressed the enzyme active domain of LysCD6356 and confirmed its ability to lyse the vegetative forms of a diverse range of clinical isolates of C. difficile, which included members of the hypervirulent 027 ribotype. Lytic activity was adversely affected by calcium, which is naturally found in the gut and is released from the spore upon germination. Our results suggests that a strategy in which the triggering of spore germination is separated in time from the application of the lysin could be developed as a strategy to reduce the risk of relapsing C. difficile infections.
Collapse
Affiliation(s)
- Khalid Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| |
Collapse
|
37
|
Marcos P, Glennon C, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. The effect of cold storage and cooking on the viability of Clostridioides difficile spores in consumer foods. Food Microbiol 2023; 112:104215. [PMID: 36906315 DOI: 10.1016/j.fm.2023.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
The increased detection of clinical cases of Clostridioides difficile coupled with the persistence of clostridial spores at various stages along the food chain suggest that this pathogen may be foodborne. This study examined C. difficile (ribotypes 078 and 126) spore viability in chicken breast, beef steak, spinach leaves and cottage cheese during refrigerated (4 °C) and frozen (-20 °C) storage with and without a subsequent sous vide mild cooking (60 °C, 1 h). Spore inactivation at 80 °C in phosphate buffer solution, beef and chicken were also investigated to provide D80°C values and determine if PBS was a suitable model system for real food matrices. There was no decrease in spore concentration after chilled or frozen storage and/or sous vide cooking at 60 °C. Non-log-linear thermal inactivation was observed for both C. difficile ribotypes at 80 °C in phosphate buffer solution (PBS), beef and chicken. The predicted PBS D80°C values of 5.72±[2.90, 8.55] min and 7.50±[6.61, 8.39] min for RT078 and RT126, respectively, were in agreement with the food matrices D80°C values of 5.65 min (95% CI range from 4.29 to 8.89 min) for RT078 and 7.35 min (95% CI range from 6.81 to 7.01 min) for RT126. It was concluded that C. difficile spores survive chilled and frozen storage and mild cooking at 60 °C but may be inactivated at 80 °C. Moreover thermal inactivation in PBS was representative of that observed in real food matrices (beef and chicken).
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - Chloe Glennon
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - Thomas R Rogers
- Clinical Microbiology, Trinity College Dublin, St James's Hospital Campus, Dublin 8, Ireland
| | - Máire McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, Kildare, Ireland
| | - Seamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - Jesus Frias
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland.
| |
Collapse
|
38
|
Yip C, Phan JR, Abel-Santos E. Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA). J Antibiot (Tokyo) 2023; 76:335-345. [PMID: 37016015 PMCID: PMC10406169 DOI: 10.1038/s41429-023-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023]
Abstract
Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea and has been declared an urgent threat by the CDC. C. difficile forms dormant and resistant spores that serve as infectious vehicles for CDI. To cause disease, C. difficile spores recognize taurocholate and glycine to trigger the germination process. In contrast to other sporulating bacteria, C. difficile spores are postulated to use a protease complex, CspABC, to recognize its germinants. Since spore germination is required for infection, we have developed anti-germination approaches for CDI prophylaxis. Previously, the bile salt analog CaPA (an aniline-substituted cholic acid) was shown to block spore germination and protect rodents from CDI caused by multiple C. difficile strains and isolates. In this study, we found that CaPA is an alternative substrate inhibitor of C. difficile spore germination. By competing with taurocholate for binding, CaPA delays C. difficile spore germination and reduces spore viability, thus diminishing the number of outgrowing vegetative bacteria. We hypothesize that the reduction of toxin-producing bacterial burden explains CaPA's protective activity against murine CDI. Previous data combined with our results suggests that CaPA binds tightly to C. difficile spores in a CspC-dependent manner and irreversibly traps spores in an alternative, time-delayed, and low yield germination pathway. Our results are also consistent with kinetic data suggesting the existence of at least two distinct bile salt binding sites in C. difficile spores.
Collapse
Affiliation(s)
- Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jacqueline R Phan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
39
|
Janardhanan J, Kim C, Qian Y, Yang J, Meisel J, Ding D, Speri E, Schroeder V, Wolter W, Oliver A, Mobashery S, Chang M. A dual-action antibiotic that kills Clostridioides difficile vegetative cells and inhibits spore germination. Proc Natl Acad Sci U S A 2023; 120:e2304110120. [PMID: 37155891 PMCID: PMC10193928 DOI: 10.1073/pnas.2304110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.
