1
|
Xu DW, Raven K, Woodcock SR, Munro B, Palombi IR, Gare CL, White AM, Malins LR, Lawrence N, McMorran BJ. Insights into platelet factor 4-derived peptide macrocycles; the mechanistic basis of their rapid and selective antiplasmodial actions. Cell Mol Life Sci 2025; 82:228. [PMID: 40490548 DOI: 10.1007/s00018-025-05757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025]
Abstract
The malarial parasite Plasmodium can acquire resistance to most mainstay antimalarial drugs, necessitating the development of new antiplasmodial agents with different modes of action. The innate defense protein, human platelet factor 4 (PF4), has a unique antiplasmodial action that involves selective entry into Plasmodium-infected red blood cells (RBC) and subsequent destruction of the parasite's digestive vacuole (DV). This activity is recapitulated in PF4-derived internalization peptides (PDIPs). Here, we characterized the actions of PDIP analogs and PF4 in live P. falciparum-infected human RBC to understand their kinetics, effects on cell and parasite viability, and molecular requirements for antiplasmodial activity. The entry and accumulation of PDIP, and peptide-induced DV destruction, were distinguishable as ordered and rapidly occurring events that were equivalent to PF4. Both host cell and parasite plasma membranes remained intact and undamaged following destruction of the DV, although modest changes in phosphatidylserine (PS) exposure on the surface of the host cells (indicative of changes to its phospholipid organization) and swelling (but not lysis) of the intracellular parasite were observed. PDIP retained its macrocyclic structure, and its activity depended on elevated levels of PS on the surface of infected versus uninfected cells. Neither the intramolecular disulfide bond of PDIP, nor the parasite's nutrient and ion transporter functions were required. These actions on the parasite DV were not detected for other antiplasmodial drugs and compounds. In conclusion, this study reveals the unique, rapid, and distinct antiplasmodial actions of PDIP, highlighting its potential for future antimalarial development.
Collapse
Affiliation(s)
- Dianne W Xu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Canberra, 2601, Australia
| | - Karoline Raven
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Canberra, 2601, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Sarah R Woodcock
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Canberra, 2601, Australia
| | - Bruce Munro
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Canberra, 2601, Australia
| | - Isabella R Palombi
- Research School of Chemistry, Australian National University, Acton, Canberra, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Caitlin L Gare
- Research School of Chemistry, Australian National University, Acton, Canberra, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew M White
- Research School of Chemistry, Australian National University, Acton, Canberra, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Acton, Canberra, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, 4067, Australia.
| | - Brendan J McMorran
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Canberra, 2601, Australia.
| |
Collapse
|
2
|
Lianou A, Tsantes AG, Piovani D, Bonovas S, Lapaj IM, Gounari EA, Tsantes AE, Iacovidou N, Sokou R. Hemostatic Manifestations of Invasive Fungal Infections: A Comprehensive Review of Pathophysiological Mechanisms in Sepsis-Induced Hemostatic Disturbances, with a Focus on the Neonatal Population. Semin Thromb Hemost 2025; 51:600-618. [PMID: 40127884 DOI: 10.1055/a-2564-7613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sepsis is a life-threatening condition that has challenged many clinicians over the years. The immune and hemostatic systems are the primary pillars of sepsis pathogenesis. Dysregulation of these intricate mechanisms significantly worsens the prognosis. Coagulopathy is a critical aspect of sepsis, with the degree of hemostatic impairment being a key determinant of poor outcomes. Although the concept of sepsis caused by bacteria has been well investigated, the fungal impact in the complexity of sepsis-related hemostatic derangement is not yet fully unraveled. In addition, sepsis occurs in patients across all age groups, with a particular concern for neonates, whose immature and vulnerable systems amplify the challenges. Notably, despite the high incidence of fungal septicemia in neonatal intensive care units (NICUs), along with its significant morbidity, mortality, and adverse neonatal outcomes, the impact of fungal sepsis on the neonatal hemostatic system-an essential determinant of prognosis-remains largely unexplored. The present review delves into the pathophysiologic mechanisms of sepsis-induced coagulopathy attributed to fungal infection, the mechanisms of fungal involvement in the hemostatic derangement, and attempts to contextualize this knowledge within the unique neonatal population. Finally, it aims to raise awareness of the critical need for a deep understanding of this hazardous condition to guide the development of optimal therapeutic strategies.
Collapse
Affiliation(s)
- Alexandra Lianou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Piraeus, Greece
| | - Andreas G Tsantes
- Microbiology Department, "Saint Savvas" Oncology Hospital, Athens, Greece
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Eleni A Gounari
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Argirios E Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Rozeta Sokou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
3
|
Li WD, Lin F, Sun Y, Zhu ZJ, Luo ML, Zeng YQ, Lin Z, Zhou M. Effect of platelet-rich plasma and platelet-rich fibrin on healing of burn wound with dual-species biofilm. Kaohsiung J Med Sci 2025; 41:e12940. [PMID: 39829200 DOI: 10.1002/kjm2.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
This study evaluated the impact of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) on burn wound with dual-species biofilm. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were applied to infect the burn wound in rats to establish a dual-species biofilm model. After infection, the wound was treated with ionized silver (AG), PRF, and PRP. Silver scanning electron microscopy (SEM) was used to assess adhesion after infection. PRF and PRP reduced wound size from day 8 after burn injuries, while AG significantly promoted burn wound healing at day 12. New collagen was formed in the shortest time in PRF and PRP groups compared to AG and control groups. PRF and PRP greatly lowered the bacterial numbers in wounds with S. aureus and P. aeruginosa biofilm, whereas AG showed weak bacteriostatic effects. AG, PRF, and PRP treatments significantly reduced inflammatory mediators and induced VEGFA. However, AG treatment increased TNF-α. PRF and PRP accelerate wound healing in the presence of dual-species biofilm infection and show strong antibacterial activity against S. aureus and P. aeruginosa, indicating that PRF and PRP could be potential therapies for burn wounds with dual-species biofilm infection.
Collapse
Affiliation(s)
- Wen-Dan Li
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Fang Lin
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Yu Sun
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Zi-Jing Zhu
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Mei-Liang Luo
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Yi-Qi Zeng
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Zhen Lin
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Mou Zhou
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| |
Collapse
|
4
|
Yang M, Deng B, Hao W, Jiang X, Chen Y, Wang M, Yuan Y, Chen M, Wu X, Du C, Armstrong DG, Guo L, Deng W, Wang H. Platelet concentrates in diabetic foot ulcers: A comparative review of PRP, PRF, and CGF with case insights. Regen Ther 2025; 28:625-632. [PMID: 40166040 PMCID: PMC11955794 DOI: 10.1016/j.reth.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are severe complications of diabetes, often leading to chronic wounds, amputations, and increased mortality risk. Platelet concentrates (PCs)-natural biomaterials utilized in regenerative medicine-have garnered attention for their capacity to enhance tissue repair and wound healing. This study reviews the preparation methods, biological mechanisms, and clinical efficacy of three generations of PCs: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factors (CGF). Comparative analysis reveals that PRP, the first generation, provides abundant growth factors but relies on anticoagulants, which may hinder fibrin formation and tissue adhesion. PRF, as the second generation, eliminates anticoagulants, forming a fibrin matrix that sustains growth factor release and enhances cell migration. CGF, the latest advancement, employs refined centrifugation to achieve higher growth factor concentrations and a denser fibrin matrix, accelerating tissue regeneration. Case series results demonstrated superior wound healing outcomes with CGF, including faster epithelialization and reduced healing time compared to PRP and PRF. These findings underscore CGF's potential as the most effective PC for managing DFUs, supporting its broader clinical adoption in advanced wound care.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Bo Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaoyan Jiang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Min Wang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Yi Yuan
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Meirong Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - Chenzhen Du
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Lian Guo
- Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
- Department of Population Health Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Hongyan Wang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing University, Chongqing 400014, China
| |
Collapse
|
5
|
Tong TH, Do XH, Nguyen TT, Pham BH, Le QD, Nguyen XH, Hoang NTM, Nguyen TH, Nguyen NH, Than UTT. Umbilical cord blood-derived platelet-rich plasma as a coating substrate supporting cell adhesion and biological activities of wound healing. Eur J Med Res 2025; 30:145. [PMID: 40022270 PMCID: PMC11869680 DOI: 10.1186/s40001-025-02388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Platelet-rich plasma (PrP) is a blood derivative with positive roles in regenerative medicine, particularly in wound healing. Evidence has been reported for using peripheral blood-derived PrP in disease treatments, but umbilical cord blood (UCB)-derived PrP remains limited. Thus, we investigate the roles of UCB-derived PrP in cellular behaviours in vitro and in wound healing in vivo models. METHODS We used 2D and 3D cell culture models to investigate the role of UCB-derived PrP gels in stimulating the attachment, proliferation, migration, and spheroid formation of umbilical cord-derived mesenchymal stem cell (UCMSC) and human dermal fibroblast (hFB). In addition, immunoassay and PCR were used to understand the enrichment of growth factors in UCB-derived PrP and the change of ECM genes in PrP-treated cells. Finally, a rat model was used to investigate the cutaneous wound healing process. RESULTS UCB-derived PrP gels were enriched with platelet-derived growth factor-BB (PDGF-BB) (3394.1 ± 2658.3 pg/mL), vascular endothelial growth factor-A (VEGF-A) (282.0 ± 53.0 pg/mL), hepatocyte growth factor (HFG) (762.7 ± 117.5 pg/mL), and fibroblast growth factor 2 (FGF-2) (17.734 ± 8 pg/mL). In addition, these UCB-derived PrP gels promoted cell attachment (> 154 % and > 117 % for UCMSCs and hFBs, respectively), proliferation (UCMSCs > 121 % and hFBs > 117 % at all time points), migration increased by 27 % and 26 % for UCMSCs and hFBs, and spheroid formation and fusion compared to the control. UCB-derived PrP gels also induced different expression of ECM genes, including COL1, COL3, HAS1, HAS2, HAS3, and ENL, in both UCMSCs and hFBs. Finally, this product from UCBs could enhance the wound healing process in excised skin rat models by reducing the wound area by 80 % compared to 27 % in controls after 14 days. CONCLUSIONS UCB-derived PrP gels facilitate cell behaviours in vitro, including cell adhesion, growth, and migration. In addition, in animal models, UCB-derived PrP reduced the wound healing time and enhanced the completion of skin tissues by increasing granulation tissue formation and reducing neutrophils at wound sites. These UCB-derived PrP gels will be used to support spheroid formation that will be used as biomaterials for 3D printing, engraftment, and wound healing treatment.
