1
|
Nazari AR. Simulation of cancer progression in bone by a virtual thermal flux with a case study on lumbar vertebrae with multiple myeloma. Med Eng Phys 2024; 126:104147. [PMID: 38621839 DOI: 10.1016/j.medengphy.2024.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Two main problems examining the mechanism of cancer progression in the tissues using the computational models are lack of enough knowledge on the effective factors for such events in vivo environments and lack of specific parameters in the available computational models to simulate such complicated reactions. METHODS In this study, it was tried to simulate the progression of cancerous lesions in the bone tissues by an independent parameter from the anatomical and physiological characteristics of the tissues, so to degrade the orthotropic mechanical properties of the bone tissues, a virtual temperature was determined to be used by a well-known framework for simulation of damages in the composite materials. First, the reliability of the FE model to simulate hyperelastic response in the intervertebral discs (IVDs) and progressive failure in the bony components were verified by simulation of some In-Vitro tests, available in the literature. Then, the progression of the osteolytic damage was simulated in a clinical case with multiple myeloma in the lumbar vertebrae. RESULTS The FE model could simulate stress-shielding and diffusion of lesion in the posterior elements of the damaged vertebra which led to spinal stenosis. The load carrying shares associated with the anterior half and the posterior half of the examined vertebral body and the posterior elements were estimated equal to 41 %, 47 % and 12 %, respectively for the intact condition, that changed to 14 %, 16 % and 70 %, when lesion occupied one third of the vertebral body. CONCLUSION Correlation of the FE results with the deformation shapes, observed in the MRIs for the clinical case study, indicated appropriateness of the procedure, proposed for simulation of the progressive osteolytic damage in the vertebral segments. The future studies may follow simulation of tumor growth for various metastatic tissues using the method, established here.
Collapse
Affiliation(s)
- A R Nazari
- Department of Civil Engineering, Technical & Vocational University, Tehran, Iran; Biomechanics Research Lab, Technical & Vocational University, Tehran, Iran.
| |
Collapse
|
2
|
Leblond L, Godio-Raboutet Y, Tomi F, Glard Y, La Greca R, Clement T, Evin M. Sliding on cortical shell: Biomechanical characterization of the vertebral cannulation for pedicle screw insertion. Clin Biomech (Bristol, Avon) 2023; 110:106102. [PMID: 37769380 DOI: 10.1016/j.clinbiomech.2023.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Pedicular screws pull-out has been well studied unlike their insertion. A need for characterizing cannulation before pedicle screw implantation is highlighted in literature and offers promising prospects for future intra-operation instrumentation. A reliable cannulation protocol for ex-vivo testing in swine and cadaver vertebrae is presented in this work to predict extra pedicular perforation. METHODS An MTS Acumen 3 A/T electrodynamic device, with a tri-axis 3 kN Kistler load cell mounted on a surgical tool was used to reproduce surgeon's gesture by moving at a constant rotational speed of 10°/mm and performing a three-section test. Perforation of the pedicle's cortical shell was planned through a design of experiment on the surgical tool angle at the entry point. Samples were scanned before and after mechanical tests and reproducibility of the protocol was tested on synthetic foam. Computation of the angle between cannulation tool and pedicle cortical shell was performed as well as cannulation coefficient of each perforation section. FINDINGS A total of 68 pedicles were tested: 19 perforated and 21 non-perforated human pedicles, 17 perforated and 16 non-perforated swine pedicles. The reproducibility of the protocol for cannulation coefficient computation resulted in an intraclass correlation coefficient of 0.979. Cannulation coefficients results presented variability within spinal levels as well as between swine and human model. Correlation between bone density and cannulation coefficient was found significant (p < 0.005). Torque measurement was found to be the best predictor of perforation. Threshold of angle for prediction of perforation was found to be 21.7°. INTERPRETATION Characterizing pedicle cannulation enables to predict extra pedicular perforation. Influence of bone mineral density and patient-specific morphology on pedicle cannulation has been highlighted together with a comparison of swine and cadaver models.
Collapse
Affiliation(s)
| | | | - Florent Tomi
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France
| | - Yann Glard
- Department of Paediatric Orthopaedics, Saint Joseph Hospital, Marseille, France
| | | | - Thomas Clement
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France
| | - Morgane Evin
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
3
|
Wiczenbach T, Pachocki L, Daszkiewicz K, Łuczkiewicz P, Witkowski W. Development and validation of lumbar spine finite element model. PeerJ 2023; 11:e15805. [PMID: 37583909 PMCID: PMC10424670 DOI: 10.7717/peerj.15805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
The functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research. A FE model of the 50th percentile adult male (AM) Total Human Model for Safety (THUMS) v6.1 was used to implement the modifications. The main modifications were to apply orthotropic material properties and nonlinear stress-strain behavior for ligaments, hyperelastic material properties for annulus fibrosus and nucleus pulposus, and the specific content of collagenous fibers in the annulus fibrosus ground substance. Additionally, a separation of the nucleus pulposus from surrounding bones and tissues was implemented. The FE model was subjected to different loading modes, in which intervertebral rotations and disc pressures were calculated. Loading modes contained different forces and moments acting on the lumbar section: axial forces (compression and tension), shear forces, pure moments, and combined loading modes of axial forces and pure moments. The obtained ranges of motion from the modified numerical model agreed with experimental data for all loading modes. Moreover, intradiscal pressure validation for the modified model presented a good agreement with the data available from the literature. This study demonstrated the modifications of the THUMS v6.1 model and validated the obtained numerical results with existing literature in the sub-injurious range. By applying the proposed changes, it is possible to better model the behavior of the human lumbar section under various loads and moments.
