1
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
2
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
3
|
Wu Y, Chen X, Wu Q, Wang Q. Research progress on fecal microbiota transplantation in tumor prevention and treatment. Open Life Sci 2025; 20:20220954. [PMID: 40177417 PMCID: PMC11964189 DOI: 10.1515/biol-2022-0954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 04/05/2025] Open
Abstract
The application of fecal microbiota transplantation (FMT) as a therapeutic strategy to directly modify the makeup of the gut microbiota has made significant progress in the last few decades. The gut microbiota, a sizable microbial community present in the human gut, is essential for digestion, immunomodulation, and nutrition absorption. Alternatively, a growing body of research indicates that gut microbiota is a key contributor to cancer, and intratumoral bacteria are considered to be crucial "accomplices" in the development and metastasis of malignancies. The exceptional clinical effectiveness of FMT in treating melanoma patients has been adequately established in earlier research, which has created new avenues for the diagnosis and treatment of cancer and sparked an increasing interest in the treatment and prevention of other cancers. However, further research on the function and mechanisms of the gut microbiota is required to properly comprehend the impact and role of these organisms in tumor regulation. In this article, we present a detailed account of the influence of FMT on the entire course of cancer patients' illness and treatment, from tumor development, metastasis, and invasion, to the impact and application of treatment and prognosis, as well as address the associated mechanisms.
Collapse
Affiliation(s)
- Yijia Wu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xi Chen
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qingming Wu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qiang Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
4
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Xiao P, Li Y, Li X, Ge T, Li D, Xu Q, Ruan Y, Xiao F, Xiao Y, Zhang T. Long-term safety of fecal microbiota transplantation in Chinese children from 2013 to 2023: a single-center retrospective study. BMC Microbiol 2025; 25:152. [PMID: 40098090 PMCID: PMC11912669 DOI: 10.1186/s12866-025-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The gut microbiome plays a vital role in influencing various health conditions. Fecal Microbiota Transplantation (FMT) has emerged as a rapid, safe, and effective method for modifying the microbiome. However, there is a lack of long-term safety data regarding FMT in children. This study presents the largest single-center analysis of the long-term safety outcomes of FMT in pediatric patients in China, featuring a substantial sample size and an extended follow-up period to thoroughly examine its safety in children. METHODS A retrospective study was conducted on 813 patients who underwent FMT treatments at our hospital from December 2013 to December 2023. All FMT procedures adhered to standardized protocols. The safety of these treatments was retrospectively assessed, focusing on adverse events (AEs) and serious adverse events (SAEs). AEs associated with FMT were categorized as short-term (within 48 h post-FMT) and long-term (within 3 months). Various potential influencing factors for AEs, including sex, age, route of administration, disease type, and consanguineous donor, were examined as independent variables. Significant independent factors and their associated risk ratios with 95% confidence intervals (CI) were determined through multivariate logistic regression analysis. A p-value of less than 0.05 was considered statistically significant. RESULTS A total of 813 patients underwent FMT, with a median age of 93 months (range 4-215) and 68.0% being males. The average follow-up time was 32.3 months (range 1-122). All short-term AEs resolved within 48 h, with an overall occurrence rate of 5.8% (47/813). The most common short-term AEs included vomiting (2.0%), abdominal pain (1.6%), diarrhea (0.9%), fever (0.7%), dysphoria (0.4%), and nausea (0.4%). Multivariable analysis revealed that patients with inflammatory bowel disease (IBD) (OR: 3.98, 95% CI: 1.78-8.92, P = 0.001) and those who received FMT via capsules (OR: 0.09, 95% CI: 0.03-0.27, P = 0.000) were independent risk factors for FMT-related AEs. All 813 patients were followed up for at least 1 month, with 78.8% followed for more than 12 months. No long-term AEs occurred during the longest follow-up period of 122 months. CONCLUSIONS FMT is a promising treatment option that appears to be safe and well tolerated. This study stands out for its substantial sample size, making it's the largest reported series in pediatrics, as well as for having the longest follow-up period for FMT in this population. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Pei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Youran Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Ting Ge
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Dan Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Qiao Xu
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Yangming Ruan
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Wang L, Cui Y, Han B, Du Y, Salewala KS, Wang S, Zhao W, Zhang H, Wang S, Xu X, Ma J, Zhu Y, Tuo H. Gut microbiota and Parkinson's disease. Chin Med J (Engl) 2025; 138:289-297. [PMID: 39501822 PMCID: PMC11771718 DOI: 10.1097/cm9.0000000000003318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Emerging evidence suggests that dysbiosis of the gut microbiota is associated with the pathogenesis of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The microbiota-gut-brain axis plays a crucial role in the development and progression of PD, and numerous studies have demonstrated the potential therapeutic benefits of modulations in the intestinal microbiota. This review provides insights into the characterization of the gut microbiota in patients with PD and highlights associations with clinical symptoms and underlying mechanisms. The discussion underscores the increased influence of the gut microbiota in the pathogenesis of PD. While the relationship is not fully elucidated, existing research demonstrates a strong correlation between changes in the composition of gut microbiota and disease development, and further investigation is warranted to explain the specific underlying mechanisms.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Cui
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bingyu Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yitong Du
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | | | - Shiya Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenlu Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hongxin Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Sichen Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xinran Xu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianpeng Ma
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Zhu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Houzhen Tuo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Sun T, Song B, Li B. Gut microbiota and atrial cardiomyopathy. Front Cardiovasc Med 2025; 12:1541278. [PMID: 39968343 PMCID: PMC11832500 DOI: 10.3389/fcvm.2025.1541278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Atrial cardiomyopathy is a multifaceted heart disease characterized by structural and functional abnormalities of the atria and is closely associated with atrial fibrillation and its complications. Its etiology involves a number of factors, including genetic, infectious, immunologic, and metabolic factors. Recent research has highlighted the critical role of the gut microbiota in the pathogenesis of atrial cardiomyopathy, and this is consistent with the gut-heart axis having major implications for cardiac health. The aim of this work is to bridge the knowledge gap regarding the interactions between the gut microbiota and atrial cardiomyopathy, with a particular focus on elucidating the mechanisms by which gut dysbiosis may induce atrial remodeling and dysfunction. This article provides an overview of the role of the gut microbiota in the pathogenesis of atrial cardiomyopathy, including changes in the composition of the gut microbiota and the effects of its metabolites. We also discuss how diet and exercise affect atrial cardiomyopathy by influencing the gut microbiota, as well as possible future therapeutic approaches targeting the gut-heart axis. A healthy gut microbiota can prevent disease, but ecological dysbiosis can lead to a variety of symptoms, including the induction of heart disease. We focus on the pathophysiological aspects of atrial cardiomyopathy, the impact of gut microbiota dysbiosis on atrial structure and function, and therapeutic strategies exploring modulation of the microbiota for the treatment of atrial cardiomyopathy. Finally, we discuss the role of gut microbiota in the treatment of atrial cardiomyopathy, including fecal microbiota transplantation and oral probiotics or prebiotics. Our study highlights the importance of gut microbiota homeostasis for cardiovascular health and suggests that targeted interventions on the gut microbiota may pave the way for innovative preventive and therapeutic strategies targeting atrial cardiomyopathy.