Collapse
Affiliation(s)
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Vietnam
| | - Thanh-Thao Nguyen
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Bich-Hanh Pham
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Quang-Dung Le
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 100000, Vietnam
- Vinmec-VinUni Institute of Immunology, College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam
| | - Nhung Thi My Hoang
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Thu-Huyen Nguyen
- Vinmec-VinUni Institute of Immunology, College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam
| | - Nam Hoang Nguyen
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Hi-Tech Center, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 100000, Vietnam.
- Vinmec-VinUni Institute of Immunology, College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam.
| |
Collapse
|
6
|
Setarehaseman A, Mohammadi A, Maitta RW. Thrombocytopenia in Sepsis. Life (Basel) 2025; 15:274. [PMID: 40003683 PMCID: PMC11857489 DOI: 10.3390/life15020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Platelets, traditionally known for their role in hemostasis, have emerged as key players in immune response and inflammation. Sepsis, a life-threatening condition characterized by systemic inflammation, often presents with thrombocytopenia, which at times, can be significant. Platelets contribute to the inflammatory response by interacting with leukocytes, endothelial cells, and the innate immune system. However, excessive platelet activation and consumption can lead to thrombocytopenia and exacerbate the severity of sepsis. Understanding the multifaceted roles of platelets in sepsis is crucial for developing effective therapeutic strategies. Targeting platelet-mediated inflammatory responses and promoting platelet production may offer potential avenues for improving outcomes in septic patients with thrombocytopenia. Future research should focus on elucidating the mechanisms underlying platelet dysfunction in sepsis and exploring novel therapeutic approaches to optimize platelet function and mitigate inflammation. This review explores the intricate relationship between platelets, inflammation, and thrombosis in the context of sepsis.
Collapse
Affiliation(s)
- Alireza Setarehaseman
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Abbas Mohammadi
- Department of Internal Medicine, Valley Health System, Las Vegas, NV 89119, USA;
| | - Robert W. Maitta
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
7
|
Blanco J, García A, Hermida‐Nogueira L, Castro AB. How to explain the beneficial effects of leukocyte- and platelet-rich fibrin. Periodontol 2000 2025; 97:74-94. [PMID: 38923566 PMCID: PMC11808445 DOI: 10.1111/prd.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
The survival of an organism relies on its ability to repair the damage caused by trauma, toxic agents, and inflammation. This process involving cell proliferation and differentiation is driven by several growth factors and is critically dependent on the organization of the extracellular matrix. Since autologous platelet concentrates (APCs) are fibrin matrices in which cells, growth factors, and cytokines are trapped and delivered over time, they are able to influence that response at different levels. The present review thoroughly describes the molecular components present in one of these APCs, leukocyte- and platelet-rich fibrin (L-PRF), and summarizes the level of evidence regarding the influence of L-PRF on anti-inflammatory reactions, analgesia, hemostasis, antimicrobial capacity, and its biological mechanisms on bone/soft tissue regeneration.
Collapse
Affiliation(s)
- Juan Blanco
- Department of Surgery (Stomatology, Unit of Periodontology)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Angel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)Santiago de Compostela UniversitySantiago de CompostelaSpain
| | - Lidia Hermida‐Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)Santiago de Compostela UniversitySantiago de CompostelaSpain
| | - Ana B. Castro
- Department of Oral Health Sciences, Section of Periodontology, KU Leuven & DentistryUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Goubran H, Ahmed S, Ragab G, Seghatchian J, Burnouf T. Platelet proteomics: Clinical implications - Decoding the black box! Transfus Apher Sci 2025; 64:104060. [PMID: 39719751 DOI: 10.1016/j.transci.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Platelets are anucleate blood cells traditionally associated with hemostasis but now increasingly recognized for their multifaceted roles in immunity, inflammation, and tissue repair. Advances in platelet proteomics, employing high-throughput techniques such as mass spectrometry, have significantly enhanced our understanding of platelet biology and its clinical implications in transfusion medicine. Platelet proteomics offers a retrospective view of physiological and pathological changes over the platelet's 7-10-day lifespan, making it a unique tool for studying cumulative biological events. Recent applications include the identification of biomarkers for cardiovascular, infectious, autoimmune diseases and cancer. In neurodegeneration and aging, platelets have been explored for their shared molecular pathways with neurons, with findings implicating Tau, amyloid-beta, and alpha-synuclein as potential biomarkers. Proteomics is also emerging as an important factor in the development of evidence-based, tailor-made platelet-derived therapies. While promising, platelet proteomics requires further standardization and computational advances to support transitioning from research to routine clinical practice.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre, Saskatoon, SK, Canada; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Shahid Ahmed
- Saskatoon Cancer Centre, Saskatoon, SK, Canada; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Gaafar Ragab
- Rheumatology and Immunology Unit, Internal Medicine Department, Cairo University, Egypt
| | - Jerard Seghatchian
- International Consultancy in Modern Personalized Blood Components Therapies and Innovative DDR Strategies, London, England, UK
| | - Thierry Burnouf
- Graduate Institute of Biological Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Egli P, Boone L, Huber L, Higgins C, Gaonkar PP, Arrington J, Naskou MC, Peroni J, Gordon J, Lascola KM. Pilot study characterizing a single pooled preparation of equine platelet lysate for nebulization in the horse. Front Vet Sci 2024; 11:1488942. [PMID: 39726585 PMCID: PMC11670369 DOI: 10.3389/fvets.2024.1488942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Platelet lysate (PL) demonstrates antimicrobial and anti-inflammatory properties offering potential for treatment of bacterial pneumonia in horses. It remains unknown whether nebulization is suitable for PL administration in horses. This pilot study characterized particle size and flow rate of pooled equine PL (single preparation) nebulized using an equine-specific nebulizer (Flexivent®). Methods Protein composition and antimicrobial activity were compared before and after nebulization. Protein composition was evaluated according to growth factor, antimicrobial peptide and cytokine concentrations and proteomic analysis. To evaluate antimicrobial activity, bacterial growth inhibition [maximum growth (μmax); carrying capacity (K)] were determined for E. coli, Streptococcus equi subsp zooepidemicus and Rhodococcus equi (WT and MDR) using pre- and post-nebulized PL concentrations of 50%. Results Flow rate and median particle size were 0.8 ml/min and 4.991 μm with 52% of particles ≤ 5 μm. Differences in PL protein composition were detected with nebulization. For E. coli and S. zooepidemicus, nebulization did not alter effect of PL on growth parameters. PL treatments decreased K for S. zooepidemicus (p = 0.009) compared to BHI. For R. equi K was increased post- vs. pre-nebulization (WT and MDR) and μmax increased pre- vs, post-nebulization (MDR). PL treatments increased K and μmax for MDR R. equi and μmax for WT R. equi compared to BHI (p ≤ 0.05). Conclusion Nebulization of PL in vitro is technically feasible. The results of this study support further investigation to better characterize the effect of nebulization on PL and its suitability for nebulization in horses.
Collapse
Affiliation(s)
- Patricia Egli
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Lindsey Boone
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Courtney Higgins
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Pankaj P. Gaonkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Justine Arrington
- Roy J. Carver Biotechnology Center, Proteomics Core, University of Illinois, Urbana, IL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - John Peroni
- JF Peroni Laboratory, Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Julie Gordon
- JF Peroni Laboratory, Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kara M. Lascola
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
10
|
Momi S, Gresele P. The Role of Platelets in Atherosclerosis: A Historical Review. Semin Thromb Hemost 2024. [PMID: 39561814 DOI: 10.1055/s-0044-1795097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet-leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Bouhaddou N, Mabrouk M, Atifi F, Bouyahya A, Zaid Y. The link between BDNF and platelets in neurological disorders. Heliyon 2024; 10:e39278. [PMID: 39568824 PMCID: PMC11577193 DOI: 10.1016/j.heliyon.2024.e39278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Platelets are considered one of the most important reservoirs not only of growth factors, but also of neurotrophic factors that could contribute to the repair of vascular lesions and the prevention of neurological deterioration. Among these factors, Brain-Derived Neurotrophic Factor (BDNF) - a protein belonging to the neurotrophin family - is widely expressed both in the hippocampus and in platelets. Platelets constitute an important reservoir of BDNF; however, little is known about the factors modulating its release into the circulation and whether anti-platelet drugs affect this secretion. In this review, we have discussed the link between BDNF and platelets and their role in neurological disorders.
Collapse
Affiliation(s)
- Nezha Bouhaddou
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryem Mabrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Farah Atifi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| |
Collapse
|
12
|
Giraldo-Osorno PM, Wirsig K, Asa'ad F, Omar O, Trobos M, Bernhardt A, Palmquist A. Macrophage-to-osteocyte communication: Impact in a 3D in vitro implant-associated infection model. Acta Biomater 2024; 186:141-155. [PMID: 39142531 DOI: 10.1016/j.actbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1β and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.
Collapse
Affiliation(s)
- Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Wirsig
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Bernhardt
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany.