Collapse
Affiliation(s)
- Tomasz Wiczenbach
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Pomerania, Poland
| | - Lukasz Pachocki
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Pomerania, Poland
| | - Karol Daszkiewicz
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Pomerania, Poland
| | - Piotr Łuczkiewicz
- 2nd Division of Orthopedics & Kinetic Organ Traumatology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomerania, Poland
| | - Wojciech Witkowski
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Pomerania, Poland
| |
Collapse
|
4
|
Fasser MR, Gerber G, Passaplan C, Cornaz F, Snedeker JG, Farshad M, Widmer J. Computational model predicts risk of spinal screw loosening in patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2639-2649. [PMID: 35461383 DOI: 10.1007/s00586-022-07187-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/15/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Pedicle screw loosening is a frequent complication in lumbar spine fixation, most commonly among patients with poor bone quality. Determining patients at high risk for insufficient implant stability would allow clinicians to adapt the treatment accordingly. The aim of this study was to develop a computational model for quantitative and reliable assessment of the risk of screw loosening. METHODS A cohort of patient vertebrae with diagnosed screw loosening was juxtaposed to a control group with stable fusion. Imaging data from the two cohorts were used to generate patient-specific biomechanical models of lumbar instrumented vertebral bodies. Single-level finite element models loading the screw in axial or caudo-cranial direction were generated. Further, multi-level models incorporating individualized joint loading were created. RESULTS The simulation results indicate that there is no association between screw pull-out strength and the manifestation of implant loosening (p = 0.8). For patient models incorporating multiple instrumented vertebrae, CT-values and stress in the bone were significantly different between loose screws and non-loose screws (p = 0.017 and p = 0.029, for CT-values and stress, respectively). However, very high distinction (p = 0.001) and predictability (R2Pseudo = 0.358, AUC = 0.85) were achieved when considering the relationship between local bone strength and the predicted stress (loading factor). Screws surrounded by bone with a loading factor higher than 25% were likely to be loose, while the chances of screw loosening were close to 0 with a loading factor below 15%. CONCLUSION The use of a biomechanics-based score for risk assessment of implant fixation failure might represent a paradigm shift in addressing screw loosening after spondylodesis surgery.
Collapse
Affiliation(s)
- Marie-Rosa Fasser
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Spine Biomechanics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Caroline Passaplan
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Frédéric Cornaz
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jonas Widmer
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland. .,Spine Biomechanics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Beausejour MH, Wagnac E, Arnoux PJ, Mac-Thiong JM, Petit Y. Numerical Investigation of Spinal Cord Injury After Flexion-Distraction Injuries At the Cervical Spine. J Biomech Eng 2021; 144:1115612. [PMID: 34369552 DOI: 10.1115/1.4052003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/08/2022]
Abstract
Flexion-distraction injuries frequently cause traumatic cervical spinal cord injury (SCI). Post-traumatic instability can cause aggravation of the secondary SCI during patient's care. However, there is little information on how the pattern of disco-ligamentous injury affects the SCI severity and mechanism. This study objective was to analyze how different flexion-distraction disco-ligamentous injuries affect the SCI mechanisms during post-traumatic flexion and extension. A cervical spine finite element model including the spinal cord was used and different combinations of partial or complete intervertebral disc (IVD) rupture and disruption of various posterior ligaments were modeled at C4-C5, C5-C6 or C6-C7. In flexion, complete IVD rupture combined with posterior ligamentous complex rupture was the most severe injury leading to the most extreme von Mises stress (47 to 66 kPa), principal strains p1 (0.32 to 0.41 in white matter) and p3 (-0.78 to -0.96 in white matter) in the spinal cord and to the most important spinal cord compression (35 to 48 %). The main post-trauma SCI mechanism was identified as compression of the anterior white matter at the injured level combined with distraction of the posterior spinal cord during flexion. There was also a concentration of the maximum stresses in the gray matter after injury. Finally, in extension, the injuries tested had little impact on the spinal cord. The capsular ligament was the most important structure in protecting the spinal cord. Its status should be carefully examined during patient's management.
