1
|
Aziz B, Belaghi R, Huynh H, Jacobson K, Mack DR, Deslandres C, Otley A, DeBruyn J, El-Matary W, Crowley E, Sherlock M, Critch J, Ahmed N, Griffiths A, Walters T, Wine E. Neutrophil-to-Lymphocyte Ratio at Diagnosis Predicts Colonoscopic Activity in Pediatric Inflammatory Bowel Diseases. Clin Transl Gastroenterol 2025; 16:e00824. [PMID: 39835685 PMCID: PMC12020715 DOI: 10.14309/ctg.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Neutrophil-to-lymphocyte ratio (NLR) is a novel biomarker studied in several autoimmune diseases including inflammatory bowel disease (IBD) in adults but poorly characterized in pediatric IBD (pIBD). We aimed to primarily investigate the relationship between NLR and pIBD endoscopic disease severity. We also examined whether NLR predicted hospitalization, surgery, and therapy response by 52 weeks. METHODS We used the Canadian Children IBD Network prospective inception cohort including patients < 18 years old with baseline data from 2013 to 2022. We excluded patients with concurrent diseases affecting NLR. Both Mayo endoscopic score (MES) and simple endoscopic scale for Crohn's disease (SES-CD) were dichotomized as low activity (quiescent-mild) and high activity (moderate-severe). For therapy responses, we examined year-1 steroid- and biologic-free remission. We used logistic regression for binary outcomes. RESULTS A total of 580 patients with ulcerative colitis and 1,081 patients with CD were included. High NLR was associated with high-activity MES and SES-CD in both univariate and multivariable analyses (odds ratio = 1.45, 95% CI = 1.07-1.97, P value = 0.016; and odds ratio = 1.42, 95% CI = 1.04-1.94, P value = 0.026, respectively). We also calculated the best NLR cutoff point to predict MES (1.90, sensitivity = 68%, specificity = 67%, area under the curve [AUC] = 0.67, AUC 95% CI = 0.59-0.74) and SES-CD (2.50, sensitivity = 63%, specificity = 69%, AUC = 0.66, AUC 95% CI = 0.59-0.75) high activity. NLR did not predict therapy response in either ulcerative colitis or CD. DISCUSSION Patients with pIBD with high baseline NLR are more probable to have worse endoscopic disease at diagnosis. This highlights NLR potential as a reliable noninvasive biomarker of disease activity. The predictive power of NLR is based mostly on neutrophils and the balance between neutrophils and lymphocytes.
Collapse
Affiliation(s)
- Bishoi Aziz
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Reza Belaghi
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Hien Huynh
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Kevan Jacobson
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David R. Mack
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Colette Deslandres
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Anthony Otley
- Departement of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer DeBruyn
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Wael El-Matary
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eileen Crowley
- Department of Pediatrics, Division of Pediatric Gastroenterology, Children's Hospital Western Ontario, Western University, London, Ontario, Canada
- Health Sciences Centre, London, Ontario, Canada
| | - Mary Sherlock
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jeffery Critch
- Department of Pediatrics, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Najma Ahmed
- Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Anne Griffiths
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Walters
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Eytan Wine
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Moraes AS, Tatara JM, da Rosa RL, Siqueira FM, Domingues G, Berger M, Guimarães JA, Barth AL, Barth PO, Yates JR, Beys-da-Silva WO, Santi L. Metabolic Reprogramming of Klebsiella pneumoniae Exposed to Serum and Its Potential Implications in Host Immune System Evasion and Resistance. J Proteome Res 2024; 23:4896-4906. [PMID: 39360742 PMCID: PMC11536433 DOI: 10.1021/acs.jproteome.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to Klebsiella pneumoniae ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.
