1
|
Miki T, Ito M, Haneda T, Kim YG. Crohn's Disease‒Associated Escherichia coli BasRS Is Involved in Fimbriae Expression, Contributing to Epithelial Cell Invasion. Microbiol Immunol 2025. [PMID: 40221934 DOI: 10.1111/1348-0421.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Crohn's disease‒associated adherent-invasive Escherichia coli (AIEC) colonizes the gut lumen through Type 1 fimbriae. We demonstrated that the two-component signal transduction system BasRS is involved in the expression of fimbriae in the AIEC strain LF82, as evidenced by the reduced transcriptional activity of fimA in an LF82 mutant lacking BasRS. Consequently, the basRS mutant showed decreased invasiveness to HeLa cells, which was restored by introducing a plasmid expressing fimbriae in a BasRS-independent manner. These findings may provide new prospects for developing therapeutic interventions for AIEC-related Crohn's disease.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Toxqui-Rodríguez S, Estensoro I, Domingo-Bretón R, Del Pozo R, Pérez-Sánchez J, Sipkema D, Sitjà-Bobadilla A, Piazzon MC. Interactions between gilthead seabream intestinal transcriptome and microbiota upon Enteromyxum leei infection: a multi-omic approach. Anim Microbiome 2025; 7:22. [PMID: 40050956 PMCID: PMC11884135 DOI: 10.1186/s42523-025-00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The enteric myxozoan parasite Enteromyxum leei is an important problem in gilthead seabream aquaculture invading the intestinal epithelium and leading to chronic intestinal inflammation, poor food conversion rates, cachexia, and mortalities, with no treatments available, resulting in significant economic losses. It is known that myxozoan infections are affected by factors such as temperature, duration of exposure, stocking densities, and seasonality. Gut microbiota has key effects on host health, including disease resistance and immune system training and development, tightly interacting with the host, affecting systemic and local physiological functions. This study aimed to gain insights into the host-microbiota-parasite interactions integrating metataxonomics, host transcriptomics, and metatranscriptomics within this disease model. RESULTS Exposure to E. leei together with temperature and age differences led to alterations in gilthead seabream intestinal microbiota. Samples from 240 g fish kept at 18ºC during a winter trial at 10 weeks post-parasite exposure showed the highest significant changes in their microbial composition with Proteobacteria increasing in abundance from 32.3% in the control group up to 89.8% in the infected group, while Firmicutes and Actinobacteria significantly decreased in relative abundance from 23% and 37.8-2.4% and 1.1%, respectively. After LEfSe analysis, Acinetobacter was identified as the best biomarker for the parasite-exposed group. Parasite exposure also altered the expression of 935 host genes, highlighting genes involved in immune responses such as pathways related to Interleukins, MHCI and Interferons. Microbial transcripts, also showed significant changes upon parasite infection. Integration of the results revealed differential effects on the host induced directly by the parasite or indirectly by parasite-induced microbial shift. CONCLUSIONS Intestinal microbiota and local host gene expression showed significant changes upon en enteromyxosis. The detected activation of the host immune response was not exclusively linked to the parasite infection but also to changes in microbiota, demonstrating the key role of the different components of the mucosal system during disease. These results provided different datasets of bacterial taxa and microbial and host transcripts that will allow a better understanding of host-microbiota-parasite interactions and can serve as starting points for studying and evaluating mucosal health in aquaculture during parasitosis or other diseases.
Collapse
Affiliation(s)
- Socorro Toxqui-Rodríguez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Ricardo Domingo-Bretón
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain.
