1
|
Gelb T, Garman KA, Urban D, Coxon A, Gryder B, Hill NT, Miao L, Lee T, Lee O, Chakka S, Braisted J, Jarvis JE, Glavin R, Raj TS, Xiao Y, Difilippantonio S, Wang AQ, Shen M, Cheng KCC, Lal-Nag M, Hall MD, Brownell I. High-throughput screening identifies Aurora kinase B as a critical therapeutic target for Merkel cell carcinoma. Nat Commun 2025; 16:1583. [PMID: 39939315 PMCID: PMC11822212 DOI: 10.1038/s41467-025-56504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer. Most MCCs contain Merkel cell polyomavirus (virus-positive MCC; VP-MCC), and the remaining are virus-negative (VN-MCC). Immune checkpoint inhibitors are the first-line treatment for metastatic MCC, but durable responses are achieved in less than 50% of patients. To identify new treatments, we screen ~4,000 compounds for their ability to reduce MCC viability and demonstrate that VP-MCC and VN-MCC exhibit distinct response profiles. Aurora kinase inhibitors selectively reduce VP-MCC viability, with RNAi screening independently identifying AURKB as an essential gene for MCC survival, especially in VP-MCC. AZD2811, a selective AURKB inhibitor, induces mitotic dysregulation and apoptosis in MCC cells, with greater efficacy in VP-MCC. In mice, AZD2811 nanoparticles inhibit tumor growth and increase survival in both VP-MCC and VN-MCC xenograft models. Overall, our unbiased screens identify AURKB as a promising therapeutic target and AZD2811NP as a potential treatment for MCC.
Collapse
Affiliation(s)
- Tara Gelb
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Khalid A Garman
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Amy Coxon
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Berkley Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Natasha T Hill
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingling Miao
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tobie Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Olivia Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Sirisha Chakka
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - John Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jordan E Jarvis
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rachael Glavin
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Trisha S Raj
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Xiao
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Ken Chih-Chien Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Vickram S, Infant SS, Manikandan S, Jenila Rani D, Mathan Muthu CM, Chopra H. Immune biomarkers and predictive signatures in gastric cancer: Optimizing immunotherapy responses. Pathol Res Pract 2025; 265:155743. [PMID: 39616978 DOI: 10.1016/j.prp.2024.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Gastric cancer is a malignant disease with a poor prognosis and few therapeutic options once it has advanced. Immunotherapy using ICIs has emerged as a viable therapeutic method; nevertheless, reliable immunological biomarkers are required to identify who may benefit from these therapies. It focuses on key immune biomarkers and predictive signatures in gastric cancer, such as PD-L1 expression, microsatellite instability (MSI), tumor mutational burden (TMB), and Epstein-Barr virus (EBV) status, to optimize gastric cancer patients' immunotherapy responses. PD-L1 expression is a popular biomarker for ICI effectiveness. Tumors with high MSI-H and TMB are the most susceptible to ICIs because they are highly immunogenic. EBV-positive stomach tumors are highly immunogenic, and immunotherapy has a high response rate. Combining composite biomarker panels with multi-omics-based techniques improved patient selection accuracy. In recent years, machine learning models have been integrated into next-generation sequencing. Dynamic, real-time-monitorable biomarkers for real-time immune response monitoring are also being considered. Thus, enhancing biomarker-driven immunotherapy is critical for improving clinical outcomes with gastric cancer. There is still more work to be done in this field, and verifying developing biomarkers will be an important component in the future of customized cancer therapy.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Shofia Saghya Infant
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - D Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
3
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
4
|
Sharma AN, Shah KS, Sharma AA, Yu SS. Avelumab in the Treatment of Advanced Merkel Cell Carcinoma: A Systematic Review. Dermatol Surg 2024; 50:407-411. [PMID: 38349855 DOI: 10.1097/dss.0000000000004107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
BACKGROUND Avelumab, a programmed death ligand-1 inhibitor, has shown success in providing durable responses for difficult-to-treat Merkel cell carcinomas (MCCs). OBJECTIVE Evaluate the efficacy and safety of avelumab in the treatment of advanced MCC. METHODS Studies reporting the use of avelumab as a monotherapy or in combination with other agents in the treatment of stage III or IV (advanced) MCC were included. The primary outcomes were overall response rate, overall survival (OS), and treatment-related adverse events. RESULTS A total of 48 studies were included, involving 1,565 patients with advanced MCC. Most patients were male (1,051, 67.3%) with stage IV MCC (517, 97.0%). The overall response rate was 46.1% (partial response-25.4% and complete response-20.7%) after a mean follow-up period of 9.5 months. Kaplan-Meier survival curves for the pooled stage III and IV group demonstrated OS rates of 58% at 1 year, 47% at 2 years, and 28% at 5 years after completion of treatment with avelumab (median OS: 23.1 months). The most common treatment-related adverse events consisted of constitutional (44%), gastrointestinal (19%), and dermatologic (12%) symptoms. CONCLUSION Avelumab monotherapy and combination therapy have shown success in the overall response rate and survival for patients with advanced MCC.
