1
|
Bharti PS, Rani K, Singh R, Rai S, Rastogi S, Batra M, Mishra A, Zehra S, Gorai PK, Sasidhar MV, Modi GP, Malik G, Rani N, Dev K, Reddy TJ, Inampudi KK, Nikolajeff F, Kumar S. A simplified and efficient method for isolating small extracellular vesicles for comparative and comprehensive translational research. Sci Rep 2025; 15:16367. [PMID: 40350518 PMCID: PMC12066714 DOI: 10.1038/s41598-025-99822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Small extracellular vesicles (sEVs) can provide information about the pathophysiology of the cells; therefore, sEVs have attracted considerable interest as possible diagnostic biomarkers. A key challenge lies in the necessity for simple and cost-effective sEV isolation methods to achieve high purity and yield suitable for research and clinical applications. We are introducing a comprehensive study on isolating sEVs using a novel cocktail strategy that integrates chemical precipitation and ultrafiltration with a two-step filtering process to ensure a highly pure and homogeneous population and further compared with PEG-based precipitation, ultra-centrifugation, and size-exclusion-chromatography columns. The isolated sEVs from each protocol are quantified for size and yield using nanoparticle tracking analysis, morphologically characterized through transmission electron microscopy, and validated by quantifying the expression profiles of sEV surface biomarkers. Furthermore, the study explores the applicability of our method for downstream multi-omics analyses. The results highlight the efficacy of the proposed protocol, demonstrating the ease and efficiency of isolating sEVs from different biofluids with minimal laboratory requirements and confirming the compatibility with multi-omics analyses. These findings position our method as particularly valuable for translational research, offering a promising avenue for advancing the study and application of sEVs in diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Komal Rani
- Department of Pathology & Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, Telangana, 508126, India
| | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Manya Batra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Manda Venkata Sasidhar
- Apollo Hospitals Educational and Research Foundation, Hyderabad, Telangana, 500033, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, 221005, India
| | - Garima Malik
- Indian Council of Medical Research, New Delhi, 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Thota Jagadeshwar Reddy
- Analytical Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Krishna Kishore Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, 97187, Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
- Department of Health, Education and Technology, Lulea University of Technology, 97187, Lulea, Sweden.
| |
Collapse
|
2
|
Bao P, Wang T, Liu X, Xing S, Ruan H, Ma H, Tao Y, Zhan Q, Belmonte-Reche E, Qin L, Han Z, Mao M, Li M, Lu ZJ. Peak analysis of cell-free RNA finds recurrently protected narrow regions with clinical potential. Genome Biol 2025; 26:119. [PMID: 40340952 PMCID: PMC12060323 DOI: 10.1186/s13059-025-03590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Cell-free RNAs (cfRNAs) can be detected in biofluids and have emerged as valuable disease biomarkers. Accurate identification of the fragmented cfRNA signals, especially those originating from pathological cells, is crucial for understanding their biological functions and clinical value. However, many challenges still need to be addressed for their application, including developing specific analysis methods and translating cfRNA fragments with biological support into clinical applications. RESULTS We present cfPeak, a novel method combining statistics and machine learning models to detect the fragmented cfRNA signals effectively. When test in real and artificial cfRNA sequencing (cfRNA-seq) data, cfPeak shows an improved performance compared with other applicable methods. We reveal that narrow cfRNA peaks preferentially overlap with protein binding sites, vesicle-sorting sites, structural sites, and novel small non-coding RNAs (sncRNAs). When applied in clinical cohorts, cfPeak identified cfRNA peaks in patients' plasma that enable cancer detection and are informative of cancer types and metastasis. CONCLUSIONS Our study fills the gap in the current small cfRNA-seq analysis at fragment-scale and builds a bridge to the scientific discovery in cfRNA fragmentomics. We demonstrate the significance of finding low abundant tissue-derived signals in small cfRNA and prove the feasibility for application in liquid biopsy.
Collapse
Affiliation(s)
- Pengfei Bao
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Taiwei Wang
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (Ministry of Science & Technology), MOE Key Laboratory of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- Academy for Advanced Interdisciplinary Studies (AAIS)and, Sciences Joint Graduate Program (PTN) , Peking University, Beijing, China
| | - Xiaofan Liu
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Hanjin Ruan
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hongli Ma
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Qing Zhan
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Efres Belmonte-Reche
- Centre for Genomics and Oncological Research (GENYO), Avenida de La Ilustración 114, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Minghui Mao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (Ministry of Science & Technology), MOE Key Laboratory of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies (AAIS)and, Sciences Joint Graduate Program (PTN) , Peking University, Beijing, China.
- The Center for Regeneration Aging and Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Assunção RRS, Santos NL, Andrade LNDS. Extracellular vesicles as cancer biomarkers and drug delivery strategies in clinical settings: Advances, perspectives, and challenges. Clinics (Sao Paulo) 2025; 80:100635. [PMID: 40315797 PMCID: PMC12090321 DOI: 10.1016/j.clinsp.2025.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
Cancer is a leading cause of death worldwide, and despite the introduction of new therapeutic approaches for advanced cases aimed at improving patient survival, only a subset of patients benefits from a complete response. In this context, there is a growing need for new cancer biomarkers and therapeutic strategies, and the use of Extracellular Vesicles (EVs) has been widely explored in various approaches. As circulating lipid-bilayer particles carrying a variety of biological information from tumor cells, EVs can be employed as good biomarkers of diagnosis, prognosis, therapy evaluation, and as adjuvants in cancer treatment. In this review, we provide a brief overview of the different types of EVs and their biogenesis and discuss how tumor-derived EV cargo can serve as a potential biomarker in clinical settings through liquid biopsy. We also highlight recent advances in EV nanoengineering and their potential as adjuvants in cancer treatment. Finally, we discuss the key unknowns, gaps, and bottlenecks that must be addressed to fully integrate EVs into precision oncology.
Collapse
Affiliation(s)
- Raphaela Rebeca Silveira Assunção
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Nathalia Leal Santos
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Zhu LL, Li LD, Lin XY, Hu J, Wang C, Wang YJ, Zhou QG, Zhang J. Plasma-Derived Small Extracellular Vesicles miR- 182 - 5p Is a Potential Biomarker for Diagnosing Major Depressive Disorder. Mol Neurobiol 2025:10.1007/s12035-025-04948-9. [PMID: 40261603 DOI: 10.1007/s12035-025-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Depression, particularly major depressive disorder (MDD), is a debilitating neuropsychiatric condition characterized by high disability rates, primarily driven by chronic stress and genetic predispositions. Emerging evidence highlights the critical role of microRNAs (miRNAs) in the pathogenesis of depression, with plasma-derived small extracellular vesicles (sEVs) emerging as promising biomarkers. In this study, we collected peripheral blood plasma samples from patients diagnosed with MDD, as assessed by the Hamilton Depression Rating scale, alongside healthy individuals serving as controls. Plasma-derived sEVs were isolated via ultracentrifugation, followed by high-throughput sequencing of miRNAs encapsulated within sEVs, and finally image acquisition and differential expression analysis. Our results revealed a significant elevation of miR-182-5p in plasma-derived sEVs from MDD patients compared to healthy controls, a finding further validated in chronic mild stress (CMS) models. Further analysis suggested that miRNAs encapsulated within sEVs may influence depression onset and progression by modulating hypothalamic-pituitary-adrenal (HPA) axis activity. These findings underscore the potential of miRNAs and their target genes as novel biomarkers, offering improved diagnostic accuracy and therapeutic efficacy for MDD.
Collapse
Affiliation(s)
- Lin-Lin Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China
| | - Lian-Di Li
- Anhui Institute for Food and Drug Control, 262 North Zhongshan Road, Nanjing, 210009, Jiangsu, China
| | - Xuan-Yu Lin
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China
| | - Jian Hu
- The Second Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210009, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yi-Jun Wang
- The Second Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210009, Jiangsu, China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China.
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China.
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [PMID: 40235899 PMCID: PMC11995328 DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
6
|
Bu F, Shen X, Zhan H, Wang D, Min L, Song Y, Wang S. Efficient Metabolomics Profiling from Plasma Extracellular Vesicles Enables Accurate Diagnosis of Early Gastric Cancer. J Am Chem Soc 2025; 147:8672-8686. [PMID: 40071449 DOI: 10.1021/jacs.4c18110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Accurate diagnosis of early gastric cancer is valuable for asymptomatic populations, while current endoscopic examination combined with pathological tissue biopsy often encounters bottlenecks for early-stage cancer and causes pain to patients. Liquid biopsy shows promise for noninvasive diagnosis of early gastric cancer; however, it remains a challenge to achieve accurate diagnosis due to the lack of highly sensitive and specific biomarkers. Herein, we propose a protocol combining metabolomics profiling from plasma extracellular vesicles (EVs) and machine learning to identify the metabolomics discrepancies of early gastric cancer individuals from other populations. Efficient metabolomics profiling is achieved by efficient, high-purity, and damage-free plasma EVs separation using elaborately designed nanotrap-structured microparticles (NanoFisher) by taking advantage of stereoscopic interaction and affinity interaction. Significant metabolomics discrepancies are obtained from 150 early gastric cancer (50), benign gastric disease (50), and non-disease control (50) plasma samples. Machine learning enables ideal distinction between early gastric cancer and non-disease control samples with an area under the curve (AUC) of 1.000, achieves an AUC of 0.875-0.975 for differentiating early gastric cancer from benign gastric diseases, and demonstrates an overall accuracy of 92% in directly classifying these three categories. The plasma EV metabolomics profiling enabled by NanoFisher materials, integrated with machine learning, holds considerable promise for broad clinical acceptance, enhancing gastric cancer screening outcomes.
