1
|
Liberty A, Edelman A, Bernhardt SM. The emerging role of progesterone receptor modulators in breast physiology, cancer prevention and treatment. BMJ SEXUAL & REPRODUCTIVE HEALTH 2025:bmjsrh-2024-202662. [PMID: 40185613 DOI: 10.1136/bmjsrh-2024-202662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Progesterone is critical for cyclic breast changes and breast cancer carcinogenesis. The commercially available progesterone receptor modulators (PRMs), ulipristal acetate (UPA) and mifepristone, have been utilised for their antiprogestogen effect in gynaecology. Administration of these medicines appears to induce favourable cellular and radiographic changes in the breast. METHODS This is a narrative review of the basic science, translational and clinical trials utilising UPA and mifepristone for breast health. It integrates historical and recent trials from around the world. RESULTS PRMs have shown promise in decreasing molecular markers of carcinogenesis in BRCA1 carriers. Outside of genetic cancer risk, PRMs decrease background parenchymal enhancement on breast magnetic resonance imaging and could be developed as a personalised protocol for breast cancer screening. Although there was limited efficacy of antiprogestogens in progression-free survival for people with breast cancer, there may be a role as neoadjuvant therapy prior to surgical resection. CONCLUSIONS UPA and mifepristone have the potential to revolutionise breast cancer prevention, screening and treatment. As protocols emerge, gynaecologists will be on the front lines as regards both identifying patients who may benefit from these medications and serving as interdisciplinary support in accessing these medicines.
Collapse
Affiliation(s)
- Abigail Liberty
- Department of Obstetrics & Gynecology, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Alison Edelman
- Department of Obstetrics & Gynecology, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | |
Collapse
|
2
|
McGrath MK, Abolhassani A, Guy L, Elshazly AM, Barrett JT, Mivechi NF, Gewirtz DA, Schoenlein PV. Autophagy and senescence facilitate the development of antiestrogen resistance in ER positive breast cancer. Front Endocrinol (Lausanne) 2024; 15:1298423. [PMID: 38567308 PMCID: PMC10986181 DOI: 10.3389/fendo.2024.1298423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Michael K. McGrath
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ali Abolhassani
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Luke Guy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ahmed M. Elshazly
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - John T. Barrett
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Patricia V. Schoenlein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Hagey JM, Givens M, Bryant AG. Clinical Update on Uses for Mifepristone in Obstetrics and Gynecology. Obstet Gynecol Surv 2022; 77:611-623. [PMID: 36242531 DOI: 10.1097/ogx.0000000000001063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
IMPORTANCE Mifepristone (RU-486) is a selective progesterone receptor modulator that has antagonist properties on the uterus and cervix. Mifepristone is an effective abortifacient, prompting limitations on its use in many countries. Mifepristone has many uses outside of induced abortion, but these are less well known and underutilized by clinicians because of challenges in accessing and prescribing this medication. OBJECTIVES To provide clinicians with a history of the development of mifepristone and mechanism of action and safety profile, as well as detail current research on uses of mifepristone in both obstetrics and gynecology. EVIDENCE ACQUISITION A PubMed search of mifepristone and gynecologic and obstetric conditions was conducted between January 2018 and December 2021. Other resources were also searched, including guidelines from the American College of Obstetricians and Gynecologists and the Society of Family Planning. RESULTS Mifepristone is approved by the Food and Drug Administration for first-trimester medication abortion but has other off-label uses in both obstetrics and gynecology. Obstetric uses that have been investigated include management of early pregnancy loss, intrauterine fetal demise, treatment of ectopic pregnancy, and labor induction. Gynecologic uses that have been investigated include contraception, treatment of abnormal uterine bleeding, and as an adjunct in treatment of gynecologic cancers. CONCLUSIONS AND RELEVANCE Mifepristone is a safe and effective medication both for its approved use in first-trimester medication abortion and other off-label uses. Because of its primary use as an abortifacient, mifepristone is underutilized by clinicians. Providers should consider mifepristone for other indications as clinically appropriate.