Collapse
MESH Headings
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/pathology
- Humans
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Skin Neoplasms/mortality
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Neoplasm Staging
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Treatment Outcome
- Survival Rate
Collapse
Affiliation(s)
- Ajay N Sharma
- Department of Dermatology, University of California, Irvine, Irvine, California
| | - Karishma S Shah
- Department of Dermatology, University of California, Irvine, Irvine, California
| | - Aditi A Sharma
- Department of Dermatology, University of California, Irvine, Irvine, California
| | - Siegrid S Yu
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
5
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
6
|
Öğüt B, Bayram EK, İnan MA, Kestel S, Erdem Ö. Association of Merkel Cell Polyomavirus Status With p53, RB1, and PD-L1 Expression and Patient Prognosis in Merkel Cell Carcinomas: Clinical, Morphologic, and Immunohistochemical Evaluation of 17 Cases. Appl Immunohistochem Mol Morphol 2023:00129039-990000000-00100. [PMID: 37126387 DOI: 10.1097/pai.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive, primary neuroendocrine carcinoma of the skin whose main risk factors are immunosuppression, UV radiation exposure, and Merkel cell polyomavirus. Programmed death-1/programmed death ligand-1 (PD-L1)-based immunotherapy is currently the first choice for treating patients with metastatic MCC. METHODS MCC biopsies (17) were evaluated for their nucleus and cytoplasm characteristics and growth patterns, as well as for intratumor lymphocytes, mitotic number, and lymphovascular invasion. Paraffin-embedded tissue samples of the biopsies were stained with MCPyV large T-antigen (LTag), RB1, p53, and PD-L1. RESULTS We observed MCPyV LTag expression in 9 out of the 17 tumors, and all 9 cases were positive for RB1 (P<0.000). p53 staining was not significantly correlated with MCPyV LTag. We observed no relationship between p53 expression and any other parameters, and PD-L1 expression was low in the MCC samples. We evaluated PD-L1 using both the combined positive score and tumor proportion score (TPS), and found that TPS was correlated with MCPyV LTag expression (P=0.016). Tumors with tumor-infiltrating lymphocytes showed a better prognosis than those without these lymphocytes (P=0.006). DISCUSSION Our data demonstrated that RB1 was effective for immunohistochemically investigating the MCPyV status of tumors. TPS was superior to the combined positive score in evaluating PD-L1 in MCC. Tumor-infiltrating lymphocytes were the only parameters that were associated with survival. Further studies with larger series are required to confirm these results.