Collapse
Affiliation(s)
- Tingting Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Beibei Song
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
8
|
Zhuang L, You Y, Zeng S, Yu Z, Wang H, Chen M, Wen W. Fecal microbiota transplantation in severe pneumonia: a case report on overcoming pan-drug resistant Klebsiella pneumoniae infection. Front Med (Lausanne) 2024; 11:1451751. [PMID: 39776845 PMCID: PMC11703846 DOI: 10.3389/fmed.2024.1451751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Objective To evaluate the therapeutic potential of fecal microbiota transplantation (FMT) in treating severe pneumonia patients with concurrent pan-drug resistant Klebsiella pneumoniae infection. Methods A case report of a 95-year-old female patient with severe pneumonia, complicated by pan-resistant bacterial infections, is presented. The patient was diagnosed with severe pneumonia caused by COVID-19, along with co-infections of Staphylococcus hominis, Enterococcus faecalis, Candida tropicalis, Pseudomonas aeruginosa, ESBL-producing pan-drug resistant Klebsiella pneumoniae and pan-resistant Acinetobacter baumannii. During hospitalization, the patient underwent comprehensive treatments, including antimicrobials, mechanical ventilation, and fiberoptic bronchoscopic alveolar lavage. FMT was administered following the failure of conventional treatments to resolve recurrent diarrhea, increased sputum production, and persistent pan-drug resistant Klebsiella pneumoniae infection. Results Post-FMT, the patient exhibited significant clinical improvement, including reduced sputum production, cessation of diarrhea, and the normalization of respiratory symptoms. Gut microbiota analysis revealed that FMT enhanced the abundance of beneficial microbiota and suppressed Klebsiella pneumoniae, and the patient was successfully discharged after 133 days of hospitalization. Conclusion FMT emerged as a pivotal intervention in the management of this severe pneumonia case, suggesting its efficacy in restoring gut microbiota balance and aiding recovery from multi-drug-resistant infections. This case underscores the potential of FMT as a therapeutic option in severe pulmonary infections, especially in the context of antibiotic resistance in severe pneumonia patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Wen
- Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
9
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 PMCID: PMC11664868 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Reigadas E, Del Campo R, Serrano S, Ruiz-Galiana J, Bouza E. Human intestinal microbiome: Role in health and disease. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:438-453. [PMID: 38978509 PMCID: PMC11578434 DOI: 10.37201/req/056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The study of the microbiota and the microbiome, and specifically the intestinal one, has determined great interest due to the possible association of their alterations with numerous diseases. These include entities as diverse as Crohn's disease, autism, diabetes, cancer or situations as prevalent today as obesity. In view of this situation, different recommendations have been performed regarding the use of probiotics, prebiotics, and postbiotics as modulators of the microbiota and the microbiome, seeking both preventive and therapeutic effects, and faecal material transfer (FMT) is proposed as an alternative. The latter has emerged as the only proven beneficial intervention on the intestinal microbiome, specifically in the treatment of recurrent colitis associated with Clostridioides difficile (R-CDI). In the rest of the entities, the lowering of laboratory costs has favored the study of the microbiome, which is resolved by delivering reports with catalogs of microorganisms, metabolites or supposed biomarkers without consensus on their composition associated with healthy or diseased microbiota and the disease. There is still insufficient evidence in any disease for interventions on the microbiome beyond FMT and R-CDI. Multi- and multi-disciplinary work with extensive research and the application of artificial intelligence in this field may shed light on the questions raised currently. Ethical issues must also be resolved in light of possible interventions within the umbrella of personalized medicine.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria. CIBER de Enfermedades Infecciosas (CIBERINFEC). Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang K, Liu X, Huang H, Suo M, Wang J, Liu X, Zhang J, Chen X, Li Z. A new target for treating intervertebral disk degeneration: gut microbes. Front Microbiol 2024; 15:1452774. [PMID: 39678913 PMCID: PMC11638241 DOI: 10.3389/fmicb.2024.1452774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disk degeneration (IDD) is a common clinical spinal disease and one of the main causes of low back pain (LBP). Generally speaking, IDD is considered a natural degenerative process with age. However, with the deepening of research, people have discovered that IDD is not only related to age, but also has many factors that can induce and accelerate its progression. In addition, the pathogenesis of IDD remains unclear, resulting in limited traditional treatment methods that cannot effectively prevent and treat IDD. Conservative treatment may lead to patients' dependence on drugs, and the pain relief effect is not obvious. Similarly, surgical treatment is highly invasive, with a longer recovery time and a higher recurrence rate. With the deepening of exploration, people have discovered that intestinal microorganisms are an important symbiotic microbial community in the human body and are closely related to the occurrence and development of various diseases. Changes in intestinal microorganisms and their metabolites may affect the body's inflammatory response, immune regulation, and metabolic processes, thereby affecting the health of the intervertebral disk. In this context, the gut microbiota has received considerable attention as a potential target for delaying or treating IDD. This article first introduces the impact of gut microbes on common distal organs, and then focuses on three potential mechanisms by which gut microbes and their metabolites influence IDD. Finally, we also summarized the methods of delaying or treating IDD by interfering with intestinal microorganisms and their metabolites. Further understanding of the potential mechanisms between intestinal microorganisms and IDD will help to formulate reasonable IDD treatment strategies to achieve ideal therapeutic effects.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China
| |
Collapse
|
12
|
Yan J, Yang L, Ren Q, Zhu C, Du H, Wang Z, Qi Y, Xian X, Chen D. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol 2024; 15:1471273. [PMID: 39669573 PMCID: PMC11634861 DOI: 10.3389/fimmu.2024.1471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have significantly improved cancer treatment, their effectiveness is limited by primary or acquired resistance in many patients. The gut microbiota, through its production of metabolites and regulation of immune cell functions, plays a vital role in maintaining immune balance and influencing the response to cancer immunotherapies. This review highlights evidence linking specific gut microbial characteristics to increased therapeutic efficacy in a variety of cancers, such as gastrointestinal cancers, melanoma, lung cancer, urinary system cancers, and reproductive system cancers, suggesting the gut microbiota's potential as a predictive biomarker for ICI responsiveness. It also explores the possibility of enhancing ICI effectiveness through fecal microbiota transplantation, probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications. Moreover, the review underscores the need for extensive randomized controlled trials to confirm the gut microbiota's predictive value and to establish guidelines for microbiota-targeted interventions in immunotherapy. In summary, the article suggests that a balanced gut microbiota is key to maximizing immunotherapy benefits and calls for further research to optimize microbiota modulation strategies for cancer treatment. It advocates for a deeper comprehension of the complex interactions between gut microbiota, host immunity, and cancer therapy, aiming for more personalized and effective treatment options.