Collapse
Affiliation(s)
- Fanqin Bu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P. R. China
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China
| | - Xinyi Shen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haosu Zhan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P. R. China
| | - Duanda Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Gattuso G, Longo F, Spoto G, Ricci D, Lavoro A, Candido S, Di Cataldo A, Broggi G, Salvatorelli L, Magro G, Libra M, Falzone L. Diagnostic and Prognostic Significance of a Four-miRNA Signature in Colorectal Cancer. Int J Mol Sci 2025; 26:1219. [PMID: 39940987 PMCID: PMC11818852 DOI: 10.3390/ijms26031219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer and one of the leading causes of cancer death worldwide. Despite diagnostic and therapeutic advances, CRC mortality remains high, especially in industrialized countries. Numerous studies have highlighted the pathogenetic role of altered microRNA (miRNA) expression among the various factors contributing to the development and progression of colorectal cancer (CRC). However, the data regarding specific miRNAs involved in CRC pathogenesis remain inconsistent, and no miRNAs have been recognized so far as reliable or effective biomarkers for the diagnosis of this tumor type. To identify novel miRNA biomarkers in CRC, this study validated the expression levels of a four-miRNA signature predicted to be involved in CRC by analyzing both tissue and liquid biopsy samples. Our experimental and bioinformatics results highlighted the diagnostic potential of hsa-miR-21-5p, hsa-miR-503-5p, and hsa-miR-375, as well as the potential prognostic value of hsa-miR-497-5p overexpression and hsa-miR-375-3p downregulation. Overall, the results obtained suggest the diagnostic and prognostic significance of this four-miRNA signature in CRC.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Daria Ricci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Antonio Di Cataldo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| |
Collapse
|
8
|
Xu F, Chen M, Lin Y, Zhou S, Li J, Yu Y, Xu J, Wu W, Chen Y, Zhang H, Wei Y, Wang W. Functional Three-Dimensional Zeolitic Imidazolate Framework with an Ordered Macroporous Structure for the Isolation of Extracellular Vesicles. Anal Chem 2024; 96:17640-17648. [PMID: 39440634 DOI: 10.1021/acs.analchem.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.
Collapse
Affiliation(s)
- Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiayu Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinshuang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Park JS, Choi JA, Hyun DH, Byeon C, Kwak SG, Park JS, Hong S. Revisiting the diagnostic performance of exosomes: harnessing the feasibility of combinatorial exosomal miRNA profiles for colorectal cancer diagnosis. Discov Oncol 2024; 15:605. [PMID: 39476213 PMCID: PMC11525371 DOI: 10.1007/s12672-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The challenges associated with liquid biopsy of colorectal cancer (CRC) are closely linked to the substantial variations observed in gene expression profiles among patients. This variability complicates the selection of an ideal biomarker for accurate diagnosis. In this report, we propose that employing a combination of miRNAs offers a better change for enhancing the accuracy of CRC diagnosis compared to solely relying on single miRNAs. As an illustrative example, we measured 9 miRNAs from 45 patient samples (comprising 31 CRC cases and 14 healthy controls) via RT-qPCR. We then utilized two methods: (1) LASSO regression for marker ranking and (2) linear discriminant analysis (LDA) to identify the optimal weighted combination of multiple markers. Our data indicates that combination of triple markers, selected based on their ranking, exhibited the highest diagnostic performance, including a sensitivity of 93.6% (95% confidence interval, CI 79.3-98.9%), specificity of 100% (CI 78.5-100.0%), positive predictive value (PPV) of 100%, negative predictive value (NPV) of 87.5%, and an overall accuracy of 95.6%. In contrast, the diagnostic performance of each individual miRNA used in the triple marker combination ranged from 53.3 to 80.0% in accuracy. While we acknowledge the need for further extensive studies involving larger patient cohorts and the consideration of additional miRNA candidates, our research undeniably highlights the potential of combining multiple markers as a robust methodology for identifying biomarkers among heterogeneous patient profiles.
Collapse
Affiliation(s)
- Jin Sung Park
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jin Ah Choi
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Da Han Hyun
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chorok Byeon
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jun Seok Park
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Seonki Hong
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
11
|
Zhou F, Pan L, Ma X, Ye J, Xu Z, Yuan C, Shi C, Yang D, Luo Y, Li M, Wang P. In Situ, Fusion-Free, Multiplexed Detection of Small Extracellular Vesicle miRNAs for Cancer Diagnostics. Anal Chem 2024; 96:15665-15673. [PMID: 39298294 DOI: 10.1021/acs.analchem.4c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Tumor-derived small extracellular vesicle (sEV) microRNAs (miRNAs) are emerging biomarkers for cancer diagnostics. Conventional sEV miRNA detection methods necessitate the lysis of sEVs, rendering them laborious and time-consuming and potentially leading to damage or loss of miRNAs. Membrane fusion-based in situ detection of sEV miRNAs involves the preparation of probe-loaded vesicles (e.g., liposomes or cellular vesicles), which are typically sophisticated and require specialist equipment. Membrane perforation methods employ chemical treatments that can induce severe miRNA degradation or leaks. Inspired by previous studies that loaded nucleic acids into EVs or cells using hydrophobic tethers for therapeutic applications, herein, we repurposed this strategy by conjugating a hydrophobic tether onto molecular beacons to aid their transportation into sEVs, allowing for in situ detection of miRNAs in a fusion-free and multiplexing manner. This method enables simultaneous detection of multiple miRNA species within serum-derived sEVs for the diagnosis of prostate cancer, breast cancer, and gastric cancer with an accuracy of 83.3%, 81.8%, and 100%, respectively, in a cohort of 66 individuals, indicating that it holds a high application potential in clinical diagnostics.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Pan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhihao Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caiqing Yuan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chenzhi Shi
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Luo
- Center of Clinical Laboratory Medicine, Chongqing People's Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming 650050, Yunnan, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Yin H, Xie J, Xing S, Lu X, Yu Y, Ren Y, Tao J, He G, Zhang L, Yuan X, Yang Z, Huang Z. Machine learning-based analysis identifies and validates serum exosomal proteomic signatures for the diagnosis of colorectal cancer. Cell Rep Med 2024; 5:101689. [PMID: 39168094 PMCID: PMC11384723 DOI: 10.1016/j.xcrm.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
The potential of serum extracellular vesicles (EVs) as non-invasive biomarkers for diagnosing colorectal cancer (CRC) remains elusive. We employed an in-depth 4D-DIA proteomics and machine learning (ML) pipeline to identify key proteins, PF4 and AACT, for CRC diagnosis in serum EV samples from a discovery cohort of 37 cases. PF4 and AACT outperform traditional biomarkers, CEA and CA19-9, detected by ELISA in 912 individuals. Furthermore, we developed an EV-related random forest (RF) model with the highest diagnostic efficiency, achieving AUC values of 0.960 and 0.963 in the train and test sets, respectively. Notably, this model demonstrated reliable diagnostic performance for early-stage CRC and distinguishing CRC from benign colorectal diseases. Additionally, multi-omics approaches were employed to predict the functions and potential sources of serum EV-derived proteins. Collectively, our study identified the crucial proteomic signatures in serum EVs and established a promising EV-related RF model for CRC diagnosis in the clinic.