Collapse
Affiliation(s)
- Betül Öğüt
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
7
|
Drexler K, Schwertner B, Haerteis S, Aung T, Berneburg M, Geissler EK, Mycielska ME, Haferkamp S. The Role of Citrate Homeostasis in Merkel Cell Carcinoma Pathogenesis. Cancers (Basel) 2022; 14:cancers14143425. [PMID: 35884486 PMCID: PMC9325124 DOI: 10.3390/cancers14143425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer. Despite important progress, overall understanding of the events that drive MCC carcinogenesis remains incomplete. We discovered that the plasma membrane citrate transporter (pmCiC) is upregulated in Merkel cell carcinoma cell lines. Cancer cells import extracellular citrate via pmCiC to support their metabolism, which is critical to support proliferation and metastatic spread. In this study, we show that inhibition of pmCiC can decrease the growth rate of Merkel cell carcinoma cell lines. Targeting pmCiC and thereby the tumor metabolism should be considered further as a potential anti-cancer therapy. Abstract Merkel cell carcinoma (MCC) is a rare but highly aggressive tumor of the skin with a poor prognosis. The factors driving this cancer must be better understood in order to discover novel targets for more effective therapies. In the search for targets, we followed our interest in citrate as a central and critical metabolite linked to fatty acid synthesis in cancer development. A key to citrate uptake in cancer cells is the high expression of the plasma membrane citrate transporter (pmCiC), which is upregulated in the different adenocarcinoma types tested so far. In this study, we show that the pmCiC is also highly expressed in Merkel cell carcinoma cell lines by western blot and human tissues by immunohistochemistry staining. In the presence of extracellular citrate, MCC cells show an increased proliferation rate in vitro; a specific pmCiC inhibitor (Na+-gluconate) blocks this citrate-induced proliferation. Furthermore, the 3D in vivo Chick Chorioallantoic Membrane (CAM) model showed that the application of Na+-gluconate also decreases Merkel cell carcinoma growth. Based on our results, we conclude that pmCiC and extracellular citrate uptake should be considered further as a potential novel target for the treatment of Merkel cell carcinoma.
Collapse
Affiliation(s)
- Konstantin Drexler
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
- Correspondence: ; Tel.: +49-941-944-9603; Fax: +49-941-944-9525
| | - Barbara Schwertner
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (S.H.); (T.A.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (S.H.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
| | - Edward K. Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Maria E. Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany;
| | - Sebastian Haferkamp
- Department of Dermatology, University Medical Center, 93053 Regensburg, Germany; (B.S.); (M.B.); (S.H.)
| |
Collapse
|
8
|
Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29:3044-3060. [PMID: 35621637 PMCID: PMC9139602 DOI: 10.3390/curroncol29050247] [Citation(s) in RCA: 538] [Impact Index Per Article: 179.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer. The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately, not all patients respond favourably to these drugs, highlighting the role of biomarkers such as Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in predicting responses to ICIs-based immunotherapy. The current study aims to review the literature and updates on ICIs in cancer therapy.
Collapse
|
9
|
Zhao W, Song Y, Wang QQ, Han S, Li XX, Cui Y, Gao H, Yuan R, Yang S. Cryptotanshinone Induces Necroptosis through Ca2+ Release and ROS Production in vitro and in vivo. Curr Mol Pharmacol 2022; 15:1009-1023. [PMID: 35086466 DOI: 10.2174/1874467215666220127112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p-RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) was used to determine the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Wentong Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yuanbo Song
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
10
|
Maritaz C, Broutin S, Chaput N, Marabelle A, Paci A. Immune checkpoint-targeted antibodies: a room for dose and schedule optimization? J Hematol Oncol 2022; 15:6. [PMID: 35033167 PMCID: PMC8760805 DOI: 10.1186/s13045-021-01182-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Anti-CTLA-4 and anti-PD-1/PD-L1 immune checkpoint inhibitors are therapeutic monoclonal antibodies that do not target cancer cells but are designed to reactivate or promote antitumor immunity. Dosing and scheduling of these biologics were established according to conventional drug development models, even though the determination of a maximum tolerated dose in the clinic could only be defined for anti-CTLA-4. Given the pharmacology of these monoclonal antibodies, their high interpatient pharmacokinetic variability, the actual clinical benefit as monotherapy that is observed only in a specific subset of patients, and the substantial cost of these treatments, a number of questions arise regarding the selected dose and the dosing interval. This review aims to outline the development of these immunotherapies and considers optimization options that could be used in clinical practice.