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Peng C, Yang L, Labens R, Gao Y, Zhu Y, Li J. A systematic review and meta-analysis of the efficacy of platelet-rich plasma products for treatment of equine joint disease. Equine Vet J 2024; 56:858-869. [PMID: 38185481 DOI: 10.1111/evj.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Equine joint disease including septic arthritis (SA) and osteoarthritis (OA) is a critical cause of equine lameness. Platelet-rich plasma (PRP) is one of the most popular regenerative therapies to treat equine OA, even SA, but the evidence in support of the treatment is conflicting. OBJECTIVES The aim of the study was to systematically review the current evidence on PRP products used for SA and OA, as well as the efficacy of PRP products as treatment for OA on the basis of a meta-analysis of the available literature. STUDY DESIGN Systematic review and meta-analysis. METHODS A systematic search of relevant databases (PubMed, Web of Science, Scopus) was performed to identify studies published from 2013 to 2023, in accordance with the PRISMA guidelines. Randomised controlled trials, non-randomised trials and controlled laboratory studies that used at least one type of PRP products were included. Dichotomous outcomes were presented using odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS A total of 21 publications were identified in the systematic review and 5 of them in the meta-analysis. These publications involved various types of PRP products and reported different outcomes. Although most of the studies were associated with a high risk of bias, the overall estimated effect was consistent with a significant improvement in the PRP products treatment group compared with the control group (OR: 15.32; 95% CI: 3.00-78.15; p < 0.05). There was a significant improvement in clinical performance outcomes between the groups (OR: 36.64; 95% CI: 3.69-364.30; p < 0.05). CONCLUSION PRP products as intra-articular treatment are likely efficacious for treatment of equine OA and have potential for treating SA. These conclusions might be affected by the limited number of randomised controlled studies and high variability of different types of PRP products. To better evaluate the efficacy of PRP, a widely recognised classification system and the utilisation of randomised, blinded, equivalency or non-inferiority trials are required.
Collapse
Affiliation(s)
- Cong Peng
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Luo Yang
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Raphael Labens
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Yu Gao
- University of Veterinary Medicine Hannover, Hanover, Lower Saxony, Germany
| | - Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
- China Agricultural University Veterinary Teaching Hospital, Beijing, China
| |
Collapse
|
14
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
15
|
Dinaki K, Grigoriadis N, Vizirianakis IS, Constantinidis J, Triaridis S, Karkos P. The impact of submucosal PRP injection on wound healing after endoscopic sinus surgery: a randomized clinical trial. Eur Arch Otorhinolaryngol 2024; 281:3587-3599. [PMID: 38334783 PMCID: PMC11211195 DOI: 10.1007/s00405-024-08483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) is a prevalent chronic disease observed on a global scale. The utilization of endoscopic sinus surgery (ESS) has gained significant recognition as an effective intervention for individuals with CRS and nasal polyps who have not responded to conventional treatments. The need (or not) for revision surgery frequently relies on the promotion of optimal wound healing. The impact of platelet-rich plasma (PRP) on tissue healing has been extensively examined in various surgical fields. METHODS The present prospective study involved 30 patients suffering with nasal polyposis who underwent endoscopic sinus surgery. 15 patients were assigned to the PRP group, and 15 patients to the control group. The clinical follow-up of the patients took place at specific intervals, at weeks 1, 2, 3, 4, 8, and 12 after the surgical procedure. The evaluator identified the existence of adhesions, crusting, bleeding, granulation and infection using a visual analogue scale score. The patients also completed the SNOT 22 questionnaire prior to surgery and at each postoperative visit. RESULTS The present study observed a lower incidence of adhesion, infection, hemorrhage and granulation in the PRP group. Furthermore, a statistically significant difference was detected between the groups. CONCLUSION Based on the findings of the present investigation, it seems that platelet-rich plasma (PRP) is beneficial on wound healing during the early stages following the surgical procedure. The technique is characterized by its limited invasiveness, which contributes to its low risk profile and the achievement of clinically good outcomes.
Collapse
Affiliation(s)
- Konstantina Dinaki
- 1st Academic ORL Department, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Grigoriadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Jannis Constantinidis
- 1st Academic ORL Department, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefanos Triaridis
- 1st Academic ORL Department, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Karkos
- 1st Academic ORL Department, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Wanthong A, Boonmark C, Vaisopha N, Roytrakul S, Tankrathok A, Taemaitree L, Daduang S, Boonlue S, Khunkitti W, Klaynongsruang S, Jangpromma N. Egg white hydrolysate peptides act as antimicrobial and anti-inflammatory agents for acne. Heliyon 2024; 10:e32468. [PMID: 38961914 PMCID: PMC11219355 DOI: 10.1016/j.heliyon.2024.e32468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
A simple method to generate antibacterial peptides by alkaline hydrolysis of hen egg whites is reported. The method reproducibly generates short peptides with molecular weight of less than 14.4 kDa that exhibit low to no cytotoxicity on RAW 264.7 macrophage cells, but do inhibit the bacterial growth of Cutibacterium acnes (C. acnes), Staphylococcus aureus (S. aureus) and antibiotic-resistant S. aureus (MRSA), while also reducing nitric oxide production from heat-killed C. acnes-treated RAW 264.7 cells. Peptidomics revealed at least thirty peptides within the complex mixture, of which eight were evaluated individually. Three peptides (PK8, EE9 and RP8) were potent anti-inflammation and antibacterial agents, but notably the complex egg white hydrolysate (EWH) was more effective than the individual peptides. Electron microscopy suggests the antibacterial mechanism of both the hydrolysate and the selected peptides is through disruption of the cell membrane of C. acnes. These findings suggest that EWH and EWH-derived peptides are promising candidates for infection and inflammation treatment, particularly in managing acne and combating antibiotic-resistant bacteria like MRSA.
Collapse
Affiliation(s)
- Anuwat Wanthong
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanapat Boonmark
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Anupong Tankrathok
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, 46000, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sophon Boonlue
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Watcharee Khunkitti
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
17
|
De Lauretis A, Øvrebø Ø, Romandini M, Lyngstadaas SP, Rossi F, Haugen HJ. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308848. [PMID: 38380549 PMCID: PMC11077667 DOI: 10.1002/advs.202308848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Periodontitis is a dysbiosis-driven inflammatory disease affecting the tooth-supporting tissues, characterized by their progressive resorption, which can ultimately lead to tooth loss. A step-wise therapeutic approach is employed for periodontitis. After an initial behavioral and non-surgical phase, intra-bony or furcation defects may be amenable to regenerative procedures. This review discusses the regenerative technologies employed for periodontal regeneration, highlighting the current limitations and future research areas. The search, performed on the MEDLINE database, has identified the available biomaterials, including biologicals (autologous platelet concentrates, hydrogels), bone grafts (pure or putty), and membranes. Biologicals and bone grafts have been critically analyzed in terms of composition, mechanism of action, and clinical applications. Although a certain degree of periodontal regeneration is predictable in intra-bony and class II furcation defects, complete defect closure is hardly achieved. Moreover, treating class III furcation defects remains challenging. The key properties required for functional regeneration are discussed, and none of the commercially available biomaterials possess all the ideal characteristics. Therefore, research is needed to promote the advancement of more effective and targeted regenerative therapies for periodontitis. Lastly, improving the design and reporting of clinical studies is suggested by strictly adhering to the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.
Collapse
Affiliation(s)
- Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Mario Romandini
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| |
Collapse
|
18
|
Launder D, Dillon JT, Wuescher LM, Glanz T, Abdul-Aziz N, Yi EMC, Naglik JR, Worth RG, Conti HR. Immunity to pathogenic mucosal C. albicans infections mediated by oral megakaryocytes activated by IL-17 and candidalysin. Mucosal Immunol 2024; 17:182-200. [PMID: 38246240 PMCID: PMC11034721 DOI: 10.1016/j.mucimm.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The fungus Candida albicans can cause mucosal infections including oropharyngeal candidiasis (OPC) in immunocompromised patients. In humans, an increased risk of fungal infections correlates with thrombocytopenia. However, our understanding of platelets and megakaryocytes (Mks) in mucosal fungal infections is almost entirely unknown. When megakaryocyte- and platelet-depleted mice were infected with OPC, the tongue showed higher fungal burden, due to decreased neutrophil accumulation. Protection depended on a distinct population of oral-resident Mks. Interleukin-17, important in antifungal immunity, was required since mice lacking the IL-17 receptor had decreased circulating platelets and their oral Mks did not expand during OPC. The secretion of the peptide toxin candidalysin activated human Mks to release platelets with antifungal capacity. Infection with a candidalysin-deficient strain resulted in decreased expansion of tongue Mks during OPC. This is the first time that a distinct megakaryocyte population was identified in the oral mucosa which is critical for immunity against fungal infection.
Collapse
Affiliation(s)
- Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| | - John T Dillon
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| | - Leah M Wuescher
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, United States
| | - Trevor Glanz
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| | - Nora Abdul-Aziz
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| | - Elise Mein-Chiain Yi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| | - Julian R Naglik
- Center for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Randall G Worth
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine & Life Sciences, Toledo, Ohio, United States
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States.
| |
Collapse
|
19
|
Wu Y, Peng G, Wang Y, Chen J, Zhang B, Tang J, Cheng B. Clinical efficacy of blood derivatives on wound healing: A systematic review and network meta-analysis. Int Wound J 2024; 21:e14622. [PMID: 38158884 PMCID: PMC10961890 DOI: 10.1111/iwj.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
This study aims to evaluate the clinical effects of different blood derivatives on wound healing using network meta-analysis. PubMed, Embase, OVID, Web of Science, SCOPUS and Cochrane Central were searched to obtain studies about blood derivatives on wound healing until October 2023. R 4.2.0 and Stata 15.0 softwares were used for data analysis. Forty-four studies comprising 5164 patients were included. The results of network meta-analysis showed that the healing area from high to low was GF + ORCCB, ORCCB, GF, PRF, Unnas paste dressing, APG, PRP injection, PRP, PRP + thrombin gel, PPP, HPL, CT. The healing time from low to high was PRP + thrombin gel, GF, PRP, PC + K, PC, APG, PRF, CT, Silver sulfadiazine ointment. The number of patients cured from high to low was APG, PRP injection, PRP, Aurix, PRF, Leucopatch, HPL, Antimicrobial Ointment Dressing, CT, 60 μg/cm2 repifermin, 120 μg/cm2 repifermin, AFG, PPP. The order of analgesic effect from high to low was AFG, Aminogam gel, PRF, PRP, Oxidised oil, APG, GF, CT. The order of the number of wound infection cases from low to high is APG, 20 μg/cm2 repifermin, 60 μg/cm2 repifermin, PRP, LeucoPatch, CT, PPP, Antiseptic ointment dressing. Healing area: GF + ORCCB had the best effect; Healing time: PRP + thrombin gel took the shortest time. The number of cured patients and the reduction of wound infection: APG has the best effect. Analgesic effect: AFG has the best effect. More studies with large sample sizes are needed to confirm the above findings.