Collapse
Affiliation(s)
- Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Yang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Haiyun Du
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Yaya Qi
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohong Xian
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Wang Z, Wu X, Wang Y, Wen Q, Cui B, Zhang F. Colonic transendoscopic enteral tubing is revolutionizing intestinal therapeutics, diagnosis, and microbiome research. Therap Adv Gastroenterol 2024; 17:17562848241301574. [PMID: 39582897 PMCID: PMC11585053 DOI: 10.1177/17562848241301574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
The intestine, as a crucial organ of the human body, has remained enigmatic despite the remarkable advancements in modern medical technology. Over the past decades, the invention of endoscopic technology has made the noninvasive intervention of the intestine a reality, expanding diagnostic and therapeutic options for diseases. However, due to the single-treatment feature of endoscopic procedures, continuous or repeated medication administration, sampling, and decompression drainage within the intestine have yet to be fulfilled. These limitations persisted until the invention of colonic transendoscopic enteral tubing (TET) in 2014, which realized repeated fecal microbiota transplantation, medication administration, and decompression drainage for the treatment of colon perforation and intestinal obstruction, as well as in situ dynamic sampling. These breakthroughs have not gone unnoticed, gaining global attention and recommendations from guidelines and consensuses. TET has emerged as a novel microbial research tool that offers new paradigms for human microbiome research. This review aims to update the research progress based on TET.
Collapse
Affiliation(s)
- Zheyu Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Xia Wu
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Yaxue Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Jiangsu Engineering Research Center for Advanced Microbiota Medicine, Key Lab of Holistic Integrative Enterology, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| |
Collapse
|
14
|
Brusnic O, Onisor D, Boicean A, Hasegan A, Ichim C, Guzun A, Chicea R, Todor SB, Vintila BI, Anderco P, Porr C, Dura H, Fleaca SR, Cristian AN. Fecal Microbiota Transplantation: Insights into Colon Carcinogenesis and Immune Regulation. J Clin Med 2024; 13:6578. [PMID: 39518717 PMCID: PMC11547077 DOI: 10.3390/jcm13216578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) constitutes a significant global health challenge, with recent studies underscoring the pivotal role of the gut microbiome in its pathogenesis and progression. Fecal microbiota transplantation (FMT) has emerged as a compelling therapeutic approach, offering the potential to modulate microbial composition and optimize treatment outcomes. Research suggests that specific bacterial strains are closely linked to CRC, influencing both its clinical management and therapeutic interventions. Moreover, the gut microbiome's impact on immunotherapy responsiveness heralds new avenues for personalized medicine. Despite the promise of FMT, safety concerns, particularly in immunocompromised individuals, remain a critical issue. Clinical outcomes vary widely, influenced by genetic predispositions and the specific transplantation methodologies employed. Additionally, rigorous donor selection and screening protocols are paramount to minimize risks and maximize therapeutic efficacy. The current body of literature advocates for the establishment of standardized protocols and further clinical trials to substantiate FMT's role in CRC management. As our understanding of the microbiome deepens, FMT is poised to become a cornerstone in CRC treatment, underscoring the imperative for continued research and clinical validation.
Collapse
Affiliation(s)
- Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (O.B.); (D.O.)
| | - Danusia Onisor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (O.B.); (D.O.)
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Andreea Guzun
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Radu Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Bogdan Ioan Vintila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Corina Porr
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Adrian Nicolae Cristian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| |
Collapse
|
15
|
Chen W, Zou H, Xu H, Cao R, Zhang H, Zhang Y, Zhao J. The potential influence and intervention measures of gut microbiota on sperm: it is time to focus on testis-gut microbiota axis. Front Microbiol 2024; 15:1478082. [PMID: 39439945 PMCID: PMC11493703 DOI: 10.3389/fmicb.2024.1478082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
As the global male infertility rate continues to rise, there is an urgent imperative to investigate the underlying causes of sustained deterioration in sperm quality. The gut microbiota emerges as a pivotal factor in host health regulation, with mounting evidence highlighting its dual influence on semen. This review underscores the interplay between the Testis-Gut microbiota axis and its consequential effects on sperm. Potential mechanisms driving the dual impact of gut microbiota on sperm encompass immune modulation, inflammatory responses mediated by endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, epigenetic modifications, regulatory sex hormone signaling. Interventions such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues to modulate gut microbiota and enhance Spermatogenesis and motility. Future investigations should delve into elucidating the mechanisms and foundational principles governing the interaction between gut microbiota and sperm within the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut microbiota Axis may yield novel therapeutic strategies to enhance male fertility and combat the global decline in sperm quality.
Collapse
Affiliation(s)
- Wenkang Chen
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Xu
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Rui Cao
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hekun Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yapeng Zhang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayou Zhao
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Xie Y, Li X, Xu D, He D, Wang J, Bi J, Liu J, Fu S. Hordenine Alleviates Lipopolysaccharide-Induced Mastitis by Suppressing Inflammation and Oxidative Stress, Modulating Intestinal Microbiota, and Preserving the Blood-Milk Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21503-21519. [PMID: 39289834 DOI: 10.1021/acs.jafc.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Mastitis is a common mammalian disease occurring in the mammary tissue and poses a major threat to agriculture and the dairy industry. Hordenine (HOR), a phenylethylamine alkaloid naturally extracted from malt, has various pharmacological effects, but its role in mastitis is unknown. The aim of this study was to investigate the role of HOR and its underlying mechanism in a lipopolysaccharide (LPS)-induced inflammatory response model of mouse mammary epithelial cells (EpH4-Ev) and mouse mastitis model. The experimental results showed that HOR attenuated LPS-induced mammary tissue damage (from 3.75 ± 0.25 to 1.75 ± 0.25) and restored the integrity of the blood-milk barrier. Further mechanistic studies revealed that HOR inhibited LPS-induced overactivation of the TLR4-MAPK/NF-κB signaling pathway and activated the AMPK/Nrf2/HO-1 signaling pathway. Additionally, HOR altered the composition of the intestinal microbiota in mice, ultimately reducing the extent of inflammatory injury (from 3.33 ± 0.33 to 0.67 ± 0.33) and upregulating the expression of tight junction proteins (ZO-1, occludin, and claudin-3). The findings of this study provide a theoretical basis in the rational use of HOR for the prevention and treatment of mastitis and the maintenance of mammalian mammary gland health.