Collapse
Affiliation(s)
- Amanda
Naiara Silva Moraes
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Juliana Miranda Tatara
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Rafael Lopes da Rosa
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Franciele Maboni Siqueira
- Faculty
of Veterinary, Federal University of Rio
Grande do Sul, Porto Alegre, Rio Grande do Sul 91540-000, Brazil
| | | | - Markus Berger
- Center
of Experimental Research, Clinical Hospital
of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
- Tick-Pathogen
Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 20892, United States
| | - Jorge Almeida Guimarães
- Center
of Experimental Research, Clinical Hospital
of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Afonso Luís Barth
- Bacterial
Resistance Research Laboratory, Clinical
Hospital of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
| | - Patricia Orlandi Barth
- Bacterial
Resistance Research Laboratory, Clinical
Hospital of Porto Alegre, Porto
Alegre, Rio Grande do Sul 90035-903, Brazil
| | - John R. Yates
- Department
of Molecular Medicine, Scripps Research, La Jolla, California 92037, United States
| | - Walter Orlando Beys-da-Silva
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- Faculty
of Pharmacy, Federal University of Rio Grande
do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Lucélia Santi
- Post-Graduation
Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul., Porto Alegre, Rio Grande do Sul 91501-970, Brazil
- Faculty
of Pharmacy, Federal University of Rio Grande
do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
3
|
Li Y, Han S. Metabolomic Applications in Gut Microbiota-Host Interactions in Human Diseases. Gastroenterol Clin North Am 2024; 53:383-397. [PMID: 39068001 DOI: 10.1016/j.gtc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human gut microbiota, consisting of trillions of microorganisms, encodes diverse metabolic pathways that impact numerous aspects of host physiology. One key way in which gut bacteria interact with the host is through the production of small metabolites. Several of these microbiota-dependent metabolites, such as short-chain fatty acids, have been shown to modulate host diseases. In this review, we examine how disease-associated metabolic signatures are identified using metabolomic platforms, and where metabolomics is applied in gut microbiota-disease interactions. We further explore how integration of metagenomic and metabolomic data in human studies can facilitate biomarkers discoveries in precision medicine.
Collapse
Affiliation(s)
- Yuxin Li
- Biochemistry Graduate Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shuo Han
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, USA.
| |
Collapse
|
4
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zou F, Wang S, Xu M, Wu Z, Deng F. The role of sphingosine-1-phosphate in the gut mucosal microenvironment and inflammatory bowel diseases. Front Physiol 2023; 14:1235656. [PMID: 37560160 PMCID: PMC10407793 DOI: 10.3389/fphys.2023.1235656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a type of bioactive sphingolipid, can regulate various cellular functions of distinct cell types in the human body. S1P is generated intracellularly by the catalysis of sphingosine kinase 1/2 (SphK1/2). S1P is transferred to the extracellular environment via the S1P transporter, binds to cellular S1P receptors (S1PRs) and subsequently activates S1P-S1PR downstream signaling. Dysbiosis of the intestinal microbiota, immune dysregulation and damage to epithelial barriers are associated with inflammatory bowel disease (IBD). Generally, S1P mainly exerts a proinflammatory effect by binding to S1PR1 on lymphocytes to facilitate lymphocyte migration to inflamed tissues, and increased S1P was found in the intestinal mucosa of IBD patients. Notably, there is an interaction between the distribution of gut bacteria and SphK-S1P signaling in the intestinal epithelium. S1P-S1PR signaling can also regulate the functions of intestinal epithelial cells (IECs) in mucosa, including cell proliferation and apoptosis. Additionally, increased S1P in immune cells of the lamina propria aggravates the inflammatory response by increasing the production of proinflammatory cytokines. Several novel drugs targeted at S1PRs have recently been used for IBD treatment. This review provides an overview of the S1P-S1PR signaling pathway and, in particular, summarizes the various roles of S1P in the gut mucosal microenvironment to deeply explore the function of S1P-S1PR signaling during intestinal inflammation and, more importantly, to identify potential therapeutic targets for IBD in the SphK-S1P-S1PR axis.