Collapse
Affiliation(s)
- Yanhong Wu
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| | - Guang Peng
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| | - Yuzhi Wang
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| | - Jianwu Chen
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| | - Bin Zhang
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| | - Jianbing Tang
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| | - Biao Cheng
- Department of Burns and Plastic SurgeryGeneral Hospital of Southern Theater Command of PLAGuangzhouGuangdongChina
| |
Collapse
|
20
|
Rasizadeh R, Ebrahimi F, Zamani Kermanshahi A, Daei Sorkhabi A, Sarkesh A, Sadri Nahand J, Bannazadeh Baghi H. Viruses and thrombocytopenia. Heliyon 2024; 10:e27844. [PMID: 38524607 PMCID: PMC10957440 DOI: 10.1016/j.heliyon.2024.e27844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Thrombocytopenia, characterized by a decrease in platelet count, is a multifaceted clinical manifestation that can arise from various underlying causes. This review delves into the intriguing nexus between viruses and thrombocytopenia, shedding light on intricate pathophysiological mechanisms and highlighting the pivotal role of platelets in viral infections. The review further navigates the landscape of thrombocytopenia in relation to specific viruses, and sheds light on the diverse mechanisms through which hepatitis C virus (HCV), measles virus, parvovirus B19, and other viral agents contribute to platelet depletion. As we gain deeper insights into these interactions, we move closer to elucidating potential therapeutic avenues and preventive strategies for managing thrombocytopenia in the context of viral infections.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Ebrahimi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Daei Sorkhabi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Harm S, Schildböck C, Cont D, Weber V. Heparin enables the reliable detection of endotoxin in human serum samples using the Limulus amebocyte lysate assay. Sci Rep 2024; 14:2410. [PMID: 38287051 PMCID: PMC10825173 DOI: 10.1038/s41598-024-52735-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
The determination of lipopolysaccharide (endotoxin) in serum or plasma samples using Limulus amebocyte lysate (LAL)-based assays is currently not sufficiently reliable in clinical diagnostics due to numerous interfering factors that strongly reduce the recovery of LPS in clinical samples. The specific plasma components responsible for the endotoxin neutralizing capacity of human blood remain to be identified. There are indications that certain endotoxin-neutralizing proteins or peptides, which are part of the host defense peptides/proteins of the innate immune system may be responsible for this effect. Based on our finding that several antimicrobial peptides can be neutralized by the polyanion heparin, we developed a heparin-containing diluent for serum and plasma samples, which enables reliable quantification of LPS measurement in clinical samples using the LAL assay. In a preclinical study involving 40 donors, this improved protocol yielded an over eightfold increase in LPS recovery in serum samples, as compared to the standard protocol. This modified protocol of sample pretreatment could make LPS measurement a valuable tool in medical diagnostics.
Collapse
Affiliation(s)
- Stephan Harm
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria.
| | - Claudia Schildböck
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Denisa Cont
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
- Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University, Krems, Austria
| | - Viktoria Weber
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
22
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
23
|
Huang NC, Huang NC, Kang LY, Hsieh PS, Dai LG, Dai NT, Huang CJ. Enhanced Diabetic Rat Wound Healing by Platelet-Rich Plasma Adhesion Zwitterionic Hydrogel. Ann Plast Surg 2024; 92:S2-S11. [PMID: 38285989 DOI: 10.1097/sap.0000000000003796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing. A dressing containing bioactive substances can absorb wound exudates and reduce adhesion between the wound and dressing, whereas growth factors, cytokines, and signaling factors can promote cell motility and proliferation. AIM AND OBJECTIVES We prepared a functional wound dressing by combining platelet-rich plasma (PRP) and zwitterionic hydrogels. Functional wound dressings are rich in various naturally occurring growth factors that can effectively promote the healing process in various types of tissues and absorb wound exudates to reduce adhesion between wounds and dressings. Furthermore, PRP-incorporated zwitterionic hydrogels have been used to repair full-thickness wounds in Sprague-Dawley rats with diabetes (DM SD). MATERIALS AND METHODS Fibroblasts and keratinocytes were cultured with PRP, zwitterionic hydrogels, and PRP-incorporated zwitterionic hydrogels to assess cell proliferation and specific gene expression. Furthermore, PRP-incorporated zwitterionic hydrogels were used to repair full-thickness skin defects in DM SD rats. RESULTS The swelling ratio of hydrogel, hydrogel + PRP1000 (108 platelets/mL), and hydrogel + PRP1000 (109 platelets/mL) groups were similar (~07.71% ± 1.396%, 700.17% ± 1.901%, 687.48% ± 4.661%, respectively) at 144 hours. The tensile strength and Young modulus of the hydrogel and hydrogel + PRP10000 groups were not significantly different. High concentrations of PRP (approximately 108 and 109 platelets/mL) effectively promoted the proliferation of fibroblasts and keratinocytes. The zwitterionic hydrogels were not cytotoxic to any cell type. High PRP concentration-incorporated zwitterionic hydrogels increased the rate of cell proliferation and significantly increased the expression of characteristic genes such as collagen, fibronectin, involucrin, and keratin. Subsequently, zwitterionic hydrogels with high PRP concentrations were used to repair full-thickness skin defects in DM SD rats, and a wound healing rate of more than 90% was recorded on day 12. CONCLUSIONS PRP contains high concentrations of growth factors that promote cell viability, enhance specific gene expression, and have a high medical value in cell therapy. Zwitterionic hydrogels have a 3-dimensional interconnected microporous structure and can resist cell adhesion without causing cytotoxicity. Platelet-rich plasma-incorporated zwitterionic hydrogels further enhance the cellular properties and provide an effective therapeutic option for wound healing.
Collapse
Affiliation(s)
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lien-Guo Dai
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | | |
Collapse
|
24
|
Bilaloğlu MH, Tarhan ÖR, Zihni İ, Şirin MC. The effect of intraperitoneal LR-PRP on bacterial translocation in an experimental model of peritonitis in rats. ULUS TRAVMA ACIL CER 2024; 30:852-860. [PMID: 39668540 PMCID: PMC11849885 DOI: 10.14744/tjtes.2024.57634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND This study aims to examine the effect of Leukocyte-Rich Platelet-Rich Plasma (LR-PRP) on bacterial translocation in an experimental peritonitis model in rats. Secondary peritonitis occurs due to the loss of integrity in the mucosal barrier of the gastrointestinal system, resulting from contamination of the peritoneal cavity by microorganisms. LR-PRP has been shown to have positive anti-infectious, immunomodulatory, and angiogenetic effects. METHODS Twenty-seven Wistar-Albino rats were divided into three groups: Sham, Control, and Experimental. Laparotomy was performed on the rats under anesthesia, and the cecum was isolated. No procedure was performed on the Sham group. The cecums of the rats in the Control and Experimental groups were punctured twice within 5 minutes using an 18-gauge needle. The blood product of each rat in the Experimental group was prepared for autologous use as LR-PRP and administered intraperitoneally. The abdomens of rats in all groups were closed after 8 minutes. After 8 hours, the rats were sacrificed, and tissue and blood samples were collected. Inflammatory parameters (TNF-α, IL-1, and IL-6) and blood cultures were analyzed from the blood samples. Cultures were also performed on liver, spleen, and mesenteric lymph node tissue samples. RESULTS Liver tissue culture growth was not detected in rats in the sham group. It was detected in 6 rats in the control group, and in 1 rat in the experimental group. Mesenteric lymph node tissue culture growth was detected in 2 rats in the sham group, in 7 in the control group and in 1 in the experimental group. Blood culture growth was not detected in rats in the sham group, but detected in 8 rats in the control group, and 3 in the experimental group. In terms of liver tissue culture, mesenteric lymph node tissue culture, and blood culture; a significant relationship was statistically observed between the control and experimental groups (p=0.049, p=0.008, p=0.015, respectively). It was infered that a statistically significant relationship in the mean TNF-alpha, IL-1, IL-6 values was not seen between the control and experimental groups (p=0.999, p=0.999, p=0.590, respectively). CONCLUSION LR-PRP's ability to suppress bacterial translocation was statistically significant in liver tissue culture, mesenteric lymph node tissue culture, and blood culture when comparing the Control and Experimental groups. LR-PRP was found to be effective in preventing bacterial translocation without suppressing inflammation and exhibited antimicrobial properties as supported by the literature.
Collapse
Affiliation(s)
| | - Ömer Rıdvan Tarhan
- Department of General Surgery, Suleyman Demirel University Faculty of Medicine, Isparta-Türkiye
| | - İsmail Zihni
- Department of General Surgery, Akdeniz University Faculty of Medicine, Antalya-Türkiye
| | - Mümtaz Cem Şirin
- Department of Medical Microbiology, Suleyman Demirel University Faculty of Medicine, Isparta-Türkiye
| |
Collapse
|
25
|
Ding G, Yu P, Deng D, Xie M, Luo K, Zhang F, Xu D, Xu Q, Guo H, Zhang S. Functional characterization of group Ⅱ interferon, IFNf in the acipenseriform fish, Chinese sturgeon (Acipenser sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109240. [PMID: 38008344 DOI: 10.1016/j.fsi.2023.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Teleost fish possess a diversity of type Ⅰ interferons (IFNs) repertoire, which play a crucial role in antiviral and antimicrobial immune responses. In our previous study, IFNe1-3 and IFNb were identified and cloned from Chinese sturgeon (Acipenser sinensis), an acipenseriform fish. However, the absence of Chinese sturgeon genome data has left the question of whether there are other type Ⅰ IFN members in this species unresolved. In this study, we have identified and characterized a novel IFN, IFNf in Chinese sturgeon (AsIFNf). Bioinformatics analysis revealed that the AsIFNf contains a unique disulfide bond (2 cysteines) located in the second exon and fifth exon region, distinguishing it from other reported teleost type I IFNs. Meanwhile, qPCR results showed that AsIFNf mRNA was detectable in all examined tissues and up-regulated in the spleen or kidney in response to poly I: C, Citrobacter freundii, and Spring Viremia of Carp Virus (SVCV), but not by LPS. Furthermore, compared to recombinant AsIFNe2 protein (rAsIFNe2), rAsIFNf exhibited a stronger protective effect on Chinese sturgeon fin cells against SVCV and also induced higher expression of antiviral genes Mx and viperin. Importantly, AsIFNf displayed characteristics similar to antimicrobial peptides (AMPs) with a positive charge and demonstrated a broad spectrum of antimicrobial activity in vitro. These findings provide a theoretical foundation for understanding the primitive structure and function of interferon, as well as deepening our comprehension of the innate immune system and disease defense in the endangered Chinese sturgeon.