Collapse
Affiliation(s)
- Haofan Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China; Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yu Yu
- Department of Breast Surgery, Shen Shan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Yong Ren
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), PAZHOU LAB, No. 70 Yuean Road, Haizhu District, Guangzhou, Guangdong, China
| | - Jian Tao
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Guirong He
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lijun Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China; Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Min L, Bu F, Meng J, Liu X, Guo Q, Zhao L, Li Z, Li X, Zhu S, Zhang S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. eLife 2024; 12:RP88675. [PMID: 39121006 PMCID: PMC11315448 DOI: 10.7554/elife.88675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Jingxin Meng
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | | | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | | | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking UniversityBeijingChina
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| |
Collapse
|
14
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Liu J, Shen T, Zhang Y, Wei X, Bao Y, Ai R, Gan S, Wang D, Lai X, Zhao L, Zhou W, Fang X. Cell dehydration enables massive production of engineered membrane vesicles with therapeutic functions. J Extracell Vesicles 2024; 13:e12483. [PMID: 39051765 PMCID: PMC11270585 DOI: 10.1002/jev2.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising biomaterials for the treatment of different disease. However, only handful types of EVs with clinical transformation potential have been reported to date, and their preparation on a large scale under biosafety-controlled conditions is limited. In this study, we characterize a novel type of EV with promising clinical application potential: dehydration-induced extracellular vesicles (DIMVs). DIMV is a type of micron-diameter cell vesicle that contains more bioactive molecules, such as proteins and RNA, but not DNA, than previously reported cell vesicles. The preparation of DIMV is extraordinarily straightforward, which possesses a high level of biosafety, and the protein utilization ratio is roughly 600 times greater than that of naturally secreted EVs. Additional experiments demonstrate the viability of pre- or post-isolation DIMV modification, including gene editing, nucleic acid encapsulation or surface anchoring, size adjustment. Finally, on animal models, we directly show the biosafety and immunogenicity of DIMV, and investigate its potential application as tumour vaccine or drug carrier in cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- School of Life SciencesFaculty of MedicineTianjin UniversityTianjinPR China
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Tingting Shen
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Yu Zhang
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Xiaojian Wei
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Yuting Bao
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Rui Ai
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
- School of Molecular MedicineHangzhou Institute for Advanced Study, UCASHangzhouPR China
| | - Shaoju Gan
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Dachi Wang
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Xin Lai
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Libo Zhao
- Department of R&DEcho Biotech Co., LtdBeijingPR China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
| | - Xiaohong Fang
- School of Life SciencesFaculty of MedicineTianjin UniversityTianjinPR China
- Hangzhou Institute of Medicine (HIM)University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of SciencesHangzhouZhejiangPR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and NanotechnologyChinese Academy of ScienceBeijingPR China
- School of Molecular MedicineHangzhou Institute for Advanced Study, UCASHangzhouPR China
| |
Collapse
|
16
|
Fu GQ, Wang YY, Xu YM, Bian MM, Zhang L, Yan HZ, Gao JX, Li JL, Chen YQ, Zhang N, Ding SQ, Wang R, Li JY, Hu JG, Lü HZ. Exosomes derived from vMIP-II-Lamp2b gene-modified M2 cells provide neuroprotection by targeting the injured spinal cord, inhibiting chemokine signals and modulating microglia/macrophage polarization in mice. Exp Neurol 2024; 377:114784. [PMID: 38642665 DOI: 10.1016/j.expneurol.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1β, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, PR China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jiang-Yan Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
17
|
Skryabin GO, Beliaeva AA, Enikeev AD, Tchevkina EM. Extracellular Vesicle miRNAs in Diagnostics of Gastric Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1211-1238. [PMID: 39218020 DOI: 10.1134/s0006297924070058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiya A Beliaeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
18
|
Wang H, Zhan Q, Ning M, Guo H, Wang Q, Zhao J, Bao P, Xing S, Chen S, Zuo S, Xia X, Li M, Wang P, Lu ZJ. Depletion-assisted multiplexed cell-free RNA sequencing reveals distinct human and microbial signatures in plasma versus extracellular vesicles. Clin Transl Med 2024; 14:e1760. [PMID: 39031987 PMCID: PMC11259601 DOI: 10.1002/ctm2.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Cell-free long RNAs in human plasma and extracellular vesicles (EVs) have shown promise as biomarkers in liquid biopsy, despite their fragmented nature. METHODS To investigate these fragmented cell-free RNAs (cfRNAs), we developed a cost-effective cfRNA sequencing method called DETECTOR-seq (depletion-assisted multiplexed cell-free total RNA sequencing). DETECTOR-seq utilised a meticulously tailored set of customised guide RNAs to remove large amounts of unwanted RNAs (i.e., fragmented ribosomal and mitochondrial RNAs) in human plasma. Early barcoding strategy was implemented to reduce costs and minimise plasma requirements. RESULTS Using DETECTOR-seq, we conducted a comprehensive analysis of cell-free transcriptomes in both whole human plasma and EVs. Our analysis revealed discernible distributions of RNA types in plasma and EVs. Plasma exhibited pronounced enrichment in structured circular RNAs, tRNAs, Y RNAs and viral RNAs, while EVs showed enrichment in messenger RNAs (mRNAs) and signal recognition particle RNAs (srpRNAs). Functional pathway analysis highlighted RNA splicing-related ribonucleoproteins (RNPs) and antimicrobial humoral response genes in plasma, while EVs demonstrated enrichment in transcriptional activity, cell migration and antigen receptor-mediated immune signals. Our study indicates the comparable potential of cfRNAs from whole plasma and EVs in distinguishing cancer patients (i.e., colorectal and lung cancer) from healthy donors. And microbial cfRNAs in plasma showed potential in classifying specific cancer types. CONCLUSIONS Our comprehensive analysis of total and EV cfRNAs in paired plasma samples provides valuable insights for determining the need for EV purification in cfRNA-based studies. We envision the cost effectiveness and efficiency of DETECTOR-seq will empower transcriptome-wide investigations in the fields of cfRNAs and liquid biopsy. KEYPOINTS DETECTOR-seq (depletion-assisted multiplexed cell-free total RNA sequencing) enabled efficient and specific depletion of sequences derived from fragmented ribosomal and mitochondrial RNAs in plasma. Distinct human and microbial cell-free RNA (cfRNA) signatures in whole Plasma versus extracellular vesicles (EVs) were revealed. Both Plasma and EV cfRNAs were capable of distinguishing cancer patients from normal individuals, while microbial RNAs in Plasma cfRNAs enabled better classification of cancer types than EV cfRNAs.
Collapse
Affiliation(s)
- Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
- Geneplus‐Beijing InstituteBeijingChina
| | - Qing Zhan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| | - Meng Ning
- Tianjin Third Central HospitalTianjinChina
| | - Hongjie Guo
- Department of Interventional Radiology and Vascular SurgeryPeking University First HospitalBeijingChina
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
- School of Life SciencesPeking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Tsinghua UniversityBeijingChina
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| | - Shanwen Chen
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Shuai Zuo
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | | | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Pengyuan Wang
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
19
|
Shi X, Zhao X, Xue J, Jia E. Extracellular vesicle biomarkers in circulation for colorectal cancer detection: a systematic review and meta-analysis. BMC Cancer 2024; 24:623. [PMID: 38778252 PMCID: PMC11110411 DOI: 10.1186/s12885-024-12312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
We provided an overview which evaluated the diagnostic performance of circulation EV biomarkers for CRC from PubMed, Medline, and Web of Science until 21 August 2022.Weidentified 48 studies that involved 7727 participants and evaluated 162 plasma/serum individual EV biomarkers including 117 RNAs and 45 proteins, as well as 45 EV biomarker panels for CRC detection. 12 studies evaluated the diagnostic performance of EV biomarkers for early CRC. The summarized sensitivity, specificity, and AUC value of individual EV RNAs and EV RNA panels were 76%, 75%, 0.87 and 82%, 79% and 0.90, respectively. Meanwhile, those of individual EV proteins and EV protein panels were 85%, 84%, 0.92 and 87%, 83%, 0.92, respectively. These results indicated that EV biomarker panels revealed superior diagnostic performance than the corresponding individual biomarkers. In early CRC, EV biomarkers showed available diagnostic value with the sensitivity, specificity, and AUC value of 80%, 75%, and 0.89.In subgroup analyses, EV miRNAs and LncRNAs held similar diagnostic value with the sensitivity, specificity and AUC value of 75%, 78%, 0.90 and 79%, 72%, 0.83, which was highly consistent with the whole EV RNAs. Significantly, the diagnostic values of EV miRNAs in plasma were marginally higher than those based on serum. In detail, the sensitivity, specificity, and AUC values were 79%, 81%, and 0.92 in plasma, as well as 74%, 77%, and 0.88 in serum, respectively. Therefore, circulation EV biomarkers could be considered as a promising biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Li G, Chen W, Jiang K, Huang J, Zhong J, Liu X, Wei T, Gong R, Li Z, Zhu J, Shi H, Lei J. Exosome-mediated Delivery of miR-519e-5p Promotes Malignant Tumor Phenotype and CD8+ T-Cell Exhaustion in Metastatic PTC. J Clin Endocrinol Metab 2024; 109:1601-1617. [PMID: 38078691 DOI: 10.1210/clinem/dgad725] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 05/18/2024]
Abstract
CONTEXT Distant metastases are the primary cause of therapy failure and mortality in patients with papillary thyroid carcinomas (PTCs). However, the underlying mechanism responsible for the initiation of tumor cell dissemination and metastasis in PTCs has rarely been investigated. OBJECTIVE The aim of this study was to investigate effects and underlying molecular mechanisms of circulating exosomal microRNAs (miRNAs) in distant metastatic PTCs. METHODS The most relevant circulating exosomal miRNA to distant metastatic PTCs were verified between distant metastatic PTCs and nondistant metastatic PTCs by miRNA microarray, quantitative real-time polymerase chain reaction (qRT-PCR) assays and receiver operating characteristic (ROC) curves. The parental and recipient cells of that circulating exosomal miRNA were then explored. In vitro and in vivo experiments were further performed to elucidate the function and potential mechanisms of circulating exosomal miRNAs that contribute to the development of distant metastases. RESULTS We determined that PTC-derived exosomal miR-519e-5p was significantly upregulated in the circulatory system in distant metastatic PTCs. Further tests demonstrated that PTC cells can acquire a more malignant phenotype via hnRNPA2B1-mediated sorting of tumor suppressor miR-519e-5p into exosomes to activate Wnt signaling pathway via upregulating PLAGL2. Furthermore, miR-519e-5p included in PTC-derived exosomes can be transferred to recipient CD8+ T cells and aid in tumor immune escape in distant organs through inhibiting Notch signaling pathway by downregulating NOTCH2. CONCLUSION Our findings highlight the dual role of PTC-derived exosomal miR-519e-5p in distant metastasis, which may improve our understanding of exosome-mediated distant metastatic mechanisms.