Collapse
Affiliation(s)
- Christophe Maritaz
- Pharmacology Department, U1030 INSERM, University Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sophie Broutin
- Pharmacology Department, U1030 INSERM, University Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Chaput
- Laboratory for Immunomonitoring in Oncology (LIO), Faculty of Pharmacy, University Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aurélien Marabelle
- Drug Development Unit (DITEP), LRTI U1015 INSERM, Gustave Roussy, Villejuif, France
| | - Angelo Paci
- Pharmacology Department, U1030 INSERM, University Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France.
- Pharmacokinetic Unit, Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France.
| |
Collapse
|
11
|
Tavares DF, Chaves Ribeiro V, Andrade MAV, Moreira Cardoso-Júnior L, Rhangel Gomes Teixeira T, Ramos Varrone G, Lopes Britto R. Immunotherapy using PD-1/PDL-1 inhibitors in metastatic triple-negative breast cancer: A systematic review. Oncol Rev 2021; 15:497. [PMID: 35003528 PMCID: PMC8678626 DOI: 10.4081/oncol.2021.497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is one of the leading causes of death from cancer in women worldwide. Despite the significant benefits of using conventional chemotherapy in the treatment of breast cancer, one of its subtypes, the triple-negative breast cancer, is still a challenge in clinical practice. Recent studies have been investigating the role of the immune system in breast cancer and the development of immunotherapy. Although recently the use of atezolizumab, an anti-PD-L1 monoclonal antibody, combined with chemotherapy was approved, an important step in the treatment of patients with triple-negative metastatic breast cancer, the use of immunotherapy to treat breast tumors remains a major challenge. In this systematic literature review, following PRISMA guidelines, we searched for clinical trials using immunotherapy in the treatment of metastatic triple-negative breast cancer published until March 2020 in the databases EMBASE, PubMed and Cochrane Central Register of Controlled Trials (CENTRAL), with no language restrictions. We did not contact the authors of the clinical trials to obtain additional information. Two researchers independently collected the data and assessed the quality of this study. The literature shows that immunotherapy with anti-PD-1/PD-L1 agents is emerging as a new treatment option in breast cancer. On the other hand, when compared to other types of cancer in which several agents have already been approved, the research is still in its infancy. The use of anti-PD-1/PD-L1 agents as monotherapy revealed encouraging results in the metastatic setting, especially when administered in the early course of the disease, although combination strategies with chemotherapy appear to increase its efficacy. The main limitation of this study is the approach of cancer only in advanced stages.
Collapse
Affiliation(s)
- Dione Fernandes Tavares
- Graduate program in Medicine and Health, Medicine Faculty of Bahia, Federal University of Bahia, Salvador
| | | | | | | | | | | | - Renata Lopes Britto
- Graduate program in Medicine and Health, Medicine Faculty of Bahia, Federal University of Bahia, Salvador
| |
Collapse
|
12
|
Awad RM, Lecocq Q, Zeven K, Ertveldt T, De Beck L, Ceuppens H, Broos K, De Vlaeminck Y, Goyvaerts C, Verdonck M, Raes G, Van Parys A, Cauwels A, Keyaerts M, Devoogdt N, Breckpot K. Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:172-182. [PMID: 34485603 PMCID: PMC8397838 DOI: 10.1016/j.omtm.2021.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/27/2021] [Indexed: 12/03/2022]
Abstract
Monoclonal antibodies that target the inhibitory immune checkpoint axis consisting of programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have changed the immune-oncology field. We identified K2, an anti-human PD-L1 single-domain antibody fragment, that can enhance T cell activation and tumor cell killing. In this study, the potential of different K2 formats as immune checkpoint blocking medicines was evaluated using a gene-based delivery approach. We showed that 2K2 and 3K2, a bivalent and trivalent K2 format generated using a 12 GS (glycine-serine) linker, were 313- and 135-fold more potent in enhancing T cell receptor (TCR) signaling in PD-1POS cells than was monovalent K2. We further showed that bivalent constructs generated using a 30 GS linker or disulfide bond were 169- and 35-fold less potent in enhancing TCR signaling than was 2K2. 2K2 enhanced tumor cell killing in a 3D melanoma model, albeit to a lesser extent than avelumab. Therefore, an immunoglobulin (Ig)G1 antibody-like fusion protein was generated, referred to as K2-Fc. K2-Fc was significantly better than avelumab in enhancing tumor cell killing in the 3D melanoma model. Overall, this study describes K2-based immune checkpoint medicines, and it highlights the benefit of an IgG1 Fc fusion to K2 that gains bivalency, effector functions, and efficacy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katty Zeven
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium.,In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katrijn Broos
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Magali Verdonck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Alexander Van Parys
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Anje Cauwels
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium.,Nuclear Medicine Department, UZ Brussel, 1090 Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
13
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
14
|
Leão I, Marinho J, Costa T. Long-term response to avelumab and management of oligoprogression in Merkel cell carcinoma: A case report. World J Clin Cases 2021; 9:4829-4836. [PMID: 34222455 PMCID: PMC8223835 DOI: 10.12998/wjcc.v9.i18.4829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous neuroendocrine neoplasia, with high risk of recurrence and metastasis and poor survival. Immune checkpoint inhibitors, like the anti-programmed death-ligand 1 agent avelumab, were recently approved for the treatment of advanced MCC. We, herein, report the first case of advanced MCC with oligoprogression managed with avelumab and local radical treatment.