Collapse
Affiliation(s)
- Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
18
|
Caldarelli M, Rio P, Marrone A, Giambra V, Gasbarrini A, Gambassi G, Cianci R. Inflammaging: The Next Challenge-Exploring the Role of Gut Microbiota, Environmental Factors, and Sex Differences. Biomedicines 2024; 12:1716. [PMID: 39200181 PMCID: PMC11351301 DOI: 10.3390/biomedicines12081716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The term 'inflammaging' has been coined to describe the chronic state of inflammation derived from ongoing cycles of tissue damage and the subsequent immune responses. This inflammatory status contributes to the decline of organs and physiological functions, accelerates the aging process, and increases the risk of age-related illnesses and death. During aging, the gut microbiota (GM) undergoes significant changes, including a decreased diversity of species, a decline in beneficial bacteria, and a rise in proinflammatory ones, resulting in persistent low-grade inflammation. Moreover, environmental factors, such as diet and medications, contribute to age-related changes in GM and immune function, preventing or promoting inflammaging. This narrative review aims to clarify the underlying mechanisms of inflammaging and to specifically investigate the influence of GM and several environmental factors on these mechanisms, while also exploring potential differences related to sex. Moreover, lifestyle and pharmacological interventions will be suggested to promote healthy aging.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
19
|
Miao Y, Zheng M, Li Q, Xiong L, Feng J, Liu X, Fan G, Chaturvedi R, Zhang F, Yin N. Comparison of propofol-esketamine versus propofol-sufentanil for deep sedation and analgesia in children with autism: A randomized double-blind clinical trial. Autism Res 2024; 17:1356-1364. [PMID: 38850067 DOI: 10.1002/aur.3172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024]
Abstract
Propofol sedation, routinely used for endoscopic procedures, is safe and acceptable for children. Adjuvants, such as esketamine or sufentanil, are commonly added to improve the efficacy and safety of propofol sedation. This study aimed to compare the clinical efficacy and safety of propofol-esketamine (PE) versus propofol-sufentanil (PS) for deep sedation and analgesia in children with autism undergoing colonoscopy procedure. One hundred and twenty-four children with autism undergoing colonoscopy procedure were included in the study. Patients were randomly assigned to receive one of the two adjuvants: esketamine (0.3 mg/kg) or sufentanil (0.2 μg/kg), subsequently administered propofol 2.0 mg/kg to induce anesthesia. Additional doses of propofol (0.5-1.0 mg/kg) were administered as needed to ensure patient tolerance for the remaining duration of the procedure. Movement during the procedure, hemodynamic variables, the total dose of propofol, recovery time, and adverse events were recorded. The PE group exhibited a significantly lower incidence of severe movement during the procedure compared with the PS group (14.52% vs. 32.26%, p = 0.020). The PE group showed significantly lower incidence of respiratory depression, hypotension, and severe injection pain of propofol than the PS group during the procedure (all p < 0.05). The mean arterial pressure (MAP) decreased significantly after anesthesia induction in the PS group and remained lower than baseline (all p < 0.05). Compared with the combination of low-dose sufentanil (0.2 μg/mg) with propofol, the low-dose esketamine (0.3 mg/kg) combined with propofol provided more stable hemodynamics, higher quality of sedation, and fewer adverse events in children with autism undergoing colonoscopy procedure.
Collapse
Affiliation(s)
- Yanxiang Miao
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Minghui Zheng
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lixia Xiong
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Division of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jinxiang Feng
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Liu
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guoxiang Fan
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Rupesh Chaturvedi
- Department of Clinical Medicine, School of International Education, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Division of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ning Yin
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Wang Y, Gao C, Niu W, Han S, Qin M, Tian Z, Zuo W, Xia X, Wang H, Li Y. Polystyrene microplastics promote intestinal colonization of Aeromonas veronii through inducing intestinal microbiota dysbiosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133976. [PMID: 38461664 DOI: 10.1016/j.jhazmat.2024.133976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The premise that pathogen colonized microplastics (MPs) can promote the spread of pathogens has been widely recognized, however, their role in the colonization of pathogens in a host intestine has not been fully elucidated. Here, we investigated the effect of polystyrene MPs (PS-MPs) on the colonization levels of Aeromonas veronii, a typical aquatic pathogen, in the loach (Misgurnus anguillicaudatus) intestine. Multiple types of MPs were observed to promote the intestinal colonization of A. veronii, among which PS-MPs exhibited the most significant stimulating effect (67.18% increase in A. veronii colonization). PS-MPs inflicted serious damage to the intestinal tracts of loaches and induced intestinal microbiota dysbiosis. The abundance of certain intestinal bacteria with resistance against A. veronii colonization decreased, with Lactococcus sp. showing the strongest colonization resistance (73.64% decline in A. veronii colonization). Fecal microbiota transplantation was performed, which revealed that PS-MPs induced intestinal microbiota dysbiosis was responsible for the increased colonization of A. veronii in the intestine. It was determined that PS-MPs reshaped the intestinal microbiota community to attenuate the colonization resistance against A. veronii colonization, resulting in an elevated intestinal colonization levels of A. veronii.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Zhuo Tian
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wenjing Zuo
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China; Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China.
| |
Collapse
|
21
|
Wang W, Fan J, Zhang C, Huang Y, Chen Y, Fu S, Wu J. Targeted modulation of gut and intra-tumor microbiota to improve the quality of immune checkpoint inhibitor responses. Microbiol Res 2024; 282:127668. [PMID: 38430889 DOI: 10.1016/j.micres.2024.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapies, such as those blocking the interaction of PD-1 with its ligands, can restore the immune-killing function of T cells. However, ICI therapy is clinically beneficial in only a small number of patients, and it is difficult to predict post-treatment outcomes, thereby limiting its widespread clinical use. Research suggests that gut microbiota can regulate the host immune system and affect cancer progression and treatment. Moreover, the effectiveness of immunotherapy is related to the composition of the patient's gut microbiota; different gut microbial strains can either activate or inhibit the immune response. However, the importance of the microbial composition within the tumor has not been explored until recently. This study describes recent advances in the crosstalk between microbes in tumors and gut microbiota, which can modulate the tumor microbiome by directly translocating into the tumor and altering the tumor microenvironment. This study focused on the potential manipulation of the tumor and gut microbiota using fecal microbiota transplantation (FMT), probiotics, antimicrobials, prebiotics, and postbiotics to enrich immune-boosting bacteria while decreasing unfavorable bacteria to proactively improve the efficacy of ICI treatments. In addition, the use of genetic technologies and nanomaterials to modify microorganisms can largely optimize tumor immunotherapy and advance personalized and precise cancer treatment.
Collapse
Affiliation(s)
- WeiZhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - JunYing Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chi Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
22
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
23
|
Feng ZP, Wang XY, Xin HY, Huang SL, Huang HY, Xin Q, Zhang XH, Xin HW. Gut microbiota plays a significant role in gout. J Med Microbiol 2024; 73. [PMID: 38629677 DOI: 10.1099/jmm.0.001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
With the development of social economy, the incidence of gout is increasing, which is closely related to people's increasingly rich diet. Eating a diet high in purine, fat, sugar and low-fibre for a long time further aggravates gout by affecting uric acid metabolism. The renal metabolism mechanism of uric acid has been thoroughly studied. To find a new treatment method for gout, increasing studies have recently been conducted on the mechanism of intestinal excretion, metabolism and absorption of uric acid. The most important research is the relationship between intestinal microbiota and the risk of gout. Gut microbiota represent bacteria that reside in a host's gastrointestinal tract. The composition of the gut microbiota is associated with protection against pathogen colonization and disease occurrence. This review focuses on how gut microbiota affects gout through uric acid and discusses the types of bacteria that may be involved in the occurrence and progression of gout. We also describe potential therapy for gout by restoring gut microbiota homeostasis and reducing uric acid levels. We hold the perspective that changing intestinal microbiota may become a vital method for effectively preventing or treating gout.