Collapse
Affiliation(s)
- Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Jiang
- Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinjing Zhong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowei Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rixiang Gong
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hubing Shi
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
21
|
Xie J, Xing S, Jiang H, Zhang J, Li D, Niu S, Huang Z, Yin H. Extracellular vesicles-derived CXCL4 is a candidate serum tumor biomarker for colorectal cancer. iScience 2024; 27:109612. [PMID: 38632995 PMCID: PMC11022053 DOI: 10.1016/j.isci.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Extracellular vesicles (EVs) were promising circulating biomarkers for multiple diseases, but whether serum EVs-derived proteins could be used as a reliable tumor biomarker for colorectal cancer (CRC) remained inconclusive. In this study, we identified CXCL4 by a 4D data-independent acquisition-based quantitative proteomics assay of serum EVs-derived proteins in 40 individuals and subsequently analyzed serum EVs-derived CXCL4 levels by ELISA in 2 cohorts of 749 individuals. The results revealed that EVs-derived CXCL4 levels were dramatically elevated in CRC patients than in benign colorectal polyp patients or healthy controls (HC). Furthermore, receiver operating characteristic curves revealed that EVs-derived CXCL4 exhibited superior diagnostic performance with area under the curve of 0.948 in the training cohort. Additionally, CXCL4 could effectively distinguish CRC in stage I/II from HC. Notably, CRC patients with high levels of EVs-derived CXCL4 have shorter 2-year progression-free survival than those with low levels. Overall, our findings demonstrated that serum EVs-derived CXCL4 was a candidate diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongbo Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiaju Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daxiao Li
- Department of Ophtalmology and ENT, Shenzhen Longgang District Second People’s Hospital, Shenzhen, Guangdong, China
| | - Shiqiong Niu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Haofan Yin
- Department of Laboratory Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Abeysinghe P, Turner N, Mitchell MD. A comparative analysis of small extracellular vesicle (sEV) micro-RNA (miRNA) isolation and sequencing procedures in blood plasma samples. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:119-137. [PMID: 39698410 PMCID: PMC11648519 DOI: 10.20517/evcna.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 12/20/2024]
Abstract
Aims Analysis of miRNA (18-23nt) encapsulated in small extracellular vesicles (sEVs) (diameter ~30-200 nm) is critical in understanding the diagnostic and therapeutic value of sEV miRNA. However, various sEV enrichment techniques yield different quantities and qualities of sEV miRNA. Here, we compare the efficacy of three sEV isolation techniques in four combinations for miRNA next-generation sequencing. Methods Blood plasma from four Holstein-Friesian dairy cows (Bos taurus) (n = 4) with similar genetic traits and physical characteristics were pooled to isolate sEV. Ultracentrifugation (UC) (100,000 × g, 2 h at 4 °C), size-exclusion chromatography (SEC) and ultrafiltration (UF) were used to design four groups of sEV isolations (UC+SEC, SEC+UC, SEC+UF and UC+SEC+UF). sEV miRNAs were isolated using a combination of TRIzol, Chloroform and miRNeasy mini kit (n = 4/each), later sequenced utilizing Novaseq S1 platform (single-end 100 bp sequencing). Results All four sEV methods yielded > 1,700 miRNAs and sEV miRNAs demonstrated a clear separation from control blood plasma circulating miRNA (PCA analysis). MiR-381-3p, miR-23-3p, and miR-18b-3p are among the 25 miRNAs unique to sEV, indicating potential sEV-specific miRNA markers. Further, those 25 miRNAs mostly regulate immune-related functions, indicating the value of sEV miRNA cargo in immunology. Conclusion The four sEV miRNA isolation methods employed in this study are valid techniques. The choice of method depends on the research question and study design. If purity is of concern, the UC+SEC method resulted in the best particles/µg protein ratio, which is often used as an indication of sample purity. These results could eventually establish sEV miRNAs as effective diagnostic and therapeutic tools of immunology.
Collapse
Affiliation(s)
- Pevindu Abeysinghe
- Centre for Children’s Health Research, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4101, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Natalie Turner
- Centre for Children’s Health Research, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4101, Australia
| | - Murray D. Mitchell
- Centre for Children’s Health Research, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4101, Australia
| |
Collapse
|
23
|
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy. Front Mol Biosci 2024; 11:1356780. [PMID: 38449696 PMCID: PMC10916008 DOI: 10.3389/fmolb.2024.1356780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.
Collapse
Affiliation(s)
| | | | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
24
|
Li Y, Liao W, Huang W, Liu F, Ma L, Qian X. Mechanism of gambogic acid repressing invasion and metastasis of colorectal cancer by regulating macrophage polarization via tumor cell-derived extracellular vesicle-shuttled miR-21. Drug Dev Res 2024; 85:e22141. [PMID: 38349264 DOI: 10.1002/ddr.22141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 02/15/2024]
Abstract
Colorectal cancer (CRC) is a major cause of mortality and morbidity. Gambogic acid (GA) is a promising antitumor drug for treating CRC. We aimed to elucidate its mechanism in CRC invasion/metastasis via tumor cell-derived extracellular vesicle (EV)-carried miR-21. Nude mice peritoneal carcinomatosis (PC) model was subjected to GA treatment liver collection, followed by observation/counting of metastatic liver tissues/liver metastatic nodules by hematoxylin and eosin staining. miR-21 expression in metastatic liver tissues/CD68 + CD86, CD68 + CD206 cell percentages and M2 macrophage marker CD206 level in tumor tissues/interleukin (IL)-12 and IL-10 levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR)/flow cytometry/enzyme-linked immunosorbent assay. HT-29 cells were treated with GA/miR-21 mimics/negative control for 48 h. miR-21 expression/cell proliferation/migration/invasion/apoptosis were assessed by RT-qPCR/cell counting kit-8/scratch assay/transwell assay/flow cytometry. EVs were extracted from HT-29 cells and identified by transmission electron microscope/nanoparticle tracking analysis/Western blot. IL-4/IL-13-induced macrophages/PC nude mice were treated with GA and EVs, with the internalization of EVs by macrophages assessed through the uptake test. After intraperitoneal injection of GA, PC nude mice exhibited decreased tumor cell density/irregular cell number/liver metastatic nodule number/miR-21 expression, and CRC cells manifested reduced CD68 + CD206 cells/IL-10/miR-21/proliferation/migration/invasion and increased CD68 + CD86 cells/IL-12/apoptosis, while these trends were opposite after miR-21 overexpression, implying that GA curbed CRC/cell invasion/metastasis and macrophage polarization by diminishing miR-21 levels. miR-21 was encapsulated in HT-29 cell-derived EVs. M2 polarization elevated CD206 cells/IL-10, which were decreased by simultaneous GA treatment. EVs could be uptaken by macrophages. CRC cell-EV-miR-21 annulled the suppression effects of GA on macrophage M2 polarization. GA suppressed macrophage M2 polarization by lessening tumor cell derived-EV-shuttled miR-21, thereby weakening CRC invasion/metastasis.
Collapse
Affiliation(s)
- You Li
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Xuzhou Citiy Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wenqi Liao
- Department of Cardiology, Xuzhou City Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wei Huang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fenglin Liu
- Department of Oncology, Xuzhou Citiy Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Lin Ma
- Department of Oncology, Xuzhou Citiy Hospital of TCM, Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Xiaoping Qian
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
25
|
Xiao Q, Yan X, Sun Y, Tang Y, Hou R, Pan X, Zhu X. Brain-Derived Exosomal miRNA Profiles upon Experimental SAE Rats and Their Comparison with Peripheral Exosomes. Mol Neurobiol 2024; 61:772-782. [PMID: 37659038 DOI: 10.1007/s12035-023-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction secondary to body infection without overt central nervous system infection. Dysregulation of miRNA expression in the transcriptome can spread through RNA transfer in exosomes, providing an early signal of impending neuropathological changes in the brain. Here, we comprehensively analyzed brain-derived exosomal miRNA profiles in SAE rats (n = 3) and controls (n = 3). We further verified the differential expression and correlation of brain tissue, cerebrospinal fluid, and plasma exosomal miRNAs in SAE rats. High-throughput sequencing of brain-derived exosomal miRNAs identified 101 differentially expressed miRNAs, of which 16 were downregulated and 85 were upregulated. Four exosomal miRNAs (miR-127-3p, miR-423-3p, mR-378b, and miR-106-3p) were differentially expressed and correlated in the brain tissue, cerebrospinal fluid, and plasma, revealing the potential use of miRNAs as SAE liquid brain biopsies. Understanding exosomal miRNA profiles in SAE brain tissue and exploring the correlation with peripheral exosomal miRNA can contribute to a comprehensive understanding of miRNA changes in the SAE pathological process and provide the possibility of establishing early diagnostic assays.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoqian Yan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
27
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
28
|
Ma M, Chen S, Zhang X, Yang R, Zhang L, Guo K, Wang J, Jia H, You Y, Han B. Identification and functional analysis of circulating small extracellular vesicle lncRNA signatures in children with fulminant myocarditis. J Cell Mol Med 2024; 28:e18034. [PMID: 37942713 PMCID: PMC10826448 DOI: 10.1111/jcmm.18034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Fulminant myocarditis (FM) is the most serious type of myocarditis. However, the molecular mechanism underlying the pathogenesis of FM has not been fully elucidated. Small extracellular vesicles (sEVs) play important roles in many diseases, but any potential role in paediatric FM has not been reported. Here, the differential signatures of lncRNAs in plasma sEVs were studied in FM children and healthy children using transcriptome sequencing followed by functional analysis. Then immune-related lncRNAs were screened to study their role in immune mechanisms, the levels and clinical relevance of core immune-related lncRNAs were verified by qRT-PCR in a large sample size. Sixty-eight lncRNAs had increased levels of plasma sEVs in children with FM and 11 had decreased levels. Functional analysis showed that the sEVs-lncRNAs with different levels were mainly related to immunity, apoptosis and protein efflux. Seventeen core immune-related sEVs-lncRNAs were screened, functional enrichment analysis showed that these lncRNAs were closely related to immune activation, immune cell migration and cytokine pathway signal transduction. The results of the study show that sEVs-lncRNAs may play an important role in the pathogenesis of fulminant myocarditis in children, especially in the mechanism of immune regulation.