CASE SUMMARY A 61-year-old man was presented to the hospital with sporadic fever and an exudative malodorous mass (10 cm of diameter), located on the right gluteal region. The final diagnosis was MCC, cT4N3M1c (AJCC, TNM staging 8th edition, 2017), with invasion of adjacent muscle, in-transit metastasis, and bone lesions. Patient started chemotherapy (cisplatin and etoposide), and after six cycles, the main tumor increased, evidencing disease progression. Two months later, the patient started second line treatment with avelumab (under an early access program). After two cycles of treatment, the lesion started to decrease, achieving a major response. Local progression was documented after 16 cycles. However, as the tumor became resectable, salvage surgery was performed, while keeping the systemic treatment with avelumab. Since the patient developed bilateral pneumonia, immunotherapy was suspended. More than 2.5 years after surgery (last 19 mo without systemic therapy), the patient maintains complete local response and stable bone lesions.
CONCLUSION This report highlights the efficacy and long-term response of avelumab on the management of a chemotherapy resistant advanced MCC, with evidence of oligoprogression, in combination with local radical treatment.
Collapse
Affiliation(s)
- Inês Leão
- Department of Oncology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
| | - Joana Marinho
- Department of Oncology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
| | - Telma Costa
- Department of Oncology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
| |
Collapse
|
15
|
Ji X, Sui L, Song K, Lv T, Zhao H, Yao Q. PD-L1, PARP1, and MMRs as potential therapeutic biomarkers for neuroendocrine cervical cancer. Cancer Med 2021; 10:4743-4751. [PMID: 34076351 PMCID: PMC8290238 DOI: 10.1002/cam4.4034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Neuroendocrine cervical cancer (NECC) is a rare cervical cancer with high aggressivity that causes poor prognosis even in the early stage. Given other neuroendocrine carcinomas and other types of cervical cancer have been proved to have expression of programmed cell death protein 1 ligand 1(PD‐L1) and poly ADP‐ribose polymerase‐1(PARP1), we would measure and analyze these proteins in this invasive cancer. The purpose of this study is to investigate the application value of PD‐1/PD‐L1 and PARP1 inhibitors in NECC. Methods The NECC cases in our center with formalin‐fixed paraffin‐embedded tissue blocks were collected, and immunohistochemical (IHC) staining of PD‐L1, PARP1, Mismatch repair proteins (MMRs), and P53 was performed. Chi‐square test was used to analyze associations between various protein expressions. We analyzed the efficacy of immunotherapy in a recent patient with secondary recurrence after two courses of chemotherapy. Results After rigorous screening, 20 cases were finally included. Three cases did not undergo surgical treatment because of their advanced stage. Twelve (60%) developed distant metastases or relapsed within five years, and most of them within two years. The positive rate of PD‐L1 and PARP1 were 70% and 75% respectively. Among all the cases, microsatellite instability (MSI) was seen in six cases (30%) and abnormal p53 expression was in 15 patients (75%). PD‐L1 was associated with PARP1 expression in