Collapse
Affiliation(s)
- Marie-Helene Beausejour
- Department of Mechanical Engineering,École de technologie supérieure; Research Center, Hôpital du Sacré-Coeur de Montréal; International Laboratory on Spine Imaging and Biomechanics; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel; Aix-Marseille Université, 1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada
| | - Eric Wagnac
- Department of Mechanical Engineering,École de technologie supérieure; Research Center, Hôpital du Sacré-Coeur de Montréal; International Laboratory on Spine Imaging and Biomechanics, 1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada
| | - Pierre-Jean Arnoux
- International Laboratory on Spine Imaging and Biomechanics; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel; Aix-Marseille Université, Faculté de Médecine Secteur Nord, Boulevard P. Dramard, 13916, Marseille, France
| | - Jean-Marc Mac-Thiong
- Department of Surgery, Medicine Faculty, Université de Montréal; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400, boulevard Gouin Ouest, H4J 1C5, Montreal, Quebec, Canada
| | - Yvan Petit
- Department of Mechanical Engineering,École de technologie supérieure; Research Center, Hôpital du Sacré-Coeur de Montréal; International Laboratory on Spine Imaging and Biomechanics, 1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Fradet L, Bianco RJ, Tatsumi R, Coleman J, Aubin CÉ. Biomechanical comparison of sacral and transarticular sacroiliac screw fixation. Spine Deform 2020; 8:853-862. [PMID: 32274770 DOI: 10.1007/s43390-020-00108-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
Abstract
STUDY DESIGN A detailed finite element analysis of screw fixation in the sacrum and pelvis. OBJECTIVE To biomechanically assess and compare the fixation performance of sacral and transarticular sacroiliac screws. Instrumentation constructs are used to achieve fixation and stabilization for the treatment of spinopelvic pathologies. The optimal screw trajectory and type of bone engagement to caudally anchor long fusion constructs are not yet known. METHODS A detailed finite element model of the sacroiliac articulation with two different bone densities was developed. Two sacral and one transarticular sacroiliac screw trajectories were modeled with different diameters (5.5 and 6.5 mm) and lengths (uni-cortical, bi-cortical and quad-cortical purchase). Axial pullout and flexion/extension toggle forces were applied on the screws representing intra and post-operative loads. The force-displacement results and von Mises stresses were used to characterize the failure pattern. RESULTS Overall, sacroiliac screws provided forces to failure 2.75 times higher than sacral fixation screws. On the contrary, the initial stiffness was approximately half as much for sacroiliac screws. High stresses were located at screw tips for the sacral trajectories and near the cortical bone screw entry points for the sacroiliac trajectory. Overall, the diameter and length of the screws had significant effects on the screw fixation (33% increase in force to failure; 5% increase in initial stiffness). A 20% drop in bone mineral density (lower bone quality) decreased the initial stiffness by 25% and the force to failure by 5-10%. High stresses and failure occurred at the screw tip for uni- and tri-cortical screws and were close to trabecular-cortical bone interface for bi-cortical and quad-cortical screws. CONCLUSIONS Sacroiliac fixation provided better anchorage than sacral fixation. The transarticular purchase of the sacroiliac trajectory resulted in differences in failure pattern and fixation performance.
Collapse
Affiliation(s)
- Léo Fradet
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, QC, H3C 3A7, Canada.,Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, QC, H3T 1C5, Canada.,International Laboratory - Spine Imaging and Biomechanics, Montreal, Canada
| | - Rohan-Jean Bianco
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, QC, H3C 3A7, Canada.,Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France.,International Laboratory - Spine Imaging and Biomechanics, Marseille, France
| | - Robert Tatsumi
- Department of Orthopaedics and Rehabilitation, Oregon Health & Sciences University, 3181, Portland, OR, USA
| | | | - Carl-Éric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, QC, H3C 3A7, Canada. .,Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, QC, H3T 1C5, Canada. .,International Laboratory - Spine Imaging and Biomechanics, Montreal, Canada.
| |
Collapse
|
7
|
Influence of different postures under vertical impact load on thoracolumbar burst fracture. Med Biol Eng Comput 2020; 58:2725-2736. [PMID: 32880092 DOI: 10.1007/s11517-020-02254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Clinical studies have extensively shown that burst fractures can cause severe and long-term neurological deficits. However, the mechanism of burst fracture is not clear, and the influence of different spinal postures on burst fracture is still unidentified. The study aimed at investigating the influence of different postures under vertical impact load on thoracolumbar burst fracture. A detailed nonlinear finite element model of T12-L2 segment was developed to investigate these problems. In this work, a rigid ball was used to vertically impact the finite element spinal segment, which emulated the process of burst fracture as in experimental condition. During the process, amounting to 9 different postures (normal, flexion, extension, right/left lateral bending of 8°, right/left axial rotation of 4° and 8°) were studied. Totally five failure modes were observed. Six different parameters, including vertebral height, vertebral bulge, interpedicular widening, vertebral kyphotic angle, posterior vertebral body angle, and joint facet contact force, were observed to evaluate the corresponding severity of burst fracture. Burst fracture in extension was the severest, and the loss of vertebral height in flexion was the most. The different postures in these simulations changed the morphology of intervertebral disc and facet joints force, resulting in different types of fracture.
Collapse
|
8
|
Yang X, Cheng X, Liu Q, Zhang C, Song Y. The response surface method-genetic algorithm for identification of the lumbar intervertebral disc material parameters. Comput Biol Med 2020; 124:103920. [PMID: 32768715 DOI: 10.1016/j.compbiomed.2020.103920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Long-term compressive load on the lumbar intervertebral disc (IVD) might lead to lumbar IVD herniation. Exploring the material parameters of normal and degenerative enucleated IVDs is the basis for studying their mechanical behavior. According to the inverse analysis principle of the parameter estimation, an optimization method was proposed to identify the parameters of the porous material of the lumbar IVD based on finite element inverse analysis. The poroelastic finite element models were established in line with the compression creep experiment. The material parameters were combined by Box-Behnken design (BBD), and the response surface (RS) models were constructed using a quadratic polynomial with cross terms and optimized by genetic algorithm (GA). The results showed that the simulation result of the best material parameter combination had a good agreement with the experiment. Compared with the normal lumbar IVD, the elastic modulus and permeability decreased, and Poisson's ratio increased for the enucleated disk, resulting in a significant difference in mechanical properties. The algorithm used in this study can reduce the parameter identification error compared with only the RS method, and decrease the number of finite element simulations compared with only the GA.