Collapse
Affiliation(s)
- Mengjie Ma
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of PediatricsThe Second Affiliated Hospital of Shandong First Medical UniversityTaianShandongChina
| | - Siyu Chen
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xinyue Zhang
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Rulin Yang
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Li Zhang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Kaiyin Guo
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jing Wang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Hailin Jia
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yingnan You
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Bo Han
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
29
|
Zhang Y, Zhu YY, Chen Y, Zhang L, Wang R, Ding X, Zhang H, Zhang CY, Zhang C, Gu WJ, Wang C, Wang JJ. Urinary-derived extracellular vesicle microRNAs as non-invasive diagnostic biomarkers for early-stage renal cell carcinoma. Clin Chim Acta 2024; 552:117672. [PMID: 37995985 DOI: 10.1016/j.cca.2023.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND AIMS The potential of urinary-derived extracellular vesicle (uEV) microRNAs (miRNAs) as noninvasive molecular biomarkers for identifying early-stage renal cell carcinoma (RCC) patients is rarely explored. The present study aims to explore the possibility of uEV miRNAs as novel molecular biomarkers for distinguishing early-stage RCC. MATERIALS AND METHODS uEVs were extracted by ExoQuick-TC™ kit and miRNA concentrations were measured by RT-qPCR. ROC curves and bioinformatics analysis were employed to predict the diagnostic efficacy and regulatory mechanisms of dysregulated miRNAs. RESULTS Through a multiphase case-control study on uEV miRNAs screening, training, and validation in RCC cells (ACHN, Caki-1) and control cells (HK-2) and in uEVs of 125 RCC patients and 128 age- and sex-matched controls, we successfully identified four uEVs miRNAs (miR-135b-5p, miR-196b-5p, miR-200c-3p, and miR-203a-3p) were significantly and stably upregulated in RCC in vitro and in vivo. When adjusted with estimated glomerular filtration rate (eGFR), the AUC of the three-uEV miRNA panel (miR-135b-5p, miR-200c-3p, and miR-203a-3p) was 0.785 (95 % CI = 0.729-0.842, P < 0.0001) for discriminating RCC patients from controls. Notably, this panel exhibited similar performance in distinguishing early-stage (stage Ⅰ) RCC patients, with an AUC of 0.786 (95 %CI = 0.727-0.844, P < 0.0001). Bioinformatics analysis predicted that candidate miRNAs were involved in cancer progressing. CONCLUSION Our study identified a four uEV miRNAs panel (miR-135b-5p, miR-196b-5p, miR-200c-3p, and miR-203a-3p) may serve as an auxiliary noninvasive indication of early-stage RCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Yuan-Yuan Zhu
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Yang Chen
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Lele Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Rong Wang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Xiaoyu Ding
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Huizi Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Chen-Yu Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wan-Jian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jun-Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
30
|
Zhou X, Liu M, Sun L, Cao Y, Tan S, Luo G, Liu T, Yao Y, Xiao W, Wan Z, Tang J. Circulating small extracellular vesicles microRNAs plus CA-125 for treatment stratification in advanced ovarian cancer. J Transl Med 2023; 21:927. [PMID: 38129848 PMCID: PMC10740240 DOI: 10.1186/s12967-023-04774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND No residual disease (R0 resection) after debulking surgery is the most critical independent prognostic factor for advanced ovarian cancer (AOC). There is an unmet clinical need for selecting primary or interval debulking surgery in AOC patients using existing prediction models. METHODS RNA sequencing of circulating small extracellular vesicles (sEVs) was used to discover the differential expression microRNAs (DEMs) profile between any residual disease (R0, n = 17) and no residual disease (non-R0, n = 20) in AOC patients. We further analyzed plasma samples of AOC patients collected before surgery or neoadjuvant chemotherapy via TaqMan qRT-PCR. The combined risk model of residual disease was developed by logistic regression analysis based on the discovery-validation sets. RESULTS Using a comprehensive plasma small extracellular vesicles (sEVs) microRNAs (miRNAs) profile in AOC, we identified and optimized a risk prediction model consisting of plasma sEVs-derived 4-miRNA and CA-125 with better performance in predicting R0 resection. Based on 360 clinical human samples, this model was constructed using least absolute shrinkage and selection operator (LASSO) and logistic regression analysis, and it has favorable calibration and discrimination ability (AUC:0.903; sensitivity:0.897; specificity:0.910; PPV:0.926; NPV:0.871). The quantitative evaluation of Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI) suggested that the additional predictive power of the combined model was significantly improved contrasted with CA-125 or 4-miRNA alone (NRI = 0.471, IDI = 0.538, p < 0.001; NRI = 0.122, IDI = 0.185, p < 0.01). CONCLUSION Overall, we established a reliable, non-invasive, and objective detection method composed of circulating tumor-derived sEVs 4-miRNA plus CA-125 to preoperatively anticipate the high-risk AOC patients of residual disease to optimize clinical therapy.
Collapse
Affiliation(s)
- Xiaofang Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Mu Liu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Lijuan Sun
- Department of Gynecology and Obstetrics, The Central Hospital of Shaoyang, Shaoyang, 422000, People's Republic of China
| | - Yumei Cao
- Department of Gynecology and Obstetrics, The Central Hospital of Shaoyang, Shaoyang, 422000, People's Republic of China
| | - Shanmei Tan
- Department of Gynecology and Obstetrics, The First People's Hospital of Huaihua, The Affiliated Huaihua Hospital of University of South China, Huaihua, 418000, People's Republic of China
| | - Guangxia Luo
- Department of Gynecology and Obstetrics, The First People's Hospital of Huaihua, The Affiliated Huaihua Hospital of University of South China, Huaihua, 418000, People's Republic of China
| | - Tingting Liu
- Department of Gynecology and Obstetrics, The First People's Hospital of Changde, Changde, 415000, People's Republic of China
| | - Ying Yao
- Department of Gynecology and Obstetrics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Wangli Xiao
- Department of Gynecology and Obstetrics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Ziqing Wan
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China.
- Department of Gynecologic Oncology, Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Address: 283 Tongzipo Road, Yuelu District, Changsha, 410013, People's Republic of China.