Collapse
Affiliation(s)
- Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Yan XL, Liu XC, Zhang YN, Du TT, Ai Q, Gao X, Yang JL, Bao L, Li LQ. Succinate aggravates intestinal injury in mice with necrotizing enterocolitis. Front Cell Infect Microbiol 2022; 12:1064462. [PMID: 36519131 PMCID: PMC9742382 DOI: 10.3389/fcimb.2022.1064462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is the most prevalent gastrointestinal disorder that predominantly threatens preterm newborns. Succinate is an emerging metabolic signaling molecule that was recently studied in relation to the regulation of intestinal immunity and homeostasis. We aimed to investigate the relationship between NEC and gut luminal succinate and preliminarily explored the effect of succinate on NEC pathogenesis. Methods Fecal samples from human neonates and mouse pups were analyzed by HPLC - MS/MS and 16S rRNA gene sequencing. C57BL/6 mice were randomly divided into four groups: control, NEC, Lsuc, and Hsuc. The mortality, weight gain, and intestinal pathological changes in four mouse groups were observed. Inflammatory cytokines and markers of macrophages were identified by quantitative real-time PCR. Succinate receptor 1 (SUCNR1) localization was visualized by immunohistochemistry. The protein levels of SUCNR1 and hypoxia-inducible factor 1a (HIF-1a) were quantified by western blotting. Results The levels of succinate in feces from NEC patients were higher than those in feces from non-NEC patients (P <0.05). In the murine models, succinate levels in intestinal content samples were also higher in the NEC group than in the control group (P <0.05). The change in succinate level was closely related to intestinal flora composition. In samples from human neonates, relative to the control group, the NEC group showed a higher abundance of Enterobacteriaceae and a lower abundance of Lactobacillaceae and Lactobacillus (P <0.05). In the murine models, relative to the control group, increased abundance was observed for Clostridiaceae, Enterococcaceae, Clostridium_sensu_stricto_1, and Enterococcus, whereas decreased abundance was observed for Lactobacillaceae and Lactobacillus (P <0.05). Increased succinate levels prevented mice from gaining weight, damaged their intestines, and increased their mortality; upregulated the gene expression of interleukin-1β (IL-1β), IL-6, IL-18 and tumor necrosis factor (TNF); and downregulated the gene expression of IL-10 and transforming growth factor (TGF)-β. Exogenous succinic acid increased inducible nitric oxide synthase (iNOS) gene expression but decreased Arginase-1 (Arg1) gene expression; and increased the protein expression of SUCNR1 and HIF-1a. Conclusion Succinate plays an important role in the development of necrotizing enterocolitis severity, and the activation of the HIF-1a signaling pathway may lead to disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Bao
- Department of Neonatology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lu-Quan Li
- Department of Neonatology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
7
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
8
|
Ghiboub M, Penny S, Verburgt CM, Boneh RS, Wine E, Cohen A, Dunn KA, Pinto DM, Benninga MA, de Jonge WJ, Levine A, Van Limbergen JE. Metabolome Changes With Diet-Induced Remission in Pediatric Crohn's Disease. Gastroenterology 2022; 163:922-936.e15. [PMID: 35679949 DOI: 10.1053/j.gastro.2022.05.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The Crohn's disease (CD) exclusion diet (CDED) plus partial enteral nutrition (PEN) and exclusive enteral nutrition (EEN) both induce remission in pediatric CD. CDED+PEN is better tolerated and able to sustain remission. We characterized the changes in fecal metabolites induced by CDED+PEN and EEN and their relationship with remission. METHODS A total of 216 fecal metabolites were measured in 80 fecal samples at week (W) 0, W6, and W12, of children with mild to moderate CD in a prospective randomized trial comparing CDED+PEN vs EEN. The metabolites were measured using liquid chromatography coupled to mass spectrometry. Metagenome Kyoto Encyclopedia of Genes and Genomes Orthology analysis was performed to investigate the differential functional gene abundance involved in specific metabolic pathways. Data were analyzed according to clinical outcome of remission (W6_rem), no remission (W6_nr), sustained remission (W12_sr), and nonsustained (W12_nsr) remission. RESULTS A decrease in kynurenine and succinate synthesis and an increase in N-α-acetyl-arginine characterized CDED+PEN W6_rem, whereas changes in lipid metabolism characterized EEN W6_rem, especially reflected by lower levels in ceramides. In contrast, fecal metabolites in EEN W6_nr were comparable to baseline/W0 samples. CDED+PEN W6_rem children maintained metabolome changes through W12. In contrast, W12_nsr children in the EEN group, who resumed a free diet after week 6, did not. The metabolome of CDED+PEN differed from EEN in the purine, pyrimidine, and sphingolipid pathways. A significant differential abundance in several genes involved in these pathways was detected. CONCLUSION CDED+PEN- and EEN-induced remission are associated with significant changes in inflammatory bowel disease-associated metabolites such as kynurenine, ceramides, amino acids, and others. Sustained remission with CDED+PEN, but not EEN, was associated with persistent changes in metabolites. CLINICALTRIALS gov, Number NCT01728870.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Susanne Penny
- National Research Council Canada, Human Health Therapeutics, Halifax, Canada
| | - Charlotte M Verburgt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Rotem Sigall Boneh
- Division of Pediatric Gastroenterology, Wolfson Medical Centre, Holon, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Alejandro Cohen
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | | - Devanand M Pinto
- National Research Council Canada, Human Health Therapeutics, Halifax, Canada
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Arie Levine
- Division of Pediatric Gastroenterology, Wolfson Medical Centre, Holon, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Johan E Van Limbergen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Pediatrics, Dalhousie University, Halifax, Canada.