Collapse
Affiliation(s)
- XiuPing Yang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - XiaoMin Cheng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - ChunQiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Yang Song
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| |
Collapse
|
9
|
Shajudeen P, Tang S, Chaudhry A, Kim N, Reddy JN, Tasciotti E, Righetti R. Modeling and Analysis of Ultrasound Elastographic Axial Strains for Spine Fracture Identification. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:898-909. [PMID: 31796395 DOI: 10.1109/tuffc.2019.2956730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study reports the first use of ultrasound (US) elastography for imaging spinal fractures by assessing the mechanical response of the soft tissue at the posterior vertebra boundary to a uniaxial compression in rabbit ex vivo samples. Three-dimensional finite-element (FE) models of the vertebra-soft tissue complex in rabbit samples are generated and analyzed to evaluate the distribution of the axial normal and shear strains at the vertebra-soft tissue interface. Experiments on the same samples are performed to corroborate simulation findings. Results of this study indicate that the distribution of the axial strains manifests as distinct patterns around intact and fractured vertebrae. Numerical characteristics of the axial strain's spatial distribution are further used to construct two shape descriptors to make inferences on spinal abnormalities: 1) axial normal strain asymmetry for assessing the presence of fractures and 2) principal orientation of axial shear strain concentration regions (shear zones) for measurement of spinous process dislocation. This study demonstrates that axial normal strain and axial shear strain maps obtained via US elastography can provide a new means to detect spine fractures and abnormalities in the selected ex vivo animal models. Spinal fracture detection is important for the assessment of spinal cord injuries and stability. However, identification of spinal fractures using US is currently challenging. Our results show that features resulting from strain elastograms can serve as a useful adjunct to B-mode images in identifying spine fractures in the selected animal samples, and this information could be helpful in clinical settings.
Collapse
|
10
|
Bailly N, Diotalevi L, Beauséjour MH, Wagnac É, Mac-Thiong JM, Petit Y. Numerical investigation of the relative effect of disc bulging and ligamentum flavum hypertrophy on the mechanism of central cord syndrome. Clin Biomech (Bristol, Avon) 2020; 74:58-65. [PMID: 32145670 DOI: 10.1016/j.clinbiomech.2020.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The pathogenesis of the central cord syndrome is still unclear. While there is a consensus on hyperextension as the main traumatic mechanism leading to this condition, there is yet to be consensus in studies regarding the pathological features of the spine (intervertebral disc bulging or ligamentum flavum hypertrophy) that could contribute to clinical manifestations. METHODS A comprehensive finite element model of the cervical spine segment and spinal cord was used to simulate high-speed hyperextension. Four stenotic cases were modelled to study the effect of ligamentum flavum hypertrophy and intervertebral disc bulging on the von Mises stress and strain. FINDINGS During hyperextension, the downward displacement of the ligamentum flavum and a reduction of the spinal canal diameter (up to 17%) led to a dynamic compression of the cord. Ligamentum flavum hypertrophy was associated with stress and strain (peak of 0.011 Mpa and 0.24, respectively) in the lateral corticospinal tracts, which is consistent with the histologic pattern of the central cord syndrome. Linear intervertebral disc bulging alone led to a higher stress in the anterior and posterior funiculi (peak 0.029 Mpa). Combined with hypertrophic ligamentum flavum, it further increased the stress and strain in the corticospinal tracts and in the posterior horn (peak of 0.023 Mpa and 0.35, respectively). INTERPRETATION The stenotic typology and geometry greatly influence stress and strain distribution resulting from hyperextension. Ligamentum flavum hypertrophy is a main feature leading to central cord syndrome.
Collapse
Affiliation(s)
- Nicolas Bailly
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France
| | - Lucien Diotalevi
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France
| | - Marie-Hélène Beauséjour
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France; Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR- Université de la Méditerranée, F-13916 Marseille cedex 20, France
| | - Éric Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France
| | - Jean-Marc Mac-Thiong
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; Department of Orthopaedic Surgery, Université de Montréal, P.O. box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France.
| |
Collapse
|
11
|
Guo LX, Li WJ. Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment. Comput Methods Biomech Biomed Engin 2019; 23:69-80. [DOI: 10.1080/10255842.2019.1699543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Wu-Jie Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
12
|
A biomechanical investigation of thoracolumbar burst fracture under vertical impact loads using finite element method. Clin Biomech (Bristol, Avon) 2019; 68:29-36. [PMID: 31146081 DOI: 10.1016/j.clinbiomech.2019.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND A sudden vertical impact load on spine can cause spinal burst fracture, especially in the thoracolumbar junction region. This study aimed at investigating the mechanism of spinal burst fracture under different energy vertical impact loads, producing the failure risk region to understand burst fracture, reducing nervous system damage and guiding clinical treatment. METHODS A nonlinear finite element model of T12-L1 motion segment was created to analyze the response of the vertical impact load. A rigid ball was used to impact the segment vertically to simulate the vertical impact load in practice. There were three different mass balls to represent the different loads: low energy, intermediate energy and high energy (respectively 13 J, 30 J and 56 J). The results of impact force, vertical displacement, stress, intradiscal pressure and contact force were obtained during the process. FINDINGS At low energy condition, the rigid ball rebounded rapidly. At intermediate energy condition, fractures were initiated in vertebral foramen and left rear regions on the superior cortical bone near the superior endplate of L1. At high energy condition, burst fracture occurred and a part of L1 was isolated from the model. INTERPRETATION The fracture occurred on the L1 segment only at the intermediate energy and high energy. The strength of vertebral body under low and intermediate energy was enough to support the impact. The burst fracture pattern at high energy was also observed in clinical practice. The findings may explain the mechanism of burst fracture.