Collapse
Affiliation(s)
- Jill M Hagey
- Fellow, Division of Complex Family Planning, Department of Obstetrics and Gynecology, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Matthew Givens
- Fellow, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT
| | - Amy G Bryant
- Associate Professor, Division of Complex Family Planning, Department of Obstetrics and Gynecology, University of North Carolina-Chapel Hill, Chapel Hill, NC
| |
Collapse
|
4
|
Kamaraju S, Fowler AM, Weil E, Wisinski KB, Truong TH, Lehr M, Chaudhary LN, Cheng YC, Chitambar CR, Rui H, Yee D, Lange C. Leveraging Antiprogestins in the Treatment of Metastatic Breast Cancer. Endocrinology 2021; 162:6178343. [PMID: 33735382 DOI: 10.1210/endocr/bqab060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Although incurable, the prognosis for patients with metastatic breast cancer (MBC) has considerably improved with the approvals of multiple targeted and cytotoxic therapies. For hormone receptor-positive (HR+), ie, estrogen receptor and progesterone receptor positive (ER+/PgR+) and human epidermal growth factor receptor-2 negative (ie, ERBB2 gene nonamplified or HER2-) MBC, current approved treatment options include palliative endocrine therapy (ET), cyclin-dependent kinase (CDK 4/6) inhibitors, mTOR inhibitors, and PI3 kinase inhibitors. Most treatments target ER+ disease regardless of PgR status. Although the presence of PgR is crucial for ER+ cell proliferation in both normal and malignant mammary tissue, currently, there are no approved treatments that specifically target PgR. Recent literature has demonstrated the potential of antiprogestins in the treatment of MBC both in preclinical and clinical studies. Antiprogestins, including selective PgR modulators (SPRMs) that act as PgR antagonists, are a promising class of therapeutics for overcoming endocrine resistance in patients who develop activating estrogen receptor 1 (ESR1) and phosphatidylinositol 3-kinase (PI3K) gene mutations after prior endocrine therapy. Herein, we summarize the role of PgR and antiprogestins in the treatment of MBC. Other aspects on the use of functional imaging, clinical trials incorporating novel antiprogestins, and potential treatment combinations to overcome endocrine resistance will be briefly discussed.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy M Fowler
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Elizabeth Weil
- Froedtert Health, Cancer Center, Milwaukee, WI 53226, USA
| | - Kari B Wisinski
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Lehr
- Context Therapeutics, Philadelphia, PA 19104, USA
| | - Lubna N Chaudhary
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yee Chung Cheng
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | - Hallgeir Rui
- Pathology and Laboratory Medicine, Medical College of Wisconsin , Milwaukee, WI 53226, USA
| | - Douglas Yee
- Division of Hematology-Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol Lange
- Division of Hematology-Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Wang L, Guan HY, Xia HX, Chen XY, Zhang W. Dydrogesterone treatment for menstrual-cycle regularization in abnormal uterine bleeding – ovulation dysfunction patients. World J Clin Cases 2020; 8:3259-3266. [PMID: 32874980 PMCID: PMC7441273 DOI: 10.12998/wjcc.v8.i15.3259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/23/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Dydrogesterone has shown significant efficacy in treatment of irregular menstrual cycle due to abnormal uterine bleeding - ovulation dysfunction (AUB-O), but there were few relevant studies. This observational study was designed to evaluate the effectiveness of dydrogesterone for the treatment of Chinese patients with AUB-O.
AIM To evaluate the effects of dydrogesterone on menstrual-cycle (MC) regularization and metabolism in the patients with AUB-O.
METHODS A prospective, non-interventional, single-arm, post-marketing observational study was conducted. Chinese women aged 16 years or above with AUB-O who had been prescribed dydrogesterone were enrolled. The patients were treated with dydrogesterone 10 mg from day 16 to day 25 of each cycle, consecutively for at least 3 cycles. The main outcome was defined as the percentage of patients whose MCs returned to normal (defined as 21 d < menstrual cycle ≤ 35 d) after three cycles of dydrogesterone treatment.