Collapse
Affiliation(s)
- Guangyi Ding
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Peipei Yu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Dan Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Meng Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Kai Luo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Fuxian Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Dingda Xu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, China
| | - Qiaoqing Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China.
| | - Huizhi Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
26
|
Cl K, Jeyaraman M, Jeyaraman N, Ramasubramanian S, Khanna M, Yadav S. Antimicrobial Effects of Platelet-Rich Plasma and Platelet-Rich Fibrin: A Scoping Review. Cureus 2023; 15:e51360. [PMID: 38292974 PMCID: PMC10825076 DOI: 10.7759/cureus.51360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Platelet-rich plasma (PRP), derived from the centrifugation and subsequent separation of whole blood, results in an unusually high concentration of platelets. A newer form of platelet concentrate, platelet-rich fibrin (PRF), has also been developed. There has been significant research into the therapeutic effects of PRP, particularly in enhancing wound healing and preventing infections in surgical wounds. This scoping review aims to thoroughly evaluate preclinical and clinical evidence regarding the antimicrobial effects of PRP and PRF. In conducting this review, 612 records were examined, and 36 articles were selected for inclusion. The studies reviewed include preclinical research, such as in-vitro and in-vivo studies, and clinical trials involving human participants. The current clinical evidence suggests a notable trend towards the antimicrobial capabilities of PRP and PRF, underscoring their potential benefits in treating wounds. The application of PRP and PRF in wound management shows encouraging outcomes, but further investigation is needed to optimize their use as antimicrobial agents. Additional research, particularly randomized controlled trials, is essential to substantiate their antimicrobial effectiveness in specific diseases and types of wounds, considering their potential impact on clinical results.
Collapse
Affiliation(s)
- Karan Cl
- Orthopaedics, Sanjay Gandhi Institute of Trauma & Orthopaedics, Bengaluru, IND
| | - Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
| | | | - Manish Khanna
- Orthopaedics, Autonomous State Medical College, Ayodhya, IND
| | - Sankalp Yadav
- Internal Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
27
|
Pezzanite LM, Chow L, Dow SW, Goodrich LR, Gilbertie JM, Schnabel LV. Antimicrobial Properties of Equine Stromal Cells and Platelets and Future Directions. Vet Clin North Am Equine Pract 2023; 39:565-578. [PMID: 37442729 DOI: 10.1016/j.cveq.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Increasing antimicrobial resistance in veterinary practice has driven the investigation of novel therapeutic strategies including regenerative and biologic therapies to treat bacterial infection. Integration of biological approaches such as platelet lysate and mesenchymal stromal cell (MSC) therapy may represent adjunctive treatment strategies for bacterial infections that minimize systemic side effects and local tissue toxicity associated with traditional antibiotics and that are not subject to antibiotic resistance. In this review, we will discuss mechanisms by which biological therapies exert antimicrobial effects, as well as potential applications and challenges in clinical implementation in equine practice.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie R Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M Gilbertie
- Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
28
|
Zhuang Y, Feng WZ. Platelet-rich plasma for pilonidal disease: a systematic review. J Int Med Res 2023; 51:3000605231216590. [PMID: 38141657 DOI: 10.1177/03000605231216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE To examine the use of platelet-rich plasma (PRP) for treatment of pilonidal disease (PD) and thus provide a reference for clinical application. METHODS A systematic review of PubMed and the Cochrane Library was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We considered all studies that reported the use of PRP for treatment of PD. Extracted data included the first author's name, year of publication, study type, number of included patients, inclusion and exclusion criteria, interventions, anesthesia, application of PRP (source, preparation, dose, and operation), antibiotics, follow-up time, therapeutic outcomes, and adverse events. RESULTS In total, eight randomized controlled trials and one prospective cohort study involving 809 patients were included. PRP reduced pain, accelerated healing, and reduced adverse events. The application of combined minimally invasive surgery achieved better results. However, overfilling of the wound with PRP in minimally invasive surgeries was shown to potentially increase the risk of adverse events. CONCLUSION PRP can be used as an adjuvant treatment in PD surgery to improve the therapeutic effect and reduce adverse events. The optimal combination of PRP and various factors is an important direction of future research.INPLASY registration number: INPLASY2023100070.
Collapse
Affiliation(s)
- Yu Zhuang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Zhe Feng
- Department of Anorectal Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
29
|
Liang S, Ma W, Jia S, Zhao G, Li Y, Li Y, Wang L, Liu Z, Liu J, Gao H, Wang H. Application of platelet-rich-plasma in the postoperative treatment of perianal abscess pseudohealing: A case report. Medicine (Baltimore) 2023; 102:e35996. [PMID: 37986293 PMCID: PMC10659616 DOI: 10.1097/md.0000000000035996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
RATIONALE Perianal abscess is a common disease of the anus and intestine. Surgery is an important treatment option for perianal abscess. However, some patients have a long healing time, poor healing effect after surgery, or even pseudo-healing. Platelet-rich plasma (PRP) is rich in platelets that can release a large number of factors when activated and promote wound healing. Moreover, there are few reports on the use of PRP for wounds that are difficult to heal after perianal abscess surgery. PATIENT CONCERNS The patient had reported a complaint of perianal swelling and discomfort associated with anal pain, which was considered a perianal abscess. Ceftriaxone, fumigation, and sitz bath were administered after mixed hemorrhoid and perianal abscess surgeries were performed; however, the wound remained unhealed for more than 3 months, and there was a fistula under the skin. DIAGNOSIS Perianal color ultrasonography revealed perianal abscess. INTERVENTIONS Autologous PRP treatment was performed 5 times for each patient. OUTCOMES The postoperative wound healed within 15 days after 5 times PRP treatments. LESSONS PRP is a novel treatment option for pseudo-healing.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Clinical Laboratory, Zhangdian District People’s Hospital of Zibo City, Zibo, Shandong, China
| | - Weijuan Ma
- Department of Quality Management, Qingdao Blood Center, Qingdao, Shandong, China
| | - Sihui Jia
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gang Zhao
- Department of Anorectal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yaxin Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Licun Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zheng Liu
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hairui Gao
- Department of Anorectal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
30
|
Liang S, Zheng Z, Li Y, Yang Y, Qin L, Zhao Z, Wang L, Wang H. A review of platelet-rich plasma for enteric fistula management. Front Bioeng Biotechnol 2023; 11:1287890. [PMID: 38033816 PMCID: PMC10685294 DOI: 10.3389/fbioe.2023.1287890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Enteric fistula (EF), a serious complication after abdominal surgery, refers to unnatural communication between the gastrointestinal tract and the skin or other hollow organs. It is associated with infection, massive fluid/electrolyte loss, and malnutrition, resulting in an unhealed course. Despite advances in surgical techniques, wound care, infection control, and nutritional support, EF remains associated with considerable morbidity and mortality. Autologous platelet-rich plasma (PRP) containing elevated platelet concentrations has been proposed to promote healing in many tissues. However, the mechanism of action of PRP in EF treatment remains unclear owing to its complicated clinical manifestations. In this review, we summarized the clinical approaches, outlined the principal cytokines involved in the healing effects, and discussed the advantages of PRP for EF therapy. In addition, we defined the mechanism of autologous PRP in EF management, which is essential for further developing EF therapies.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zhangdian District People’s Hospital of Zibo City, Zibo, China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Licun Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Abdelouahed M, Yateem D, Fredericks S. Fc γRIIa - dependent platelet activation identified in COVID-19 vaccine-induced immune thrombotic thrombocytopenia-, heparin-induced thrombocytopenia, streptokinase- and anisoylated plasminogen-streptokinase activator complex-induced platelet activation. Front Cardiovasc Med 2023; 10:1282637. [PMID: 38034388 PMCID: PMC10684751 DOI: 10.3389/fcvm.2023.1282637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which was caused by the coronavirus - severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was globally responsible for remarkable morbidity and mortality. Several highly effective vaccines for COVID-19 were developed and disseminated worldwide within an unprecedented timescale. Rare but dangerous clotting and thrombocytopenia events, and subsequent coagulation abnormalities, have been reported after massive vaccination against SARS-CoV-2. Soon after their global rollout, reports of a morbid clinical syndrome following vaccination with adenovirus-DNA-based vaccines appeared. In the spring of 2021, reports of a novel, rare and morbid clinical syndrome, with clinically devastating and fatal complication after vaccination with adenovirus-based coronavirus vaccines (Janssen/Johnson & Johnson and Astra-Zeneca vaccines) led to a brief suspension of their use by several countries. Those complications were associated with unusual cerebral and splanchnic venous thrombosis, and circulating autoantibodies directed against anti-platelet factor 4 (PF4), a protein secreted from platelets, leading to the designation: Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). The reported VITT incidence remains very low and does not affect the overall benefit of immunization, however, if left untreated, VITT can be debilitating or even fatal. VITT resembled specific adverse drugs' reactions that also involved the production of autoantibodies and subsequent abnormal platelet activation through platelet FcγRIIa. These unusual but well-documented drug reactions were heparin-induced thrombocytopenia (HIT), streptokinase- (SK), and anisoylated plasminogen-streptokinase activator complex- (APSAC) associated with platelet-activating antibodies. There was considerable overlapping of clinical features between VITT, COVID-19 and these adverse drugs' reactions. We review the phenomenon of VITT against the backdrop of shared and common mechanisms that underlie HIT-, SK-, and APSAC-platelet FcγRIIa-dependent platelet activation. An understanding of VITT's pathogenesis may be achieved by comparing and contrasting VITT-, HIT-, SK- and APSAC-induced platelet activation mechanisms, their respective physiopathology and similarities. Discussing these conditions in parallel provides insight into complex immunological disorders and diseases associated with abnormal hemostasis and thrombosis in particular.