Collapse
|
13
|
Cooper L, Gullane A, Harvey J, Hills A, Zemura M, Martindale J, Rennie A, Cheneler D. Experimental platform to facilitate novel back brace development for the improvement of spine stability. Comput Methods Biomech Biomed Engin 2019; 22:1163-1173. [PMID: 31361152 DOI: 10.1080/10255842.2019.1645837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The spine or 'back' has many functions including supporting our body frame whilst facilitating movement, protecting the spinal cord and nerves and acting as a shock absorber. In certain instances, individuals may develop conditions that not only cause back pain but also may require additional support for the spine. Common movements such as twisting, standing and bending motions could exacerbate these conditions and intensify this pain. Back braces can be used in certain instances to constrain such motion as part of an individual's therapy and have existed as both medical and retail products for a number of decades. Arguably, back brace designs have lacked the innovation expected in this time. Existing designs are often found to be heavy, overly rigid, indiscrete and largely uncomfortable. In order to facilitate the development of new designs of back braces capable of being optimised to constrain particular motions for specific therapies, a numerical and experimental design strategy has been devised, tested and proven for the first time. The strategy makes use of an experimental test rig in conjunction with finite element analysis simulations to investigate and quantify the effects of back braces on flexion, extension, lateral bending and torsional motions as experienced by the human trunk. This paper describes this strategy and demonstrates its effectiveness through the proposal and comparison of two novel back brace designs.
Collapse
Affiliation(s)
- L Cooper
- Engineering Department, Lancaster University , Lancaster , UK
| | - A Gullane
- Engineering Department, Lancaster University , Lancaster , UK
| | - J Harvey
- Engineering Department, Lancaster University , Lancaster , UK
| | - A Hills
- Engineering Department, Lancaster University , Lancaster , UK
| | - M Zemura
- Engineering Department, Lancaster University , Lancaster , UK
| | - J Martindale
- Wrightington Wigan and Leigh NHS Foundation Trust , Wigan , UK and Lancaster University Health Hub, Lancaster University , Lancaster , UK
| | - A Rennie
- Engineering Department, Lancaster University , Lancaster , UK
| | - D Cheneler
- Engineering Department, Lancaster University , Lancaster , UK
| |
Collapse
|
14
|
Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study. Med Biol Eng Comput 2019; 57:1381-1392. [DOI: 10.1007/s11517-019-01964-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
|
15
|
Mustafy T, Arnoux PJ, Benoit A, Bianco RJ, Aubin CE, Villemure I. Load-sharing biomechanics at the thoracolumbar junction under dynamic loadings are modified by anatomical features in adolescent and pediatric vs adult functional spinal units. J Mech Behav Biomed Mater 2018; 88:78-91. [DOI: 10.1016/j.jmbbm.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/10/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
|
16
|
Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading – Ex-vivo and In-Silico investigation. J Biomech 2018; 70:26-32. [DOI: 10.1016/j.jbiomech.2018.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 01/30/2023]
|
17
|
Biomechanical Simulation of Stresses and Strains Exerted on the Spinal Cord and Nerves During Scoliosis Correction Maneuvers. Spine Deform 2018; 6:12-19. [PMID: 29287811 DOI: 10.1016/j.jspd.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/02/2017] [Accepted: 04/15/2017] [Indexed: 11/23/2022]
Abstract
STUDY DESIGN Biomechanical analysis of the spinal cord and nerves during scoliosis correction maneuvers through numerical simulations. OBJECTIVE To assess the biomechanical effects of scoliosis correction maneuvers and stresses generated on the spinal nervous structures. BACKGROUND DATA Important forces are applied during scoliosis correction surgery, which could potentially lead to neurologic complications due to stresses exerted on the nervous structures. The biomechanical impact of the different types of stresses applied on the nervous structures during correction maneuvers is not well understood. METHODS Three correction techniques were simulated using a hybrid computer modeling approach, personalized to a right thoracic adolescent idiopathic scoliotic case (Cobb angle: 63°): (1) Harrington-type distraction; (2) segmental translation technique; and a (3) segmental rotation-based procedure. A multibody model was used to simulate the kinematics of the instrumentation maneuvers; a second comprehensive finite element model was used to analyze the local stresses and strains on the spinal cord and nerves. Average values of the internal medullar pressure (IMP), shear stresses, nerve compression, and strain were computed over three regions and compared between techniques. RESULTS Harrington distraction maneuver generated high stresses and strains over the thoracolumbar region. In the main thoracic region, the segmental translation maneuver technique induced 15% more shear stress, 25% more strain, and 62% lower nerve compression than Harrington distraction maneuver. The segmental rotation-based procedure induced 25% lower shear stresses and 18% more strain, respectively, at the apical level, as well as 72%, 57%, and 7% lower IMP, nerve compression, and strain in the upper thoracic region, compared with Harrington distraction maneuver. CONCLUSION This study quantified the relative stress induced on the spinal cord and spinal nerves for different correction maneuvers using a novel hybrid patient-specific model. Of the three maneuvers studied, the Harrington distraction maneuver induced the most important stresses over the thoracolumbar region.