Collapse
Affiliation(s)
- Zhi-Peng Feng
- Key Laboratory of Research on Human Genetic Diseases Research at Universities of Inner Mongolia Autonomous Region, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolian Autonomous Region 024000, PR China
- Department of Gastroenterology, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, PR China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, PR China
| | - Xiao-Yan Wang
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong 524400, PR China
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong 524400, PR China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong 524400, PR China
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong 524400, PR China
| | - Shao-Li Huang
- Clinical Laboratory, People's Hospital of Lianjiang, Guangdong 524400, PR China
| | - Hong-Yu Huang
- Department of Surgery, People's Hospital of Lianjiang, Guangdong 524400, PR China
| | - Qiang Xin
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, PR China
- Department of Internal Medicine, Ulanqab General Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hugeji Street South, Industry and Agriculture Street West, Jining New District, Ulanqab, Inner Mongolia 012000, PR China
| | - Xi-He Zhang
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong 524400, PR China
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong 524400, PR China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, PR China
| |
Collapse
|
24
|
Jiang L, Liu X, Su Y, Chen Y, Yang S, Ke X, Yao K, Guo Z. A metabolomics-driven model for early remission prediction following vedolizumab treatment in patients with moderate-to-severe active ulcerative colitis. Int Immunopharmacol 2024; 128:111527. [PMID: 38215655 DOI: 10.1016/j.intimp.2024.111527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
To predict early remission following anti-integrin therapy (vedolizumab [VDZ]) in patients with moderate-to-severe active ulcerative colitis (UC) using non-invasive biomarkers. The clinical data of a cohort of 33 patients with moderate-to-severe active UC admitted to the Department of Gastroenterology at Suzhou Municipal Hospital between January 2021 and December 2022 were collected. Of these, 9 patients declined VDZ treatment, and 21 received VDZ at doses of 300 mg weeks 0, 2, and 6, each administered within a 30-minute infusion period. The treatment regimen aimed to induce remission of clinical symptoms; hence, the same dose was administered every 8 weeks. At weeks 0 and 14, serum C-reactive protein (CRP) and erythrocyte sedimentation rate were measured using a modified Mayo score. In addition to clinical assessment, stool samples at baseline and weeks 14 were collected and evaluated using 16SrRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS). Clinical remission was determined based on the clinical symptoms and partial Mayo scores. In patients who received VDZ, the strains of bifidobacterium longum (P = 0.022) and bacteroides sartorii (P = 0.039) significantly increased after treatment than before treatment. GC-MS analysis showed that taurine (P = 0.047) and putrescine (P = 0.035) significantly decreased after treatment. Furthermore, while acetamide exhibited a notable increase (P = 0.001), arachidic acid (P < 0.001) and behenic acid (P = 0.005) demonstrated statistically significant elevations. The combined prediction model of acetamide, taurine, and putrescine demonstrated a high predictive value of early remission in patients with moderate-to-severe active UC following VDZ treatment (area under the curve = 0.911, P = 0.014).
Collapse
Affiliation(s)
- Leilei Jiang
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No. 616 Bianyangsan Road, Suzhou 234000, Anhui, China
| | - Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yue Su
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No. 616 Bianyangsan Road, Suzhou 234000, Anhui, China
| | - Yujie Chen
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No. 616 Bianyangsan Road, Suzhou 234000, Anhui, China
| | - Shaozhi Yang
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No. 616 Bianyangsan Road, Suzhou 234000, Anhui, China
| | - Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, Anhui 233004, China.
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China.
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No. 616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
25
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
26
|
Lin J, Xiong J, Jin Y, Wang H, Wu L, Chen L, Zhang F, Ji G, Cui B. Fecal microbiota transplantation through transendoscopic enteral tubing for inflammatory bowel disease: High acceptance and high satisfaction. J Gastroenterol Hepatol 2024; 39:328-336. [PMID: 38016701 DOI: 10.1111/jgh.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIM Fecal microbiota transplantation (FMT) has been shown to positively affect the treatment of inflammatory bowel disease (IBD). However, the safety and efficacy of FMT may depend on the route of microbiota delivery. This study investigates the acceptance, satisfaction, and selection preference of a new delivery route, transendoscopic enteral tubing (TET), for treating IBD. METHODS A survey was conducted among patients with IBD from five medical centers across China. The objective was to assess their acceptance, subjective feelings, and major concerns regarding two types of TET: colonic TET and mid-gut TET. In addition, the survey also analyzed the factors affecting the selection of TET and TET types among these patients. RESULTS The final analysis included 351 questionnaires. Up to 76.6% of patients were willing to accept TET and preferred to choose colonic TET when they first learned about TET. Patients with longer disease duration, history of enema therapy, or enteral nutrition were more open to considering TET among IBD patients. After treatment, 95.6% of patients were satisfied with TET, including colonic TET (95.9%) and mid-gut TET (95.1%). Patients with a history of enema therapy and ulcerative colitis preferred colonic TET. In contrast, those with a history of enteral nutrition and Crohn's disease were willing to choose mid-gut TET. However, some patients hesitated to accept TET due to concerns about efficacy, safety, and cost. CONCLUSIONS TET was highly accepted and satisfied patients with IBD. Disease type and combination therapy influenced the choice of colonic or mid-gut TET.
Collapse
Affiliation(s)
- Jue Lin
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinlei Xiong
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Jin
- Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Honggang Wang
- Medical Center for Digestive Diseases, Huaian First People's Hospital, Huaian, China
| | - Lihao Wu
- Department of Gastroenterology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Linlin Chen
- Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Zhang S, Huang Y, Lu G, Zhang Z, Wang Y, Liu Y, Wang W, Li Q, Li P, Wen Q, Cui B, Zhang F. Comparison between washed microbiota transplantation and infliximab: Medical cost during long-term management in patients with inflammatory bowel disease. J Chin Med Assoc 2024; 87:109-118. [PMID: 37988085 DOI: 10.1097/jcma.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Both infliximab (IFX) and fecal microbiota transplantation (FMT) have shown the efficacy for inflammatory bowel disease (IBD). However, there has no head-to-head study on the cost-value of the such treatments on IBD. This study aimed to compare the medical costs using IFX and the new method of FMT (washed microbiota transplantation [WMT]) in the long-term management for IBD under the current health economic condition in China. METHODS Patients with IBD who underwent initial WMT via upper gastrointestinal endoscopy, mid-gut tube, or colonic transendoscopic enteral tubing at a university hospital between April 2013 and August 2021 and achieved the long-term sustainment with WMT or WMT combined with mesalazine until August 2022 were recruited in the real-world. The costs and hospitalizations were analyzed among two therapies mentioned above and IFX standard therapy. The charge of WMT was stable in the long term at our center, and the charge of IFX came from virtual statistics publicized by China Healthcare Security. RESULTS Sixty eligible patients with IBD were included in the study. The long-term costs of patients using WMT monotherapy annually or per hospitalization were lower than those on WMT combined with mesalazine, respectively ( p < 0.001, respectively). The cumulative costs of IFX at the time of 0.52 and 0.85 years exceeded that of the above WMT, respectively ( p < 0.001, respectively). Besides, patients on WMT monotherapy paid 51.1 k CNY annually in the nonsustain phase but cut down the costs by 7.2 k CNY and duration of hospitalization by 5.1 days per hospitalization when reaching the goal of sustainment. CONCLUSION This study demonstrated that WMT could dramatically reduce the cost and duration of hospitalizations in the long-term sustainment in the current Chinese IBD cohort. Compared with IFX, WMT could be a good way for the patients with IBD achieving long-term sustainment and saving medical costs.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihao Huang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaochen Lu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zulun Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Liu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Li
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pan Li
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- National Clinical Research Center for Digestive Diseases, Xi'an, China
| |
Collapse
|
28
|