RESULTS One hundred and fourteen women with AUB-O were enrolled in the present study. Of 89 patients who completed treatment, 72 (80.9%) achieved a regular MC at the end of the 3rd circle. The level of androgen, including testosterone and dehydroepiandrosterone sulfate, declined significantly (P = 0.01 and 0.031, respectively), whereas other hormone levels remained steady. During the treatment, 44/80 (55.0%) subjects in the per-protocol set had reported biphasic basal body temperature.
CONCLUSION Dydrogesterone therapy was effective in achieving MC regularization for Chinese patients with AUB-O.
Collapse
Affiliation(s)
- Lu Wang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Hai-Yun Guan
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - He-Xia Xia
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Xiu-Ying Chen
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
6
|
Möller C, Bone W, Cleve A, Klar U, Rotgeri A, Rottmann A, Schultze‐Mosgau M, Wagenfeld A, Schwede W. Discovery of Vilaprisan (BAY 1002670): A Highly Potent and Selective Progesterone Receptor Modulator Optimized for Gynecologic Therapies. ChemMedChem 2018; 13:2271-2280. [PMID: 30407750 PMCID: PMC6282584 DOI: 10.1002/cmdc.201800487] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/28/2022]
Abstract
Progesterone plays an important role in the female reproductive system. However, there is also evidence that gynecologic disorders/diseases such as uterine fibroids and endometriosis are progesterone-dependent. Steroidal and non-steroidal selective progesterone receptor modulators (SPRMs) have shown potential for the treatment of such diseases. Steroidal SPRMs, including mifepristone and ulipristal acetate, have proven effective in clinical trials. However, several steroidal SPRMs containing a dimethylamino substituent have been associated with elevated liver enzymes in patients. An earlier drug discovery program identified lonaprisan as a highly selective SPRM that did not show drug-related change in liver enzyme activity. Building on data obtained from that work, here we describe the research program that culminated in the discovery of a novel steroidal SPRM, vilaprisan, which combines an extremely high potency with very favorable drug metabolism and pharmacokinetic properties. Vilaprisan has entered clinical development and is currently undergoing phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | - Arwed Cleve
- Bayer AGPharmaceuticals R&D13342BerlinGermany
| | - Ulrich Klar
- Retired, formerly at: Bayer AGPharmaceuticals R&D13342BerlinGermany
| | | | | | | | | | | |
Collapse
|
7
|
Kim HY, Ha Thi HT, Hong S. IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor. Cancer Lett 2017; 415:30-39. [PMID: 29217458 DOI: 10.1016/j.canlet.2017.11.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive malignancies and is associated with high mortality rates due to the lack of effective therapeutic targets. In this study, we demonstrated that insulin-like growth factor-II mRNA-binding protein 2 and 3 (IMP2 and IMP3) are specifically overexpressed in TNBC and cooperate to promote cell migration and invasion. Downregulation of both IMP2 and IMP3 in TNBC cells was found to produce a synergistic effect in suppressing cell invasion and invadopodia formation, whereas overexpression of IMP2 and IMP3 in luminal subtype cells enhanced epithelial-mesenchymal transition and metastasis. We also showed that IMP2 and IMP3 are direct targets of microRNA-200a (miR-200a), which is downregulated in TNBC. Conversely, IMP2 and IMP3 suppressed the transcription of miR-200a by destabilizing progesterone receptor (PR) mRNA through recruitment of the CCR4-NOT transcription complex subunit 1 (CNOT1) complex. Together, our findings suggest that IMP2 and IMP3 partially determine the characteristic phenotype and synergistically promote the metastasis of TNBC by downregulating PR. The identified IMP2/3-miR-200a-PR axis represents a novel double-negative feedback loop and serves as a new potential therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Huyen Trang Ha Thi
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
8
|
Schneider CC, Gibb RK, Taylor DD, Wan T, Gerçel-Taylor Ç. Inhibition of Endometrial Cancer Cell Lines by Mifepristone (RU 486). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769800500611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - Tina Wan
- Department of Obstetrics and Gynecology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Çiçek Gerçel-Taylor
