1
|
Zhang YH, Du J, Li CH, Hu B. Endoscopic pedicle flap grafting in the treatment of esophageal fistulas: A case report. World J Clin Cases 2020; 8:2359-2363. [PMID: 32548168 PMCID: PMC7281058 DOI: 10.12998/wjcc.v8.i11.2359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fistulization is a rare complication of esophageal diverticula. Patients with this condition often require surgery, which unfortunately can be invasive and traumatic. Endoscopic therapy is an alternative method for treating esophageal fistula. Hereby we introduce a new endoscopic technique that uses an esophageal pedicle flap to close esophageal fistulas. CASE SUMMARY A 49-year-old male patient, complaining of backache and choking, was formerly diagnosed with chronic bronchopneumonia. Chest computed tomography and esophagram confirmed the presence of esophageal diverticulum and mediastinal esophageal fistula. The patient was then treated by covering the fistulas using a pedicled flap that was acquired through endoscopic submucosal dissection of a patch from the proximal esophageal mucosa. Then the pedicle flap was reversed 180° to cover the fistula. Titanium clips were used to fix the flap. The procedure ended with percutaneous endoscopic gastrostomy for enteral nutrition. The patient was followed up to evaluate the size reduction of the fistula. Cough, backache, and fever were alleviated within a week. Forty-five days after the surgery, endoscopic examination showed that the fistulas were reduced in size. The larger one reduced from 0.5 cm to 0.2 cm, while the smaller one was fully closed. CONCLUSION Transplantation of a pedicle flap obtained from the esophageal mucosa endoscopically is minimally invasive for the treatment of fistula.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Du
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Chuan-Hui Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
2
|
Ohki T, Yamamoto M. Esophageal regenerative therapy using cell sheet technology. Regen Ther 2020; 13:8-17. [PMID: 33490318 PMCID: PMC7794050 DOI: 10.1016/j.reth.2020.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/20/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
We have been conducting research on esophageal regenerative therapy using cell sheet technology. In particular, in the endoscopic field, we have pushed forward clinical research on endoscopic transplantation of cultured autologous oral mucosal epithelial cell sheets to esophageal ulcer after endoscopic submucosal dissection (ESD). We started research in this direction using animal models in 2004 and performed clinical research in 2012 in collaboration with Nagasaki University and Karolinska Institute. Although in full-circumferential cases it was difficult to prevent esophageal stricture after ESD, there were no complications and stricture could be suppressed. The cell sheet technology is still in its infancy. However, we are convinced that it has a high potential for application in various areas of gastrointestinal science. In this review, we focus on the pre-clinical and clinical trial results obtained and on the theoretical aspects of (1) stricture prevention, (2) esophageal tissue engineering research, and (3) endoscopic transplantation, and review the esophageal regenerative therapy by cell sheet technology.
Collapse
Key Words
- CMC, carboxymethyl cellulose
- CPC, cell-processing center
- Cell sheet technology
- EBD, endoscopic balloon dilation
- ECM, extracellular matrix
- EMR, endoscopic mucosal dissection
- ESD, endoscopic submucosal dissection
- Endoscopic submucosal dissection (ESD)
- Endoscopic transplantation
- Esophageal stricture
- GMP, good manufacturing practice
- OMECS, oral mucosal epithelial cell sheet
- PGA, polyglycolic acid
- PIPAAm, poly(N-isopropylacrylamide)
- PVDF, polyvinylidene difluoride
- Regenerative medicine
- SEMS, self-expandable metallic stent
- TAC, triamcinolone
- Tissue-engineered oral mucosal
Collapse
Affiliation(s)
- Takeshi Ohki
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
3
|
Krauss RS, Chihara D, Romer AI. Embracing change: striated-for-smooth muscle replacement in esophagus development. Skelet Muscle 2016; 6:27. [PMID: 27504178 PMCID: PMC4976477 DOI: 10.1186/s13395-016-0099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Daisuke Chihara
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| |
Collapse
|
4
|
Ciccocioppo R, Cangemi GC, Kruzliak P, Corazza GR. Concise Review: Cellular Therapies: The Potential to Regenerate and Restore Tolerance in Immune-Mediated Intestinal Diseases. Stem Cells 2016; 34:1474-86. [PMID: 27016400 DOI: 10.1002/stem.2367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory enteropathies, including celiac disease, Crohn's disease, and ulcerative colitis, are lifelong disabling conditions whose cure is still an unmet need, despite the great strides made in understanding their complex pathogenesis. The advent of cellular therapies, mainly based on the use of stem cells, represents a great step forward thanks to their multitarget strategy. Both hematopoietic stem cells (HSC) and mesenchymal stem/stromal cells (MSC) have been employed in the treatment of refractory cases with promising results. The lack of immunogenicity makes MSC more suitable for therapeutic purposes as their infusion may be performed across histocompatibility locus antigen barriers without risk of rejection. The best outcome has been obtained when treating fistulizing Crohn's disease with local injections of MSC. In addition, both HSC and MSC proved successful in promoting regeneration of intestinal mucosa, and favoring the expansion of a T-cell regulatory subset. By virtue of the ability to favor mucosal homeostasis, this last cell population has been exploited in clinical trials, with inconsistent results. Finally, the recent identification of the epithelial stem cell marker has opened up the possibility of tissue engineering, with an array of potential applications for intestinal diseases. However, the underlying mechanisms of action of these interconnected therapeutic strategies are still poorly understood. It is conceivable that over the next few years their role will become clearer as the biological interactions with injured tissues and the hierarchy by which they deliver their action are unraveled through a continuous moving from bench to bedside and vice versa. Stem Cells 2016;34:1474-1486.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Clinica Medica I, Department of Internal Medicine Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Giuseppina Cristina Cangemi