Zhong HJ, Zhuang YP, Xie X, Song JY, Wang SQ, Wu L, Zhan YQ, Wu Q, He XX. Washed microbiota transplantation promotes homing of group 3 innate lymphoid cells to the liver via the CXCL16/CXCR6 axis: a potential treatment for metabolic-associated fatty liver disease. Gut Microbes 2024; 16:2372881. [PMID: 38940400 PMCID: PMC11216104 DOI: 10.1080/19490976.2024.2372881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Despite the observed decrease in liver fat associated with metabolic-associated fatty liver disease (MAFLD) in mice following fecal microbiota transplantation, the clinical effects and underlying mechanisms of washed microbiota transplantation (WMT), a refined method of fecal microbiota transplantation, for the treatment of MAFLD remain unclear. In this study, both patients and mice with MAFLD exhibit an altered gut microbiota composition. WMT increases the levels of beneficial bacteria, decreases the abundance of pathogenic bacteria, and reduces hepatic steatosis in MAFLD-affected patients and mice. Downregulation of the liver-homing chemokine receptor CXCR6 on ILC3s results in an atypical distribution of ILC3s in patients and mice with MAFLD, characterized by a significant reduction in ILC3s in the liver and an increase in ILC3s outside the liver. Moreover, disease severity is negatively correlated with the proportion of hepatic ILC3s. These hepatic ILC3s demonstrate a mitigating effect on hepatic steatosis through the release of IL-22. Mechanistically, WMT upregulates CXCR6 expression on ILC3s, thereby facilitating their migration to the liver of MAFLD mice via the CXCL16/CXCR6 axis, ultimately contributing to the amelioration of MAFLD. Overall, these findings highlight that WMT and targeting of liver-homing ILC3s could be promising strategies for the treatment of MAFLD.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jia-Yin Song
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Si-Qi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yong-Qiang Zhan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
29
|
Blonska A, Chojnacki M, Macieja A, Blasiak J, Majsterek I, Chojnacki J, Poplawski T. Tryptophan Metabolism in Postmenopausal Women with Functional Constipation. Int J Mol Sci 2023; 25:273. [PMID: 38203444 PMCID: PMC10778582 DOI: 10.3390/ijms25010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Constipation belongs to conditions commonly reported by postmenopausal women, but the mechanism behind this association is not fully known. The aim of the present study was to determine the relationship between some metabolites of tryptophan (TRP) and the occurrence and severity of abdominal symptoms (Rome IV) in postmenopausal women with functional constipation (FC, n = 40) as compared with age-adjusted postmenopausal women without FC. All women controlled their TRP intake in their daily diet. Urinary levels of TRP and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), and 3-indoxyl sulfate (indican, 3-IS), were determined by liquid chromatography/tandem mass spectrometry. Dysbiosis was assessed by a hydrogen-methane breath test. Women with FC consumed less TRP and had a lower urinary level of 5-HIAA, but higher levels of KYN and 3-IS compared with controls. The severity of symptoms showed a negative correlation with the 5-HIAA level, and a positive correlation with the 3-IS level. In conclusion, changes in TRP metabolism may contribute to FC in postmenopausal women, and dysbiosis may underlie this contribution.
Collapse
Affiliation(s)
- Aleksandra Blonska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (A.B.); (M.C.)
| | - Marcin Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (A.B.); (M.C.)
| | - Anna Macieja
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (A.B.); (M.C.)
| | - Tomasz Poplawski
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
30
|
Chen Y, Wang X, Ye Y, Ren Q. Gut microbiota in cancer: insights on microbial metabolites and therapeutic strategies. Med Oncol 2023; 41:25. [PMID: 38129370 DOI: 10.1007/s12032-023-02249-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
In recent years, the role of gut microbiota in cancer treatment has attracted substantial attention. It is now well established that gut microbiota and its metabolites significantly contribute to the incidence, treatment, and prognosis of various cancers. This review provides a comprehensive review on the pivotal role of gut microbiota and their metabolites in cancer initiation and progression. Furthermore, it evaluates the impact of gut microbiota on the efficacy and associated side effects of anticancer therapies, including radiotherapy, chemotherapy, and immunotherapy, thus emphasizing the clinical importance of gut microbiota reconstitution in cancer treatment.
Collapse
Affiliation(s)
- Yalan Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xibin Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yuwei Ye
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Ren
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
31
|
Zhong HJ, Chen WR, Lu XJ, Hu DX, Lin DJ, Liu T, Wu L, Wu LH, He XX. Washed microbiota transplantation improves haemoglobin levels in anaemia of chronic disease. Eur J Clin Invest 2023; 53:e14072. [PMID: 37507843 DOI: 10.1111/eci.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Anaemia of chronic disease (ACD) is the second most common type of anaemia and lacks an effective treatment. Patients with anaemia are reported to have altered gut microbial profiles, which may affect erythropoiesis. Here, we investigated the gut microbial features of patients with ACD and determined whether regulating gut microbiota using washed microbiota transplantation (WMT) was effective in treating ACD. METHODS We compared the gut microbiota profile of patients with ACD and healthy controls, evaluated the efficacy of WMT on haematological parameters in the patients, and analysed the alterations in gut microbiota after WMT treatment. RESULTS Patients with ACD had lower gut microbial richness, and differences in microbial composition and function, relative to healthy controls. Additionally, the relative abundances of two butyrate-producing genera Lachnospiraceae NK4A136 group and Butyricicoccus, were positively correlated with the haemoglobin (HGB) level and lower in patients with ACD than controls. WMT significantly increased HGB levels in patients with ACD. After the first, second and third WMT rounds, normal HGB levels were restored in 27.02%, 27.78% and 36.37% (all p < .05) of patients with ACD, respectively. Moreover, WMT significantly increased the abundance of butyrate-producing genera and downregulated gut microbial functions that were upregulated in patients with ACD. CONCLUSIONS Patients with ACD exhibited differences in gut microbial composition and function relative to healthy controls. WMT is an effective treatment for ACD that reshapes gut microbial composition, restores butyrate-producing bacteria and regulates the functions of gut microbiota.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Ran Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong-Xia Hu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - De-Jiang Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
32
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
33
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
34
|
Morimoto T, Kobayashi T, Kakiuchi T, Esaki M, Tsukamoto M, Yoshihara T, Hirata H, Yabuki S, Mawatari M. Gut-spine axis: a possible correlation between gut microbiota and spinal degenerative diseases. Front Microbiol 2023; 14:1290858. [PMID: 37965563 PMCID: PMC10641865 DOI: 10.3389/fmicb.2023.1290858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
As society ages, the number of patients with spinal degenerative diseases (SDD) is increasing, posing a major socioeconomic problem for patients and their families. SDD refers to a generic term for degenerative diseases of spinal structures, including osteoporosis (bone), facet osteoarthritis (joint), intervertebral disk degeneration (disk), lumbar spinal canal stenosis (yellow ligament), and spinal sarcopenia (muscle). We propose the term "gut-spine axis" for the first time, given the influence of gut microbiota (GM) on the metabolic, immune, and endocrine environment in hosts through various potential mechanisms. A close cross-talk is noted between the aforementioned spinal components and degenerative diseases. This review outlines the nature and role of GM, highlighting GM abnormalities associated with the degeneration of spinal components. It also summarizes the evidence linking GM to various SDD. The gut-spine axis perspective can provide novel insights into the pathogenesis and treatment of SDD.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohito Yoshihara
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shoji Yabuki
- Fukushima Medical University School of Health Sciences, Fukushima, Japan
| | - Masaaki Mawatari
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
35
|
Zhang F, Wang W, Nie Y, Li J, He X. From microbial technology to microbiota medicine as a clinical discipline: Sustainable development goal. Microb Biotechnol 2023; 16:1705-1708. [PMID: 37452703 PMCID: PMC10443319 DOI: 10.1111/1751-7915.14317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive DiseasesXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingxiang He
- Department of GastroenterologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
36
|
Kriger-Sharabi O, Malnick SDH, Fisher D. Manipulation of the intestinal microbiome-a slow journey to primetime. World J Clin Cases 2023; 11:4975-4988. [PMID: 37583860 PMCID: PMC10424025 DOI: 10.12998/wjcc.v11.i21.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
The gut microbiota has important functions in the regulation of normal body functions. Alterations of the microbiota are being increasingly linked to various disease states. The microbiome has been manipulated via the administration of stool from animals or humans, for more than 1000 years. Currently, fecal microbiota transplantation can be performed via endoscopic administration of fecal matter to the duodenum or colon or via capsules of lyophilized stools. More recently fecal microbial transplantation has been shown to be very effective for recurrent Clostridoides difficile infection (CDI). In addition there is some evidence of efficacy in the metabolic syndrome and its hepatic manifestation, metabolic associated fatty liver disease (MAFLD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). We review the current literature regarding the microbiome and the pathogenesis and treatment of CDI, MAFLD, IBS and IBD.