- Department of Obstetrics and Gynecology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
9
|
Communal L, Vilasco M, Hugon-Rodin J, Courtin A, Mourra N, Lahlou N, Dumont S, Chaouat M, Forgez P, Gompel A. Ulipristal acetate does not impact human normal breast tissue. Hum Reprod 2012; 27:2785-98. [PMID: 22740493 DOI: 10.1093/humrep/des221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Antiprogestins are of growing interest for the development of new treatments in the gynecological field. Ulipristal acetate (UPA) is a progesterone receptor (PR) modulator considered for long-term administration in contraception and is currently being registered for the treatment of uterine fibroids. In light of the influences of hormonal dysfunction in breast pathologies, the secondary consequences of chronic UPA therapy need to be established. The aim of this study was to determine UPA actions mediated by PR and glucocorticoid receptor (GR) in normal and transformed breast. METHODS UPA, progesterone (P) and dexamethasone (DEX) effects were observed on PR and GR responsive genes and on proliferation and apoptosis of normal human breast epithelial (HBE) and breast cancer cells. Human normal breast tissue samples were xenografted in athymic mice and treated with estradiol (E2), or E2 + P, or E2 + P + UPA. RESULTS Analysis of PR and GR reporter gene transactivation and their respective endogenous target genes indicated that UPA exerted anti-progestational and anti-glucocorticoid activity in both types of cells with a more pronounced effect in cancer cells. When combined with P or DEX, UPA limits the proliferation of HBE cells but increases growth in breast cancer cell lines. UPA administration had no impact on the mitotic index on xenografted human breast tissue exposed to gonadal hormones at similar concentrations to those present in normal women. CONCLUSIONS Although further clinical trials are required to confirm that the results from our experimental models can be extrapolated to women treated with UPA, they suggest that such treatment would not be deleterious to normal breast tissue at least for a cycle (28 days) of continuous administration.
Collapse
Affiliation(s)
- Laudine Communal
- INSERM-UPMC, UMRS 938, Hôpital Saint-Antoine, 75012 Parris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Molecular gene expression studies have divided breast cancer into several categories, i.e. basal-like, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A, luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor alpha (ERα) and respond to antiestrogen therapies. Most of these ER+ tumors also express progesterone receptors (PRs), the expression of which has been considered as a reliable marker of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have different roles in breast cancer cell growth, and antiprogestins have already been clinically used in patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
Collapse
Affiliation(s)
- Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Möller C, Hoffmann J, Kirkland TA, Schwede W. Investigational developments for the treatment of progesterone-dependent diseases. Expert Opin Investig Drugs 2008; 17:469-79. [PMID: 18363513 DOI: 10.1517/13543784.17.4.469] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Clinical evidence has shown that conditions such as uterine fibroids, endometriosis and breast cancer are progesterone-dependent diseases. Therefore, progesterone receptor (PR) antagonists and selective PR modulators (SPRMs) are under development for the treatment of these conditions. However, the first PR antagonists that became available exhibit insufficient selectivity or tolerability for the chronic administration required to treat these conditions. Despite initial setbacks, development of second-generation PR antagonists with better selectivity continues forward. OBJECTIVE In this review we would like to summarise prospects for using PR antagonists for the treatment of uterine fibroids, endometriosis and breast cancer, and to give an overview of the development of new steroidal and non-steroidal PR antagonists. METHOD Available preclinical and clinical data and publications have been reviewed with the focus on scientific background and use in the three mentioned indications. RESULTS/CONCLUSION Preclinical and clinical evidence demonstrated that PR antagonists and SPRMs are effective for the treatment of progesterone-dependent diseases. Future development will demonstrate if they can become important drugs.