the MSI subgroup. The patient treated with chemotherapy + VEGF inhibitor (VEGFi) + programmed cell death protein 1(PD‐1) inhibitor had an excellent improvement in clinical symptoms, tumor markers, and mass size. Conclusion The IHC results of PD‐L1, PARP1, and MMRs suggested that NECC was the target of immunotargeted therapy. Our case confirmed that immune checkpoint therapy was effective in patients with PD‐L1 positive and MMRs loss. Considering the clinical practicability, more cases should be collected, and effective biomarkers still need to be further searched.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Sui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kejuan Song
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Teng Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. Blood 2021; 136:2754-2763. [PMID: 32766875 DOI: 10.1182/blood.2020007247] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
This study aimed to assess the efficacy and safety of treatment with avelumab, an anti-programmed death ligand 1 (PD-L1) antibody, in patients with relapsed or refractory extranodal natural killer/T-cell lymphoma (ENKTL). In this phase 2 trial, 21 patients with relapsed or refractory ENKTL were treated with 10 mg/kg of avelumab on days 1 and 15 of a 28-day cycle. The primary end point was the complete response (CR) rate based on the best response. Targeted sequencing and immunohistochemistry were performed using pretreatment tumor tissue, and blood samples were drawn before and after treatment for measurement of cytokines and soluble programmed cell death protein 1 (PD1), PD-L1, and PD-L2. The CR rate was 24% (5 of 21), and the overall response rate was 38% (8 of 21). Although nonresponders showed early progression, 5 responders currently continue to receive treatment and have maintained their response. Most treatment-related adverse events were grade 1 or 2; no grade 4 adverse events were observed. Treatment responses did not correlate with mutation profiles, tumor mutation burden, serum levels of cytokines, or soluble PD1/PD-L1 and PD-L2. However, the response to avelumab was significantly associated with the expression of PD-L1 by tumor tissue (P = .001). Therefore, all patients achieving CR showed high PD-L1 expression, and their tumor subtyping based on PD-L1 expression correlated with treatment response. In summary, avelumab showed single-agent activity in a subset of patients with relapsed or refractory ENKTL. The assessment of PD-L1 expression on tumor cells might be helpful for identifying responders to avelumab. This trial was registered at www.clinicaltrials.gov as #NCT03439501.
Collapse
|
17
|
Dicke K, Dervenis V, Hauschild A, Dirschka T. [Local tumor control of metastatic Merkel cell carcinoma in a 90-year-old woman]. Hautarzt 2021; 72:1090-1093. [PMID: 33760961 DOI: 10.1007/s00105-021-04799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. Many people suffer early local recurrences and distant metastases. The anti-PDL1 (PDL1: programmed death ligand 1) antibody avelumab has been approved as first-line treatment for advanced MCC in Europe. It is also an alternative treatment for old and multimorbid patients.
Collapse
Affiliation(s)
- Katja Dicke
- Klinik für Dermatologie, CentroDerm GmbH, Heinz-Fangman-Str. 57, 42287, Wuppertal, Deutschland.