- Clinica Medica I, Department of Internal Medicine Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Gino Roberto Corazza
- Clinica Medica I, Department of Internal Medicine Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| |
Collapse
|
5
|
van Rijn JM, Schneeberger K, Wiegerinck CL, Nieuwenhuis EES, Middendorp S. Novel approaches: Tissue engineering and stem cells--In vitro modelling of the gut. Best Pract Res Clin Gastroenterol 2016; 30:281-93. [PMID: 27086891 DOI: 10.1016/j.bpg.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/05/2016] [Indexed: 01/31/2023]
Abstract
In many intestinal diseases, the function of the epithelial lining is impaired. In this review, we describe the recent developments of in vitro intestinal stem cell cultures. When these stem cells are grown in 3D structures (organoids), they provide a model of the intestinal epithelium, which is closely similar to the growth and development of the in vivo gut. This model provides a new tool to study various diseases of malabsorption in functional detail and therapeutic applications, which could not be achieved with traditional cell lines. First, we describe the organization and function of the healthy small intestinal epithelium. Then, we discuss the establishment of organoid cultures and how these structures represent the healthy epithelium. Finally, we discuss organoid cultures as a tool for studying intrinsic properties of the epithelium, as a model for intestinal disease, and as a possible source for stem cell transplantations.
Collapse
Affiliation(s)
- Jorik M van Rijn
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Caroline L Wiegerinck
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
6
|
Barret M, Beye B, Leblanc S, Beuvon F, Chaussade S, Batteux F, Prat F. Systematic review: the prevention of oesophageal stricture after endoscopic resection. Aliment Pharmacol Ther 2015; 42:20-39. [PMID: 25982288 DOI: 10.1111/apt.13254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extensive endoscopic resections for the treatment of early oesophageal neoplasia can result in fibro-inflammatory strictures that require repeated interventions, which significantly alter the patients' quality of life. AIMS To review current evidence about the prevention of oesophageal strictures following endoscopic resections. METHODS Systematic search of PubMed and Embase from inception to March 2015 using appropriate keywords. All original publications in English were included, and articles on the treatment of oesophageal stricture were excluded. RESULTS Of the 461 hits, 62 studies were included in the analysis. Among the wound-protective strategies, polyglycolic acid sheets showed the most convincing evidence with a 37.5% stricture rate and excellent safety. Regenerative medicine, using cell sheets of autologous keratinocytes, resulted in a 25% stricture rate, although with cost and availability concerns. Among anti-proliferative treatment modalities, steroid treatment, either endoscopically injected triamcinolone in the resection wound or orally administered prednisolone, proved effective with an overall stricture rate of 13.5%, with safety concerns regarding late oesophageal perforations and infectious morbidity. Among mechanical treatment options, poorly effective and high-risk preventive balloon dilation tend to be replaced by prophylactic covered stent, with 18-28% stricture rates. CONCLUSIONS Although oral or locally injected steroids are promising options, no currently available technique is sufficiently efficient and devoid of significant safety concerns to recommend its routine use for the prevention of strictures after extensive endoscopic resection. Improving our knowledge in the mechanisms of oesophageal wound healing will guide the development of novel methods for stricture prevention.
Collapse
Affiliation(s)
- M Barret
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,UI 1016, Faculté Paris Descartes, Paris, France
| | - B Beye
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,UI 1016, Faculté Paris Descartes, Paris, France
| | - S Leblanc
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - F Beuvon
- Department of Pathology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - S Chaussade
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - F Batteux
- UI 1016, Faculté Paris Descartes, Paris, France.,Department of Immunology, Cochin Hospital, Paris, France
| | - F Prat
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,UI 1016, Faculté Paris Descartes, Paris, France
| |
Collapse
|
7
|
Abstract
The major role of colonoscopy with polypectomy in reducing the incidence of and mortality from colorectal cancer has been firmly established. Yet there is cause to be uneasy. One of the most striking recent findings is that there is an alarmingly high incomplete polyp removal rate. This phenomenon, together with missed polyps during screening colonoscopy, is thought to be responsible for the majority of interval cancers. Knowledge of serrated polyps needs to broaden as well, since they are quite often missed or incompletely removed. Removal of small and diminutive polyps is almost devoid of complications. Cold snare polypectomy seems to be the best approach for these lesions, with biopsy forcep removal reserved only for the tiniest of polyps. Hot snare or hot biopsy forcep removal of these lesions is no longer recommended. Endoscopic mucosal resection and endoscopic submucosal dissection have proven to be effective in the removal of large colorectal lesions, avoiding surgery in the majority of patients, with acceptably low complication rates. Variants of these approaches, as well as new hybrid techniques, are being currently tested. In this paper, we review the current status of the different approaches in removing polypoid and nonpolypoid lesions of the colon, their complications, and future directions in the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Manol Jovani
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cesare Hassan
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandro Repici
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|