Collapse
Affiliation(s)
- Carsten Möller
- Bayer Schering Pharma, Global Drug Discovery, Women's Healthcare, Müllerstrasse 178, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Hoffmann J, Sommer A. Anti-hormone Therapy: Principles of Endocrine Therapy of Cancer. TOPICS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1007/7355_2006_002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Tabata Y, Iizuka Y, Masuda NT, Shinei R, Kurihara KI, Okonogi T, Hoshiko S, Kurata Y. In vitro and in vivo characterization of novel nonsteroidal progesterone receptor antagonists derived from the fungal metabolite PF1092C. J Steroid Biochem Mol Biol 2002; 82:217-23. [PMID: 12477488 DOI: 10.1016/s0960-0760(02)00157-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We studied the pharmacological effects of novel nonsteroidal progesterone receptor antagonists CP8661 and CP8754, which were synthesized from the fungal metabolite PF1092C. CP8661 possess a tetrahydrobenzindolone skeleton and CP8754 possess a tetrahydronaphthofuranone skeleton. In binding assays for steroid receptors, CP8661 and CP8754 inhibited [(3)H]-progesterone binding to human progesterone receptors (hPR), though they are less potent than RU486. CP8661 also showed moderate affinity to rat androgen receptors (rAR), although CP8754 did not. Neither compound showed affinity to human glucocorticoid receptors (hGR) or human estrogen receptors (hER). In exogeneous and endogeneous PR-dependent enzyme expression assays using human mammary carcinoma T47D, CP8661 and CP8754 showed pure antagonistic activity. In a rabbit endometrial transformation test, CP8661 and CP8754 showed anti-progestational activity by s.c. administration in a dose-dependent manner; meanwhile, these compounds showed no progestational activity at the same dose. These results suggested that CP8661 and CP8754 are in vivo effective pure progesterone receptor antagonists and presented the possibility of synthesizing pure progesterone receptor antagonists from both tetrahydronaphthofuranone and tetrahydrobenzindolone skeletons.
Collapse
Affiliation(s)
- Yuji Tabata
- Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho Kohoku-ku, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tabata Y, Iizuka Y, Kashiwa J, Masuda NT, Shinei R, Kurihara K, Okonogi T, Hoshiko S, Kurata Y. Fungal metabolites, PF1092 compounds and their derivatives, are nonsteroidal and selective progesterone receptor modulators. Eur J Pharmacol 2001; 430:159-65. [PMID: 11711027 DOI: 10.1016/s0014-2999(01)01382-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential of new nonsteroidal progesterone receptor ligands, the derivatives of PF1092C ((4aR,5R,6R,7S)-6,7-dihydroxy-4a,5,6,7-tetrahydro-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one) discovered from fungal metabolites, was evaluated. PF1092A ((4aR,5R,6R,7S)-6-acetoxy-7-hydroxy-4a,5,6,7-tetrahydro-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one) showed good and moderate affinity for porcine and human progesterone receptors in in vitro receptor binding assays, respectively, and partial agonist activity for the progesterone receptor, as determined in assays of two types of progesterone-dependent enzymes in human mammary carcinoma T47D cells. The derivative of PF1092C, CP8481, ((4aR,5R,6R,7S)-6-(2-furancarbonyloxy)-7-hydroxy-4a,5,6,7-tetrahydro-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one) possessed better affinity for both progesterone receptors and showed less cross-reactivity for other steroid receptors, such as rat androgen receptor, human glucocorticoid receptor, and human estrogen receptor, and was a more potent modulator of the progesterone receptor than PF1092A. CP8400 ((4aR,5R,6R,7S)-6,7-diacetoxy-4a,5,6,7-tetrahydro-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one) and CP8401 ((4aR,5R,6R,7S)-6,7-dipropionyloxy-4a,5,6,7-tetrahydro-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one), other derivatives, were indicated to be progesterone receptor antagonists. These results suggest that PF1092 compounds can serve as a new pharmacophore for potent and specific nonsteroidal progesterone receptor modulators.