Collapse
Affiliation(s)
- Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jayda E. Meisel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Enrico Speri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Valerie A. Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - William R. Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, IN46556
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
40
|
Yadegar A, Pakpoor S, Ibrahim FF, Nabavi-Rad A, Cook L, Walter J, Seekatz AM, Wong K, Monaghan TM, Kao D. Beneficial effects of fecal microbiota transplantation in recurrent Clostridioides difficile infection. Cell Host Microbe 2023; 31:695-711. [PMID: 37167952 PMCID: PMC10966711 DOI: 10.1016/j.chom.2023.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fecal microbiota transplantation (FMT) is highly effective in preventing recurrent Clostridioides difficile infection (rCDI). However, the mechanisms underpinning its clinical efficacy are incompletely understood. Herein, we provide an overview of rCDI pathogenesis followed by a discussion of potential mechanisms of action focusing on the current understanding of trans-kingdom microbial, metabolic, immunological, and epigenetic mechanisms. We then outline the current research gaps and offer methodological recommendations for future studies to elevate the quality of research and advance knowledge translation. By combining interventional trials with multiomics technology and host and environmental factors, analyzing longitudinally collected biospecimens will generate results that can be validated with animal and other models. Collectively, this will confirm causality and improve translation, ultimately to develop targeted therapies to replace FMT.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Pakpoor
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Fathima F Ibrahim
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jens Walter
- School of Microbiology, Department of Medicine and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna M Seekatz
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
41
|
Wang R. Clostridioides difficile infection: microbe-microbe interactions and live biotherapeutics. Front Microbiol 2023; 14:1182612. [PMID: 37228365 PMCID: PMC10203151 DOI: 10.3389/fmicb.2023.1182612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridioides difficile is a gram-positive, spore-forming, obligate anaerobe that infects the colon. C. difficile is estimated to cause nearly half a million cases in the United States annually, with about 29,000 associated deaths. Unfortunately, the current antibiotic treatment is not ideal. While antibiotics can treat the infections, they also disrupt the gut microbiota that mediates colonization resistance against enteric pathogens, including C. difficile; disrupted gut microbiota provides a window of opportunity for recurrent infections. Therefore, therapeutics that restore the gut microbiota and suppress C. difficile are being evaluated for safety and efficacy. This review will start with mechanisms by which gut bacteria affect C. difficile pathogenesis, followed by a discussion on biotherapeutics for recurrent C. difficile infections.
Collapse
|
42
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538596. [PMID: 37163089 PMCID: PMC10168334 DOI: 10.1101/2023.04.27.538596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Short chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as the intestinal barrier, signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including importance in combatting infections caused by pathogens such as Clostridioides difficile . Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with alternative metabolic and related C. difficile regulatory pathways, such as the carbon catabolite repressor, CcpA. Collectively, these data suggest that butyrate may signal alternative C. difficile metabolic pathways, thus modifying its growth and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may be important in alleviating gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile . While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
|
43
|
Wang S, Ju X, Heuler J, Zhang K, Duan Z, Warnakulasuriya Patabendige HML, Zhao S, Sun X. Recombinant Fusion Protein Vaccine Containing Clostridioides difficile FliC and FliD Protects Mice against C. difficile Infection. Infect Immun 2023; 91:e0016922. [PMID: 36939332 PMCID: PMC10112125 DOI: 10.1128/iai.00169-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/09/2023] [Indexed: 03/21/2023] Open
Abstract
Bacterial flagella are involved in infection through their roles in host cell adhesion, cell invasion, auto-agglutination, colonization, the formation of biofilms, and the regulation and secretion of nonflagellar bacterial proteins that are involved in the virulence process. In this study, we constructed a fusion protein vaccine (FliCD) containing the Clostridioides difficile flagellar proteins FliC and FliD. The immunization of mice with FliCD induced potent IgG and IgA antibody responses against FliCD, protected mice against C. difficile infection (CDI), and decreased the C. difficile spore and toxin levels in the feces after infection. Additionally, the anti-FliCD serum inhibited the binding of C. difficile vegetative cells to HCT8 cells. These results suggest that FliCD may represent an effective vaccine candidate against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xianghong Ju
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Keshan Zhang
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Zhibian Duan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | - Song Zhao