| |
Collapse
|
31
|
Tavukcuoglu Z, Akkaya-Ulum YZ, Yersal N, Horzum U, Akbaba TH, Karadag O, Esendagli G, Korkusuz P, Ozen S, Balci-Peynircioglu B. Characterization of serum extracellular vesicles and their differential level of miR-197-3p in familial Mediterranean fever patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:557-571. [PMID: 38041620 DOI: 10.1080/15257770.2023.2283187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES The aim of this study was to analyze the existence of miRNAs derived from serum extracellular vesicles (EVs) in familial Mediterranean fever (FMF) patients. Our group has previously shown the association of certain miRNAs with FMF. METHODS Serum samples of adult and pediatric FMF patients and their age matched controls were used in the study. Serum EVs were characterized by transmission electron microscopy (TEM) and flow cytometry. RNAs were isolated from EVs and levels of miR-197-3p and miR-20a-5p were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS EV characterization using TEM demonstrated fraction of 30-120 nm-sized particles with cup-shaped morphology. Flow cytometry results revealed the CD63 and CD81 positive populations as 53.3% in serum EVs. We showed that miR-197-3p and miR-20a-5p were "circulating miRNAs" and carried in EVs of FMF patients and controls. In FMF patients, level of miR-197-3p was significantly decreased. There was no significant alteration in the level for miR-20a-5p between patients and controls. CONCLUSION We showed the differential level of miR-197-3p in serum EVs of the FMF patients. miR-197-3p's potential as a biomarker and therapeutic target in FMF pathogenesis warrants further investigation.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nilgun Yersal
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Utku Horzum
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Omer Karadag
- Department of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
32
|
Vahabi M, Comandatore A, Centra C, Blandino G, Morelli L, Giovannetti E. Thinking small to win big? A critical review on the potential application of extracellular vesicles for biomarker discovery and new therapeutic approaches in pancreatic cancer. Semin Cancer Biol 2023; 97:50-67. [PMID: 37956937 DOI: 10.1016/j.semcancer.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly form of cancer, with limited progress in 5-year survival rates despite significant research efforts. The main challenges in treating PDAC include difficulties in early detection, and resistance to current therapeutic approaches due to aggressive molecular and microenvironment features. These challenges emphasize the importance of identifying clinically validated biomarkers for early detection and clinical management. Extracellular vesicles (EVs), particularly exosomes, have emerged as crucial mediators of intercellular communication by transporting molecular cargo. Recent research has unveiled their role in initiation, metastasis, and chemoresistance of PDAC. Consequently, utilizing EVs in liquid biopsies holds promise for the identification of biomarkers for early detection, prognosis, and monitoring of drug efficacy. However, numerous limitations, including challenges in isolation and characterization of homogeneous EVs populations, as well as the absence of standardized protocols, can affect the reliability of studies involving EVs as biomarkers, underscoring the necessity for a prudent approach. EVs have also garnered considerable attention as a promising drug delivery system and novel therapy for tumors. The loading of biomolecules or chemical drugs into exosomes and their subsequent delivery to target cells can effectively impede tumor progression. Nevertheless, there are obstacles that must be overcome to ensure the accuracy and efficacy of therapies relying on EVs for the treatment of tumors. In this review, we examine both recent advancements and remaining obstacles, exploring the potential of utilizing EVs in biomarker discovery as well as for the development of drug delivery vehicles.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Annalisa Comandatore
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Centra
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, Rome, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
33
|
Park J, Bae M, Seong H, Hong JH, Kang SJ, Park KH, Shin S. An innovative charge-based extracellular vesicle isolation method for highly efficient extraction of EV-miRNAs from liquid samples: miRQuick. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e126. [PMID: 38938899 PMCID: PMC11080872 DOI: 10.1002/jex2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicle-derived microRNAs (EV-miRNAs) are promising biomarkers for early cancer diagnosis. However, existing EV-miRNA extraction technologies have a complex two-step process that results in low extraction efficiency and inconsistent results. This study aimed to develop and evaluate a new single-step extraction method, called miRQuick, for efficient and high-recovery extraction of EV-miRNAs from samples. The miRQuick method involves adding positively charged substances to the sample, causing negatively charged EVs to quickly aggregate and precipitate. A membrane lysate is then added to extract only miRNA. The entire process can be completed within an hour using standard laboratory equipment. We validated the miRQuick method using various analytical techniques and compared its performance to other methods for plasma, urine and saliva samples. The miRQuick method demonstrated significantly higher performance than other methods, not only for blood plasma but also for urine and saliva samples. Furthermore, we successfully extracted and detected nine biomarker candidate miRNAs in the plasma of breast cancer patients using miRQuick. Our results demonstrate that miRQuick is a rapid and efficient method for EV-miRNA extraction with excellent repeatability, making it suitable for various applications including cancer diagnosis.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Micro‐Nano EngineeringKorea UniversitySeoulSouth Korea
- Engineering Research Center for Biofluid BiopsySeoulSouth Korea
| | - Minju Bae
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| | - Hyeonah Seong
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| | - Jin hwa Hong
- Division of Oncology/Hematology, College of MedicineKorea UniversitySeoulSouth Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonSouth Korea
| | - Kyung hwa Park
- Engineering Research Center for Biofluid BiopsySeoulSouth Korea
- Division of Oncology/Hematology, College of MedicineKorea UniversitySeoulSouth Korea
| | - Sehyun Shin
- Department of Micro‐Nano EngineeringKorea UniversitySeoulSouth Korea
- Engineering Research Center for Biofluid BiopsySeoulSouth Korea
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| |
Collapse
|
34
|
Rai S, Bharti PS, Singh R, Rastogi S, Rani K, Sharma V, Gorai PK, Rani N, Verma BK, Reddy TJ, Modi GP, Inampudi KK, Pandey HC, Yadav S, Rajan R, Nikolajeff F, Kumar S. Circulating plasma miR-23b-3p as a biomarker target for idiopathic Parkinson's disease: comparison with small extracellular vesicle miRNA. Front Neurosci 2023; 17:1174951. [PMID: 38033547 PMCID: PMC10684698 DOI: 10.3389/fnins.2023.1174951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.
Collapse
Affiliation(s)
- Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Rani
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, India
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | | | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Raebareli, Uttar Pradesh, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
35
|
Ning S, Chen Y, Li S, Liu M, Liu H, Ye M, Wang C, Pan J, Wei W, Li J, Zhang L. Exosomal miR-99b-5p Secreted from Mesenchymal Stem Cells Can Retard the Progression of Colorectal Cancer by Targeting FGFR3. Stem Cell Rev Rep 2023; 19:2901-2917. [PMID: 37653181 DOI: 10.1007/s12015-023-10606-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Human bone marrow mesenchymal stem cells (BMSCs) are efficient mass producers of exosomes that can potentially be utilized for delivery of miRNAs in cancer therapy. The current study aimed to assess the role of MSC-exosomal miR-99b-5p during the development of colorectal cancer (CRC). The potential value of using plasma levels of exosomal miR-99b-5p for predicting the liver metastasis of colorectal cancer was also assessed. In this study, we found that overexpression of fibroblast growth factor receptor 3 (FGFR3) was associated with tumor progression in CRC and FGFR3 was the target gene of miR-99b-5p, which was down-regulated in CRC tissues. Furthermore, we observed that elevated miR-99b-5p inhibited CRC cell proliferation, invasion and migration, while reduced levels had the opposite effect on CRC cells. Moreover, exosomal miR-99b-5p delivered by BMSCs was able to limit the proliferation, invasion and migration of CRC cells in vitro, as well as suppressing tumor growth in vivo. Collectively, these findings revealed that MSC-derived exosomal miR-99b-5p can be transferred into CRC cells and which can suppress tumor progression by targeting FGFR3. This highlights the potential of using exosomal miR-99b-5p as a novel diagnostic marker for CRC, while providing a therapeutic target to combat CRC.
Collapse
Affiliation(s)
- Shufang Ning
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yusha Chen
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shirong Li
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Mengshu Liu
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Mengling Ye
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Chen Wang
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jinmiao Pan
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Wene Wei
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Litu Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
36
|
Lohajová Behulová R, Bugalová A, Bugala J, Struhárňanská E, Šafranek M, Juráš I. Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer. Physiol Res 2023; 72:S193-S207. [PMID: 37888964 PMCID: PMC10669947 DOI: 10.33549/physiolres.935153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer belongs to multifactorial diseases characterized by uncontrolled growth and proliferation of abnormal cells. Breast cancer, non-small cell lung cancer, and colorectal cancer are the most frequently diagnosed malignancies with a high mortality rate. These carcinomas typically contain multiple genetically distinct subpopulations of tumor cells leading to tumor heterogeneity, which promotes the aggressiveness of the disease. Early diagnosis is necessary to increase patient progression-free survival. Particularly, miRNAs present in exosomes derived from tumors represent potential biomarkers suitable for early cancer diagnosis. Identification of miRNAs by liquid biopsy enables a personalized approach with the subsequent better clinical management of patients. This review article highlights the potential of circulating exosomal miRNAs in early breast, non-small cell lung, and colorectal cancer diagnosis.
Collapse
Affiliation(s)
- R Lohajová Behulová
- Department of Clinical Genetics, St Elizabeth's Cancer Institute, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Min L, Bao H, Bu F, Li X, Guo Q, Liu M, Zhu S, Meng J, Zhang S, Wang S. Machine-Learning-Assisted Procoagulant Extracellular Vesicle Barcode Assay toward High-Performance Evaluation of Thrombosis-Induced Death Risk in Cancer Patients. ACS NANO 2023; 17:19914-19924. [PMID: 37791763 DOI: 10.1021/acsnano.3c04615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) is the most fatal complication in cancer patients. Unfortunately, the frequent misdiagnosis of VTE owing to the lack of accurate and efficient evaluation approaches may cause belated medical intervention and even sudden death. Herein, we present a rapid, easily operable, highly specific, and highly sensitive procoagulant extracellular vesicle barcode (PEVB) assay composed of TiO2 nanoflower (TiNFs) for visually evaluating VTE risk in cancer patients. TiNFs demonstrate rapid label-free EV capture capability by the synergetic effect of TiO2-phospholipids molecular interactions and topological interactions between TiNFs and EVs. From ordinary plasma samples, the PEVB assay can evaluate potential VTE risk by integrating TiNFs-based EV capture and in situ EV procoagulant ability test with machine-learning-assisted clinical data analysis. We demonstrate the feasibility of this PEVB assay in VTE risk evaluation by screening 167 cancer patients, as well as the high specificity (97.1%) and high sensitivity (96.8%), fully exceeding the nonspecific and posterior traditional VTE test. Together, we proposed a TiNFs platform allowing for highly accurate and timely diagnosis of VTE in cancer patients.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Xueqing Li
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou City, Shandong Province 256606, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou City, Shandong Province 256606, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
38
|
Liu C, Chen X, Liu Y, Sun L, Yu Z, Ren Y, Zeng C, Li Y. Engineering Extracellular Matrix-Bound Nanovesicles Secreted by Three-Dimensional Human Mesenchymal Stem Cells. Adv Healthc Mater 2023; 12:e2301112. [PMID: 37225144 PMCID: PMC10723826 DOI: 10.1002/adhm.202301112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Extracellular matrix (ECM) in the human tissue contains vesicles, which are defined as matrix-bound nanovesicles (MBVs). MBVs serve as one of the functional components in ECM, recapitulating part of the regulatory roles and in vivo microenvironment. In this study, extracellular vesicles from culture supernatants (SuEVs) and MBVs are isolated from the conditioned medium or ECM, respectively, of 3D human mesenchymal stem cells. Nanoparticle tracking analysis shows that MBVs are smaller than SuEVs (100-150 nm). Transmission electron microscopy captures the typical cup shape morphology for both SuEVs and MBVs. Western blot reveals that MBVs have low detection of some SuEV markers such as syntenin-1. miRNA analysis of MBVs shows that 3D microenvironment enhances the expression of miRNAs such as miR-19a and miR-21. In vitro functional analysis shows that MBVs can facilitate human pluripotent stem cell-derived forebrain organoid recovery after starvation and promote high passage fibroblast proliferation. In macrophage polarization, 2D MBVs tend to suppress the pro-inflammatory cytokine IL-12β, while 3D MBVs tend to enhance the anti-inflammatory cytokine IL-10. This study has the significance in advancing the understanding of the bio-interface of nanovesicles with human tissue and the design of cell-free therapy for treating neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Zhibin Yu
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University
| | - Changchun Zeng
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University
| |
Collapse
|
39
|
Wang Y, Li X, Wei X, Li L, Bai H, Yan X, Zhang H, Zhao L, Zhou W, Zhao L. Identification of combinatorial miRNA panels derived from extracellular vesicles as biomarkers for esophageal squamous cell carcinoma. MedComm (Beijing) 2023; 4:e377. [PMID: 37731947 PMCID: PMC10507283 DOI: 10.1002/mco2.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs (miRNAs) are relatively stable in blood, emerging as one of the most promising biomarkers in tumor liquid biopsy. Both total and extracellular vesicles (EVs) encapsulated miRNA have been studied for prognostic potential in a variety of cancers. Here, we systematically compared and verified the total and vesicle-derived miRNA expression profiles from plasma samples in healthy controls and patients with esophageal squamous cell carcinoma (ESCC). In the present study, four miRNA species miR-636, miR-7641, miR-28-3p, and miR-1246 that were differentially expressed in ESCC patients were chosen for further study. We first elucidated their essential function in ESCC progression and further explored their preliminary mechanism by identifying target proteins and involving signal pathways. Subsequently, the prognostic miRNA panels including miR-636, miR-7641, miR-1246, and miR-28-3p for ESCC diagnosis were constructed and validated using different cohort. Our results showed that the panel including the above four miRNAs derived from plasma EVs was most effective in distinguishing tumor patients from normal subjects, while integrated plasma EVs-derived miR-1246, miR-28-3p and total plasma miRNAs miR-636, miR-7641 showed the best capability in predicting lymph node metastasis. In summary, our studies revealed that plasma EVs-derived miRNAs could be emerged as promising biomarkers for ESCC diagnosis.