Collapse
Affiliation(s)
- Mustapha Abdelouahed
- Department of Medical Sciences and Education, Boston University School of Medicine, Boston, MA, United States
| | - Dana Yateem
- School of Medicine, The Royal College of Surgeons in Ireland, Medical University of Bahrain, Al Sayh, Muharraq Governorate, Bahrain
| | - Salim Fredericks
- School of Medicine, The Royal College of Surgeons in Ireland, Medical University of Bahrain, Al Sayh, Muharraq Governorate, Bahrain
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states. RECENT FINDINGS Recent work has shown that PF4 binding to microbial polyanions may improve outcomes in infection by enhancing leukocyte-bacterial binding, tethering pathogens to neutrophil extracellular traps (NETs), decreasing the thrombotic potential of NET DNA, and modulating viral infectivity. However, PF4 binding to nucleic acids may enhance their recognition by innate immune receptors, leading to autoinflammation. Lastly, while HIT is induced by platelet activating antibodies that bind to PF4/polyanion complexes, VITT, which occurs in a small subset of patients treated with COVID-19 adenovirus vector vaccines, is characterized by prothrombotic antibodies that bind to PF4 alone. SUMMARY Investigating the complex interplay of PF4 and polyanions may provide insights relevant to the treatment of infectious disease while also improving our understanding of the pathogenesis of thrombotic disorders driven by anti-PF4/polyanion and anti-PF4 antibodies.
Collapse
Affiliation(s)
- Anh T P Ngo
- Division of Hematology, Children's Hospital of Philadelphia
| | | | - Kandace Gollomp
- Division of Hematology, Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Podolnikova NP, Lishko VK, Roberson R, Koh Z, Derkach D, Richardson D, Sheller M, Ugarova TP. Platelet factor 4 improves survival in a murine model of antibiotic-susceptible and methicillin-resistant Staphylococcus aureus peritonitis. Front Cell Infect Microbiol 2023; 13:1217103. [PMID: 37868353 PMCID: PMC10585365 DOI: 10.3389/fcimb.2023.1217103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Valeryi K. Lishko
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zhiqian Koh
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | | | - Michael Sheller
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Tatiana P. Ugarova
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
34
|
Lin C, Qiu L, Wang P, Zhang B, Yan L, Zhao C. Thymosin beta-4 participate in antibacterial immunity and wound healing in black tiger shrimp, Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109065. [PMID: 37689229 DOI: 10.1016/j.fsi.2023.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Thymosin beta-4 (Tβ4) is a ubiquitous protein with multiple and diverse intracellular and extracellular functions in vertebrates, which play fundamental roles in innate immune against pathogens and wound healing. In this study, the full-length cDNA of Tβ4 was cloned from Penaeus monodon (designated as PmTβ4), using the technology of rapid amplification of cDNA ends (RACE). The cDNA of PmTβ4 was 1361 bp with an open reading frame (ORF) of 501 bp, which encoding a polypeptide of 166 amino acid. The Quantitative Real-time PCR (qRT-PCR) analysis results showed that PmTβ4 was ubiquitously expressed in all the tested shrimp tissues, with the highest expression level was detected in the hemolymph, while the lowest expression level in the muscle. The expression level of PmTβ4 was significantly up-regulated in hepatopancreas after challenged by Vibrio parahaemolyticus, Vibrio harveyi and Staphylococcus aureus. In vitro antimicrobial test showed that the recombinant protein of PmTβ4 (rPmTβ4) had broad-spectrum of antimicrobial activity, which could inhibit both the growth of gram-negative bacteria and gram-positive bacteria, including Vibrio vulnificus, V. parahaemolyticus, Streptococcus agalactiae, S. aureus and Aeromonas hydrophila. Moreover, rPmTβ4 had a certain binding ability to different bacteria, and this binding ability exhibits a strong dose-dependent effect. In vivo, PmTβ4 could facilitate external bacterial clearance in shrimp, and have beneficial to shrimp survival post V. parahaemolyticus infection. Furthermore, wound-healing assay was carried out to study the role of PmTβ4 in the process of wound healing. The results showed that the PmTβ4 expression was significantly up-regulated by injury treatment, and exerted positive effects to promote wound healing. In addition, PmTβ4 can significantly increase the expression level of superoxide dismutase (SOD) and Catalase (CAT) after injury treatment in shrimp, which would involve in scavenging reactive oxygen species (ROS) caused by the wound. In conclusion, these results indicated that PmTβ4 may play important roles in antibacterial immunity and wound healing in Penaeus monodon.
Collapse
Affiliation(s)
- Changhong Lin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, PR China
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Bo Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
35
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
36
|
Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300472. [PMID: 37407512 PMCID: PMC10502873 DOI: 10.1002/advs.202300472] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Ayman Y. Waddad
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| | - Beatriz G. de la Torre
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
37
|
Wolny M, Rozanova S, Knabbe C, Pfeiffer K, Barkovits K, Marcus K, Birschmann I. Changes in the Proteome of Platelets from Patients with Critical Progression of COVID-19. Cells 2023; 12:2191. [PMID: 37681923 PMCID: PMC10486756 DOI: 10.3390/cells12172191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Platelets, the smallest cells in human blood, known for their role in primary hemostasis, are also able to interact with pathogens and play a crucial role in the immune response. In severe coronavirus disease 2019 (COVID-19) cases, platelets become overactivated, resulting in the release of granules, exacerbating inflammation and contributing to the cytokine storm. This study aims to further elucidate the role of platelets in COVID-19 progression and to identify predictive biomarkers for disease outcomes. A comparative proteome analysis of highly purified platelets from critically diseased COVID-19 patients with different outcomes (survivors and non-survivors) and age- and sex-matched controls was performed. Platelets from critically diseased COVID-19 patients exhibited significant changes in the levels of proteins associated with protein folding. In addition, a number of proteins with isomerase activity were found to be more highly abundant in patient samples, apparently exerting an influence on platelet activity via the non-genomic properties of the glucocorticoid receptor (GR) and the nuclear factor κ-light-chain-enhancer of activated B cells (NFκB). Moreover, carbonic anhydrase 1 (CA-1) was found to be a candidate biomarker in platelets, showing a significant increase in COVID-19 patients.
Collapse
Affiliation(s)
- Monika Wolny
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Svitlana Rozanova
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Kathy Pfeiffer
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingvild Birschmann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
38
|
Podolnikova NP, Lishko VK, Roberson R, Koh Z, Derkach D, Richardson D, Sheller M, Ugarova TP. PLATELET FACTOR 4 (PF4) IMPROVES SURVIVAL IN A MURINE MODEL OF ANTIBIOTIC-SUSCEPTIBLE AND METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS PERITONITIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554865. [PMID: 37662328 PMCID: PMC10473751 DOI: 10.1101/2023.08.25.554865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | | | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Zhqian Koh
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | | - Michael Sheller
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
39
|
Qiu Y, Bao S, Wei H, Miron RJ, Bao S, Zhang Y, Wang Y. Bacterial exclusion and wound healing potential of horizontal platelet-rich fibrin (H-PRF) membranes when compared to 2 commercially available collagen membranes. Clin Oral Investig 2023; 27:4795-4802. [PMID: 37318640 DOI: 10.1007/s00784-023-05108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The aim of the present study was to compare the barrier function during bacterial invasion and wound healing properties of 3 commonly used membranes including horizontal platelet-rich fibrin (H-PRF) against two commercially available resorbable collagen membranes. MATERIALS AND METHODS H-PRF membranes were prepared by collecting venous blood from 3 healthy volunteers using a 700 g for 8-min centrifugation protocol followed by compression into membranes. To evaluate their barrier function, 3 groups (H-PRF membrane, collagen membrane A (Bio-Gide, Geistlich), collagen membrane B (Megreen, Shanxi Ruisheng Biotechnology Co) were placed between an inner chamber and outer chamber and inoculated with S. aureus. At 2 h, 24 h, and 48 h post-inoculation, cultures from the inner and outer chambers were assessed for bacterial CFUs. Then, scanning electron microscope (SEM) was utilized to visualized the morphological destruction by bacteria of the inner and outer surfaces of the membranes. To assess the wound healing properties of each membrane, leachates from each group were applied to human gingival fibroblasts (HGF) and a scratch assay was performed at 24 h and 48 h. RESULTS S. aureus showed a minimal bacterial attachment or invasion rate through either collagen membranes at 2 h post-inoculation, yet over time demonstrated rapid degradation, especially on the rougher surface. While PRF demonstrated higher number of CFUs after 2 h, no significant penetration/degradation of the H-PRF membranes was observed at 24 h and 48 h in the H-PRF group. Both collagen membranes demonstrated significant morphological changes 48 h post-bacterial innoculation, while minimal obvious morphological changes were observed in the H-PRF group. The wound healing assay also demonstrated significantly better wound closure rates in the H-PRF group. CONCLUSION H-PRF membranes exhibited better barrier function towards S. aureus over 2 days of innoculation and better wound healing ability when compared to two commercially available collagen membranes. CLINICAL RELEVANCE This study provides further evidence for the application of H-PRF membranes during guided bone regeneration by minimizing bacterial invasion. Furthermore, H-PRF membranes have significantly better ability to promote wound healing.