Collapse
|
18
|
Tuan Dao T. Hybrid Rigid-Deformable Model for Prediction of Neighboring Intervertebral Disk Loads During Flexion Movement After Lumbar Interbody Fusion at L3-4 Level. J Biomech Eng 2017; 139:2594573. [PMID: 27996077 DOI: 10.1115/1.4035483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/08/2022]
Abstract
Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1-2, L2-3, and L4-5 disks after interbody fusion at L3-4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1-2 disk and in NP region of L2-3 disk. The minimal stress change (1%) is noted at the NP region of the L1-2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.
Collapse
Affiliation(s)
- Tien Tuan Dao
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne CS 60 319, France e-mail:
| |
Collapse
|
19
|
Residual strains in the intervertebral disc annulus fibrosus suggest complex tissue remodeling in response to in-vivo loading. J Mech Behav Biomed Mater 2017; 68:232-238. [PMID: 28232297 DOI: 10.1016/j.jmbbm.2017.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
The annulus fibrosus (AF) of the intervertebral disc (IVD) serves the dual roles of containing hydrostatic pressure from the inner nucleus pulposus (NP) and allowing flexible connection between adjacent vertebral bodies. Previous work has indicated that in the unloaded state, the AF is under a state of residual circumferential strain that, on average, is comparable to that which is believed to reduce peak stresses in other pressure containing organs. The complex in-vivo loading of the IVD, however, led us to hypothesize that variations with anatomical region should also exist. Residual strains were measured by imaging bovine caudal IVDs at both macro and micro scales in both the intact state (under residual strain) and opened into anterior, posterior, and lateral quadrants (residual strains relieved). Calculation of macro scale residual strains using changes in lamellar arc length and thickness confirmed circumferential tension (anterior: 0.63±2.1%, lateral: 8.3±1.5%, posterior: 4.4±2.1%) and radial compression (anterior: 12.4±5.8%, lateral: 11.120±2.8%, posterior: 4.8±4.2%) around the outer zone of the AF. The inner zone, however, had residual circumferential strains ranging from 28.7±3.4% compression in the anterior region to 3.4±3% tension in the posterior region, with radial strains of 9.7±5.5% tension and 0.2±4.4% compression respectively. This pattern of residual circumferential strain was corroborated at the microscale by comparing the crimp period of collagen fiber bundles in the intact and open states. The results of this study point toward a complex pattern of residual strains in the AF, which develop in response to stresses from both NP pressurization and bending movements.
Collapse
|
20
|
Dao TT. Enhanced Musculoskeletal Modeling for Prediction of Intervertebral Disc Stress Within Annulus Fibrosus and Nucleus Pulposus Regions During Flexion Movement. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Stokes IAF, Gardner-Morse M. A database of lumbar spinal mechanical behavior for validation of spinal analytical models. J Biomech 2016; 49:780-785. [PMID: 26900035 DOI: 10.1016/j.jbiomech.2016.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/09/2016] [Accepted: 01/28/2016] [Indexed: 01/09/2023]
Abstract
Data from two experimental studies with eight specimens each of spinal motion segments and/or intervertebral discs are presented in a form that can be used for comparison with finite element model predictions. The data include the effect of compressive preload (0, 250 and 500N) with quasistatic cyclic loading (0.0115Hz) and the effect of loading frequency (1, 0.1, 0.01 and 0.001Hz) with a physiological compressive preload (mean 642N). Specimens were tested with displacements in each of six degrees of freedom (three translations and three rotations) about defined anatomical axes. The three forces and three moments in the corresponding axis system were recorded during each test. Linearized stiffness matrices were calculated that could be used in multi-segmental biomechanical models of the spine and these matrices were analyzed to determine whether off-diagonal terms and symmetry assumptions should be included. These databases of lumbar spinal mechanical behavior under physiological conditions quantify behaviors that should be present in finite element model simulations. The addition of more specimens to identify sources of variability associated with physical dimensions, degeneration, and other variables would be beneficial. Supplementary data provide the recorded data and Matlab® codes for reading files. Linearized stiffness matrices derived from the tests at different preloads revealed few significant unexpected off-diagonal terms and little evidence of significant matrix asymmetry.