Collapse
Affiliation(s)
- Yaojie Wang
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Xiaoya Li
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Xiaojian Wei
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Lei Li
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Hanyu Bai
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Xi Yan
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Libo Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| |
Collapse
|
40
|
Cha BS, Jang YJ, Lee ES, Kim DY, Woo JS, Son J, Kim S, Shin J, Han J, Kim S, Park KS. Development of a Novel DNA Aptamer Targeting Colorectal Cancer Cell-Derived Small Extracellular Vesicles as a Potential Diagnostic and Therapeutic Agent. Adv Healthc Mater 2023; 12:e2300854. [PMID: 37129521 DOI: 10.1002/adhm.202300854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Colorectal cancer (CRC) as the second leading cause of global cancer deaths poses critical challenges in clinical settings. Cancer-derived small extracellular vesicles (sEVs), which are secreted by cancer cells, have been shown to mediate tumor development, invasion, and even metastasis, and have thus received increasing attention for the development of cancer diagnostic or therapeutic platforms. In the present study, the sEV-targeted systematic evolution of ligands by exponential enrichment (E-SELEX) is developed to generate a high-quality aptamer (CCE-10F) that recognizes and binds to CRC-derived sEVs. Via an in-depth investigation, it is confirmed that this novel aptamer possesses high affinity (Kd = 3.41 nm) for CRC-derived sEVs and exhibits a wide linear range (2.0 × 104 -1.0 × 106 particles µL-1 ) with a limit of detection (LOD) of 1.0 × 103 particles µL-1 . Furthermore, the aptamer discriminates CRC cell-derived sEVs from those derived from normal colon cell, human serum, and other cancer cells, showing high specificity for CRC cell-derived sEVs and significantly suppresses the critical processes of metastasis, including cellular migration, invasion, and angiogenesis, which are originally induced by sEVs themselves. These findings are highly encouraging for the potential use of the aptamer in sEV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Su Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinseo Son
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seokhwan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
41
|
Anastasi F, Botto A, Immordino B, Giovannetti E, McDonnell LA. Proteomics analysis of circulating small extracellular vesicles: Focus on the contribution of EVs to tumor metabolism. Cytokine Growth Factor Rev 2023; 73:3-19. [PMID: 37652834 DOI: 10.1016/j.cytogfr.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The term small extracellular vesicle (sEV) is a comprehensive term that includes any type of cell-derived, membrane-delimited particle that has a diameter < 200 nm, and which includes exosomes and smaller microvesicles. sEVs transfer bioactive molecules between cells and are crucial for cellular homeostasis and particularly during tumor development, where sEVs provide important contributions to the formation of the premetastic niche and to their altered metabolism. sEVs are thus legitimate targets for intervention and have also gained increasing interest as an easily accessible source of biomarkers because they can be rapidly isolated from serum/plasma and their molecular cargo provides information on their cell-of origin. To target sEVs that are specific for a given cell/disease it is essential to identify EV surface proteins that are characteristic of that cell/disease. Mass-spectrometry based proteomics is widely used for the identification and quantification of sEV proteins. The methods used for isolating the sEVs, preparing the sEV sample for proteomics analysis, and mass spectrometry analysis, can have a strong influence on the results and requires careful consideration. This review provides an overview of the approaches used for sEV proteomics and discusses the inherent compromises regarding EV purity versus depth of coverage. Additionally, it discusses the practical applications of the methods to unravel the involvement of sEVs in regulating the metabolism of pancreatic ductal adenocarcinoma (PDAC). The metabolic reprogramming in PDAC includes enhanced glycolysis, elevated glutamine metabolism, alterations in lipid metabolism, mitochondrial dysfunction and hypoxia, all of which are crucial in promoting tumor cell growth. A thorough understanding of these metabolic adaptations is imperative for the development of targeted therapies to exploit PDAC's vulnerabilities.
Collapse
Affiliation(s)
- Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; National Enterprise for NanoScience and NanoTechnology, Scuola Normale Superiore, Pisa, Italy; BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Asia Botto
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Benoit Immordino
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy.
| |
Collapse
|
42
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
43
|
Joo HS, Suh JH, So CM, Jeon HJ, Yoon SH, Lee JM. Emerging Roles of Using Small Extracellular Vesicles as an Anti-Cancer Drug. Int J Mol Sci 2023; 24:14063. [PMID: 37762393 PMCID: PMC10531913 DOI: 10.3390/ijms241814063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are emerging as a novel therapeutic strategy for cancer therapy. Tumor-cell-derived sEVs contain biomolecules that can be utilized for cancer diagnosis. sEVs can directly exert tumor-killing effects or modulate the tumor microenvironment, leading to anti-cancer effects. In this review, the application of sEVs as a diagnostic tool, drug delivery system, and active pharmaceutical ingredient for cancer therapy will be highlighted. The therapeutic efficacies of sEVs will be compared to conventional immune checkpoint inhibitors. Additionally, this review will provide strategies for sEV engineering to enhance the therapeutic efficacies of sEVs. As a bench-to-bedside application, we will discuss approaches to encourage good-manufacturing-practice-compliant industrial-scale manufacturing and purification of sEVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung Min Lee
- School of Life Science, Handong Global University, 558 Handong-ro, Buk-gu, Pohang 37554, Republic of Korea
| |
Collapse
|
44
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
45
|
Tamrin SH, Phelps J, Nezhad AS, Sen A. Critical considerations in determining the surface charge of small extracellular vesicles. J Extracell Vesicles 2023; 12:e12353. [PMID: 37632212 PMCID: PMC10457570 DOI: 10.1002/jev2.12353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Small extracellular vesicles (EVs) have emerged as a focal point of EV research due to their significant role in a wide range of physiological and pathological processes within living systems. However, uncertainties about the nature of these vesicles have added considerable complexity to the already difficult task of developing EV-based diagnostics and therapeutics. Whereas small EVs have been shown to be negatively charged, their surface charge has not yet been properly quantified. This gap in knowledge has made it challenging to fully understand the nature of these particles and the way they interact with one another, and with other biological structures like cells. Most published studies have evaluated EV charge by focusing on zeta potential calculated using classical theoretical approaches. However, these approaches tend to underestimate zeta potential at the nanoscale. Moreover, zeta potential alone cannot provide a complete picture of the electrical properties of small EVs since it ignores the effect of ions that bind tightly to the surface of these particles. The absence of validated methods to accurately estimate the actual surface charge (electrical valence) and determine the zeta potential of EVs is a significant knowledge gap, as it limits the development of effective label-free methods for EV isolation and detection. In this study, for the first time, we show how the electrical charge of small EVs can be more accurately determined by accounting for the impact of tightly bound ions. This was accomplished by measuring the electrophoretic mobility of EVs, and then analytically correlating the measured values to their charge in the form of zeta potential and electrical valence. In contrast to the currently used theoretical expressions, the employed analytical method in this study enabled a more accurate estimation of EV surface charge, which will facilitate the development of EV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Amir Sanati Nezhad
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
46
|
Sun Z, Shi J, Yang C, Chen X, Chu J, Chen J, Wang Y, Zhu C, Xu J, Tang G, Shao S. Identification and evaluation of circulating exosomal miRNAs for the diagnosis of postmenopausal osteoporosis. J Orthop Surg Res 2023; 18:533. [PMID: 37496029 PMCID: PMC10373377 DOI: 10.1186/s13018-023-04020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common condition that leads to a loss of bone density and an increased risk of fractures in women. Recent evidence suggests that exosomal miRNAs are involved in regulating bone development and osteogenesis. However, exosomal miRNAs as biomarkers for PMOP diagnosis have not been systematically evaluated. In this study, we aim to identify PMOP-associated circulating exosomal miRNAs and evaluate their diagnostic performance. METHODS We performed next-generation sequencing and bioinformatics analysis of plasma exosomal miRNAs from 12 PMOP patients and 12 non-osteoporosis controls to identify PMOP-associated exosomal miRNAs, and then validated them in an independent natural community cohort with 26 PMOP patients and 21 non-osteoporosis controls. Exosomes were isolated with the size exclusion chromatography method from the plasma of elder postmenopausal women. The plasma exosomal miRNA profiles were characterized in PMOP paired with controls with next-generation sequencing. Potential plasma exosomal miRNAs were validated by qRT-PCR in the validation cohort, and their performance in diagnosing PMOP was systematically evaluated with the receiver operating characteristic curve. RESULTS Twenty-seven miRNAs were identified as differentially expressed in PMOP versus controls in sequencing data, of which six exosomal miRNAs (miR-196-5p, miR-224-5p, miR320d, miR-34a-5p, miR-9-5p, and miR-98-5p) were confirmed to be differentially expressed in PMOP patients by qRT-PCR in the validation cohort. The three miRNAs combination (miR-34a-5p + miR-9-5p + miR-98-5p) demonstrated the best diagnostic performance, with an AUC = 0.734. In addition, the number of pregnancies was found to be an independent risk factor that can improve the performance of exosomal miRNAs in diagnosing PMOP. CONCLUSIONS These results suggested that the plasma exosomal miRNAs had the potential to serve as noninvasive diagnostic biomarkers for PMOP.