Collapse
Affiliation(s)
- Y Tabata
- Drug Discovery, Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Yokohama, 222-8567, Kohoku, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
De Vos A, Van Steirteghem A. Aspects of biopsy procedures prior to preimplantation genetic diagnosis. Prenat Diagn 2001; 21:767-80. [PMID: 11559914 DOI: 10.1002/pd.172] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Today, preimplantation genetic diagnosis (PGD) is offered in over 40 centres worldwide for an expanded range of genetic defects causing disease. This very early form of prenatal diagnosis involves the detection of affected embryos by fluorescent in situ hybridization (FISH) (sex determination or chromosomal defects) or by polymerase chain reaction (PCR) (monogenic diseases) prior to implantation. Genetic analysis of the embryos involves the removal of some cellular mass from the embryos (one or two blastomeres at cleavage-stage or some extra-embryonic trophectoderm cells at the blastocyst stage) by means of an embryo biopsy procedure. Genetic analysis can also be performed preconceptionally by removal of the first polar body. However, additional information is then often gained by removal of the second polar body and/or a blastomere from the embryo. Removal of polar bodies or cellular material from embryos requires an opening in the zona pellucida, which can be created in a mechanical way (partial zona dissection) or chemical way (acidic Tyrode's solution). However, the more recent introduction of laser technology has facilitated this step enormously. Different biopsy procedures at different preimplantation stages are reviewed here, including their pros and cons and their clinical applications. The following aspects will also be discussed: safety of zona drilling by laser, use of Ca2+/Mg2+-free medium for decompaction, and removal of one or two cells from cleavage-stage embryos.
Collapse
Affiliation(s)
- A De Vos
- Centre for Reproductive Medicine, University Hospital, Dutch-speaking Brussels Free University (Vrije Universiteit Brussel), Brussels, Belgium.
| | | |
Collapse
|
17
|
Maggi R, Poletti A, Casulari LA, Pimpinelli F, Piva F, Zanisi MR, Martini L. Effects and metabolism of steroid hormones in human neuroblastoma cells. Steroids 1998; 63:257-62. [PMID: 9618781 DOI: 10.1016/s0039-128x(98)00038-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of the central nervous system is influenced by sex steroids and by their metabolites. However, little information on the possible effects of steroid hormones on neuroblastoma cells is available. Human neuroblastoma cell lines have been used as a model of human neuroblasts in vitro to study the metabolism of steroid hormones; in addition, the effects of steroids and steroid antagonists on neuroblastoma cell growth have also been investigated. The results obtained show that SH-SY5Y human neuroblastoma cells may actively metabolize testosterone and progesterone to their respective 5 alpha-reduced metabolites and that differentiation of neuroblastoma cells is paralleled by a significant increase in expression of the type-1 5 alpha-reductase and of the formation of steroid metabolites. All these data are suggestive of a potential role of steroid 5 alpha-reduced metabolites in the biology of neuroblastoma cells. Studies performed to analyze the role of steroid hormones on neuroblastoma cell proliferation show that progesterone at low doses may induce minor stimulation, and at higher doses, a toxic effect on the neuroblastoma cell line SK-N-SH is seen. Moreover, the antiprogestin 17 beta-hydroxy-11 beta-(4-dimethylamino-phenyl-1)-17-(prop-1-ynyl)estra-4,9-dien+ ++-3-one (RU486) decreases the proliferation of these cells in a dose-dependent manner. The effect of RU486 is not antagonized by either progesterone or dexamethasone, a result that seems to exclude the action of RU486 via classic intracellular steroid hormone receptors.
Collapse
Affiliation(s)
- R Maggi
- Department of Endocrinology, University of Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Anglin MK. Working from the inside out: implications of breast cancer activism for biomedical policies and practices. Soc Sci Med 1997; 44:1403-15. [PMID: 9141172 DOI: 10.1016/s0277-9536(96)00321-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Much has been written about women with breast cancer: about women's lifestyles and reproductive strategies as possible risk factors for the disease, factors which impede or facilitate women's participation in mammography screening, ways to involve women in treatment decision-making, and women's ability to cope with breast cancer diagnoses. Seldom do these accounts examine breast cancer from the perspective of women with the disease. This essay presents material from an ethnographic study in the United States to explore the ways that women have come forward as informed consumers and activists working to make biomedical practices more responsive to the needs of women with breast cancer. Insofar as breast cancer activists reflect the concerns of a predominantly white, middle class constituency, however, additional questions are raised concerning their constructions of breast cancer and the problematics of treatment.