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
44
|
Malyshev D, Jones IA, McKracken M, Öberg R, Harper GM, Joshi LT, Andersson M. Hypervirulent R20291 Clostridioides difficile spores show disinfection resilience to sodium hypochlorite despite structural changes. BMC Microbiol 2023; 23:59. [PMID: 36879193 PMCID: PMC9986864 DOI: 10.1186/s12866-023-02787-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a spore forming bacterial species and the major causative agent of nosocomial gastrointestinal infections. C. difficile spores are highly resilient to disinfection methods and to prevent infection, common cleaning protocols use sodium hypochlorite solutions to decontaminate hospital surfaces and equipment. However, there is a balance between minimising the use of harmful chemicals to the environment and patients as well as the need to eliminate spores, which can have varying resistance properties between strains. In this work, we employ TEM imaging and Raman spectroscopy to analyse changes in spore physiology in response to sodium hypochlorite. We characterize different C. difficile clinical isolates and assess the chemical's impact on spores' biochemical composition. Changes in the biochemical composition can, in turn, change spores' vibrational spectroscopic fingerprints, which can impact the possibility of detecting spores in a hospital using Raman based methods. RESULTS We found that the isolates show significantly different susceptibility to hypochlorite, with the R20291 strain, in particular, showing less than 1 log reduction in viability for a 0.5% hypochlorite treatment, far below typically reported values for C. difficile. While TEM and Raman spectra analysis of hypochlorite-treated spores revealed that some hypochlorite-exposed spores remained intact and not distinguishable from controls, most spores showed structural changes. These changes were prominent in B. thuringiensis spores than C. difficile spores. CONCLUSION This study highlights the ability of certain C. difficile spores to survive practical disinfection exposure and the related changes in spore Raman spectra that can be seen after exposure. These findings are important to consider when designing practical disinfection protocols and vibrational-based detection methods to avoid a false-positive response when screening decontaminated areas.
Collapse
Affiliation(s)
| | | | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
45
|
Aias M, Azrad M, Saad G, Leshem T, Hamo Z, Rahmoun LA, Peretz A. Different bile acids have versatile effects on sporulation, toxin levels and biofilm formation of different Clostridioides difficile strains. J Microbiol Methods 2023; 206:106692. [PMID: 36809809 DOI: 10.1016/j.mimet.2023.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Clostridioides difficile infection develops following ingestion of virulent stains by a susceptible host. Once germinated, toxins TcdA and TcdB, and in some of the strains binary toxin, are secreted, eliciting disease. Bile acids play a significant role in the process of spore germination and outgrowth, with cholate and its derivative enhancing colony formation, while chenodeoxycholate inhibit germination and outgrowth. This work investigated bile acids' impact on spore germination, toxin levels and biofilm formation in various strain types (STs). Thirty C. difficile isolates (A+ B+ CDT-\+) of different STs were exposed to increasing concentrations of the bile acids, cholic acid (CA), taurocholic acid (TCA) and chenodeoxycholic acid (CDCA). Following treatments, spore germination was determined. Toxin concentrations were semi-quantified using the C. Diff Tox A/B II™ kit. Biofilm formation was detected by the microplate assay with crystal violet. SYTO® 9 and propidium iodide staining were used for live and dead cell detection, respectively, inside the biofilm. Toxins levels were increased by 1.5-28-fold in response to CA and by 1.5-20-fold in response to TCA, and decreased by 1-37-fold due to CDCA exposure. CA had a concentration-dependent effect on biofilm formation, with the low concentration (0.1%) inducing- and the higher concentrations inhibiting biofilm formation, while CDCA significantly reduced biofilm production at all concentrations. There were no differences in the bile acids effects on different STs. Further investigation might identify a specific bile acids' combination with inhibitory effects on C. difficile toxin and biofilm production, which could modulate toxin formation to reduce the likelihood of developing CDI.
Collapse
Affiliation(s)
- Meral Aias
- Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Maya Azrad
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya 1528001, Israel
| | - Gewa Saad
- Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Tamar Leshem
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya 1528001, Israel
| | - Zohar Hamo
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya 1528001, Israel
| | - Layan Abu Rahmoun
- Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel; The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya 1528001, Israel.
| |
Collapse
|
46
|
Soldavini Pelichotti PC, Cejas D, Fernández-Caniggia L, Trejo FM, Pérez PF. Characterization of a Clostridioides difficile ST-293 isolate from a recurrent infection in Argentina. Rev Argent Microbiol 2023:S0325-7541(22)00102-X. [PMID: 36599754 DOI: 10.1016/j.ram.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 01/03/2023] Open
Abstract
Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to toxinotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resistant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.