Collapse
Affiliation(s)
- Zhibang Sun
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Junjie Shi
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Chenyang Yang
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Xukun Chen
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Jiaqi Chu
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Jing Chen
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Yuan Wang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Chenxin Zhu
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Jinze Xu
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Guozhen Tang
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Song Shao
- Department of Orthopedics, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China.
| |
Collapse
|
47
|
Geng N, Qi Y, Qin W, Li S, Jin H, Jiang Y, Wang X, Wei S, Wang P. Two microRNAs of plasma-derived small extracellular vesicles as biomarkers for metastatic non-small cell lung cancer. BMC Pulm Med 2023; 23:259. [PMID: 37452310 PMCID: PMC10347730 DOI: 10.1186/s12890-023-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) of plasma-derived small extracellular vesicles (sEVs) have been proven to be associated with metastasis in several types of cancer. This study aimed to detect miRNAs of plasma-derived sEVs as potential biomarkers for metastatic non-small cell lung cancer (NSCLC). METHODS We assessed the miRNA profiles of plasma-derived sEVs from healthy individuals as the control group (CT group), NSCLC patients without distant organ metastasis as the NM-NSCLC group and patients with distant organ metastasis as the M-NSCLC group. Next-generation sequencing (NGS) was performed on samples, and differentially expressed miRNAs (DEMs) of the three groups were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) and ClueGO were used to predict potential pathways of DEMs. MiRNA enrichment analysis and annotation tool (miEAA) was used to understand changes in the tumour microenvironment in NSCLC. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analysis was used to validate target miRNAs. RESULT NGS was performed on 38 samples of miRNAs of plasma-derived sEVs, and DEMs were screened out between the above three groups. Regarding the distribution of DEMs in the NM-NSCLC and M-NSCLC groups, KEGG pathway analysis showed enrichment in focal adhesion and gap junctions and ClueGO in the Rap1 and Hippo signaling pathways; miEAA found that fibroblasts were over-represented. From our screening, miRNA-200c-3p and miRNA-4429 were found to be predictive DEMs among the CT, NM-NSCLC and M-NSCLC groups, and qRT‒PCR was applied to verify the results. Finally, it was revealed that expression levels of miR-200c-3p and miR-4429 were significantly upregulated in M-NSCLC patients. CONCLUSION This study identified miRNA-200c-3p and miRNA-4429 as potential biomarkers for NSCLC metastasis.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yaopu Qi
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Wenwen Qin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Si Li
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Hao Jin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yifang Jiang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Xiuhuan Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Shanna Wei
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
48
|
Mishra A, Bharti PS, Rani N, Nikolajeff F, Kumar S. A tale of exosomes and their implication in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188908. [PMID: 37172650 DOI: 10.1016/j.bbcan.2023.188908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden.
| |
Collapse
|
49
|
Shi YJ, Fang YX, Tian TG, Chen WP, Sun Q, Guo FQ, Gong PQ, Li CM, Wang H, Hu ZQ, Li XX. Discovery of extracellular vesicle-delivered miR-185-5p in the plasma of patients as an indicator for advanced adenoma and colorectal cancer. J Transl Med 2023; 21:421. [PMID: 37386465 PMCID: PMC10308673 DOI: 10.1186/s12967-023-04249-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND We aimed to evaluate whether extracellular vesicles (EV)-derived microRNAs (miRNAs) can be used as biomarkers for advanced adenoma (AA) and colorectal cancer (CRC). METHODS We detected the changes in the plasma EV-delivered miRNA profiles in healthy donor (HD), AA patient, and I-II stage CRC patient groups using miRNA deep sequencing assay. We performed the TaqMan miRNA assay using 173 plasma samples (two independent cohorts) from HDs, AA patients, and CRC patients to identify the candidate miRNA(s). The accuracy of candidate miRNA(s) in diagnosing AA and CRC was determined using the area under the receiver-operating characteristic curve (AUC) values. Logistic regression analysis was performed to evaluate the association of candidate miRNA(s) as an independent factor for the diagnosis of AA and CRC. The role of candidate miRNA(s) in the malignant progression of CRC was explored using functional assays. RESULTS We screened and identified four prospective EV-delivered miRNAs, including miR-185-5p, which were significantly upregulated or downregulated in AA vs. HD and CRC vs. AA groups. In two independent cohorts, miR-185-5p was the best potential biomarker with the AUCs of 0.737 (Cohort I) and 0.720 (Cohort II) for AA vs. HD diagnosis, 0.887 (Cohort I) and 0.803 (Cohort II) for CRC vs. HD diagnosis, and 0.700 (Cohort I) and 0.631 (Cohort II) for CRC vs. AA diagnosis. Finally, we demonstrated that the upregulated expression of miR-185-5p promoted the malignant progression of CRC. CONCLUSION EV-delivered miR-185-5p in the plasma of patients is a promising diagnostic biomarker for colorectal AA and CRC. Trial registration The study protocol was approved by the Ethics Committee of Changzheng Hospital, Naval Medical University, China (Ethics No. 2022SL005, Registration No. of China Clinical Trial Registration Center: ChiCTR220061592).
Collapse
Affiliation(s)
- Yun-Jie Shi
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
- Department of Anorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yu-Xiang Fang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Tong-Guan Tian
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Wei-Ping Chen
- Institute of Basic Medicine and Cancer (IBMC), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qiang Sun
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Fang-Qi Guo
- Department of Ultrasound, Shanghai Fourth People' Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pi-Qing Gong
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Chun-Mei Li
- Institute of Basic Medicine and Cancer (IBMC), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Hao Wang
- Department of Anorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zhi-Qian Hu
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Xin-Xing Li
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
50
|
Xue Y, Chen T, Hou N, Wu X, Kong W, Huang J, Zhang J, Chen Y, Zheng J, Zhai W, Xue W. Serum extracellular vesicles derived hsa-miR-320d as an indicator for progression of clear cell renal cell carcinoma. Discov Oncol 2023; 14:114. [PMID: 37380801 DOI: 10.1007/s12672-023-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a prevalent malignancy with a rising incidence in developing countries. Clear cell renal cell carcinoma (ccRCC) constitutes 70% of RCC cases and is prone to metastasis and recurrence, yet lacks a liquid biomarker for surveillance. Extracellular vesicles (EVs) have shown promise as biomarkers in various malignancies. In this study, we investigated the potential of serum EV-derived miRNAs as a biomarker for ccRCC metastasis and recurrence. MATERIALS AND METHODS Patients diagnosed with ccRCC between 2017 and 2020 were recruited in this study. In the discovery phase, high throughput small RNA sequencing was used to analyze RNA extracted from serum EVs derived from localized ccRCC (LccRCC) and advanced ccRCC (AccRCC). In the validation phase, qPCR was employed for quantitative detection of candidate biomarkers. Migration and invasion assays were performed on ccRCC cell line OSRC2. RESULTS Serum EVs derived hsa-miR-320d was significantly up-regulated in patients with AccRCC than in patients with LccRCC (p < 0.01). In addition, Serum EVs derived hsa-miR-320d was also significantly up-regulated in patients who experienced recurrence or metastasis (p < 0.01). Besides, hsa-miR-320d enhances the pro-metastatic phenotype of ccRCC cells in vitro. CONCLUSIONS Serum EVs derived hsa-miR-320d as a liquid biomarker exhibits significant potential for identifying the recurrence or metastasis of ccRCC, as well as hsa-miR-320d promotes ccRCC cells migration and invasion.
Collapse
Affiliation(s)
- Yizheng Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Tianyi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Xiaorong Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Wen Kong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China.
| |
Collapse
|