| |
Collapse
|
9
|
A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients 2021; 13:nu13113736. [PMID: 34835992 PMCID: PMC8622458 DOI: 10.3390/nu13113736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As the microbiome plays an important role in instigating inflammation in ulcerative colitis (UC), strategies targeting the microbiome may offer an alternative therapeutic approach. The goal of the pilot trial was to evaluate the potential efficacy and feasibility of a novel UC exclusion diet (UCED) for clinical remission, as well as the potential of sequential antibiotics for diet-refractory patients to achieve remission without steroids. METHODS This was a prospective, single-arm, multicenter, open-label pilot study in patients aged 8-19, with pediatric UC activity index (PUCAI) scores >10 on stable maintenance therapy. Patients failing to enter remission (PUCAI < 10) on the diet could receive a 14-day course of amoxycillin, metronidazole and doxycycline (AMD), and were re-assessed on day 21. The primary endpoint was intention-to-treat (ITT) remission at week 6, with UCED as the only intervention. RESULTS Twenty-four UCED treatment courses were given to 23 eligible children (mean age: 15.3 ± 2.9 years). The median PUCAI decreased from 35 (30-40) at baseline to 12.5 (5-30) at week 6 (p = 0.001). Clinical remission with UCED alone was achieved in 9/24 (37.5%). The median fecal calprotectin declined from 818 (630.0-1880.0) μg/g at baseline to 592.0 (140.7-1555.0) μg/g at week 6 (p > 0.05). Eight patients received treatment with antibiotics after failing on the diet; 4/8 (50.0%) subsequently entered remission 3 weeks later. CONCLUSION The UCED appears to be effective and feasible for the induction of remission in children with mild to moderate UC. The sequential use of UCED followed by antibiotic therapy needs to be evaluated as a microbiome-targeted, steroid-sparing strategy.
Collapse
|
10
|
Fremder M, Kim SW, Khamaysi A, Shimshilashvili L, Eini-Rider H, Park IS, Hadad U, Cheon JH, Ohana E. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Rep 2021; 36:109521. [PMID: 34380041 DOI: 10.1016/j.celrep.2021.109521] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/23/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
The gut metabolite composition determined by the microbiota has paramount impact on gastrointestinal physiology. However, the role that bacterial metabolites play in communicating with host cells during inflammatory diseases is poorly understood. Here, we aim to identify the microbiota-determined output of the pro-inflammatory metabolite, succinate, and to elucidate the pathways that control transepithelial succinate absorption and subsequent succinate delivery to macrophages. We show a significant increase of succinate uptake into pro-inflammatory macrophages, which is controlled by Na+-dependent succinate transporters in macrophages and epithelial cells. Furthermore, we find that fecal and serum succinate concentrations were markedly augmented in inflammatory bowel diseases (IBDs) and corresponded to changes in succinate-metabolizing gut bacteria. Together, our results describe a succinate production and transport pathway that controls the absorption of succinate generated by distinct gut bacteria and its delivery into macrophages. In IBD, this mechanism fails to protect against the succinate surge, which may result in chronic inflammation.
Collapse
Affiliation(s)
- Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ahlam Khamaysi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liana Shimshilashvili
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadar Eini-Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
11
|
Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Metabolomics as a Promising Resource Identifying Potential Biomarkers for Inflammatory Bowel Disease. J Clin Med 2021; 10:jcm10040622. [PMID: 33562024 PMCID: PMC7915257 DOI: 10.3390/jcm10040622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a relapsing chronic disorder of the gastrointestinal tract characterized by disruption of epithelial barrier function and excessive immune response to gut microbiota. The lack of biomarkers providing early diagnosis or defining the status of the pathology difficulties an accurate assessment of the disease. Given the different metabolomic profiles observed in IBD patients, metabolomics may reveal prime candidates to be studied, which may help in understanding the pathology and identifying novel therapeutic targets. In this review, we summarize the most current advances describing the promising metabolites such as lipids or amino acids found through untargeted metabolomics from serum, faecal, urine and biopsy samples.
Collapse
Affiliation(s)
- Cristina Bauset
- Department of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (C.B.); (L.G.-F.)
| | - Laura Gisbert-Ferrándiz
- Department of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (C.B.); (L.G.-F.)
| | - Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| |
Collapse
|