Collapse
Affiliation(s)
- Ofra Kriger-Sharabi
- Institute of Gastroenterology, Assuta Medical Center, Ashdod 7747629, Israel
| | - Stephen D H Malnick
- Department of Internal Medicine, Kaplan Medical Center, Rehovot 76100, Israel
| | - David Fisher
- Department of Endocrinology, Soroka Medical Center, Beer Sheva POB 151, Israel
| |
Collapse
|
37
|
Liu Y, Ji X, Huang Y, Li Q, Ding X, Wang Y, Zhang S, Wen Q, Cui B, Lu X, Zhang F. Older patients benefit more from sequential courses of washed microbiota transplantation than younger population with ulcerative colitis. Scand J Gastroenterol 2023; 58:890-899. [PMID: 36864569 DOI: 10.1080/00365521.2023.2185476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES The short-term efficacy of fecal microbiota transplantation (FMT) for ulcerative colitis (UC) has increasingly been evaluated. However, few studies have examined the long-term efficacy and its predictors. This study aimed to assess the clinical factors affecting the long-term efficacy of FMT for patients with UC. METHODS This is a retrospective analysis of a prospective trial (NCT01790061) for patients with UC undergoing washed microbiota transplantation (WMT), which is the improved methodology of FMT. The long-term clinical efficacy of WMT and the factors affecting efficacy were analyzed. RESULTS A total of 259 patients were included for analysis. Of 70.7% (183/259) of patients achieved a clinical response at 1 month after WMT and 29.7% (77/259) achieved steroid-free clinical remission 6 months after WMT. Total 44 patients maintained a clinical response for ≥24 months, and 33 (17.1%, 33/193) achieved steroid-free clinical remission for ≥24 months with WMT monotherapy. Patients with age at UC onset of ≥60 years, mild disease severity and undergoing ≥2 courses of WMT during the response within 6 months were more likely to achieve steroid-free clinical remission 6 months after WMT. Besides, independent factors associated with the long-term response of WMT for UC were age at onset of ≥60 years and ≥2 courses of WMT during the response. CONCLUSIONS This study indicated WMT could induce short-term steroid-free clinical remission and maintain long-term response in UC, especially for older patients and patients undergoing sequential courses.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
- Department of Geriatrics, Sir Run Run Hospital at Nanjing Medical University, Nanjing, China
| | - Xinghui Ji
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Yihao Huang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Qianqian Li
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Xiao Ding
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
| | - Yun Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Sheng Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital at Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Boicean A, Bratu D, Bacila C, Tanasescu C, Fleacă RS, Mohor CI, Comaniciu A, Băluță T, Roman MD, Chicea R, Cristian AN, Hasegan A, Birsan S, Dura H, Mohor CI. Therapeutic Perspectives for Microbiota Transplantation in Digestive Diseases and Neoplasia-A Literature Review. Pathogens 2023; 12:766. [PMID: 37375456 PMCID: PMC10302701 DOI: 10.3390/pathogens12060766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In a mutually beneficial connection with its host, the gut microbiota affects the host's nutrition, immunity, and metabolism. An increasing number of studies have shown links between certain types of disease and gut dysbiosis or specific microorganisms. Fecal microbiota transplantation (FMT) is strongly advised for the treatment of recurrent or resistant Clostridium difficile infection (CDI) due to its outstanding clinical effectiveness against CDI. The therapeutic potential of FMT for other disorders, particularly inflammatory bowel diseases and malignancies, is currently gaining more and more attention. We summarized the most recent preclinical and clinical evidence to show the promise of FMT in the management of cancer as well as complications related to cancer treatment after reviewing the most recent research on the gut microbiota and its relationship to cancer.
Collapse
Affiliation(s)
- Adrian Boicean
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Dan Bratu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ciprian Bacila
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Ciprian Tanasescu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Sorin Fleacă
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Calin Ilie Mohor
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Andra Comaniciu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Teodora Băluță
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
| | - Mihai Dan Roman
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Chicea
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Nicolae Cristian
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Hasegan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Sabrina Birsan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Horațiu Dura
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cosmin Ioan Mohor
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (A.B.); (C.B.); (C.T.); (R.S.F.); (C.I.M.); (A.C.); (T.B.); (M.D.R.); (R.C.); (A.N.C.); (A.H.); (S.B.); (H.D.); (C.I.M.)
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
40
|
Freguia CF, Pascual DW, Fanger GR. Sjögren's Syndrome Treatments in the Microbiome Era. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230004. [PMID: 37323129 PMCID: PMC10270702 DOI: 10.20900/agmr20230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory cell infiltration of the salivary and lacrimal glands, resulting in acinar epithelial cell atrophy, cell death, and loss of exocrine function. At least half of SS patients develop extraglandular inflammatory disease and have a wide range of systemic clinical manifestations that can affect any organ system, including connective tissues. As many as 3.1 million people in the U.S. suffer from SS, a disease that causes severe impairment. Women are nine times more likely than men to be affected by this condition. Unfortunately, there is currently no effective treatment for SS, and the available options only provide partial relief. Treatment involves using replacement therapies such as artificial saliva and eye lubricants, or immunosuppressive agents that have limited efficacy. The medical community recognizes that there is a significant need for more effective treatments for SS. Increasing evidence demonstrates the links between the dysfunction of the human microbial community and the onset and development of many human diseases, signifying the potential use of microorganisms as an alternative strategy to conquer these issues. The role of the microbiome in controlling immune function of the human host in the context of autoimmune diseases like SS is now becoming better understood and may help to enable new drug development strategies. Natural probiotics and synthetic biology applications hold promise for novel treatment approaches to solve the encryption of many complex and multifactorial immune disorders, like SS.