Collapse
Affiliation(s)
- Ian A F Stokes
- University of Vermont, Department of Orthopaedics and Rehabilitation, Burlington, VT 05405-0084, USA.
| | - Mack Gardner-Morse
- University of Vermont, Department of Orthopaedics and Rehabilitation, Burlington, VT 05405-0084, USA
| |
Collapse
|
22
|
Brummund M, Brailovski V, Facchinello Y, Petit Y, Mac-Thiong JM. Implementation of a 3D porcine lumbar finite element model for the simulation of monolithic spinal rods with variable flexural stiffness. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:917-20. [PMID: 26736412 DOI: 10.1109/embc.2015.7318512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monolithic superelastic-elastoplastic spinal rods (MSER) are promising candidates to provide (i) dynamic stabilisation in spinal segments prone to mechanical stress concentration and adjacent segment disease and (ii) to provide fusion-ready stabilization in spinal segments at risk of implant failure. However, the stiffness distributions along the rod's longitudinal axis that best meet clinical requirements remain unknown. The present study is part of a mixed numerical experimental research project and aims at the implementation of a 3D finite element model of the porcine lumbar spine to study the role of MSER material properties and stiffness distributions on the intradiscal pressure distribution in the adjacent segment. In this paper, preliminary intradiscal pressure predictions obtained at one functional spinal unit are presented. Due to a lack of porcine material property data, these predictions were obtained on the basis of uncalibrated human vertebral disc data which were taken from the literature. The results indicate that human annulus and nucleus data predict experimental porcine in vivo and in vitro data reasonably well for the compressive forces of varying magnitudes.
Collapse
|
23
|
Mustafy T, Moglo K, Adeeb S, El-Rich M. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study. J Mech Behav Biomed Mater 2015; 53:384-396. [PMID: 26409229 DOI: 10.1016/j.jmbbm.2015.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
The cervical spine sustains high rate complex loading modes during Motor Vehicle Crashes (MVCs) which may produce severe injuries accompanied with soft and/or hard tissue failure. Although previous numerical and experimental studies have provided insights on the cervical spine behavior under various loading scenarios, its response to complex impact loads and the resulting injury mechanisms are not fully understood. A validated Finite Element (FE) model of the ligamentous cervical C2-C3 Functional Spinal Unit (FSU) was utilized to assess the spinal response to six combined impact loading modes; flexion-extension combined with compression and distraction, and lateral bending and axial rotation combined with distraction. The FE model used time and rate-dependent material laws which permit assessing bone fracture and ligament failure. Spinal load-sharing, stresses in the spinal components, intradiscal pressure (IDP) change in the nucleus as well as contact pressure in the facet joints were predicted. Bone and ligaments failure occurrence and initiation instants were investigated. Results showed that spinal load-sharing varied with loading modes. Lateral bending combined with distraction was the most critical loading mode as it increased stresses and strains significantly and produced failure in most of the spinal components compared to other modes. The facet joints and surrounding cancellous bone as well as ligaments particularly the capsular (CL) and flavum (FL) ligaments were the most vulnerable structures to rapid flexion-extension, axial rotation and lateral bending combined with distraction or compression. The excessive stress and strain resulted from these loading modes produced rupture of the CL and FL ligaments and failure in the cancellous bone. The detection of failure initiation as well as fracture assessment demonstrated the vulnerability of ligaments to tensile combined loads and the major contribution of the bony structures in resisting compressive combined loads. Findings of this study may potentially assist in the development of injury prevention and treatment strategies.
Collapse
Affiliation(s)
- Tanvir Mustafy
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| | - Kodjo Moglo
- Department of Mechanical & Aerospace Engineering, Royal Military College of Canada, 19 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4.
| | - Samer Adeeb
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| | - Marwan El-Rich
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| |
Collapse
|
24
|
Henao J, Aubin CÉ, Labelle H, Arnoux PJ. Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications. Comput Methods Biomech Biomed Engin 2015; 19:901-10. [DOI: 10.1080/10255842.2015.1075010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Taso M, Fradet L, Callot V, Arnoux PJ. Anteroposterior compression of the spinal cord leading to cervical myelopathy: a finite element analysis. Comput Methods Biomech Biomed Engin 2015; 18 Suppl 1:2070-1. [DOI: 10.1080/10255842.2015.1069625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. Taso
- Aix-Marseille Université, IFSTTAR, LBA UMR T 24, Marseille, France
- CRMBM-CEMEREM, UMR 7339 Aix-Marseille Université, CNRS, Marseille, France
- International Associate Lab in Biomechanics of Spine Injury and Pathologies (BSIP), Marseille, France
| | - L. Fradet
- International Associate Lab in Biomechanics of Spine Injury and Pathologies (BSIP), Marseille, France
- Department of Mechanical Engineering, Ecole Polytechnique de Montréal, Montréal, Canada
| | - V. Callot
- CRMBM-CEMEREM, UMR 7339 Aix-Marseille Université, CNRS, Marseille, France
- International Associate Lab in Biomechanics of Spine Injury and Pathologies (BSIP), Marseille, France
| | - P. J. Arnoux
- Aix-Marseille Université, IFSTTAR, LBA UMR T 24, Marseille, France
- International Associate Lab in Biomechanics of Spine Injury and Pathologies (BSIP), Marseille, France
| |
Collapse
|
26
|
Wang W, Aubin CE, Cahill P, Baran G, Arnoux PJ, Parent S, Labelle H. Biomechanics of high-grade spondylolisthesis with and without reduction. Med Biol Eng Comput 2015; 54:619-28. [PMID: 26233229 DOI: 10.1007/s11517-015-1353-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 07/07/2015] [Indexed: 12/01/2022]
Abstract
The clinical advantages of reducing spondylolisthesis over fusion in situ have several intuitive reasons such as restore the spinal column into a more anatomic relationship and alignment. However, there is only little evidence in the literature supporting the theoretical advantages of reduction, and its effect on spinopelvic alignment remains poorly defined. In this study, a comprehensive finite element model was developed to analyze the biomechanics of the spine after spinal fusion at L5-S1 in both types of high-grade spondylolisthesis (balanced and unbalanced pelvis). The relevant clinical indices (i.e. spondylolisthesis grade and Dubousset lumbosacral angle), the displacement of L4-L5, pressure within the annulus and nucleus, and stress at L4-L5 were evaluated and compared. The model can well predict the changes of the important clinical indices during the surgery. For a balanced pelvis, the reduction has a minimal effect on the biomechanical conditions at the adjacent level during postsurgical activities. In the unbalanced case, reduction induced larger deformation in the lumbosacral region and a higher stress concentration at adjacent level. Whether such a stress concentration can lead to long-term disc degeneration is not known. The results provide additional information for the clinician considering reduction of high-grade spondylolisthesis.