| | - Vasileios Dervenis
- Klinik für Dermatologie, CentroDerm GmbH, Heinz-Fangman-Str. 57, 42287, Wuppertal, Deutschland
| | - Axel Hauschild
- Klinik für Dermatologie, Venerologie und Allergologie, UKSH, Campus Kiel, Kiel, Deutschland
| | - Thomas Dirschka
- Klinik für Dermatologie, CentroDerm GmbH, Heinz-Fangman-Str. 57, 42287, Wuppertal, Deutschland
| |
Collapse
|
18
|
Hamilton G. Avelumab: search for combinations of immune checkpoint inhibition with chemotherapy. Expert Opin Biol Ther 2020; 21:311-322. [PMID: 32954871 DOI: 10.1080/14712598.2021.1825679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) has proved successful for selected tumors and a subpopulation of patients. The human monoclonal IgG1 antibody (mAB) avelumab capable of mediating antibody-dependent cytotoxicity (ADCC) lysis is directed to programmed death ligand-1 (PD-L1) of tumor cells and is tested in trials aiming to improve ICI in combination with chemotherapeutic drugs. AREAS COVERED This article presents an overview of the current trials to enhance ICI regimens using avelumab in combination with chemotherapeutics, antiangiogenetic drugs, and immunomodulators. Predictive factors for this kind of immunochemotherapy are discussed. EXPERT OPINION Clinical data demonstrate that avelumab shows efficacy in cancer patients against Merkel cell carcinoma (MCC), renal cell carcinoma (RCC), and urothelial cancers as single agent. Furthermore, avelumab in combination with axitinib in RCC increases survival and exhibits activity in combination with docetaxel in urothelial carcinoma. However, several other immunochemotherapy trials for ovarian cancer, gastric cancer, and non-small lung cancer (NSCLC) showed no activity due to factors disfavoring administration of immunotherapy combos.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Vascular Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Drusbosky L, Nangia C, Nguyen A, Szeto C, Newton Y, Spilman P, Reddy SB. Complete response to avelumab and IL-15 superagonist N-803 with Abraxane in Merkel cell carcinoma: a case study. J Immunother Cancer 2020; 8:jitc-2020-001098. [PMID: 32913030 PMCID: PMC7484858 DOI: 10.1136/jitc-2020-001098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare aggressive form of skin cancer originating in neuroendocrine cells. The antiprogrammed death ligand 1 (PD-L1) monoclonal antibody (mAb) avelumab has been approved for treatment of MCC, but options are limited, should it be ineffective as a monotherapy. Combined therapy with low/moderate dose nab-paclitaxel and an interleukin 15 (IL-15)-based therapeutic such as the IL-15 ‘superagonist’ N-803 may increase response by activation of the immune system. The case of a 71-year-old man diagnosed with MCC who achieved and maintained a complete response (CR) by treatment with the anti-PD-L1 mAb avelumab in combination with IL-15 superagonist N-803 and nab-paclitaxel (Abraxane) is presented. Avelumab treatment alone resulted in a response in a para-aortic lesion, but not the other tumor masses. N-803 was added, followed by nab-paclitaxel; CT showed a decrease in the size of the abdominal mass at 1 month, near resolution at 3 months and CR at 5 months. Abraxane was discontinued after the first CR on CT, and the patient continues on avelumab/N-803 treatment and maintains a CR. Combination of avelumab with low/moderate-dose chemotherapy and an immune enhancer such as N-803 may offer a viable treatment option for MCC patients for whom avelumab therapy alone was not effective.
Collapse
Affiliation(s)
| | - Chaitali Nangia
- Chan Soon-Shiong Institute for Medicine, El Segundo, California, USA
| | - Andrew Nguyen
- NantHealth Inc, Culver City, California, USA.,ImmunityBio, LLC, Culver City, California, USA
| | - Christopher Szeto
- NantHealth Inc, Culver City, California, USA.,ImmunityBio, LLC, Culver City, California, USA
| | - Yulia Newton
- NantHealth Inc, Culver City, California, USA.,ImmunityBio, LLC, Culver City, California, USA
| | | | - Sandeep Bobby Reddy
- NantHealth Inc, Culver City, California, USA .,ImmunityBio, LLC, Culver City, California, USA
| |
Collapse
|
20
|
Ai L, Chen J, Yan H, He Q, Luo P, Xu Z, Yang X. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3625-3649. [PMID: 32982171 PMCID: PMC7490077 DOI: 10.2147/dddt.s267433] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022]
Abstract
PD-1/PD-L1 inhibitors are a group of immune checkpoint inhibitors as front-line treatment of multiple types of cancer. However, the serious immune-related adverse reactions limited the clinical application of PD-1/PD-L1 monoclonal antibodies, despite the promising curative effects. Therefore, it is urgent to develop novel inhibitors, such as small molecules, peptides or macrocycles, targeting the PD-1/PD-L1 axis to meet the increasing clinical demands. Our review discussed the mechanism of action of PD-1/PD-L1 inhibitors and presented clinical trials of currently approved PD-1/PD-L1 targeted drugs and the incidence of related adverse reactions, helping clinicians pay more attention to them, better formulate their intervention and resolution strategies. At last, some new inhibitors whose patent have been published are listed, which provide development ideas and judgment basis for the efficacy and safety of novel PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Leilei Ai