| |
Collapse
|
3
|
Miki T, Ito M, Haneda T, Kim YG. Outer membrane barrier impairment by envC deletion reduces gut colonization of Crohn's disease pathobiont Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001509. [PMID: 39405098 PMCID: PMC11570989 DOI: 10.1099/mic.0.001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of Enterobacteriaceae, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the envC gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the envC gene exhibited impaired cell division. Furthermore, envC deletion led to a diminished outer membrane barrier, as seen in our finding that the envC mutant became susceptible to vancomycin. Finally, we found that the envC mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| |
Collapse
|
4
|
Miki T, Ito M, Okada N, Haneda T. The CpxRA two-component system of adherent and invasive Escherichia coli contributes to epithelial cell invasion and early-stage intestinal fitness in a dysbiotic mouse model mediated by type 1 fimbriae expression. Infect Immun 2024; 92:e0013224. [PMID: 38700334 PMCID: PMC11237727 DOI: 10.1128/iai.00132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Adherent and invasive Escherichia coli (AIEC) is a pathobiont that is involved in the onset and exacerbation of Crohn's disease. Although the inducible expression of virulence traits is a critical step for AIEC colonization in the host, the mechanism underlying AIEC colonization remains largely unclear. We here showed that the two-component signal transduction system CpxRA contributes to AIEC gut competitive colonization by activating type 1 fimbriae expression. CpxRA from AIEC strain LF82 functioned as a transcriptional regulator, as evidenced by our finding that an isogenic cpxRA mutant exhibits reduced expression of cpxP, a known regulon gene. Transcription levels of cpxP in LF82 increased in response to envelope stress, such as exposure to antimicrobials compromising the bacterial membrane, whereas the cpxRA mutant did not exhibit this response. Furthermore, we found that the cpxRA mutant exhibits less invasiveness into host cells than LF82, primarily due to reduced expression of the type 1 fimbriae. Finally, we found that the cpxRA mutant is impaired in gut competitive colonization in a mouse model. The colonization defects were reversed by the introduction of a plasmid encoding the cpxRA gene or expressing the type 1 fimbriae. Our findings indicate that modulating CpxRA activity could be a promising approach to regulating AIEC-involved Crohn's disease.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
5
|
Tanaka R, Imai J, Sugiyama E, Tsubaki S, Hozumi K, Tsugawa H. Cyclic-di-AMP confers an invasive phenotype on Escherichia coli through elongation of flagellin filaments. Gut Pathog 2024; 16:6. [PMID: 38267967 PMCID: PMC10809763 DOI: 10.1186/s13099-024-00600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Adherent-invasive Escherichia coli (AIEC) is isolated from patients with Crohn's disease (CD). AIEC can invade the intestinal epithelium, suggesting that it is involved in the development and pathogenesis of CD. However, the mechanism by which AIEC acquired the invasive phenotype remains unknown. RESULTS This study was designed to examine the mechanisms of AIEC invasiveness. We found that the flagellin (fliC) expression in AIEC was two-fold higher than that in non-AIEC strains, and this overexpression induced the formation of long-filament flagellin. Deletion of fliC in the AIEC LF82 strain resulted in the disappearance of flagellar filaments and attenuated the motility and invasive ability of the bacterium, suggesting that the formation of long filament flagellin induced by increased fliC expression is required by AIEC to invade the intestinal epithelium. In AIEC and non-AIEC K12 strains cultured in the presence of cyclic-di-AMP (c-di-AMP), the expression of fliC was enhanced, and flagellar filaments were elongated. Stimulation with c-di-AMP enhanced the bacterial motility and ability to invade epithelial cells, even in the non-AIEC K12 strain. CONCLUSIONS Our findings show that c-di-AMP confers an AIEC-like phenotype on non-AIEC strains by enhancing the expression of fliC. The results should be useful for understanding the pathogenesis of CD.
Collapse
Affiliation(s)
- Rika Tanaka
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Jin Imai
- Department of Clinical Health Science, Tokai University School of Medicine, Isehara, Japan
| | - Eiji Sugiyama
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shogo Tsubaki
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Katsuto Hozumi
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
6
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
7
|
Wu P, Wang Q, Yang Q, Feng X, Liu X, Sun H, Yan J, Kang C, Liu B, Liu Y, Yang B. A Novel Role of the Two-Component System Response Regulator UvrY in Enterohemorrhagic Escherichia coli O157:H7 Pathogenicity Regulation. Int J Mol Sci 2023; 24:ijms24032297. [PMID: 36768620 PMCID: PMC9916836 DOI: 10.3390/ijms24032297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.
Collapse
Affiliation(s)
- Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
- Correspondence: (Y.L.); (B.Y.)
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Correspondence: (Y.L.); (B.Y.)
| |
Collapse
|
8
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|