Collapse
Affiliation(s)
- P Cecilia Soldavini Pelichotti
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata B1900AJI, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Liliana Fernández-Caniggia
- Laboratorio de Microbiología, Hospital Alemán, Av. Pueyrredón 1640, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando M Trejo
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina
| | - Pablo F Pérez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata B1900AJI, Argentina.
| |
Collapse
|
47
|
Disarming the pathogen. Nat Chem Biol 2023; 19:5-6. [PMID: 36175660 DOI: 10.1038/s41589-022-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Monma T, Iwamoto J, Ueda H, Tamamushi M, Kakizaki F, Konishi N, Yara S, Miyazaki T, Hirayama T, Ikegami T, Honda A. Evaluation of gut dysbiosis using serum and fecal bile acid profiles. World J Clin Cases 2022; 10:12484-12493. [PMID: 36579096 PMCID: PMC9791502 DOI: 10.12998/wjcc.v10.i34.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Dysbiosis in the intestinal microflora can affect the gut production of microbial metabolites, and toxic substances can disrupt the barrier function of the intestinal wall, leading to the development of various diseases. Decreased levels of Clostridium subcluster XIVa (XIVa) are associated with the intestinal dysbiosis found in inflammatory bowel disease (IBD) and Clostridium difficile infection (CDI). Since XIVa is a bacterial group responsible for the conversion of primary bile acids (BAs) to secondary BAs, the proportion of intestinal XIVa can be predicted by determining the ratio of deoxycholic acid (DCA)/[DCA + cholic acid (CA)] in feces orserum. For example, serum DCA/(DCA+CA) was significantly lower in IBD patients than in healthy controls, even in the remission period. These results suggest that a low proportion of intestinal XIVa in IBD patients might be a precondition for IBD onset but not a consequence of intestinal inflammation. Another report showed that a reduced serum DCA/(DCA + CA) ratio could predict susceptibility to CDI. Thus, the BA profile, particularly the ratio of secondary to primary BAs, can serve as a surrogate marker of the intestinal dysbiosis caused by decreased XIVa.
Collapse
Affiliation(s)
- Tadakuni Monma
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Hajime Ueda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Makoto Tamamushi
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Fumio Kakizaki
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Naoki Konishi
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Shoichiro Yara
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Takeshi Hirayama
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| |
Collapse
|
49
|
Aguirre AM, Adegbite AO, Sorg JA. Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation. NPJ Biofilms Microbiomes 2022; 8:94. [PMID: 36450806 PMCID: PMC9712596 DOI: 10.1038/s41522-022-00358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The Clostridioides difficile pathogen is responsible for nosocomial infections. Germination is an essential step for the establishment of C. difficile infection (CDI) because toxins that are secreted by vegetative cells are responsible for the symptoms of CDI. Germination can be stimulated by the combinatorial actions of certain amino acids and either conjugated or deconjugated cholic acid-derived bile salts. During synthesis in the liver, cholic acid- and chenodeoxycholic acid-class bile salts are conjugated with either taurine or glycine at the C24 carboxyl. During GI transit, these conjugated bile salts are deconjugated by microbes that express bile salt hydrolases (BSHs). Here, we surprisingly find that several C. difficile strains have BSH activity. We observed this activity in both C. difficile vegetative cells and in spores and that the observed BSH activity was specific to taurine-derived bile salts. Additionally, we find that this BSH activity can produce cholate for metabolic conversion to deoxycholate by C. scindens. The C. scindens-produced deoxycholate signals to C. difficile to initiate biofilm formation. Our results show that C. difficile BSH activity has the potential to influence the interactions between microbes, and this could extend to the GI setting.
Collapse
Affiliation(s)
| | | | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
50
|
Mengoli M, Barone M, Fabbrini M, D’Amico F, Brigidi P, Turroni S. Make It Less difficile: Understanding Genetic Evolution and Global Spread of Clostridioides difficile. Genes (Basel) 2022; 13:2200. [PMID: 36553467 PMCID: PMC9778335 DOI: 10.3390/genes13122200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is an obligate anaerobic pathogen among the most common causes of healthcare-associated infections. It poses a global threat due to the clinical outcomes of infection and resistance to antibiotics recommended by international guidelines for its eradication. In particular, C. difficile infection can lead to fulminant colitis associated with shock, hypotension, megacolon, and, in severe cases, death. It is therefore of the utmost urgency to fully characterize this pathogen and better understand its spread, in order to reduce infection rates and improve therapy success. This review aims to provide a state-of-the-art overview of the genetic variation of C. difficile, with particular regard to pathogenic genes and the correlation with clinical issues of its infection. We also summarize the current typing techniques and, based on them, the global distribution of the most common ribotypes. Finally, we discuss genomic surveillance actions and new genetic engineering strategies as future perspectives to make it less difficile.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|