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jian Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
21
|
Botha AR, Mbodi L, Wadee R. Advanced neuroendocrine carcinoma (Merkel cell carcinoma) of the vulva: a case report and literature review. SOUTHERN AFRICAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY 2020. [DOI: 10.1080/20742835.2020.1740434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Adam R Botha
- Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand/National Health Laboratory Service, Johannesburg, South Africa
| | - Langanani Mbodi
- Department of Obstetrics and Gynaecology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand/National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
22
|
Boyer M, Cayrefourcq L, Dereure O, Meunier L, Becquart O, Alix-Panabières C. Clinical Relevance of Liquid Biopsy in Melanoma and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040960. [PMID: 32295074 PMCID: PMC7226137 DOI: 10.3390/cancers12040960] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma and Merkel cell carcinoma are two aggressive skin malignancies with high disease-related mortality and increasing incidence rates. Currently, invasive tumor tissue biopsy is the gold standard for their diagnosis, and no reliable easily accessible biomarker is available to monitor patients with melanoma or Merkel cell carcinoma during the disease course. In these last years, liquid biopsy has emerged as a candidate approach to overcome this limit and to identify biomarkers for early cancer diagnosis, prognosis, therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-based non-invasive procedure that allows the sequential analysis of circulating tumor cells, circulating cell-free and tumor DNA, and extracellular vesicles. These innovative biosources show similar features as the primary tumor from where they originated and represent an alternative to invasive solid tumor biopsy. In this review, the biology and technical challenges linked to the detection and analysis of the different circulating candidate biomarkers for melanoma and Merkel cell carcinoma are discussed as well as their clinical relevance.
Collapse
Affiliation(s)
- Magali Boyer
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Olivier Dereure
- Department of Dermatology and INSERM 1058 Pathogenesis and Control of Chronic Infections, University of Montpellier, 34090 Montpellier, France;
| | - Laurent Meunier
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Ondine Becquart
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
- Correspondence: ; Tel.: +33-4-1175-99-31; Fax: +33-4-1175-99-33
| |
Collapse
|
23
|
|
24
|
Roviello G, D’Angelo A, Generali D, Pittacolo M, Ganzinelli M, Iezzi G, Manzini ND, Sobhani N. Avelumab in gastric cancer. Immunotherapy 2019; 11:759-768. [PMID: 31060469 DOI: 10.2217/imt-2019-0011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy and the third cause of cancer-related deaths worldwide. Currently, surgery and chemotherapy remain the main therapeutic options and the prognosis of the disease is still poor in the metastatic setting. Avelumab is a human IgG1 antibody directed against PD-L1 approved for Merkel cell carcinoma and urothelial carcinoma that could be useful also for the treatment of GC. This review describes the chemical structure, the pharmacologic properties and the current knowledge of the efficacy of avelumab in the treatment of GC from the data available on the first and later phase clinical trials. The ongoing studies testing this drug either alone or in combination with other drugs are also described.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alberto D’Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Daniele Generali
- Breast Cancer Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Matteo Pittacolo
- Department of Orthopedics & Orthopedic Oncology, University of Padova, Italy
| | - Monica Ganzinelli
- Thoracic Unit, Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Nicolò de Manzini
- General Surgery Unit, Department of Medical, Surgical and Health Sciences Cattinara University Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Navid Sobhani
- Breast Cancer Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| |
Collapse
|
25
|
Abstract
Immunotherapy has revolutionized the treatment of melanoma, with implications for the surgical management of this disease. Surgeons must be aware of the impact of various immunotherapies on patients with resectable and unresectable disease, and how surgical decision-making should progress as a result. We expect that current and developing immunotherapies will increase surgeon involvement for resection of metastatic melanoma, whether for tumor harvests to generate autologous lymphocytes or for consolidating control of disease beyond what immunotherapies alone can achieve. Despite remarkable advancements in the field, significant work is needed to optimize the immuno-modulation that targets cancers while minimizing toxicity for patients.
Collapse
|