Collapse
Affiliation(s)
- Wenhai Wang
- Sainte-Justine University Hospital Center (University of Montreal), 3175 Côte-Ste-Catherine Rd., Montreal, QC, H3T 1C5, Canada.,College of Engineering, Temple University, 1947N 12th Street, Philadelphia, PA, 19122, USA
| | - Carl-Eric Aubin
- Sainte-Justine University Hospital Center (University of Montreal), 3175 Côte-Ste-Catherine Rd., Montreal, QC, H3T 1C5, Canada. .,Department of Mechanical Engineering, Polytechnique Montreal, P.O. Box 6079, Station "Centre-ville", Montreal, QC, H3C 3A7, Canada.
| | - Patrick Cahill
- Shriners Hospitals for Children-Philadelphia, 3551 North Broad Street, Philadelphia, PA, 19140, USA
| | - George Baran
- College of Engineering, Temple University, 1947N 12th Street, Philadelphia, PA, 19122, USA
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France
| | - Stefan Parent
- Sainte-Justine University Hospital Center (University of Montreal), 3175 Côte-Ste-Catherine Rd., Montreal, QC, H3T 1C5, Canada
| | - Hubert Labelle
- Sainte-Justine University Hospital Center (University of Montreal), 3175 Côte-Ste-Catherine Rd., Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
27
|
Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ. Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 2013; 52:87-94. [DOI: 10.1007/s11517-013-1124-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
|
28
|
Landi A. Elastic resistance of the spine: Why does motion preservation surgery almost fail? World J Clin Cases 2013; 1:134-139. [PMID: 24303484 PMCID: PMC3845953 DOI: 10.12998/wjcc.v1.i4.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/11/2013] [Accepted: 06/10/2013] [Indexed: 02/05/2023] Open
Abstract
Single metamere motility should not be interpreted merely as a movement on the 3 planes but also, and above all, as elastic resistance to dynamic stress on these 3 planes. In the light of this consideration, the aim of motion preservation is to neutralize excessive movements while preserving the physiological biomechanical properties of the metamere involved to interrupt the progression of degenerative processes and to prevent adjacent segment disease. Despite the fact that a myriad of devices have been developed with the purpose of achieving dynamic neutralization of the spine, there are now some doubts regarding the true efficacy of these devices.
Collapse
|
29
|
Sun J, Rojas A, Bertrand P, Petit Y, Kraenzler R, Arnoux PJ. Investigation of motorcyclist cervical spine trauma using HUMOS model. TRAFFIC INJURY PREVENTION 2012; 13:519-528. [PMID: 22931182 DOI: 10.1080/15389588.2012.656857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE With 16 percent of the total road user fatalities, motorcyclists represent the second highest rate of road fatalities in France after car occupants. Regarding road accidents, a large proportion of trauma was on the lower cervical spine. According to different clinical studies, it is postulated that the cervical spine fragility areas are located on the upper and lower cervical spine. In motorcycle crashes, impact conditions occur on the head segment with various orientations and impact directions, leading to a combination of rotations and compression. Hence, motorcyclist vulnerability was investigated considering many impact conditions. METHOD Using the human model for safety (HUMOS), a finite element model, this work aims to provide an evaluation of the cervical spine weaknesses based on an evaluation of injury mechanisms. This evaluation consisted of defining 2 injury risk factors (joint injury and bone fracture) using a design of experiment including various velocities, impact directions, and impact orientations. RESULTS The results confirmed previously reported clinical and epidemiological work on the fragility of the lower cervical spine and the upper cervical spine segments. Joint injuries appeared before bone fractures on both the upper and lower cervical spine. Bone fracture risk was greater on the lower cervical spine than on the upper cervical spine. The compression induced by a high impact angle was identified as an important injury severity factor. It significantly increased the injury incidence for both joint injuries and bone fractures. It also induced a shift in injury location from the lower to the upper cervical spine. The impact velocity exhibited a linear relationship with injury risks and severity. It also shifted the bone fracture risk from the lower to upper spinal segments.
Collapse
Affiliation(s)
- Jingchao Sun
- Aix-Marseille University, LBA, Marseille, France.
| | | | | | | | | | | |
Collapse
|
30
|
Wagnac E, Arnoux PJ, Garo A, Aubin CE. Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 2012; 50:903-15. [DOI: 10.1007/s11517-012-0908-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/10/2012] [Indexed: 11/24/2022]
|