Collapse
Affiliation(s)
- M K Anglin
- Department of Anthropology, University of Kentucky, Lexington 40506-0024, USA
| |
Collapse
|
19
|
Miller WR, Langdon SP. Steroid hormones and cancer: (II) Lessons from experimental systems. Eur J Surg Oncol 1997; 23:72-83. [PMID: 9066752 DOI: 10.1016/s0748-7983(97)80148-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- W R Miller
- Department of Clinical Oncology, Western General Hospital, Edinburgh
| | | |
Collapse
|
20
|
Koper JW, Molijn GJ, van Uffelen CJ, Stigter E, Lamberts SW. Antiprogestins and iatrogenic glucocorticoid resistance. Life Sci 1997; 60:617-24. [PMID: 9048964 DOI: 10.1016/s0024-3205(96)00698-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The antiglucocorticoid action of the antiprogestin RU 38486 has interfered with its successful clinical application in long-term treatment. Several new antiprogestins (Org 31710, Org 31806 and ZK 98299) have recently been developed with the aim to eliminate this side-effect. We have used a human lymphocyte proliferation assay to estimate the antiglucocorticoid potency of RU 38486 and the newer antiprogestins. In this assay 100 nmol/L RU 38486 shifted the dexamethasone inhibition curve by at least one order of magnitude. The other antiprogestins showed no effect at 100 nmol/L. RU 38486 (30 nmol/L) was able to antagonize 1000 nmol/L dexamethasone. The other antiprogestins showed only slight effects even at 1000 nmol/L. We conclude that the new antiprogestins have antiglucocorticoid effects that are one to two orders of magnitude lower than that of RU 38486. This may make them more suitable than RU 38486 for application in long-term antiprogestin treatment.
Collapse
Affiliation(s)
- J W Koper
- Department of Internal Medicine III, Erasmus University Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- O Sartor
- Louisiana State University Medical Center, Shreveport 71130, USA
| | | |
Collapse
|
22
|
Klijn JG, Setyono-Han B, Bontenbal M, Seynaeve C, Foekens J. Novel endocrine therapies in breast cancer. Acta Oncol 1996; 35 Suppl 5:30-7. [PMID: 9142962 DOI: 10.3109/02841869609083965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endocrine therapy of breast cancer consists of a variety of both medical and surgical ablative treatment modalities, but ablative therapy is increasingly replaced by medical treatment. Most endocrine therapies have more than one endocrine effect, frequently together with direct growth inhibitory actions via receptors. Endocrine therapy can be effective in all phases of the disease, but curative only in early disease while in advanced cancer it can only prolong survival. In the past decade the number of available endocrine agents has been drastically increased. Novel approaches in the endocrine therapy of breast cancer are application of new antiestrogens, antiprogestins, new potent aromatase inhibitors, analogues of luteinizing hormone-releasing hormone (LHRH-A) and somatostatin, inhibitors of prolactin secretion, vitamin A and D analogues, bisphosphonates, growth factor antagonists, tyrosine protein kinase inhibitors, protease inhibitors, inhibitors of angiogenesis, radiolabeled hormones and monoclonal antibodies. New cell biological factors such as oncogenes and suppressorgenes, secretory proteins and membrane receptors can be used not only as prognostic factors but also for prediction of type of response to endocrine and chemotherapy. Thus, these cell biological parameters can be used to select high and low risk patients, type of systemic treatment, and can also be used as targets for new treatment modalities. Future studies on treatment of all stages of disease will increasingly focus on promising combined treatment modalities.
Collapse
Affiliation(s)
- J G Klijn
- Department of Medical Oncology, Rotterdam Cancer Institute, Dr Daniel den Hoed Kliniek), The Netherlands
| | | | | | | | | |
Collapse
|