Collapse
Affiliation(s)
- Yun Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shanying Bao
- Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Hongjiang Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Senzhu Bao
- Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Dental Implantology, School and Hospital of Stomatology, University of Wuhan, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Dental Implantology, School and Hospital of Stomatology, University of Wuhan, Wuhan, China.
| |
Collapse
|
40
|
Everts PA, Lana JF, Onishi K, Buford D, Peng J, Mahmood A, Fonseca LF, van Zundert A, Podesta L. Angiogenesis and Tissue Repair Depend on Platelet Dosing and Bioformulation Strategies Following Orthobiological Platelet-Rich Plasma Procedures: A Narrative Review. Biomedicines 2023; 11:1922. [PMID: 37509560 PMCID: PMC10377284 DOI: 10.3390/biomedicines11071922] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Angiogenesis is the formation of new blood vessel from existing vessels and is a critical first step in tissue repair following chronic disturbances in healing and degenerative tissues. Chronic pathoanatomic tissues are characterized by a high number of inflammatory cells; an overexpression of inflammatory mediators; such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1); the presence of mast cells, T cells, reactive oxygen species, and matrix metalloproteinases; and a decreased angiogenic capacity. Multiple studies have demonstrated that autologous orthobiological cellular preparations (e.g., platelet-rich plasma (PRP)) improve tissue repair and regenerate tissues. There are many PRP devices on the market. Unfortunately, they differ greatly in platelet numbers, cellular composition, and bioformulation. PRP is a platelet concentrate consisting of a high concentration of platelets, with or without certain leukocytes, platelet-derived growth factors (PGFs), cytokines, molecules, and signaling cells. Several PRP products have immunomodulatory capacities that can influence resident cells in a diseased microenvironment, inducing tissue repair or regeneration. Generally, PRP is a blood-derived product, regardless of its platelet number and bioformulation, and the literature indicates both positive and negative patient treatment outcomes. Strangely, the literature does not designate specific PRP preparation qualifications that can potentially contribute to tissue repair. Moreover, the literature scarcely addresses the impact of platelets and leukocytes in PRP on (neo)angiogenesis, other than a general one-size-fits-all statement that "PRP has angiogenic capabilities". Here, we review the cellular composition of all PRP constituents, including leukocytes, and describe the importance of platelet dosing and bioformulation strategies in orthobiological applications to initiate angiogenic pathways that re-establish microvasculature networks, facilitating the supply of oxygen and nutrients to impaired tissues.
Collapse
Affiliation(s)
- Peter A Everts
- Research & Education Division, Gulf Coast Biologics, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba, São Paulo 13334-170, Brazil
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba, São Paulo 13334-170, Brazil
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba, São Paulo 13334-170, Brazil
| | - Kentaro Onishi
- Department of PM&R and Orthopedic Surgery, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA
| | - Don Buford
- Texas Orthobiologics, Dallas, TX 75204, USA
| | - Jeffrey Peng
- Stanford Health Care-O'Connor Hospital Sports Medicine, Stanford University School of Medicine, San Jose, CA 95128, USA
| | - Ansar Mahmood
- Department of Trauma and Orthopaedic Surgery, University Hospitals, Birmingham B15 2GW, UK
| | - Lucas F Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Andre van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane and the University of Queensland, Brisbane 4072, Australia
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA
| |
Collapse
|
41
|
LL-37 Triggers Antimicrobial Activity in Human Platelets. Int J Mol Sci 2023; 24:ijms24032816. [PMID: 36769137 PMCID: PMC9917488 DOI: 10.3390/ijms24032816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Platelets play a crucial role in hemostasis and the immune response, mainly by recognizing signals associated with vascular damage. However, it has recently been discovered that the antimicrobial peptide LL-37 activates platelets in functions related to thrombus formation and inflammation. Therefore, this work aims to evaluate the effect of LL-37 on the activation of antimicrobial functions of human platelets. Our results show that platelets treated with LL-37 increase the surface expression of receptors (Toll-like receptors (TLRs) 2 and -4, CD32, CD206, Dectin-1, CD35, LOX-1, CD41, CD62P, and αIIbβ3 integrins) for the recognition of microorganisms, and molecules related to antigen presentation to T lymphocytes (CD80, CD86, and HLA-ABC) secrete the antimicrobial molecules: bactericidal/permeability-increasing protein (BPI), azurocidin, human neutrophil peptide (HNP) -1, and myeloperoxidase. They also translate azurocidin, and have enhanced binding to Escherichia coli, Staphylococcus aureus, and Candida albicans. Furthermore, the supernatant of LL-37-treated platelets can inhibit E. coli growth, or platelets can employ their LL-37 to inhibit microbial growth. In conclusion, these findings demonstrate that LL-37 participates in the antimicrobial function of human platelets.
Collapse
|
42
|
Vertebral Bone Marrow Clot towards the Routine Clinical Scenario in Spine Surgeries: What about the Antimicrobial Properties? Int J Mol Sci 2023; 24:ijms24021744. [PMID: 36675259 PMCID: PMC9865225 DOI: 10.3390/ijms24021744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Exploring innovative techniques and treatments to improve spinal fusion procedures is a global challenge. Here, we provide a scientific opinion on the ability of a vertebral bone marrow (vBM) clot to provide a local combined delivery system not only of stem cells, signaling biomolecules and anti-inflammatory factors but also of molecules and proteins endowed with antimicrobial properties. This opinion is based on the evaluation of the intrinsic basic properties of the vBM, that contains mesenchymal stem cells (MSCs), and on the coagulation process that led to the conversion of fibrinogen into fibrin fibers that enmesh cells, plasma but above all platelets, to form the clot. We emphasize that vBM clot, being a powerful source of MSCs and platelets, would allow the release of antimicrobial proteins and molecules, mainly cathelicidin LL- 37, hepcidin, kinocidins and cationic host defense peptides, that are per se gifted with direct and/or indirect antimicrobial effects. We additionally highlight that further studies are needed to deepen this knowledge and to propose vBM clot as multifunctional bioscaffold able to target all the main key challenges for spinal fusion surgery.
Collapse
|
43
|
Micko L, Salma I, Skadins I, Egle K, Salms G, Dubnika A. Can Our Blood Help Ensure Antimicrobial and Anti-Inflammatory Properties in Oral and Maxillofacial Surgery? Int J Mol Sci 2023; 24:1073. [PMID: 36674589 PMCID: PMC9863626 DOI: 10.3390/ijms24021073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
In recent decades, the potential of PRF has been extensively studied. The number of studies about PRF has increased three times since the year 2012, but the full spectrum of its fundamental properties, such as antimicrobial and anti-inflammatory activity, is not clearly described. In oral and maxillofacial surgery, PRF is described in alveolar ridge preservation, orthognathic surgery, cleft lip and palate surgery, maxillary sinus augmentation, and dental implant placement as demonstrating favorable results and its clinical advantages. The structural complexity, inhomogeneous nature, and clotting ability of PRF make its antimicrobial effect evaluation complicated. Nevertheless, most of the used antimicrobial testing methods are based on antibacterial agent diffusion ability in culture media. Because the oral and maxillofacial region is the most frequent area of PRF application, its antimicrobial activity evaluation also prevails in the oral microbiome. PRF's biological potential is highly dependent on the specific preparation protocol and methodology used; it should be carefully prepared and kept under proper conditions to keep cellular content alive. PRF's influence on living cells demonstrates a stimulating effect on bone regeneration, and an angiogenetic effect, and it provides anti-inflammatory activity. According to analyzed studies, PRF demonstrated success in oral and maxillofacial surgery in various methods of application. Antibacterial and anti-inflammatory properties were proven by antibacterial activity against different bacterial species, sustained growth factor, sustained release, and cell activity on the material application. Accurately and correctly prepared PRF can ensure antibacterial and anti-inflammatory properties, and it can be a beneficial clinical tool in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Lana Micko
- Institute of Stomatology, Riga Stradins University, LV-1007 Riga, Latvia
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Ilze Salma
- Institute of Stomatology, Riga Stradins University, LV-1007 Riga, Latvia
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Ingus Skadins
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Karina Egle
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, LV-1007 Riga, Latvia
| | - Girts Salms
- Institute of Stomatology, Riga Stradins University, LV-1007 Riga, Latvia
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, LV-1007 Riga, Latvia
| | - Arita Dubnika
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, LV-1007 Riga, Latvia
| |
Collapse
|
44
|
Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022; 10:microorganisms10122483. [PMID: 36557736 PMCID: PMC9784991 DOI: 10.3390/microorganisms10122483] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, meningitis, and pneumonia. Moreover, through continuous evolution, GBS can use its original structure and unique factors to greatly improve its survival rate in the human body. This review discusses the key virulence factors that facilitate GBS invasion and colonization and their action mechanisms. A comprehensive understanding of the role of virulence factors in GBS infection is crucial to develop better treatment options and screen potential candidate molecules for the development of the vaccine.
Collapse
|
45
|
Frias-De-Diego A, Gilbertie JM, Scholle F, Dejarnette S, Crisci E. Effect of BIO-PLY TM, a Platelet-Rich Plasma Derived Biologic on PRRSV-2-Infected Macrophages. Viruses 2022; 14:v14122666. [PMID: 36560670 PMCID: PMC9783555 DOI: 10.3390/v14122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is the one of the most devastating diseases impacting the swine industry worldwide. Control and prevention methods rely on biosafety measures and vaccination. As an RNA virus with a high rate of mutation, vaccines are only partially effective against circulating and newly emerging strains. To reduce the burden of this disease, research on alternative control methods is needed. Here, we assess the in vitro antiviral effect of a novel platelet-rich plasma-derived biologic termed BIO-PLYTM (for the BIOactive fraction of Platelet-rich plasma LYsate) from both swine and equine origin. Our results show that BIO-PLYTM significantly reduces the amount of PRRSV viral load determined by RT-qPCR and the number of infectious viral particles measured by TCID50 in infected porcine alveolar and parenchymal macrophages. This study also showed limited toxicity of BIO-PLYTM in vitro and aspects of its immunomodulatory capacity evaluating the regulation of reactive oxygen species and cytokines production in infected cells. Finally, this study presents promising data on the effect of BIO-PLYTM on other RNA viruses such as human A influenza viruses and coronavirus.
Collapse
Affiliation(s)
- Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Jessica M. Gilbertie
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Sarah Dejarnette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-513-6255
| |
Collapse
|
46
|
Everts PA, Mazzola T, Mautner K, Randelli PS, Podesta L. Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies. Biomedicines 2022; 10:biomedicines10112933. [PMID: 36428501 PMCID: PMC9687216 DOI: 10.3390/biomedicines10112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Autologous biological cellular preparations have materialized as a growing area of medical advancement in interventional (orthopedic) practices and surgical interventions to provide an optimal tissue healing environment, particularly in tissues where standard healing is disrupted and repair and ultimately restoration of function is at risk. These cellular therapies are often referred to as orthobiologics and are derived from patient's own tissues to prepare point of care platelet-rich plasma (PRP), bone marrow concentrate (BMC), and adipose tissue concentrate (ATC). Orthobiological preparations are biological materials comprised of a wide variety of cell populations, cytokines, growth factors, molecules, and signaling cells. They can modulate and influence many other resident cells after they have been administered in specific diseased microenvironments. Jointly, the various orthobiological cell preparations are proficient to counteract persistent inflammation, respond to catabolic reactions, and reinstate tissue homeostasis. Ultimately, precisely delivered orthobiologics with a proper dose and bioformulation will contribute to tissue repair. Progress has been made in understanding orthobiological technologies where the safety and relatively easy manipulation of orthobiological treatment tools has been demonstrated in clinical applications. Although more positive than negative patient outcome results have been registered in the literature, definitive and accepted standards to prepare specific cellular orthobiologics are still lacking. To promote significant and consistent clinical outcomes, we will present a review of methods for implementing dosing strategies, using bioformulations tailored to the pathoanatomic process of the tissue, and adopting variable preparation and injection volume policies. By optimizing the dose and specificity of orthobiologics, local cellular synergistic behavior will increase, potentially leading to better pain killing effects, effective immunomodulation, control of inflammation, and (neo) angiogenesis, ultimately contributing to functionally restored body movement patterns.