Collapse
Affiliation(s)
| | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - Gary R. Fanger
- Rise Therapeutics, 1405 Research Blvd., Rockville, MD 20850, USA
| |
Collapse
|
41
|
Micic D, Polovina S, Micic D, Macut D. OBESITY AND GUT-BRAIN AXIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:234-240. [PMID: 37908875 PMCID: PMC10614596 DOI: 10.4183/aeb.2023.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Epidemic of obesity is ongoing and did not slow down. Causes of obesity are numerous and very complex. Among them, the concept of bidirectional signaling within the brain-gut-microbiome axis was recently proposed as possible pathophysiological mechanism and become a hot topic in the explanations for the control of food intake. Discoveries of new anti-obesity drugs that are analogs for the receptors for some hormones derived from gastrointestinal tract contribute to the investigations in this area. The human gut microbiota plays a fundamental role in human health and disease and it is considered that it represent an endocrine organ that participate in energy homeostasis and host immunity. Role of gut microbiome has been investigated in metabolic diseases such as obesity, type 2 diabetes and non-alcoholic fatty liver disease. Gut microbiome participate in regulation of various mechanisms inside the gastrointestinal tract due to its production of different bacterial metabolites. In our manuscript we present current knowledge about microbiota in the gut; the relation between gut microbiota and brain; neuroendocrine system and gut-brain axis; immune system and gut-brain axis; endocrine system and gut-brain axis; the role of gut microbiota in obesity development and possible use of gut microbiota for the treatment of obesity.
Collapse
Affiliation(s)
- Dr. Micic
- Serbian Academy of Sciences and Arts - Department of Medical Sciences, Belgrade
| | - S. Polovina
- University Business Academy, Faculty of Pharmacy, Novi Sad
- University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Du. Micic
- University of Belgrade, Faculty of Medicine - University Clinical Centre of Serbia, Clinic for Emergency Surgery, Emergency Centre
| | - D. Macut
- University of Belgrade, Faculty of Medicine - University Clinical Centre of Serbia, Clinic for Emergency Surgery, Emergency Centre
| |
Collapse
|
42
|
Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023; 15:760. [PMID: 36771465 PMCID: PMC9921714 DOI: 10.3390/nu15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are rare immune-related cholangiopathies with still poorly explained pathogenesis. Although triggers of chronic inflammation with subsequent fibrosis that affect cholangiocytes leading to obliteration of bile ducts and conversion to liver cirrhosis are unclear, both disorders are regarded to be multifactorial. Different factors can contribute to the development of hepatocellular injury in the course of progressive cholestasis, including (1) body accumulation of bile acids and their toxicity, (2) decreased food intake and nutrient absorption, (3) gut microbiota transformation, and (4) reorganized host metabolism. Growing evidence suggests that intestinal microbiome composition not only can be altered by liver dysfunction, but in turn, it actively impacts hepatic conditions. In this review, we highlight the role of key factors such as the gut-liver axis, intestinal barrier integrity, bile acid synthesis and circulation, and microbiome composition, which seem to be strongly related to PBC and PSC outcome. Emerging treatments and future therapeutic strategies are also presented.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | | | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
43
|
Liver-Gut-Interaction: Role of Microbiome Transplantation in the Future Treatment of Metabolic Disease. J Pers Med 2023; 13:jpm13020220. [PMID: 36836454 PMCID: PMC9958640 DOI: 10.3390/jpm13020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The association between shifts in gut microbiome composition and metabolic disorders is a well-recognized phenomenon. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Fecal microbiome transplantation (FMT) is a method to alter a person's microbiome composition. Although this method allowed for the establishment of proof of concept for using microbiome modulation to treat metabolic disorders, the method is not yet ready for broad application. It is a resource-intensive method that also carries some procedural risks and whose effects are not always reproducible. This review summarizes the current knowledge on FMT to treat metabolic diseases and gives an outlook on open research questions. Further research is undoubtedly required to find applications that are less resource-intensive, such as oral encapsulated formulations, and have strong and predictable results. Furthermore, a clear commitment from all stakeholders is necessary to move forward in the direction of developing live microbial agents, next-generation probiotics, and targeted dietary interventions.
Collapse
|
44
|
Wang W, Lu G, Wu X, Wen Q, Zhang F. Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host-Microbiota Interaction Research. J Clin Med 2023; 12:780. [PMID: 36769429 PMCID: PMC9918197 DOI: 10.3390/jcm12030780] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The limitation of traditional delivery methods for fecal microbiota transplantation (FMT) gave birth to colonic transendoscopic enteral tubing (TET) to address the requirement of frequent FMTs. Colonic TET as a novel endoscopic intervention has received increasing attention in practice since 2015 in China. Emerging studies from multiple centers indicate that colonic TET is a promising, safe, and practical delivery method for microbial therapy and administering medication with high patient satisfaction. Intriguingly, colonic TET has been used to rescue endoscopy-related perforations by draining colonic air and fluid through the TET tube. Recent research based on collecting ileocecal samples through a TET tube has contributed to demonstrating community dynamics in the intestine, and it is expected to be a novel delivery of proof-of-concept in host-microbiota interactions and pharmacological research. The present article aims to review the concept and techniques of TET and to explore microbial therapy, colonic drainage, and microbial research based on colonic TET.
Collapse
Affiliation(s)
- Weihong Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Gaochen Lu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Xia Wu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Quan Wen
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
45
|
Gospodaryk AV, Ulakhanova LA, Esiev SS, Polyakova EV, Shansky YD, Bespyatykh JA. The role of mef and ermB drug resistance genetic markers in the selection of fecal microbiota donors. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fecal microbiota transplantation (FMT) is prescribed to treat various gastrointestinal pathologies. One of the most important and significant stages of FMT is selection of the donor. In recent years, special attention has been paid to checking the biomaterial for genes marking resistance to various groups of antibiotics. This study aimed to analyze the occurrence of mef and ermB drug resistance genetic markers in population of various age groups, including breastfed infants, and to determine microbiological composition of the flora of distal part of the intestine of potentially healthy volunteering FMT donors. A total of 52 biological samples (46 stool samples and 6 breast milk samples) were analyzed by real-time polymerase chain reaction. The macrolides resistance gene (mef) was detected in 97.8% of stool samples (different age groups), the gene marking resistance to macrolides, lincosamides, streptogramin (ermB) — in 93.5%. In the isolated "mother-child" group, the mef gene was found in all samples of breast milk and feces. The ermB gene in this group was found in 3 out of 6 breast milk samples and 4 out of 6 infant stool samples. Since the mef and ermB genetic determinants were identified not only among in adults but also in infants, it was suggested that transplant material (feces) containing these genes can be used for FMT. The analysis of microbiological composition of stool samples from 23 healthy volunteers (potential FMT donors) revealed that it rarely (in 8.7% of cases only) corresponds to what is considered to be a normal microbiota of the intestine's distal part.
Collapse
Affiliation(s)
- AV Gospodaryk
- Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia
| | - LA Ulakhanova
- Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia
| | - SS Esiev
- Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia
| | - EV Polyakova
- Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia
| | - YD Shansky
- Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia
| | - JA Bespyatykh
- Lopukhin Federal Research and Clinical Center Of Physical-Chemical Medicine under the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|