Collapse
Affiliation(s)
- Peter A. Everts
- Education & Research Division, Gulf Coast Biologics, Fort Myers, FL 33916, USA
- Correspondence: ; Tel.: +1-239-961-6457
| | - Timothy Mazzola
- Breakthrough Regenerative Orthopedics, Boulder, CO 80305, USA
| | - Kenneth Mautner
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, GA 30329, USA
| | - Pietro S. Randelli
- Instituto Orthopedico Gaetano Pini, Milan University, 20122 Milan, Italy
| | | |
Collapse
|
47
|
Ghimire J, Guha S, Nelson BJ, Morici LA, Wimley WC. The Remarkable Innate Resistance of Burkholderia bacteria to Cationic Antimicrobial Peptides: Insights into the Mechanism of AMP Resistance. J Membr Biol 2022; 255:503-511. [PMID: 35435452 PMCID: PMC9576820 DOI: 10.1007/s00232-022-00232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
Gram-negative bacteria belonging to the genus Burkholderia are remarkably resistant to broad-spectrum, cationic, antimicrobial peptides (AMPs). It has been proposed that this innate resistance is related to changes in the outer membrane lipopolysaccharide (OM LPS), including the constitutive, essential modification of outer membrane Lipid A phosphate groups with cationic 4-amino-4-deoxy-arabinose. This modification reduces the overall negative charge on the OM LPS which may change the OM structure and reduce the binding, accumulation, and permeation of cationic AMPs. Similarly, the Gram-negative pathogen Pseudomonas aeruginosa can quickly become resistant to many AMPs by multiple mechanisms, frequently, including activation of the arn operon, which leads, transiently, to the same modification of Lipid A. We recently discovered a set of synthetically evolved AMPs that do not invoke any resistance in P. aeruginosa over multiple passages and thus are apparently not inhibited by aminorabinosylation of Lipid A in P. aeruginosa. Here we test these resistance-avoiding peptides, within a set of 18 potent AMPs, against Burkholderia thailandensis. We find that none of the AMPs tested have measurable activity against B. thailandensis. Some were inactive at concentrations as high as 150 μM, despite all having sterilizing activity at ≤ 10 μM against a panel of common, human bacterial pathogens, including P. aeruginosa. We speculate that the constitutive modification of Lipid A in members of the Burkholderia genus is only part of a broader set of modifications that change the architecture of the OM to provide such remarkable levels of resistance to cationic AMPs.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Benjamin J. Nelson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112,To whom correspondence should be addressed at
| |
Collapse
|
48
|
Eissa FM, Eassa AH, Zalat RS, Negm MS, Elmallawany MA. Potential therapeutic effect of platelet-rich plasma and albendazole on the muscular phase of experimental Trichinella spiralis infection. Food Waterborne Parasitol 2022; 28:e00180. [PMID: 36159633 PMCID: PMC9493052 DOI: 10.1016/j.fawpar.2022.e00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Trichinellosis is a food-borne parasitic infection causing muscle damage. This study aimed to detect the potential therapeutic effect of platelet-rich plasma (PRP) alone or in combination with albendazole (ALB) on the muscular phase of experimental Trichinella infection in rats. The study was conducted on 70 rats divided into four main groups: healthy non-infected non-treated rats, non-infected rats treated with PRP, infected untreated rats (seven rats in each group), and an infected group of 49 rats. The infected group was further subdivided based on the drug therapy received. The effects of drug therapy were evaluated using parasitological and histopathological analyses. The percent reduction in the number of Trichinella spiralis larvae per gram of muscle in the PRP-treated groups (one, two, and three doses) was 43.1%, 78.8%, and 86.1%, respectively. Groups treated with combined therapy of ALB & PRP (one, two, and three doses) showed overall reduction percentages of 87.7%, 90.9% and 95.2%, respectively. In contrast, the ALB-treated group showed a 69.4% reduction. All results of the abovementioned groups were statistically significant compared to the control-infected non-treated group. The findings of the histopathological analysis were consistent with the parasitological results. Groups receiving combined therapy showed the most significant improvement in terms of the degree of inflammation and fibrosis. It can be concluded that PRP has a modulatory effect on the pathology caused by T. spiralis larvae in the muscular phase of trichinellosis. To our knowledge, this is the first study to investigate the effect of PRP on the muscular phase of T. spiralis infection.
Collapse
Affiliation(s)
- Fatma M.A. Eissa
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed H.A. Eassa
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Egypt
| | - Rabab S. Zalat
- Department of Medical Parasitology, Theadore Bilharz Research Institute, Egypt
| | - Mohamed S. Negm
- Department of Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa A. Elmallawany
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
49
|
Kerstholt M, van de Schoor FR, Oosting M, Moorlag SJCFM, Li Y, Jaeger M, van der Heijden WA, Tunjungputri RN, dos Santos JC, Kischkel B, Vrijmoeth HD, Baarsma ME, Kullberg BJ, Lupse M, Hovius JW, van den Wijngaard CC, Netea MG, de Mast Q, Joosten LAB. Identifying platelet-derived factors as amplifiers of B. burgdorferi-induced cytokine production. Clin Exp Immunol 2022; 210:53-67. [PMID: 36001729 PMCID: PMC9585555 DOI: 10.1093/cei/uxac073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that monocytes can be 'trained' or tolerized by certain stimuli to respond stronger or weaker to a secondary stimulation. Rewiring of glucose metabolism was found to be important in inducing this phenotype. As we previously found that Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme borreliosis (LB), alters glucose metabolism in monocytes, we hypothesized that this may also induce long-term changes in innate immune responses. We found that exposure to B. burgdorferi decreased cytokine production in response to the TLR4-ligand lipopolysaccharide (LPS). In addition, B. burgdorferi exposure decreased baseline levels of glycolysis, as assessed by lactate production. Using GWAS analysis, we identified a gene, microfibril-associated protein 3-like (MFAP3L) as a factor influencing lactate production after B. burgdorferi exposure. Validation experiments proved that MFAP3L affects lactate- and cytokine production following B. burgdorferi stimulation. This is mediated by functions of MFAP3L, which includes activating ERK2 and through activation of platelet degranulation. Moreover, we showed that platelets and platelet-derived factors play important roles in B. burgdorferi-induced cytokine production. Certain platelet-derived factors, such chemokine C-X-C motif ligand 7 (CXCL7) and (C-C motif) ligand 5 (CCL5), were elevated in the circulation of LB patients in comparison to healthy individuals.
Collapse
Affiliation(s)
| | | | - Marije Oosting
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) and TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Martin Jaeger
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter A van der Heijden
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rahajeng N Tunjungputri
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands,Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Jéssica C dos Santos
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hedwig D Vrijmoeth
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - M E Baarsma
- Amsterdam Institute of Infection and Immunology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Joppe W Hovius
- Amsterdam Institute of Infection and Immunology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cees C van den Wijngaard
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, Bilthoven, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands,Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Quirijn de Mast
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Correspondence: Leo A.B. Joosten, Lab Experimentele geneeskunde, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands. E-mail:
| |
Collapse
|
50
|
Wu M, Zhao X, Zhu X, Shi J, Liu L, Wang X, Xie M, Ma C, Hu Y, Sun J. Functional analysis and expression profile of human platelets infected by EBV in vitro. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105312. [PMID: 35667565 DOI: 10.1016/j.meegid.2022.105312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Platelet activation is commonly detected after infection by multiple viruses such as human immunodeficiency virus (HIV), H1N1 influenza, Hepatitis C virus (HCV), Ebola virus (EBV), and Dengue virus (DENV). Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome, but the biology of platelet ncRNAs is largely unexplored. In this study, we performed microarray profiling to characterize the expression profile of human platelets infected with EBV in vitro after 2 h. A total of 187 long non-coding RNAs (lncRNAs) displayed differences, of which 114 were upregulated and 73 were downregulated; 78 microRNAs (miRNAs) showed differences, including 73 upregulated and 5 downregulated; 808 mRNAs displayed differences, among which 367 were upregulated and 441 were downregulated. Gene ontology (GO) analysis mostly related to G protein-coupled receptor signaling pathway, detection of chemical stimulus involved in sensory perception of smell and regulation of transcription by RNA polymerase II. Pathway analysis showed that the differentially expressed genes were mainly enriched in cell metabolism and immune-related response. A ceRNA network was established based on predicting regulatory pairs in differentially expressed genes, in which hsa-miR-6877-3p had the highest regulatory capability (degree = 31), FAM230A was the lncRNA with the highest regulatory capability (degree = 28). According to the EBV related miRNA regulation network, it revealed that ebv-miR-BART19-3p had the most target genes and BRWD1, FAM126B, TFRC and JMY were the genes most regulated by EBV-related miRNAs. After overlapping the three networks, we found that the EIFAK2 gene was strongly correlated with autologous ncRNAs, including hsa-miR-1972, hsa-miR-504-3p and hsa-miR-6825-5p, as well as with EBV ncRNAs, including EBER1, EBER2, miR-BART7-3p and miR-BART16. The present study contributes to a better understanding of the expression profiling of ncRNAs and their functions in platelets activated by EBV in vitro, and paves the way to further study on platelet function.
Collapse
Affiliation(s)
- Meini Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiutao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China; Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoli Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China; Kunming Medical University, Kunming, Yunnan, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lijun Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China; Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Mengxin Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chunli Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|